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The concept of an information structure is introduced as a unifying principle behind several of the 
numerous algorithms that have been proposed for the distributed mutual exclusion problem. This 
approach allows the development of a generalized mutual exclusion algorithm that accepts a particular 
information structure at initialization and realizes both known and new algorithms as special cases. 
Two simple performance metrics of a realized algorithm can be obtained directly from the information 
structure. A new failure recovery mechanism called local recovery, which requires no coordination 
between nodes and no additional messages beyond that needed for failure detection, is introduced. 
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1. INTRODUCTION 

In distributed systems, the lack of both shared memory and a common clock 
results in more complex mutual exclusion algorithms than the synchronization 
primitives typically found when processes share memory. This complexity has 
resulted in the introduction of several algorithms to solve the mutual exclusion 
problem. Our goal is to provide a unifying framework that allows comparison of 
these algorithms and points the way to the design of new ones. 

The system under consideration consists of N processes, each with a unique 
identification that communicates asynchronously via message passing. The 
processes have a simple structure in which they repeatedly alternate between 
computations outside a critical section and computations inside a critical section. 
The nodes in the distributed system logically are completely connected so that a 
process can send a message to any other process. Message arrivals may occur at 
any time and are handled serially when they arrive. Either a process may be 
interrupted on a message arrival to handle the message, or a separate process 
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may be created for message handling. In the latter case, shared variables are 
protected in a local critical section. The communication subsystem is assumed 
to be reliable, and messages between any pair of processes are delivered in the 
order they were sent. No assumptions are made about the delay between the time 
a message is sent and received, the time spent in a critical section, or the time 
spent in computations outside the critical section, except that they are finite. 

The design of a mutual exclusion algorithm consists of defining the protocols 
used to coordinate entry into the critical section. These protocols consist of the 
local variables at each process, the entry code that is executed before entering 
the critical section, the exit code that is executed on leaving the critical section, 
and the message handling code that is executed when a message is received 
asynchronously from another process. 

Many algorithms that fit this model have been proposed [l, 2, 5, 6, 71. They 
tend to differ in their communication topology and also in the amount of 
information processes maintain about other processes. The concept of an infor- 
mation structure is the unifying principle in our approach and describes which 
processes maintain state information about other processes, and from which 
processes information must be requested before entering a critical section. In the 
next section, we formally define the information structure, and then we give a 
generalized algorithm using messages with simple semantics that realizes differ- 
ent known and new algorithms, depending on the information structure. Neces- 
sary and sufficient conditions for an information structure to realize an algorithm 
that guarantees mutual exclusion are stated. Assuming that the information 
structure is static, we discuss performance issues and failure recovery. Finally, 
an example of an algorithm with a dynamic information structure is given. 

2. INFORMATION STRUCTURES 

The information structure of a particular algorithm describes which processes 
maintain state information about other processes, and for each process, the set 
of processes from which information or permission should be requested before it 
enters the critical section. As viewed by other processes, a process can be in one 
of three states, either IN-CS (executing inside the critical section), NOT-IN-CS 
(executing outside the critical section), or WAITING (executing or blocked in 
the entry code). These states correspond to the states that are relevant to mutual 
exclusion and can be determined by communication with other processes. 
Messages will have simple semantics and indicate changes of state, requests for 
permission, and so forth. 

Formally, the information structure can be described by a pair of subsets of 
process IDS associated with each process. The inform set for process i is denoted 
Ii and the request set for i is denoted Ri. In the generalized algorithm given in 
the next section, a process sends a message to every process in its inform set 
whenever it changes state from IN-CS to NOT-IN-CS or from NOT-IN-CS to 
WAITING. Before entering the critical section, each process must request and 
receive permission from every process in its request set. 

It is convenient to also define for each process the status set, Si. The status 
sets are determined by the inform sets where j E Si if i E Ii. The status set Si 
indicates the set of processes about which process i maintains information. 
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The inform and request sets define the information structure of a mutual 
exclusion algorithm. Two different situations can occur. In one, the information 
structure is static, that is, it does not change during the normal execution of the 
algorithm. In this case, the entire information structure can be known to all 
processes. It is necessary to change the information structure when a processor 
fails, and failure recovery can be viewed as a mechanism for revising the 
information structure to take into account the removal of a process. The new 
information structure must satisfy the correctness conditions. Dynamic infor- 
mation structures change during normal evolution of the algorithm, and the 
global information structure is not necessarily known to all nodes. Specifying the 
information structure now requires both the specification of the initial inform 
and request sets and also the rules by which they change. 

3. THE GENERALIZED MUTUAL EXCLUSION ALGORITHM 

3.1 Policy for Conflict Resolution 

Although we are more interested in the information structure, a realization of a 
mutual exclusion algorithm must also specify a policy for conflict resolution. 
There is always more than one candidate for the policy, but the policy chosen 
must have the property that two processes resolving the same conflict must be 
able to resolve it the same way. For the special case of a centralized algorithm, a 
single process resolves all conflicts, and any policy that is a function of infor- 
mation available to this process can be used. Typically, the policy chosen is first 
come, first served (FCFS) based on the times of arrival of information requests 
at the process. Since the focus of this paper is on a different problem, only one 
conflict resolution mechanism, time stamp-based priorities [4] will be considered. 

Time stamps evolve as follows: Each process maintains a variable that contains 
the largest time stamp that process has seen yet, and this value is updated after 
the receipt of each message from other processes and is included with every 
message that is sent. When a process needs to choose a time stamp for itself, the 
time stamp is equal to the largest time stamp + 1, and the largest time stamp 
variable is updated. Conflicts are resolved by choosing the process with the lowest 
time stamp. Ties are broken using a predetermined ordering of the process ID. 

3.2 The Algorithm 

A generalized algorithm that guarantees mutual exclusion is presented below. 
The entry code performs the following actions: 

(1) The process chooses a time stamp and sends a REQUEST message along 
with the time stamp to every process in the request set Ri. 

(2) The process then waits for a GRANT message from every process in Ri. 
Process i then enters the critical section. 

The exit code performs the following: 

(1) Send a RELEASE message to all processes in the inform set 1i. 

When a process receives a message from another process, it updates its local 
variables and takes action depending on which type of message was received. 
ACM Transactions on Computer Systems, Vol. 5, No. 3,,August 1987. 
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Messages are handled serially. If message handling for mutual exclusion is 
performed by a separate, concurrent process, then shared variables are protected 
by local critical sections. The local data maintained by the process include a 
priority queue containing a list of processes (along with their time stamps) from 
which a REQUEST has been received but a GRANT has not yet been sent. 
A variable CSSTAT, which indicates process i’s best knowledge of the status of 
the critical section, is maintained. It indicates that the critical section is 
free or contains the identity of a process in the status set that has been sent 
a GRANT message, but from which no RELEASE message has been received. 

On receiving a REQUEST message 

1. The ID of the sending process is placed on the priority queue. 
2. If CSSTAT indicates that the critical section is free, then a GRANT is sent to the 

process on top of the queue and the entry is removed from the queue. If the recipient 
of the GRANT is in Si, then CSSTAT is set to indicate that the process is in the 
critical section. 

When a RELEASE message is received: 

1. CSSTAT is set to FREE. 
2. A GRANT is sent to the process on top of the queue, if one exists, and the entry is 

removed from the queue. If the recipient of the GRANT is in Si, then CSSTAT is set 
to indicate that the process is in the critical section. 

3. Step 2 is repeated until CSSTAT indicates that a process is in the critical section or 
until the queue is empty. 

In the algorithm described above, processes request permission from the 
processes in their request set. Permission is granted unless some process that is 
in the status set of the process receiving the request is currently assumed to be in 
the critical section. A REQUEST message can be interpreted to mean “According 
to your information, is it OK for me to enter the critical section?” A GRANT 
message can be interpreted as “According to my information, it is OK to enter 
the critical section” When a GRANT is sent to a process that is not in the status 
set, the fact that a GRANT is sent and that the process may be in the critical 
section is not remembered by the process that sent the GRANT. The information 
structure must be defined so that the state of each process is kept track of 
somewhere, and so that every process will somehow find out about the state of 
every other process before entering the critical section. If j is in the status set Si 
of process i, then i will assume that j is IN-CS if CSSTAT = j, is WAITING if j 
is in the queue, or is NOT-IN-CS if neither condition is satisfied. 

Figure 1 illustrates several known algorithms described in terms of their 
information structure. A solid arc from i to j indicates that j E 1i and j E Ri. 
A dashed arc from i to j indicates that j E Ri, but j @ 4. The algorithm in 
Figure la has a single node that arbitrates admission to the critical section 
[l, 61. The algorithm in Figure lb corresponds to a completely distributed, 
symmetrical algorithm in which each process requests permission from every 
other process before entering the critical section [7]. Figure lc corresponds to an 
algorithm in which each process requests permission from a predetermined subset 
of processes [5]. The request sets and inform sets of each process are identical 
and are chosen so that for all pairs of processes i and j, 1i II Ii # 0. It was claimed 
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that the symmetrical configuration that minimizes the number of messages per 
critical section entry arranges the subsets to correspond to lines in a finite 
projective plane and results in c (IV) “’ messages where c is a constant between 
three and five. 

Figure 2 illustrates a new algorithm. This algorithm would be appropriate in 
situations in which two processes have significantly more frequent requests for 
entrance into the critical section than the others, which minimizes the number 
of messages needed for critical section entry by those two processes and treats 
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them symmetrically. In many proposed algorithms, symmetry is considered an 
essential feature of the problem. This example indicates a situation in which a 
nonsymmetrical algorithm may be preferable. The generalized algorithm pre- 
sented here allows the system to be configured optimally with respect to the 
workload of that system. 

The generalized algorithm may deadlock under certain information structures, 
but this problem will be deferred to Section 5 where a modified version that can 
recover from potential deadlocks will be introduced. First we will give a necessary 
and sufficient condition for the information structures to guarantee mutually 
exclusive access to the critical section, then modify the algorithm to detect and 
recover from possible deadlock situations. 

4. NECESSARY AND SUFFICIENT CONDITIONS 

Arbitrary choices of inform and request sets do not necessarily result in a correct 
algorithm. We will require that each process maintains information about its 
own state and give necessary and sufficient conditions for an information 
structure to yield a correct a1gorithm.l 

THEOREM. Given that i E Ii for all i, properties a and b together are necessary 
and sufficient for a realized algorithm to guarantee mutual exclusion. 

a. Ii is a subject of Ri. 
b. Vi, j either Ii n Ij # 0 or both j E Ri and i E Rj. 

Property a requires that a process request permission from every process in 
its inform set before entering the critical section. The result is that processes 
in the inform set will always know beforehand about potential state changes into 

r The following theorem, giving a sufficient condition when it is not required that i E I, for all i, is 
proved in [&3]. Conditions a and b together are sufficient to realize an algorithm that guarantees 
mutual exclusion. 
la. Zi is a subset of Ri. 
lb. For all processes j # i, either Z, FU Zj # 0 or all of i E Ii, j E Zj, i E Rj, and j E Ri are satisfied. 
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the critical section. Property b guarantees that process i has information about 
every other process before entering its critical section, either by communicating 
directly with the process or by communicating with a process that maintains up- 
to-date information about the process. Together these properties are necessary 
and sufficient to ensure correct operation of the generalized algorithm in a 
distributed environment. They are satisfied for the examples given previously. 
The requirements for a correct algorithm in [5], once placed in this framework, 
correspond to property a and the first predicate of property b. 

PROOF. Sufficiency: First a simple lemma is stated. 

LEMMA. If j E Ii, then j will set CSSTAT = i before i enters the critical section 
and reset CSSTAT = FREE after i leaves the critical section. 

PROOF OF LEMMA. This follows from the description of the algorithm and 
property a. Cl 

Now consider any pair of processes i and j. Property b requires that the inform 
and request sets of i and j satisfy at least one of two conditions. 

The first is that there is some node, say k, such that Iz is in the inform sets of 
both i and j. Since property a requires that a node in the inform set is also in the 
request set, i and j will both request permission from 12 before entering the critical 
section. Process k will not send a GRANT message to i while its CSSTAT 
variable indicates j is in the critical section and vice-versa. By the lemma, 
CSSTAT will always indicate that j is in the critical section when it is in the 
critical section, and therefore mutual exclusion is guaranteed. 

The second possible situation allowed by property b is that i and j both 
maintain state information about themselves and request information from each 
other. A conflict between i and j could occur in two different ways. In the first, 
both i and j choose a time stamp before receiving a request from the other 
process. The lower priority (larger time stamp) process will immediately send a 
GRANT to the higher priority (smaller time stamp process). The higher priority 
process will not send a GRANT until it has entered and left the critical section. 
The second scenario occurs when a process, say j, decides to enter the critical 
section after it has received a REQUEST from and sent a GRANT to i. The time 
stamp chosen by j will always be larger than i’s time stamp so i will not send a 
GRANT to j until it has left the critical section. 0 

Necessity: The necessity of property a is obvious in the context of the gener- 
alized algorithm. The necessity of property b will be proved by considering all 
possible situations that are not included in the theorem and showing that mutual 
exclusion may be violated in these cases. Given that li is a subset of Ri, Ij is a 
subset of Rj, and Ii n Ij = 0, then the following relationships between Ii, Rj, I,, 
and Rj are mutually exclusive and cover all the following possible situations: 

(1) Ri n Rj = la; 
(2) Ri n 4 = 0 and 1i n Rj = 0, but Ri n Rj # Q 
(3) Ri n Ij = 0, but Rj n Ii # a 
ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987. 
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(4) Rj FU Ii # 0, and Ri FU 4 Z 0, where this can be further broken down into 
three different situations. 
(44 
Mb) 

(4c) 

i E Rj n Ii, andj E Ri n Ii; 

k E Rj n Ii, and j E Ri n 4, where k # i and k # j (and the symmetrical 
situation obtained by replacing i with j and j with i); 
k E Rj fl Ii, and m E Ri n 4, where k # m and both are different from 
i and j. 

Situation 4a satisfies property b as stated in the theorem. We will give counter- 
examples showing the violation of mutual exclusion for situations 4b and 4c and 
argue that mutual exclusion can also be violated in situations 1 to 3, thus proving 
the necessity of property b. 

The situation in case 4b is shown in Figure 3a. The inform sets for i and j 
are Ii = (i, k) and Ij = (j). The request sets are Ri = {i, j, k) and Rj = (j, k), where 
k # i and k #j. Process j’s information about i’s state is obtained indirectly via 
process k, whereas i’s information about j is obtained directly. Let the critical 
section be free, but, at approximately the same time, i selects a time stamp of 
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say 1, and j selects a time stamp of 2. Now suppose the following events occur in 
the order given. A REQUEST from j arrives at lz, which will immediately send a 
GRANT back to j. A REQUEST from i arrives at j, which will respond with a 
GRANT since i has the higher priority. The REQUEST from i arrives at k, 
which will immediately reply with a GRANT. When the GRANT from k arrives 
at j, j will enter the critical section. Eventually, the GRANTS that have been 
sent from j and k will arrive at i, and i will enter the critical section, thus violating 
mutual exclusion. 

The situation corresponding to 4c is shown in Figure 3b. In this configuration, 
li={i,k),Ij=(j,m),Ri={i,k, ) m , and Rj = {j, k, m). Here, k # m, and k and 
m are different from both i and j. In this situation, mutual exclusion will be 
violated if i and j both request admission to the critical section at approximately 
the same time, and i’s REQUEST to m arrives before j’s REQUEST, and j’s 
REQUEST to k arrives before the REQUEST from i. Cases 1 to 3 offer even less 
opportunity for cooperation than the situation in case 4. In case 3, mutual 
exclusion may be violated if i attempts to enter the critical section while j has 
control; in case 2, if either i or j is in the critical section, the other may enter; in 
case 1, there is no overlap between the sets of processes i and j communicate 
with before entering a critical section at all. 0 

5. DEADLOCK FREE ALGORITHM 

Although the conflict resolution policy has been chosen so that all conflicts will 
be, in principle, resolved in the same way by different decision makers, the 
presence of unpredictable communication delays cause processes to sometimes 
violate this in reality. For example, consider the configuration of Figure 4. The 
inform sets I0 = (01, I1 = (11, and I2 = (0, 1, 2) and the request sets Ro = (0, l), 
RI = (0, l), and Rz = (0, 1, 2) satisfy the conditions given in the theorem for an 
algorithm that guarantees mutual exclusion. Suppose the critical section is free, 
and 0 and 2 decide to request entrance at about the same time. Process 0 chooses 
a time stamp of, say 1, and process 2 chooses 2. If 2’s REQUEST arrives at 1 
first, process 1 will send a GRANT to 2 and set CSSTAT to indicate that 2 is in 
the critical section. When process O’s REQUEST arrives at 1, it will be deferred 
until process 1 receives a RELEASE from 2. On the other hand, 2’s request 
to 0 will be deferred until process 0 has entered and released the critical section, 
since 0 has the lower time stamp. The algorithm is deadlocked at this point. 
Process 1, owing to communication delays, made a wrong decision. 

The key to modifying the algorithm to recover from deadlocks is that pro- 
cess 1, for example, will know that the system has entered an unsafe state if, 
after sending a GRANT to a process, it receives a request from a higher priority 
process. When this happens, steps can be taken to revoke the GRANT and 
recover from a deadlock if it has occurred. 

The modified algorithm that can recover from deadlock situations is described 
below. Three new message types, FAIL, INQUIRE, and YIELD are introduced, 
and the algorithms for handling the other messages are modified. A process 
waiting for GRANT messages may now cancel a GRANT that has been received 
and wait for another one, before entering the critical section. 
ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987. 
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On receiving a REQUEST message 

. 1. The process ID is placed on the priority queue. 
2. If CSSTAT indicates that the critical section is not free, then the time stamp of the 

process in the critical section is compared with that of the requesting process. If the 
time stamp of the process in the critical section is smaller, then a FAIL message is sent 
to the requesting process. Otherwise, an INQUIRE message is sent to the process 
indicated by CSSTAT, unless one has already been sent. A FAIL message is sent to 
any process in the priority queue with a larger time stamp that has not yet been sent a 
FAIL message. 

3. If CSSTAT indicates that the critical section is free, then a GRANT is sent to the 
process on top of the queue and the process is removed from the queue. If the recipient 
of the GRANT is in Sit then CSSTAT is set to indicate that the process is in the 
critical section. 

When a RELEASE message is received 

1. CSSTAT is set to FREE. 
2. A GRANT is sent to the process on top of the queue if one exists, and the process is 

removed from the queue. If the recipient of the GRANT is in Si, then CSSTAT is set 
to indicate that the process is in the critical section. 

3. Step 2 is repeated until CSSTAT indicates that a process is in the critical section or 
until the queue is empty. 

When an INQUIRE message is received 

1. The process checks the messages received from processes in its request set. 
2. If it has received a FAIL message from any process, or if it has sent a YIELD to 

any process and not yet received a new GRANT, it revokes the GRANT from the 
INQUIREing process. A YIELD is sent to the INQUIREing process. 

When a YIELD message is received 

1. CSSTAT is marked FREE, and the YIELDing process is returned to the priority queue 
in the appropriate location. 

2. The process proceeds as if a RELEASE message had been received. 

The modified algorithm has the same necessary and sufficient conditions on 
the information structures to guarantee mutual exclusion. When the information 
structure is appropriately chosen, this algorithm is similar to the deadlock free 
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algorithm given in [5]. The algorithm in [5], however, neglects to send a FAIL 
message to the process involved in an INQUIRE/YIELD exchange when a 
REQUEST with a smaller time stamp arrives and could deadlock in this situ- 
ation. It should be noted that the centralized algorithm [l, 61, described in 
Figure la, has no possibility of deadlock since there is a single decision point. 
The completely decentralized algorithm [7], described in Figure lb, is also a 
special case. In this situation, each process contains only itself in its status set. 
Deadlock can be made impossible by waiting until grants have been received 
from all other processes before “sending” a grant to one’s self. (This requires a 
modification to the requirement that all messages are handled serially; while 
waiting for GRANTS from other processes, the node must be able to receive 
them.) Alternatively, by always yielding when an inquire has been received 
(inquire messages in this case are always sent to one’s self) the need for FAIL 
messages can be eliminated. A more sophisticated algorithm could make use of 
this information to avoid sending the new messages introduced for deadlock 
recovery, when it can be determined through knowledge of the global information 
structure that deadlocks will not occur. 

6. PERFORMANCE ISSUES 

In this section the performance of an algorithm is studied as a function of its 
information structure. The interest here is on simple performance measures that 
can be computed a priori. The two performance measures of interest are the 
number of messages required per critical section entry and the synchronization 
delay, defined below. 

6.1 Number of Messages per Critical Section Entry 

The number of messages required for critical section entry depends on the 
number of potential deadlocks that occur during the actual evolution of 
the algorithm. It is possible, however, to compute upper and lower bounds 
on the number of messages required as functions of the cardinality of the inform 
and request sets at each node. 

Define: NMi = number of messages per critical section entry by node i, 

then a lower bound on the number of messages needed for a critical section entry 
can easily be computed. 

1 Ii - (i) 1 + 2( 1 Ri - (i) I) I NMi. 

The lower bound counts the REQUEST messages sent to and GRANT mes- 
sages received from every process in Ri. It also includes the RELEASE messages 
sent to every process in 4. Messages from a process to itself are not counted, and 
it is assumed that all processes include themselves in their inform sets. 

The upper bound includes the additional messages that may be needed to 
recover from a potential deadlock and is given by 

where DM = C rj and rj = 1 if S. = (j) or (i, j), 

jERi 
4 othe&ise 
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The sequence of INQUIRE, YIELD, and new GRANT is associated with the 
process whose REQUEST induced it. The original grant has been canceled by 
the YIELD message and has been counted with the original REQUEST. This 
message exchange will occur with at most one member of the status set of each 
process j that is a member of Ri. If Sj contains only j or i and j, then these extra 
messages will not be generated. Therefore, at most zero or three INQUIRE, 
YIELD, and new GRANT messages are generated for each process in Ri. The 
extra message in each term of DM is a possible FAIL message. Note that it is 
possible for a REQUEST that induces an INQUIRE exchange to later receive a 
FAIL message from that node if a request with a smaller time stamp arrives 
during the INQUIRE exchange. 

The actual number of messages per critical section entry will tend toward the 
lower bound when conflicts for access to the critical section are infrequent. 
A centralized information structure will realize an algorithm that can always 
achieve the lower bound, if the algorithm does not attempt deadlock recovery 
(i.e., the algorithm realized it is centralized). If not, there will still be at most two 
extra messages per critical section entry, since the process to whom an INQUIRE 
is sent will always have achieved entrance to the critical section and will not 
YIELD or require a new GRANT. For the completely distributed information 
structure, Sj = (j] for all j and DM = N - 1. 

6.2 Synchronization Delay 

In this section, we consider the synchronization delay for various algorithms. 
This measure is defined for every pair of processes, and Dij is the maximum 
number of sequential messages required after j leaves the critical section before 
i can enter the critical section. Process i is the next process and is assumed to be 
blocked while waiting for the critical section when j leaves. 

1 

2 if 1i n Ij # 0, 
Dij= 0 if i=j, 

1 otherwise. 

The average synchronization delay for a process can be expressed as 

Taking the average over all processes D, we see that for the centralized 
algorithm of Figure la, D = 2(N - 1)/n (note that this approaches 2 as N grows 
large), whereas for the completely decentralized algorithm, D = 1. Other infor- 
mation structures will give values for D ranging between 1 and 2. This is an 
example of the trade-off between the number of messages and the synchronization 
delay that often occurs in distributed decision problems. This phenomenon has 
received thorough treatment in [3]. 

The new, nonsymmetric algorithm in Figure 2 is an example of how these 
performance measures can be useful, particularly in a system where the demand 
for critical section entrance is not homogeneous. In particular, we assume that 
the demands for critical section entrance for nodes 0 and 1 are much higher than 
for the other nodes, and that we also want nodes 0 and 1 to be treated fairly with 
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respect to each other. In this configuration, NM,, = NM1 = 2 (since nodes 2 
and 3 enter the critical section very rarely, a deadlock situation is unlikely, and 
we take the number of messages per critical section entry to be approximately 
equal to the lower bound.) Furthermore, Doj = Dlj = 1 for j = 2 and 3, and 
DoI = Dlo = 1. 

7. FAILURE TOLERANCE 

Failure tolerance is often considered to be one of the inherent advantages of a 
distributed system, since when one processor fails there are others that can 
continue operating. On the other hand, if necessary information is lost with a 
failed processor, future decisions may be incorrect unless the information can be 
reconstructed. If a process is waiting for some action to be taken by a process on 
a failed processor, unless that failure is detected, the first process may be waiting 
forever. 

When a processor fails, a failure-tolerant mutual exclusion algorithm should 
be able to “mend” itself in such a way as to maintain mutual exclusion and 
continue operating with the remaining processors. Questions arise as to when a 
failure needs to be detected, who needs to know about the failure, and what 
should be done about it. The first two questions are answered in terms of the 
information structure of the algorithm. Recovery involves modifying the infor- 
mation structure in a way that eliminates the failed process and still satisfies the 
necessary conditions for a correct algorithm. 

A process i needs to know about the failure of another process j in either of 
the two following situations: 

(1) j E Ri, and i wants to enter the critical section. 
(2) j E Si, and CSSTAT = j. 

For example, consider the centralized algorithm (Figure la). Processes 0, 2, 
and 3 need to know if 1 has failed when they wish to enter a critical section. 
Otherwise, they would wait forever for a GRANT from 1. Process 1 needs to 
know that 0 has failed, only if 0 fails while in the critical section. Similarly, 1 
needs to know about the failure of 2, only if 2 fails while in a critical section, and 
likewise for 3. Processes 0,2, and 3 do not need to know about the failure of each 
other. 

7.1 Local Recovery 

Mechanisms for recovery after the failure of a process have been proposed for 
the completely distributed mutual exclusion algorithm [7] and for the centralized 
algorithm [l, 61. These mechanisms produce a new algorithm with the same 
topology as the original one and require a significant amount of cooperation 
between processes. A process that detects failure notifies all other processes, and 
in the centralized case, an algorithm to determine whether a new leader is 
invoked. In all cases, the problem of what happens if the failure is detected by 
more than one process must be considered and tends to result in complex recovery 
mechanisms. 
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A different approach to failure recovery is presented here. This approach is 
called local recovery, since it requires no cooperation or additional communication 
between processes than what is needed for failure detection. A process monitors 
the status of another process when it is in one of the situations described above 
with respect to that process. This can be done by means of timeouts and “are 
you up?” messages, or by implementing system routines that when called would 
monitor a specified processor j for failure and would interrupt the calling routing 
if a failure is detected. The conditions of the theorem are assumed to be satisfied 
by the original information structure that is known to all processes. 

On detecting the failure of process j, process i takes the following actions: 

(1) Delete j from i’s copy of the information structure. 
(2) Check to see that the information structure still satisfies the sufficient 

conditions to guarantee mutual exclusion. If not, it will be because there was 
some Iz such that before the failure, 1i n Ik = (j). 

(3) If the information structure, according to the local copy, no longer satisfies 
the sufficient conditions, modify the local copy so that k E Ri and i E Rk. 

(4) If i was waiting for a GRANT from the failed node j, then REQUEST 
messages should then be sent to all new additions to Ri. If i was waiting for 
a RELEASE from j, then i should act as if a RELEASE had actually been 
received: clearing CSSTAT and sending a GRANT to the next waiting 
process. 

Although the topological structure of the algorithm is not preserved under this 
failure recovery mechanism, it has the advantage of requiring absolutely no 
coordination or communication between various processes to maintain correct- 
ness. The local copies of the information structures may be inconsistent during 
the evolution of the algorithm, for example, when the failure has not yet been 
detected by all relevant processes, but the algorithm will never violate mutual 
exclusion. 

8. DYNAMIC INFORMATION STRUCTURES: AN EXAMPLE 

The work presented above has assumed that the information structure of an 
algorithm is static. The only time that an information structure changed was 
during failure recovery. In this section an example is given of an algorithm with 
an information structure that changes as the algorithm evolves. This algorithm 
was proposed in [2] as an improvement to the completely decentralized algorithm 
of [7]. The idea is that, initially, a process wishing to enter the critical section 
will send a REQUEST to and wait for a GRANT from all processes before 
entering the critical section. This step is the same as in [7]. The improvement 
comes when one notices that if the same process wants to enter the critical 
section again, and no other process is attempting to enter, then there actually is 
no need to request permission from all other processes. More generally, a process 
will only ask permission from processes that it has never received permission 
from, or that have been granted permission by it since it has been granted 
permission by them. 
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Figure 5 

Casting this in our framework, we see that the information structure changes 
during the normal evolution of the algorithm. The information structure of 
process i changes according to the following rules: 

(1) When a GRANT is sent to a process j, j is added to Ii and Ri and removed if 
present from Si. 

(2) When a GRANT from process i is received by j, i is removed from Rj and 
added to Sj. 
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This is illustrated in the example shown in Figure 5. The important conse- 
quence of dynamic information structures is that the complete information 
structure is not known to any process. Each node knows the initial information 
structure, the rules for changing the information structure, and the messages 
sent and received by itself. The process does not know the message traffic at the 
other process and the resulting changes in the global information structure. An 
algorithm with dynamic information structures will be satisfied if two conditions 
are satisfied. First, the union of the local views must satisfy the conditions of the 
theorem, where i’s local view is just Ii, Ri, and Si. Second, the local view must be 
consistent in the sense that if j E Ii, then i E Sj. In this example, for any pair of 
processes i and j, either j E Ri and i E Rj, or one process is in the inform set of 
the other. The local views of the information structure are indicated on the 
figure. Note that in Figure 5c, process 3 would need to communicate only with 
processes 0 and 2 to maintain correctness of the algorithm. Because 3 does not 
have knowledge of the actual inform sets of 0 and 1, it cannot tell that it could 
be obtaining information indirectly through these processes. 

9. CONCLUSION 

In this report, the concept of an information structure of a distributed mutual 
exclusion algorithm has been introduced. The information structure captures the 
distinguishing features of several algorithms that have appeared in the literature, 
as well as facilitating the discovery of new ones. Future research will include 
further exploration of dynamic information structures and applications of these 
ideas to other distributed decision problems. 
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