
Distributed Mutual Exclusion

source: Sukumar Ghosh’s Distributed Systems, an algorithmic
approach

I Introduction

I Solutions using Message Passing

I Token Passing Algorithms



Why do we need Distributed Mutual Exclusion?

I to deal with resource sharing

I to avoid concurrent updates on shared data

I to control the grain of atomicity

I to gain access to ethernet devices (ex: CSMA/CD protocol to
resolve bus contention in ethernets)

I to avoid collisions in wireless broadcasts

I many other reasons...



An example: bank account transaction

shared n: integer (n is a shared account)

Process P Process Q

Account receives amount nP Account receives amount nQ

Computation: n = n + nP: Computation: n = n + nQ:

P1. Load Reg_P, n Q1. Load Reg_Q, n

P2. Add Reg_P, nP Q2. Add Reg_Q, nQ

P3. Store Reg_P, n Q3. Store Reg_Q, n



An example: bank account transaction

Possible interleaves of executions of P and Q:

I Giving expected result nP + nQ:
I P1, P2, P3, Q1, Q2, Q3
I Q1, Q2, Q3, P1, P2, P3

I Giving incorrect result n=n+nP:
I Q1, P1, Q2, P2, Q3, P3
I Q1, Q2, P1, P2, Q3, P3
I Q1, P1, P2, Q2, Q3, P3
I P1, Q1, P2, Q2, Q3, P3
I P1, P2, Q1, Q2, Q3, P3

I Giving incorrect result n=n+nQ:
I P1, Q1, P2, Q2, P3, Q3
I P1, P2, Q1, Q2, P3, Q3
I P1, Q1, Q2, P2, P3, Q3
I Q1, P1, Q2, P2, P3, Q3
I Q1, Q2, P1, P2, P3, Q3



Critical Section (CS)

Each process, before entering a CS acquires authorization. If it
gains authorization, blocks other processes of executing the same
CS, executes it, and releases it.



Mutual Exclusion for 2 processes, for shared memory,
Knuth’s protocol

Process Pi : (3 shared variables: A[0], A[1], B)
i ∈ 0, 1
other process j = 1− i

loop

non critical section; \

loop |

A[i] := 1; |

await B == i OR A[j] == 0; | entry section

A[i] := 2; |

if A[j] != 2 then break; |

end loop; |

B := i; /

critical section;

B := j; \ exit section

A[i] := 0 /

end loop



Correctness Conditions

I ME1: Mutual Exclusion
I at most one process can remain in the CS at any time: safety

property!

I ME2: Freedom from deadlock
I at least one process is eligible to enter the CS: liveness

property!

I ME3: Fairness
I every process will eventually succeed in entering the CS: NO

starvation property!

I A measure of fairness: bounded waiting
I specifies an upper bound on the number of times a process

waits for its turn to enter the CS: n-fairness (n is the
maximum number of rounds)

I whe n=0, FIFO fairness



How to Measure Performance

I Number of msgs per CS invocation

I Fairness

I Synchronization delay (SD)

I Response Time (RT)
I System Throughput (ST)

I ST = 1
SD+E , where E is the average CS execution time



Fault Tolerance

I not much true for the algorithms presented here



Message Passing Algorithms

Assumptions:

I n processes (n > 1), numbered 0, 1, . . ., n-1, Pi

communicating by sending/receiving messages

I topology: graph completed connected
I each Pi periodically:

1. enters CS
2. execute CS code
3. exits CS code

I attend ME1, ME2 and ME3



Message Passing Algorithms

Easy Solution???



Message Passing Algorithms

Easy Solution???

I Centralize :-)


