Machine Learning Models for Discovering Biological Interactions

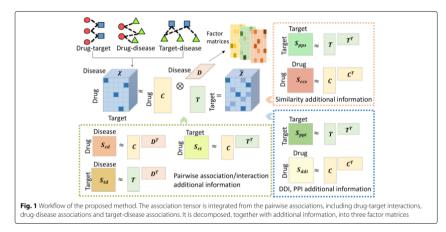
Ivan Marcelo Carrera Izurieta

Advisor: Dra. Ines Dutra Dep. Ciencia de Computadores. UP.

Co-advisor: Dr. Eduardo Tejera Grupo de Quimio-Bioinformatica. UDLA.

Doutoramento em Ciencia de Computadores. Faculdade de Ciencias. Universidade do Porto.

October 27, 2020



Introduction

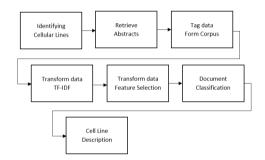
- The main goal of this work is to develop a set of computational models for the *in silico* discovery of new drug activities.
- The contribution of this work focuses on novel ways for describing cellular lines and diseases, as well as the discovery of novel drug applications.
- In the context of Bioinformatics, the motivation of this work is to

Introduction: Drug Discovery process

Drug discovery process: discover new applications for known drugs.

[Zhang et al., 2018]

Introduction: Development stages

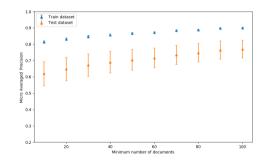

This work is divided into 4 stages, namely:

- ▶ (1) Cell Fishing,
- ▶ (2) Cell characterization,
- ► (3) Disease gene prioritization, and
- (4) Drug discovery.

Development stages: Cell Fishing

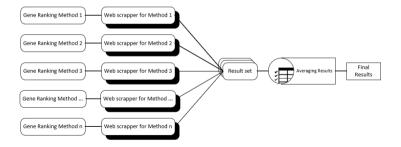
- Cell Fishing is discovering drug-cell line interactions.
- Database on interactions between cell lines and chemical compounds
- Characterize cell lines with the set of chemical compounds they interact with.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.
- Published: [Tejera et al., 2019]

- In order to discover drug-cell line interactions, we need a way for better describing cell lines.
- Characterize cell lines using text mining.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.
- Published: [Carrera et al., 2020]
- Submitted to BIBM 2020.


- In order to discover drug-cell line interactions, we need a way for better describing cell lines.
- Characterize cell lines using text mining.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.
- Published: [Carrera et al., 2020]
- Submitted to BIBM 2020.

	title	index	document	cellid
0	Survey of ATCC stocks of human cell lines for HeLa cont	PMID:566722	Survey of ATCC stocks of human cell lines for HeLa cont	CVCL_2260
1	Comparison of gene expression profiles of conjunctival c	PMID:19630270	Comparison of gene expression profiles of conjunctival c	CVCL_2260
2	Check your cultures! A list of cross contaminated or misi	PMID:20143388	Check your cultures! A list of cross contaminated or misi	CVCL_2260
3	Identification by C banding of two human prostate tumo	PMID:2744886	Identification by C banding of two human prostate turno	CVCL_4806
4	Feasibility of drug screening with panels of human tumo	PMID:3335022	Feasibility of drug screening with panels of human tumo	CVCL_480
5	Human tumor lines for cancer research	PMID:3518877	Human tumor lines for cancer research DOI: 10 3109 073	CVCL_480
6	Human urologic cancer cell lines	PMID:6244232	Human urologic cancer cell lines 1 Invest Urol 1980 Mar	CVCL_480
7	Molecular characterization of human prostate carcinoma	PMID:14518029	Molecular characterization of human prostate carcinoma	CVCL_480
8	Synthesis of chondrocytic keratan sulphate containing pr	PMID:2045389	Synthesis of chondrocytic keratan sulphate containing pr	CVCL_M60
9	Marshall Urist Award Interstitial collagenase gene expres	PMID:10906887	Marshall Urist Award Interstitial collagenase gene expres	CVCL_M60
10	Phenotypic characterization of chondrosarcoma derived	PMID:16039953	Phenotypic characterization of chondrosarcoma derived	CVCL_M60
11	A comprehensive transcriptional portrait of human canc	PMID:25485619	A comprehensive transcriptional portrait of human canc	CVCL_M60
12	Structural electrophysiological biochemical and pharm	PMID:16829	Structural electrophysiological biochemical and pharm	CVCL_045
13	Synapse formation between two clonal cell lines	PMID:193191	Synapse formation between two clonal cell lines Clonal n	CVCL_045
14	Culture and characteristics of hormone responsive neuro	PMID:2985920	Culture and characteristics of hormone responsive neuro	CVCL_045

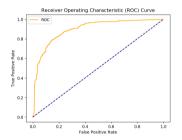
- In order to discover drug-cell line interactions, we need a way for better describing cell lines.
- Characterize cell lines using text mining.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.
- Published: [Carrera et al., 2020]
- Submitted to BIBM 2020.


	0	1	2	3	4	5	6	7	
0	0.00000	-0.00000	-0.00000	-0.00000	0.00000	0.00000	-0.00284	0.00000	-0
1	0.00001	-0.00000	0.00000	-0.00245	0.00002	-0.00000	-0.00001	0.00000	-(
2	0.00000	0.17482	-0.00004	0.00000	-0.00000	-0.04145	0.19039	-0.00000	-(
3	-0.00000	-0.00183	-0.03235	0.00000	0.00000	-0.00000	-0.00000	-0.00000	0.
4	-0.00000	-0.00000	-0.00000	0.00000	0.00000	-0.00000	-0.00000	-0.00000	-(
5	-0.00002	0.00000	-0.00000	-0.00000	-0.00000	-0.00001	-0.00001	0.00000	-
6	-0.00005	0.00002	-0.00001	0.00014	-0.00000	-0.00004	-0.00018	-0.00004	-
7	0.00000	0.00000	0.00000	-0.00000	0.00000	-0.00000	-0.00000	0.00000	-
8	-0.00001	0.00000	0.00000	-0.00000	-0.00000	-0.00129	-0.00001	-0.00000	-
9	-0.00000	-0.00000	-0.00704	0.00000	-0.01160	0.00000	0.00004	-0.00000	0
0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00001	-0.00426	-0.00000	-
1	-0.06807	0.00002	0.00002	-0.00001	-0.00001	-0.00006	-0.00012	-0.00000	-
12	-0.00000	-0.00000	-0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	-
13	-0.00000	-0.00000	0.00000	-0.00000	0.00000	0.00000	0.00000	-0.00000	-(
4	-0.00676	-0.01006	0.00003	-0.00001	-0.00000	-0.00000	-0.01150	0.00000	-

- In order to discover drug-cell line interactions, we need a way for better describing cell lines.
- Characterize cell lines using text mining.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.
- Published: [Carrera et al., 2020]
- Submitted to BIBM 2020.

Development stages: Disease Characterization

- In order to discover drug-disease interactions, we need a way for describing diseases: gene prioritization.
- There are a lot of gene prioritization algorithms, the best way is a consensus [Tejera et al., 2017].
- Characterize disease using a prioritized set of genes.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.


Development stages: Disease Characterization

- In order to discover drug-disease interactions, we need a way for describing diseases: gene prioritization.
- There are a lot of gene prioritization algorithms, the best way is a consensus [Tejera et al., 2017].
- Characterize disease using a prioritized set of genes.
- Given a new chemical compound, Cell Fishing obtains a set of candidate cell lines that could be hit by the chemical compound.

Diabetes Mellitus, Type 1				
Phenotype:	Diabetes Melitus, Type 1		Phenotype as found in MedGen:	Diabetes mellitus typ
CUID:	C0011854		MIM Number:	601941,604032,601
Calculate				
		Diabetes Me	ellitus, Type 1	
Show 25	 ✓ entries 			
Gene Symbol		\$ Valu	٠	
PTPN22		0.846	17639576723	
INS		0.836	98011582457	
CTLA4		0.835	80563461748	
HLA-DQA1		0.829	78667039628	
HLA-DQB1		0.763	67354210524	
HNF1A		0.739	43810253664	
HLA-DRB1		0.729	98229407285	
TNF		0.703	02432196825	
GAD2		0.689	30730289409	
MICA		0.684	90775981572	
Showing 1 to 25 of 351 entries			Prev	/ious 1 2 3
These results were proce				
Cipher	Genedistiller		Genie	V 5
Disgenet	Guildify		Glad4u	E

Development stages: Drug Discovery

- Hypothesis: discover drug-disease interactions, modeling the problem as a Recommender System.
- Proof of concept: model cell lines as a set of drugs, model drugs as a set of cell lines.
- Compute new drug-cell line interactions as a Recommender System.
- Remaining work: introduce the cell line characterizations, change target to disease

Publications and Submissions

- [Tejera et al., 2019] PLoS ONE (October 2019)
- [Carrera et al., 2020] ACM BCB 2020 (September 2020)
- BIBM 2020 (result in November 2020)

References I

