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ABSTRACT
We consider an important problem of wireless sensor net-
work (WSN) routing topology inference/tomography from
indirect measurements observed at the data sink. Previ-
ous studies on WSN topology tomography are restricted to
static routing tree estimation, which is unrealistic in real-
world WSN time-varying routing due to wireless channel
dynamics. We study general WSN routing topology infer-
ence where routing structure is dynamic. We formulate the
problem as a novel compressed sensing problem. We then
devise a suite of decoding algorithms to recover the rout-
ing path of each aggregated measurement. Our approach
is tested and evaluated though simulations with favorable
results. WSN routing topology inference capability is es-
sential for routing improvement, topology control, anomaly
detection and load balance to enable effective network man-
agement and optimized operations of deployed WSNs.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms
Algorithms

Keywords
Wireless sensor networks, routing topology, network infer-
ence, compressed sensing, recovery algorithms.

1. INTRODUCTION
Wireless sensor networks (WSNs) have been fundamen-

tally changing today’s practice of numerous scientific and
engineering endeavors, including studies of environmental
sciences, ecosystems, natural hazards, accurate agriculture,
and smart building, by enabling continuous monitoring and
sensing physical variables of interest at unprecedented high
spatial densities and long time durations [1, 2, 3]. Network
inference - also known as network tomography or inferen-
tial network monitoring - studies how to efficiently recon-
struct the network structure (e.g., routing topology) and
important dynamics (e.g., link performance, load balance)
of large-scale networks from indirect measurements when di-
rect measurements are either unavailable or impractical to
collect due to resource constraints (e.g., [4, 5, 6, 7, 8, 9, 10,
11]). As WSNs are growing rapidly in both size and com-
plexity, it becomes increasingly critical to monitor the WSN

structure and dynamics and identify any internal problems
using indirect measurements obtained at the WSN sink(s).
Such network inference capability is essential for routing im-
provement, topology control, anomaly detection and load
balance, enabling effective management and optimized op-
erations for deployed WSNs consisting of a large number
of unattended wireless sensor nodes. Compared to wire-
line network inference, WSN inference has its unique chal-
lenges because of the severe resource limitations (e.g., bat-
tery power, bandwidth, memory size, and CPU capacity) of
tiny sensor nodes. Most environmental and natural hazard
monitoring WSNs are deployed in harsh environments such
as mountainous areas, forests, volcano areas, and oceans,
and thus the replacement of battery for sensor nodes is usu-
ally impossible. Most existing research on WSN tomogra-
phy has concentrated on link loss and delay monitoring [12,
13, 14, 15, 16], with the assumption that routing topology is
given a priori. In contrast, studies on WSN topology tomog-
raphy are few and restricted to static routing tree estimation
[17, 18], which is unrealistic and problematic in real-world
WSN deployments/applications where routing topology is
time-varying due to wireless channel dynamics such as fad-
ing and interference. This lack of investigation into realistic
and dynamic WSN routing topology inference/tomography
may significantly undermine the foundation and values of
the works on WSN loss/delay tomography.

In this paper, we study the general WSN routing topology
inference for dynamic routing structure which is random and
time-varying. Inspired by the recent breakthrough of com-
pressed sensing (CS) theory [19, 20, 21], we formulate the
problem as a novel CS problem. We then devise a suite of
decoding algorithms to recover the routing path of each ag-
gregated measurement at the sink. To our knowledge, no
reported research on network inference addresses the chal-
lenge of time-varying routing topology structure. This work
intends to bridge this important gap.

2. ROUTING TOPOLOGY MODEL
We consider acyclic routing topology for WSN data col-

lection, which can be modeled by a directed acyclic graph
G = (V, E), where V is a set of n nodes (the sink s and
n − 1 sensor nodes), i.e., its cardinality |V | = n, and E
is a set of edges. The sink s is the particular node where
sensed data from individual sensor nodes should be peri-
odically gathered. Sensor nodes (i.e., motes) are battery-
operated while the sink is assumed not to be power-limited.
A directed edge e(u,v) is an ordered pair (u, v) ∈ V × V rep-
resenting the wireless communication link from node u to
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node v. Each edge e(u,v) is associated with a unique label
l(u,v), given by a labeling function L : E → N, where N de-
notes the set of positive integers. For each sensor node i, let
pi = {ei,t1,, et1,t2 , · · · , etj ,s} denote its routing path through
relay sensor nodes t1, t2, · · · , tj , to the sink node s. Let yi

denote an indirect path measurement of path pi at the sink.
Then, measurement vector Y = {y1, y2, · · · , yM}T , where
M = n − 1, denotes a complete set of path measurements
for the WSN.

For a static routing, the routing topology can be repre-
sented as a directed spanning tree of WSN’s complete di-
rected connectivity graph, with the sink being the root of
the routing tree. Let T = (V, E0) denote this spanning
tree structure, where E0 is the edge (i.e., link) set and
|E0| = n − 1. Clearly T is a special case of the routing
topology model G given here, i.e., T ⊆ G.

In this paper, we assume WSN routing is dynamic in a
cycle of data or measurements collection due to wireless
link dynamics. A general acyclic dynamic routing topol-
ogy G can be decomposed into a (directed) spanning tree
and some additionally attached edge(s). These addition-
ally attached directed edges are referred to as ‘shortcuts’
in the paper, and in this sense, a G can also be referred
to as a (directed) Augmented ‘Tree’ (A-Tree). Let E+ de-
note the set of shortcuts, then we have E = E0 ∪ E+, with
|E| = |E0|+ |E+| = n− 1 + |E+|. An A-Tree structure has
the following properties due to shortcut(s): (1) A node may
have more than one parent node; and (2) A node may have
multiple paths to the sink.

Example 1 An illustration of an A-Tree routing structure
with the sink node 0 is shown in Figure 1, where the presence
of dotted link e2,0 is due to WSN link dynamics during a
data collection cycle. The A-Tree can be decomposed into a
baseline spanning tree with a set of additionally shortcut(s)
e2,0.
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Figure 1: An illustration of an A-Tree.

3. PROBLEM FORMULATION
Consider to reconstruct the dynamic routing topology struc-

ture that evolves along time during a cycle of WSN data/
measurements collection. Given the general routing topol-
ogy model above, our objective is to recover the routing
path pi for each indirect path measurement packet yi orig-
inated from sensor node i and received at the sink. When
a complete set of M (M = n− 1) path measurements origi-
nated from individual n− 1 sensor nodes is received in one
collection cycle, the entire routing topology G(V, E) will be
exactly reconstructed with E = p1 ∪ p2 ∪ · · · pM .

3.1 Formulation from CS Perspective
We formulate the problem of WSN routing topology in-

ference from a CS perspective. The standard CS framework

can be represented as

Y = ΦX,

where X is an N × 1 sparse discrete signal vector, Φ is an
M×N measurement matrix and Y is the M×1 measurement
vector. The CS theory allows, under certain conditions, to
recover X from Y where M ¿ N , as long as the signal X is
sparse. This can be achieved (with probability close to one)
by solving the following optimization:

X̂ = argminx‖X‖p subject to Y = ΦX, (1)

where ‖X‖p (p = 0, 1) denotes lp-norm of X.
To formulate the WSN routing topology inference prob-

lem, we introduce a new concept of so-called Base Topology
of a WSN, denoted by G∗(V, E∗), where |V | = n. Given
an arbitrary WSN routing topology model defined in Sec-
tion 2 by Gi(V, Ei), then G∗(V, E∗) is simply defined by
∀i E∗ ⊃ Ei. That is, the base topology of a WSN is
the superset of all possible routing topologies of the WSN.
For WSN upstream routing, outgoing links from the sink
are excluded, and thus the total number of all possible di-
rected wireless links (considering asymmetry wireless chan-
nel property) for the upstream base topology G∗ should be
|E∗| = n(n− 1)− (n− 1) = (n− 1)2.

Our key observation is that the actually used wireless links
in a WSN routing topology Gi for a short-time interval (e.g.,
a measurement/data collection cycle) would be much fewer
than the number of total potential choices in the upstream
base topology G∗, i.e., |Ei| ¿ |E∗|, because good wireless
links are likely to be reused whenever possible to reduce
any re-routing overhead and unnecessary retransmissions for
energy conservation and reliable data transfer in the WSN.
Let N = |E∗| = (n − 1)2. In our formulation, let X be a
link (labeling value) vector of N dimension, which shall be
sparse. Assume that in a given measurement/data collection
cycle of a WSN of n nodes, the sink receives a complete set
of path measurements, denoted as an M × 1 vector Y =
{y1, y2, · · · , yM}T where M = n−1. Thus the measurement
matrix Φ = {ϕi,j} (1 ≤ i ≤ M, 1 ≤ j ≤ N) can represent
a routing matrix in the WSN where the ith row represents
the ith path while the jth column represents the jth link,
whose elements ϕi,j are defined as

ϕi,j =

{
1, the ith path traverse over the jth link;
0, otherwise.

Note that |E| = n− 1 + |E+|, where |E+| is the number of
shortcuts in G (i.e., A-Tree), as discussed in Section 2. Since
X is sparse, |E+

i | should be a relatively small number (e.g.,
|E+| < n), a reasonable assumption in practical WSN for
one cycle of data/measurements collection. Thus, we now
have an innovative way to formulate the topology inference
problem of dynamic routing from a CS perspective: given a
measurement vector Y at the WSN sink, recover the X and
measurement matrix Φ, so that

X̂ = argmin‖X‖0 subject to Y = Φ̂X, (2)

where l0-norm ‖X‖0 is the number of nonzero elements in
the vector X, that is ‖X‖0 = |E|.

We point out that, unlike the traditional CS formulation
(1), where the measurement matrix Φ is known a priori
whether randomly or deterministically generated, the Φ in
our problem formulation (2) is completely unknown, due to
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the un-deterministic real-world communication environment
for that collection cycle. On the other hand, in contrast to
the traditional CS formulation (1), we know each potential
link’s value a priori by the labeling function as described in
Section 2. So, our problem formulation (2) is to recover Φ
and therefore to reconstruct the sparseness pattern of the
X, given a Y .

Example 2 Given a WSN of 5 nodes as shown in Fig-
ure 1(a), in which four paths originated from each sensor
node are p1 = {e1,0}, p2 = {e2,1, e1,0}, p3 = {e3,2, e2,1, e1,0}
and p4 = {e4,2, e2,0} respectively in a data/measurement
collection cycle. Assume the representation format of X is
given as {l1,0, l1,2, l1,3, l1,4, l2,0, · · · , l4,0, l4,1, l4,2, l4,3}T ; the
link vector for the WSN routing topology will be X =
{l1,0, 0, 0, 0, l2,0, l2,1, 0, 0, 0, 0, l3,2, 0, 0, 0, l4,2, 0}T and the mea-
surement matrix Φ will be



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0


 .

As illustrated in this example, the link vector X has only
5 nonzero values among the total 16 elements. In general,
using the common CS compression ratio r = M/N , we have

r =
n− 1

(n− 1)2
=

1

n− 1
, (3)

where n is the total number of WSN nodes (including the
sink). As the size of WSN grows, the compression ratio r
becomes very small. Also, all potential (n − 1)2 directed
wireless links in the WSN upstream base topology are con-
sidered without any pre-exclusion.

Due to the nature of CS formulation, we want to inves-
tigate the accuracy of our topology inference approach. As
illustrated in Figure 2, it is possible that two routes satisfy
the same measurement value yi, which suggests these two
routes be basically indistinguishable. We call this situation
a tie, and the node i a tie node.

s

Nodei

Pathi Pathi'

Figure 2: An example of a measurement tie, where
two routes Pathi and Path′i have the same measure-
ment value.

3.2 Path Measurement Metric
A path measurement yi is calculated in network based

on the traversed link label values as a packet routed to-
wards the sink. As in the traditional CS approaches, linear
combination is adopted in our formulation. However, we
employ modular summation (with mod m) (SUMm) rather
than regular summation, for efficient WSN in-network com-
puting and scalable communications.

3.3 Edge Labeling Function
As defined in Section 2, each edge in G has a unique label

lu,v, given by a labeling function L. Since G is unknown
and will be inferred at the sink, L should generate a unique
labeling value on each edge in the base topology G∗, that is,
L : E∗ → N.

A good labeling function tries to reduce the probability
of path measurement ties as much as possible. Here, we
provide a simple but useful heuristic method to effectively
reduce the potential tie probability: assign labeling values
on all edges as odd positive integer numbers.

Theorem 1. For a directed acyclic graph G = (V, E), if
all edge labeling values are odd positive integers, any path of
odd hops cannot tie with any path of even hops.

Proof. Let pi denote a path originated from node i to
the sink s. If the hop number of the path |pi| is odd, then its
corresponding path measurement yi will be an odd integer.
Assume there is another path p′i originated from the same
node i and its |p′i| is even, then its measurement y′i will be
an even integer. Therefore, yi 6= y′i.

Next, we devise a simple and effective labeling function
which is given in Theorem 2. Our devised function generates
a unique label value for any edge (u, v), if the two nodes u
and v have unique odd integer IDs. The proof is omitted
due to the page limit. Thus, any node receiving a packet
can easily compute the label value of the link used by the
packet on-the-fly, without any pre-stored link label table.

Theorem 2. Assume each node i has a K-bit unique and
odd integer ID idi, for any edge (u, v), the edge label l(u,v) =

idu × 2KXOR idv + (idv − idu) is a 2K-bit unique and odd
integer value.

4. RECOVERY ALGORITHM
To solve the problem of (2), a straightforward approach

would be an exhaustive search through all the possible edge
combinations to find the ones matching the given path mea-
surements. The complexity of such a brute force approach
would be O((n−1)!) which is prohibitive. However, based on
the sparsity assumption of X, effective recovery algorithms
are possible. We first devise a basic Routing Topology Re-
covery (RTR) algorithm with the measurement metric of
modular summation, and illustrate how basic RTR algo-
rithm works. Then we extend the basic RTR algorithm by
employing multiple path measurement metrics. Finally we
develop a fast RTR algorithm.

4.1 Assumptions
Data/measurement packets are received at the sink in se-

quence. Good wireless links used in successful transmis-
sions are intended to be reused for subsequent packets de-
livery whenever appropriate in a collection cycle. Based on
the sparsity of link vector X, it would be reasonable to as-
sume that in the dynamic routing model A-Tree G(V, E),
any routing path originated from an individual sensor node
will not introduce more than two new wireless links in a
collection cycle, that is, |E| ≤ 2(n − 1) when |V | = n. In
contrast, the static (i.e., spanning tree) routing has the as-
sumption that only one new wireless link can be introduced
per each routing path. Consequently, our assumption ac-
commodates the prevalent wireless links’ dynamics due to
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channel fading and interference, but at the same time, only
allows the link dynamics to a limited extent, to exploit the
sparsity of X. Recall that |E| = n − 1 + |E+|, thus our
assumption allows |E+| ≤ n − 1 shortcuts in the dynamic
routing model. Clearly, if no any shortcut is allowed, the re-
covered routing topology will be exactly a spanning tree. As
one can see, our assumption is indeed the most sparseness
assumption for a dynamic routing topology.

4.2 Algorithm Design
Every measurement packet originated from a sensor node

i contains the original node’s unique ID id, and its path
measurement yi. This sink receives these packets in se-
quence from which two vectors are formed: a sequence vec-
tor S = {id1, id2, · · · , idM} where the subscripts indicate
the arriving order, and the corresponding measurement vec-
tor Y = {yi1 , yi2 , · · · , yiM }. We present our RTR algorithm
based on these two vectors. For convenience, we also use
“recovering node i” to refer “recovering the path originated
from node i” as for convenience. These two terms are ex-
changeable in this paper.

The basic idea of the RTR algorithm is for each incom-
ing path measurement y originated from a new node child,
the sink and all the previously recovered nodes could be
its parent candidates Candidates. For each potential parent
candidate parent, function findTP tries to find the child ’s
all possible paths under our sparsity assumption in Section
4.1 (i.e., either without new shortcut or with only one new
shortcut) according to the currently recovered topology TP
whose module sum aggregation matches the received y. For
each match, update the topology TP by adding the edge
between node child and node parent and the new short-
cut if there is one. Notice, because of any tie situations,
it is possible that there are multiple topology updates for
the same new incoming node child and the same recovered
topology TP. To ensure not to miss any true solution, record
all recovered updates in a set newSet and every topology in
newSet will be checked for the next new node. When no
any match is found, it means that this topology TP is a
“fake” one caused by a previous tie situation and it should
not be considered any further. Figure 3 outlines our basic
RTR algorithm.

Note that there could be two forms to represent a topol-
ogy TP : one is just the A-Tree routing topology like TP ←
ATree, and the other one will include one or multiple path
recoveries(PR) like TP ← {ATree, {PR1, · · · }}. If the goal
is only to recover the overall A-Tree topology, the tree only
form will suffice. On the other hand, if each detailed route
originated from each individual node is needed, it could
be either recomputed based on the topology result of the
RTR algorithm with the tree only TP form or recorded as a
byproduct with the tree and path recoveries TP form. The
former (i.e., based on the tree only TP form) will spend ex-
tra time for the recalculation while the latter will take some
additional space to record those path recoveries. Another
issue is that when multiple potential topologies are inferred
for the same node, those topologies will be grouped before
checking the next node to avoid redundant calculations. To
group the topologies with the tree only form, it is just a sim-
ple union. For the tree and path recoveries form, all the path
recoveries will be put in a set for the same tree structure.

Example 3 Figure 4 illustrates how the devised RTR
algorithm works using a WSN with 5 nodes. In this network,

Notation
getSize(s): return the size of the set s;
s1 ∪ s2: join the two sets s1 and s2;
group(s): group the same topologies in the set s;
findTP : return the set of all matched topologies.
Function RTR(S, Y, r)
1: TP ← {}; Set ← {TP}; /*initial TP and Set*/
2: for (i ← 1; i ≤ getSize(S); i + +)
3: child ← S[i]; y ← Y [i]; newSet ← {}
4: for all topologies TP ∈ Set do
5: Candidates ← {r} ∪ S[1, · · · , i− 1];
6: for all candidates parent ∈ Candidates do
7: TPSet ← findTP (child, parent, y, TP );
8: if (TPSet 6= {})/*exist matched topologies*/
9: then newSet ← newSet ∪ TPSet;

10: end for
11: end for
12: Set ← group(newSet);
13: end for

Figure 3: RTR algorithm to obtain a complete set
of solution candidates.

the sink is node 0; sequence vector is S = {1, 2, 3, 4}; and the
indirect path measurement vector (in the arriving order) is
Y = {1, 4, 9, 20}. The labels assigned on edges are given in
the figure. In Figure 4, (a) shows the initial topology state
which only has the sink node 0. When the sink received
the first measurement y1 originated from node 1, node 1
did not have other parent choices except the sink node so
its measurement must match the label of the edge l1,0 as
shown in (b). When node 2’s measurement packet arrived at
the sink, both node 0 and node 1 would be considered as its
parent candidates. Since only getPathSum({e2,1, e1,0}) = 4
matches y2, node 1 is the parent of node 2 as shown in (c).
For node 3, tie situation occurs. Both the sink and node
2 could be its parent nodes, so we will get two different
potential topologies (d.1) and (d.2) at this step. For the next
node, both these two potential topologies will be checked.
Therefore, for node 4, RTR will find (e.1) based on (d.1), and
(e.2.1) and (e.2.2) based on (d.2). In (e.2.2), e3,0 is the new
shortcut. In this figure, each recovered individual path for
the incoming source node consists of solid bold edge(s) and
possibly a blue dashed edge – a new shortcut introduced
by the incoming node. Figure 4(a)-(e) represent the path
recovery for all the nodes in sequence respectively, where
sub-numbers such as (d.1) and (d.2) specify the two different
topologies recovered for the same node at that step.

4.3 RTR with Multiple Measurement Metrics
As we can see, the inferred potential solution set by our

basic RTR algorithm will include the true routing topology
formed in the WSN in a given collection cycle, but cannot
distinguish the true solution from the other false ones when
multiple candidates exist due to some path tie(s). There-
fore, it is desirable to make the size of the inferred potential
solution set to be as small as possible.

We propose to adopt additional path measurement met-
ric(s) to reduce the size of the RTR solution set. In other
words, in addition to the modular summation for indirect
path measurement metric, supplemental measurement met-
ric(s) could also be applied. Instead of using a single scalar
measurement value yi as before, now each measurement yi

ACM SIGCOMM Computer Communication Review 25 Volume 43, Number 2, April 2013



(d.1)

(d.2)

0

0

1
1

2

3

4

3

5
11

90

1
1

3

2
3

90

1
1

3

2
3

0

1
1

2

3

3

5

0

1
1

2

3

0

1
1

9

(a) (b)
(c) (e.1)

(e.2.1)

4

11

0

1
1

2

3

4

3

5
11

(e.2.2)

Figure 4: An illustrate example for RTR.

is a group of multiple values based on all measurement met-
rics, that is, yi = {y1

i , y2
i , · · · }. For example, exclusive-or

(XOR) can be adopted as the secondary indirect measure-
ment metric with the following minor modifications to the
basic RTR algorithm given in Figure 3:

• Modify Function RTR(S, Y, r) in Figure 3, by replac-
ing line 3 with :
child ← S[i]; y1 ← Y [i, 1]; y2 ← Y [i, 2]; newSet ← {};

• Extend Function findTP by adding the secondary
measurement y2 based on the XOR metric.

4.4 Fast RTR Algorithm
RTR algorithm with multiple measurement metrics helps

reduce the potential size of the solution set significantly.
While the theoretical probability analysis is still an open
question, we empirically observed that the probability of
having more-than-one potential solutions should be extremely
small using the RTR with both SUMm and XOR measure-
ment metrics. Therefore, we also develop a Fast Routing
Topology Recovery (FRTR) algorithm which only provides
the first solution candidate found and then stop the further
searching. With proper edge labeling value function and
path measurement metrics, FRTR would be able to obtain
the unique correct recovery with very high probability. The
merit of FRTR algorithm is that it is significantly faster
than RTR algorithm since RTR algorithm may waste re-
sources trying to search either non-existent or duplicated
solution candidates in its effort to obtain the complete set
of potential solution candidates. The main changes intro-
duced into the FRTR compared to the RTR algorithm are
given below:

• Node child will stop testing other parent candidates
Candidates as long as it finds one in the for loop (line
6-10) of Function RTR(S, Y, r) in Figure 3;

• Function findTP will return the first match topology
and stop searching the rest potential ones.

These changes enable us to improve the FRTR algorithm’s
performance by sorting the parent candidates Candidates
and the corresponding path candidates in Function findTP

Table 1: Parameter Ranges For Noise Generation
Parameter Range

Baseline noise level average [-98, -92]
Baseline noise level standard deviation [1,3]

Burst offset average [0,45]
Burst offset standard deviation [1,3]

Burst sigma range [1,3]
Burst duration average [20,110]

Burst duration standard deviation [5,20]
Burst frequency average [0,3]

Burst frequency standard deviation [1,2]

according to the properties of a given WSN routing mech-
anism. For instance, if nodes in a given network prefer to
choose the shortest available paths, the parent candidates
could be sorted in the ascending order of their levels and
the path candidates could be sorted by the number of hops.

The complexity of FRTR algorithm is O(N2). The anal-
ysis and proof are omitted due to page limit.

4.5 Simulation Study
We conducted simulations to validate the devised RTR

and FRTR algorithms above, with the measurement metrics
Summ and XOR. The following setting is used: (1) each
node i has a 12-bit unique odd ID idi; (2) each edge label
l(u,v) is generated according to Theorem 2; and (3) each
metric of the module sum and XOR uses three bytes.

WSN routing topologies were simulated as follows with
respect to random noises introduced in the simulations. An
establishment of a wireless link is based on the checking of
signal to noise ratio (SNR). If SNR is less than the prede-
fined threshold [22], no link exists between the two sensor
nodes. Here we used the same radio gain for all links in a
WSN, and simulated both the random noises at short-time
scales and the bursty noises at relatively long-time scales
[22] independently for each link. Table 1 shows the ranges
of noise parameters used in the simulations. Simulation re-
sults are listed in Table 2, where column WSN Size lists
the total number of nodes in each simulated WSN; column
Hgt shows the length of the longest routing path in terms
of hops in the WSN; and column SC Ratio is the ratio
of the number of shortcuts to the number of all edges (in-
cluding shortcuts) in the routing topology A-Tree. These
three columns show the basic structure of the WSN rout-
ing topologies in our simulations. The network sizes of the
simulated WSNs range from 30 to 130 nodes. We can see
from Table 2 that the SC ratios of these WSNs range from
0.07 (1/14) to 0.43(93/214), representing a good diversity of
dynamic routing scenarios under our sparseness assumption.
Column RTR Size indicates the size of the inferred poten-
tial solution sets by the RTR algorithm for each simulated
WSN. In our simulations, the unique solution is obtained
for all simulated WSNs by the RTR algorithm with two
measurement metrics, although in general, there is no guar-
antee that the unique true solution can be always obtained.
In contrast, the basic RTR algorithm with a single mea-
surement metric SUMm may often produce more than one
potential solution candidates. For example, the basic RTR
algorithm produces 3 potential solutions for the first WSN
test case listed in Table 2 (marked with *). When addi-
tional measurement metric XOR is adopted in our sophisti-
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Table 2: Comparison between RTR and FRTR
WSN Size Hgt SC Ratio RTR Size RTR/FRTR

40 7 1/14 1* 2.7
56 9 24/79 1 2.8
63 10 33/95 1 3.2
66 8 12/77 1 2.8
76 10 46/121 1 3.4
85 10 23/107 1 3.5
96 9 1/6 1 2.7
105 9 29/133 1 2.6
112 10 70/181 1 3.0
122 14 93/214 1 3.0

cated RTR or FRTR algorithm, there is an overhead of three
bytes for a path packet. The last column RTR/FRTR is
the ratio of the CPU time of the RTR to the CPU time of
the FRTR. As we can see, the result shows that FRTR is
averagely about 2.9 times faster than RTR in the simula-
tions.

5. CONCLUSIONS
In this paper, we have proposed a novel approach to WSN

dynamic routing topology inference from indirect measure-
ments observed at the data sink. We formulate the problem
from compressed sensing perspective in an innovative way.
We devise a suite of algorithms to recover routing topol-
ogy at the sink. We conducted empirical studies on our
devised recovery algorithms and the simulation results are
promising. Our future work includes to study our proposed
WSN dynamic routing topology inference with incomplete
path measurement set in a collection cycle due to packet
loss in real-world environments. We plan to further investi-
gate our WSN dynamic routing topology inference approach
for large-scale of WSNs consisting of thousands of nodes.
We also plan to implement the proposed approach and test
it thoroughly in a real-world WSN testbed. Based on the
dynamic topology inference, current WSN link loss and de-
lay inference schemes can be extended to deal with realistic
WSNs under dynamic routing.
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