Introduction to Grid Architecture What is Architecture?

- Design
- The way components fit together

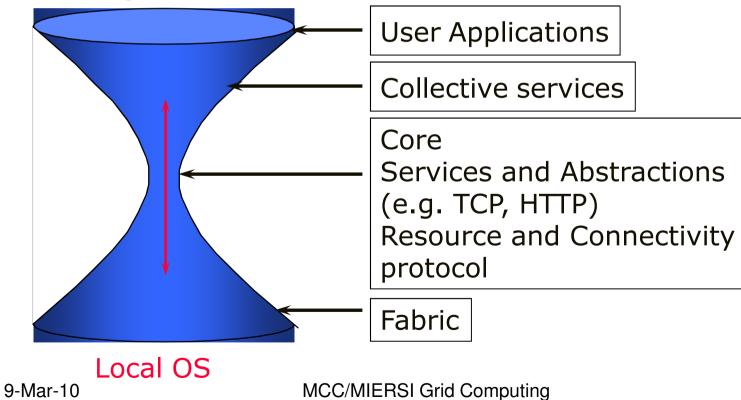
Introduction to Grid Architecture Why Discuss Architecture?

- Descriptive
 - Provide a common vocabulary for use when describing Grid systems
- Guidance
 - Identify key areas in which services are required
- Prescriptive
 - Define standard protocols and APIs to facilitate creation of interoperable Grid systems and portable applications

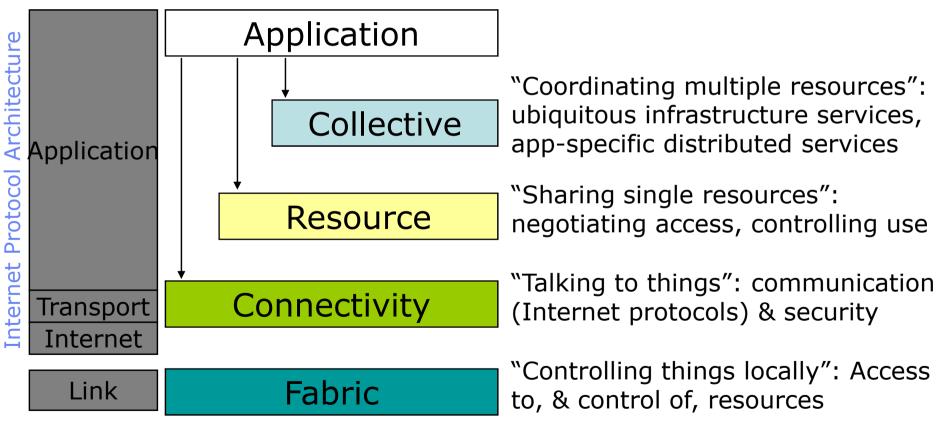
Introduction to Grid Architecture The nature of grid architecture

 A grid architecture identifies fundamental system components, specifies the purpose and function of these components, and indicate how these components interact. Introduction to Grid Architecture The Nature of Grid Architecture

- Grid's protocols allow VO users and resources to negotiate, establish, manage and exploit sharing relationships.
 - Interoperability a fundamental concern
 - The protocols are critical to interoperability
 - Services are important
 - We need to consider APIs and SDKs


Introduction to Grid Architecture Grid architecture requirements

- The components are
 - numerous
 - owned and managed by different, potentially mutually distrustful organisations and individuals
 - may be potentially faulty
 - have different security requirements and policies
 - heterogeneous
 - connected by heterogeneous, multilevel networks
 - have different resource management policies
 - are likely to be geographically separated


Key Components The Hourglass Model

Applications

Diverse global services

Key Components Layered Grid Architecture (By Analogy to Internet Architecture)

Key Components Layered Grid Architecture: Fabric Layer

- Just what you would expect: the diverse mix of resources that may be shared
 - Individual computers, Condor pools, file systems, archives, metadata catalogs, networks, sensors, etc., etc.
- Defined by interfaces, not physical characteristics

Layered Grid Architecture:Connectivity Layer

- Communication
 - Internet protocols: IP, DNS, routing, etc.
- Security: Grid Security Infrastructure (GSI)
 - Uniform authentication, authorization, and message protection mechanisms in multi-institutional setting
 - Single sign-on, delegation, identity mapping
 - Public key technology, SSL, X.509, GSS-API
 - Supporting infrastructure: Certificate Authorities, certificate & key management, ...

GSI: www.gridforum.org/security

Layered Grid Architecture:Resource Layer

- The architecture is for the secure negotiation, initiation, monitoring, control, accounting, and payment of sharing operations on individual resources.
 - Information Protocols (inform about the structure and state of the resource)
 - Management Protocols (negotiate access to a shared resource)

Layered Grid Architecture:Resource Layer

- Grid Resource Allocation Mgmt (GRAM)
 - Remote allocation, reservation, monitoring, control of compute resources
- GridFTP protocol (FTP extensions)
 - High-performance data access & transport
- Grid Resource Information Service (GRIS)
 - Access to structure & state information
- Network reservation, monitoring, control
- All built on connectivity layer: GSI & IP

GridFTP: www.gridforum.org MCC/MIERSI Grid C[,] GRAM, GRIS: www.globus.org

Layered Grid Architecture:Collective layer

- Coordinating multiple resources
- Contains protocols and services that capture interactions among a collection of resources
- It supports a variety of sharing behaviours without placing new requirements on the resources being shared
- Sample services: directory services, coallocation, brokering and scheduling services, data replication services, workload management services, collaboratory services

Layered Grid Architecture:Collective Layer

- Index servers aka metadirectory services
 - Custom views on dynamic resource collections assembled by a community
- Resource brokers (e.g., Condor Matchmaker)
 - Resource discovery and allocation
- Replica catalogs
- Replication services
- Co-reservation and co-allocation services
- Workflow management services
- Etc.

Key Components Layered Grid Architecture: Applications layer

- There are user applications that operate within the VO environment
- Applications are constructed by calling upon services defined at any layer
- Each of the layers are well defined using protocols, provide access to services
- Well-defined APIs also exist to work with these services

Key Components Grid architecture in practice

	Multidisciplinary Simulation	Ray Tracing
Collective (application-specific)	Solver coupler, distributed data archiver	Checkpointing, job management, failover, staging
Collective (generic)	Resource discovery, resource brokering, system monitoring, community authorization, certificate revocation	
Resource	Access to computation; access to data; access to information about system structure, state, performance.	
Connectivity	Communication (IP), service discovery (DNS), authentication, authorization, delegation	
Fabric	Storage systems, computers, networks, code repositories, catalogs	

9-

Key Components Where Are We With Architecture?

- No "official" standards exist
- But:
 - Globus Toolkit[™] has emerged as the de facto standard for several important Connectivity, Resource, and Collective protocols
 - Technical specifications are being developed for architecture elements: e.g., security, data, resource management, information

Services in the Web and the Grid Web services

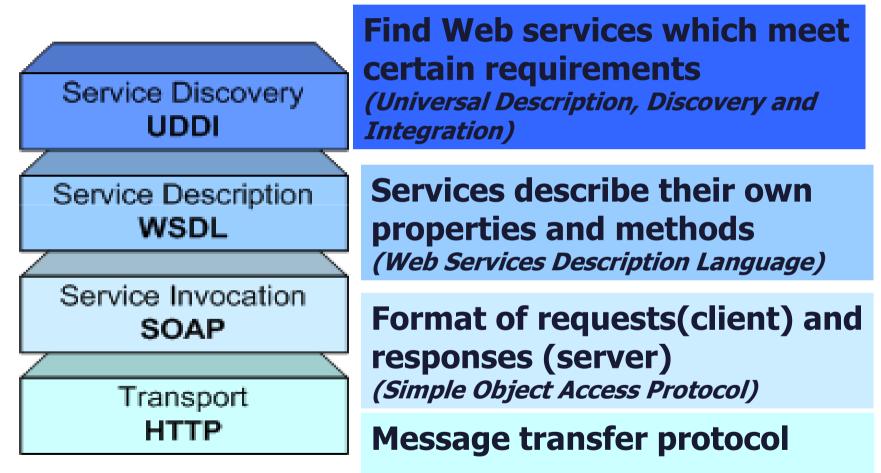
- Define a technique for describing software components to be accessed, methods for accessing these components, and discovery methods that enable the identification of relevant service providers
- A distributed computing technology (like CORBA, RMI...)
- They allow us to create loosely coupled client/server applications.

Services in the Web and the Grid Web Services:Advantages

- Platform and language independent since they use XML language.
- Most use HTTP for transmitting messages (such as the service request and response)

Services in the Web and the Grid Web Services: Disadvantages

- Overhead : Transmitting data in XML is not as convenient as binary codes.
- Lack of versatility: They allow very basic forms of service invocation (Grid services make up this versatility).

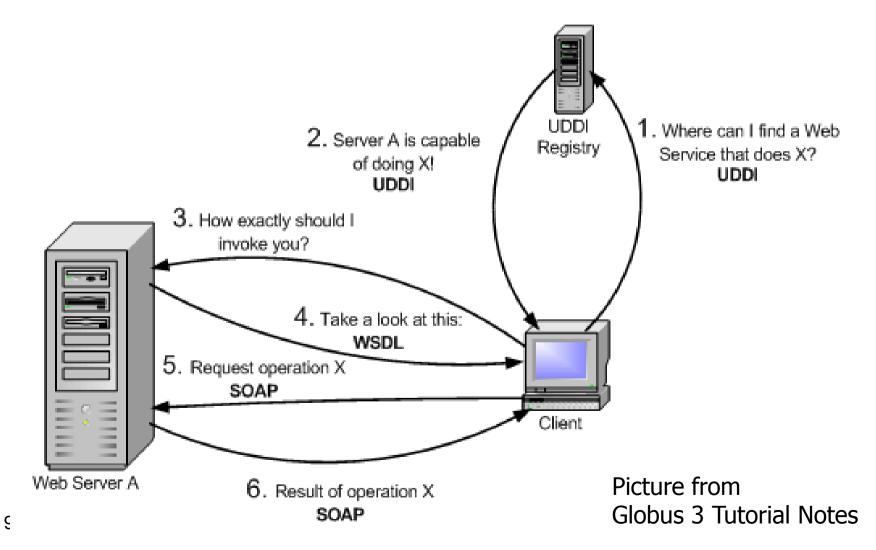

– Stateless:

They can't remember what you have done from one invocation to another

– Non-transient:

They outlive all their clients.

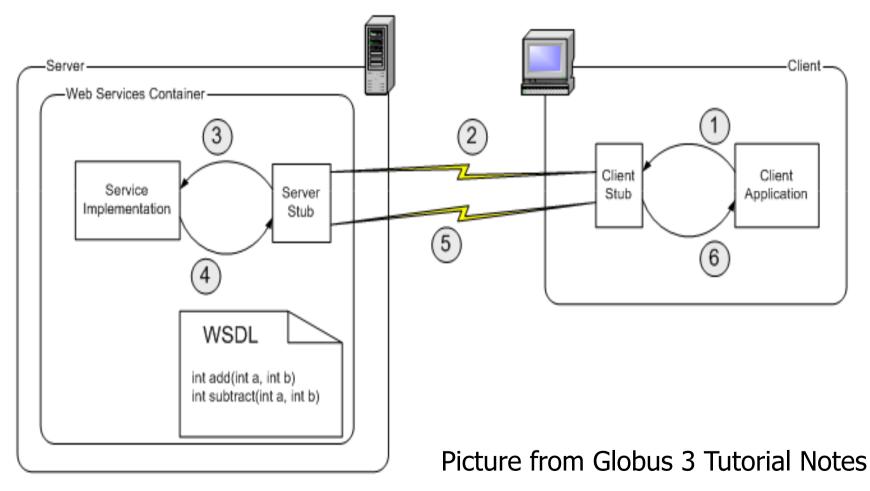
Services in the Web and the Grid Web Services Architecture



(Hypertext Transfer Protocol)

MCC/MIERSI Grid Computing 20 Picture from Globus 3 Tutorial Notes www.globus.org

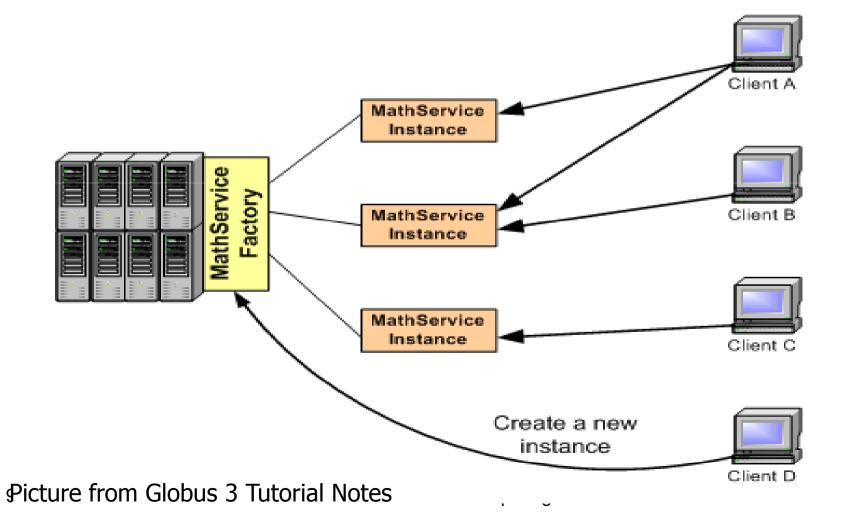
9-Mar-10


Services in the Web and the Grid Invoking a Typical Web Service

Services in the Web and the Grid Web Service Addressing

- URI: Uniform Resource Identifiers
- URI and URL are practically the same thing.
 - Example: http://webservices.mysite.com/weather/us/WeatherSe rvice
- It can not be used with web browsers, it is meant for softwares.

Services in the Web and the Grid Web Service Application



Services in the Web and the Grid What is a Grid Service?

- It provides a set of well defined interfaces and that follows specific conventions.
- It is a web service with improved characteristics and services.
 - Improvement:
 - Potentially Transient
 - Stateful
 - Delegation
 - Lifecycle management
 - Service Data
 - Notifications
- Examples : computational resources, programs, databases...

9-Mar-10

Services in the Web and the Grid Factories

Services in the Web and the Grid GSH & GSR

- GSH: Grid Service Handle (URI)
 - Unique
 - Shows the location of the service
- GSR: Grid Service Reference
 - Describes how to communicate with the service
 - As we use SOAP, our GSR is a WSDL file.

Services in the Web and the Grid Open Grid Services Architecture (OGSA)

- OGSA defines what Grid services are, what they should be capable of, what type of technologies they should be based on.
- OGSA does not give a technical and detailed specification. It uses WSDL.

Services in the Web and the Grid Open Grid Services Infrastructure (OGSI)

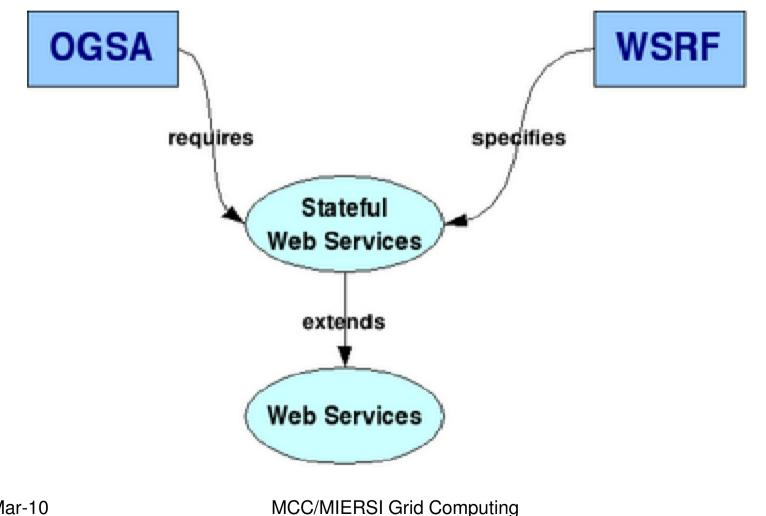
- It is a formal and technical specification of the concepts described in OGSA.
- The Globus Toolkit 3 is an implementation of OGSI.
- Some other implementations are OGSI::Lite (Perl)1 and the UNICORE OGSA demonstrator2 from the EU GRIP project.
- OGSI specification defines grid services and builds upon web services.

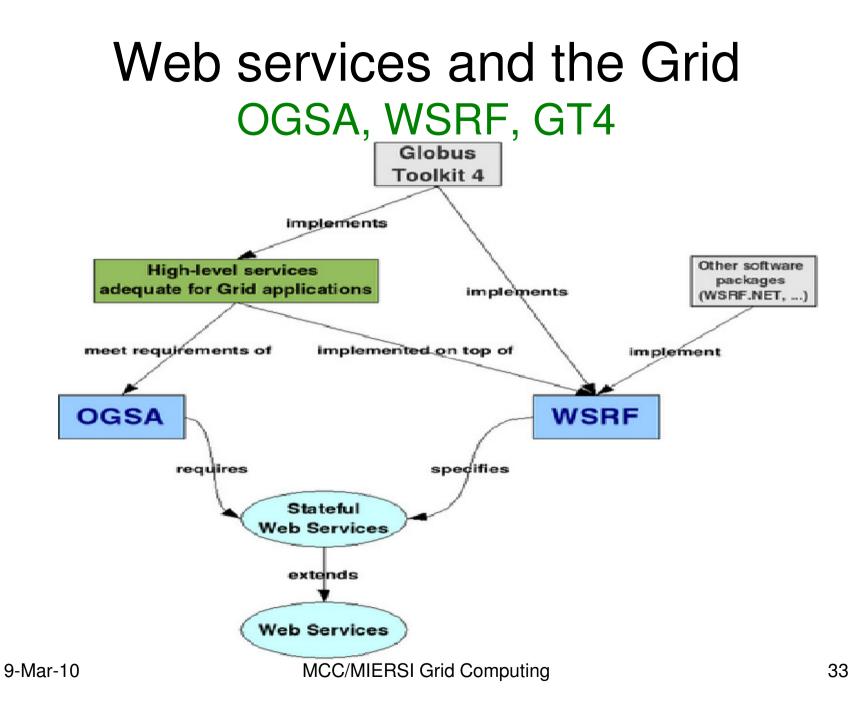
Services in the Web and the Grid OGSI

- OGSI creates an extension model for WSDL called GWSDL (Grid WSDL). The reason is:
 - Interface inheritance
 - Service Data (for expressing state information)
- Components:
 - Lifecycle
 - State management
 - Service Groups
 - Factory
 - Notification
 - HandleMap

Services in the Web and the Grid Service Data Structure

```
<wsdl:definitions xmIns:tns="abc"
targetNamespace="mynamespace">
<gwsdl:portType name="AbstractSearchEngine">
<wsdl:operation name="search" />
```


• • • • • • • • • • • •


```
<sd:serviceData name="cachedURL" type="tns:
cachedURLType" mutability="mutable" nilable="true",
maxOccurs="1" minOccurs="0" modifiable="true"/>
</gwsdl:portType>
</wsdl:definitions>
```

Services in the Web and the Grid OGSA, OGSI, GT3

Services in the Web and the Grid OGSA, WSRF, GT4

Web services and the Grid

- GT4 replaced OGSI by WSRF (Web Service Resource Framework)
- Framework developed as a joint effort of WS and Grid groups
- GWSDL foi abandonada

- a specification developed by OASIS <u>http://www.oasis-open.org</u>
- WSRF specifies how one can make Web Services stateful

- 5 normative WSRF specifications:
 - WS-ResourceProperties
 - WS-ResourceLifetime
 - WS-RenewableReferences
 - -WS-ServiceGroup
 - WS-BaseFault
 - -WS-Notification family of specifications

 WS-ResourceProperties: the type definition of a WS-Resource can be composed from the interface description of a Web service and an XML resource properties document, and the WS-Resource's state can be queried and modified via Web services message exchanges (WS-ResourceProperties)

 WS-ResourceLifetime: a WS-Resource can be destroyed, either synchronously with respect to a destroy request or through a mechanism offering time-based (scheduled) destruction, and specified resource properties [WS-ResourceProperties] may be used to inspect and monitor the lifetime of a WS-Resource (WSResourceLifetime);

 WS-RenewableReferences: a Web service endpoint reference (WS-Addressing) can be renewed in the event the addressing or policy information contained within it becomes invalid or stale (WS-RenewableReferences)

 WS-ServiceGroup: heterogeneous byreference collections of Web services can be defined, whether or not the services are WS-Resources

 WS-BaseFault: fault reporting can be made more standardized through use of an XML Schema type for base faults and rules for how this base fault type is used and extended by Web services

 WS-Notification family of specifications: Standard approaches to notification using a topic based publish and subscribe pattern.

WSDL

- **Types** a container for data type definitions using some type system (such as XSD).
- **Message** an abstract, typed definition of the data being communicated.
- **Operation** an abstract description of an action supported by the service.
- **Port Type**—an abstract set of operations supported by one or more endpoints.
- **Binding** a concrete protocol and data format specification for a particular port type.
- **Port** a single endpoint defined as a combination of a binding and a network address.
- Service- a collection of related endpoints.

Defining services using WSRF

<?xml version="1.0" encoding="UTF-8"?>

- <definitions name="MathService"
 - targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"
 - xmlns ="http://schemas.xmlsoap.org/wsdl/"
 - xmlns:tns="http://www.globus.org/namespaces/examples/core/Math Service_instance"
 - xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 - xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
 - ResourceProperties-1.2-draft-01.xsd"
 - xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
 - ResourceProperties-1.2-draft-01.wsdl"
 - xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLP reprocessor" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

</definitions>

http://gdp.globus.org/gt4-tutorial/multiplehtml/apas01.html

More info

- <u>http://www.globus.org/wsrf/specs/ogsi_to</u> wsrf_1.0.pdf
- <u>http://docs.oasis-open.org/wsrf/wsrf-</u> primer-1.2-primer-cd-02.pdf
- <u>http://www.globus.org/wsrf/specs/ws-</u> wsrf.pdf