
A simple taxonomy for distributed
mutual exclusion algorithms

M i c h e l R A Y N A L

I R I S A

C a m p u s de B e a u l i e u

35042 R e n n e s - C e d e x

r a y n a l @ i r i s a . f r

Abs t r ac t

This short paper examines the two basic principles from which distributed mutual exclusion algorithms
are designed : permission-based and token-based principles. This presentation is done in a pedagogical
way and is illustrated by references to existing algorithms.

Key-words : Mutual exclusion, distributed system, permission, token.

1 Introduct ion

Since 1977, with Le Lann's paper[10], and 1978 with Lampor t ' s one [9], lots of distributed algorithms have
been proposed to solve the mutual exclusion problem. Only few of them were very innovative, proposing new
ideas or new algorithndc techniques. The major part were designed by adapt ing previous and well-known
solutions to specific hypotheses. The aim of this short paper is not to review all these algorithms with
their underlying principles and properties (the reader may consult [16]) but to present the two simple ideas
from which distributed mutual exclusion are designed. These two principles define two families for such
algorithms : the permission-based family (§2) and the token-based one (§3). (These two families meet when
we consider that the right to enter the critical section is managed by a central coordinator (§4).) We limit
our presentation to the principles attached to each of these two families.

We consider in the following a distributed system composed of n sites : P 1 , . . . , P n - Communicat ion
between processes is by messages only (there is no central memory) and transfer delays are finite but
unpredictable [17]. We suppose, without loss of generality, there is one and only process per site.

2 Permiss ion-based algorithms

This idea was first expressed by Ricart and Agrawala in 1981 [19] ; then it has been formalized by Sanders
[21]. The idea is very simple : when a process wants to enter the critical section it asks the others for them
to give it the permission to enter ; and then it waits until these permissions have arrived. If a process is
not interested by the critical section it sends back its permission as soon as it receives the requests ; if it
is interested a priority has to be established between the two conflicting requests. In the Ricart-Agrawala 's
proposal a t imes tamp mechanism (obeying the I, aml)ort 's rule [9]) is used to associated a t imes tamp to each
request ; as t imes tamp are totally ordered, conflicts are easily solvod in favour of the request endowed with
the lowest t imestamp.

In the Ricart-Agrawala 's proposal a process must ask for the permissions of a statically defined set
including all the other processes. Improven,ents haw' I)ool, i)roposod concerning the management and the

/*7

size of this set. In [4] a process P~, which has received a permission from Pj, dont ask P./ again if it was
granted the critical section, and it did not receive a request from Pj since this granting ; consequently, in
this proposal, the size of the set varies dynamically for each process. (This management is the result of
a systematic method used to ensure that a global assertion is always satisfied in a distributed system [3]).
In [5] this is again inproved by eliminating the need for t imes tamps and using instead the acyclicity of a
directed graph (the vertices are processes) repre,;enting requestpriorities (the solution obtained-namely the
drinking philosophers problem- needs only bounded variables).

In the distributed database field, majori ty and quorum-based protocols are well-known techniques used
to ensure consistency of updates [7,24] ; moreover this enable algorithms to resist faults such as crashes or
parti t ionnings [2,6]. In fact permission-based algorithms and major i ty (or quorum) based protocols use the
same idea : collect "enough rights" allowing to do something. So several algori thms have been proposed
which differ in the size of "enough" (i.e. for each process of the set of processes granting permissions).
Maekawa, using a technique based on finite projective plane, reduces it to ~ [12]. Agrawal and E1 Abbadi
reduces it to log(n) by using a tree logical structure superimposed on the distributed system [1].

To sump up : in this family the safety property (that states mutual exclusion is never violated) is ensured
by obtaining of a sufficient number of permissions ; and the liveness property (each request will be granted)
is ensured by totally ordering the requests either by associating a t imes tamp to each one or by managing a
distributed acyclic directed graph, the vertices of which are the requesting processes.

3 Token-based a l g o r i t h m s

In this case the principle used is very simple : as only one process at a t ime can enter the critical section,
the right to enter is materialized by a special object which is unique in the whole system, namely a token.
As one can see the safety property is trivially etmured as the token is unique. The only thing one has to
manage is the movement of the token from one process to another one in order each request be satisfied
(liveuess property). At this point two possibilities can be considered for such a movement : the perpetuum
mobile and the token-asking method.

In the perpetuum mobile the token travels from one process to another one to give them the right to
enter the critical section ; and in order not to forget the request of some process the processes are put on
a directed logical ring used by the token. (If a process receives the token and if it is not interested in the
critical section it passes it. to the next process along the ring). The perpe tuum mobile on a ring ensures the
liveness. This principle has been proposed by Le Lann [10] and used in several algori thms [13].

In the token-asking method, the token does :aot move by itself ; a process willing to enter the critical
section asks for the token (if it does not own it) and waits until the token arrives. Several refinements are
possible. In [20] the requests of each process are sent to all the others, each process counts the number of
request received and the token carries the numl)er of critical section uses per process ; there is sufficient
inforlnation to ensure a movement of the token ensuring requests liveness. In [8] this principle is extended
to a network with an arbi trary topology. In [11.,14,15,25] the requesting processes are logically structured
(by the requests) as a tree and the movement of the token consists in a sequential tree traversal [18,22] (a
visited process is suppressed from this tree as the token leaves it).

Another distinction can be made according to the ways requests are disseminated in the system to reach
the token. [8] uses a parallel floading technique [22] ; [14,15] use an underlying logical structure (a tree) to
allow requests to join more quickly the token ; ill [23] a process can use some heuristic to guess with a good
likelihood where the token is, in order to send I(':',s requests.

4 A spec ia l case

In tlle case of a central coordinator, statically d(-finetl, tile two l)rincil)les meet. Processes ask only the
coordinator for tile permission before entering, and this unique permission can be assimilated to a token
managed by this coordinator. So this cas~, c;in b(, se('n ~s the sel)aration point between the two principles.

48

5 C o n c l u s i o n

The aim of this short paper was not to pretend to exhaustiveness about particular characteristics and
properties of distributed mutual exclusion algorithms. (References also are not exhaustive ; refer to [16] for
a more appropriate list). Its only goal was to state basic principles from which such algorithms are designed
and consequently can be understood and better mastered. Such an understanding can help when, more
generally, one has to implement or design distributed control algorithms.

R e f e r e n c e s

[1] AGRAWALA D., E1 ABBADI A. An efficient solution to the distributed mutual exchtsion problem.
Proc. 8th ACM Symposium on PODC, (August 1989), pp. 193-200

[2] AGRAWALA D., E1 ABBADI A. Exploiting logical .structures in replicated databases. Inf. Proc. Letters,
vol.33, (1990), pp. 255-260

[3] CARVALHO O.S.F., ROUCAIROL G. On the distribution of an Assertion. Proc. 2d ACM Symposium
on PODC, (1982), pp. 121-131

[4] CARVALHO O.S.F., ROUCAIROL G. On mutual exclusion in computer networks. Comm. ACM,
vol.26,2, (1983), pp. 145-147

[5] CHANDY K.M., MISRA J. The drinking philosophers problem.. ACM Trans. on Prog. Languages and
Systems, vo1.6,4, (1984), pp. 632-646

[6] GARCIA-MOLINA tI., BARBARA D. How to assign votes in a distributed system. Journal of tile
ACM, vol.32,4, (1985), pp. 841-860

[7] GIFFORD D.K. Weighted voting for replicated data. Proc. 7th ACM Symposium on Op.Systems Prin-
ciples, (1989), pp. 150-159

[8] HELARY J.M., PLOUZEAU N., RAYNAL M. A distributed algorithm for mutual exclusion in an
arbitrary uetworl:. The Computer Journal, vol.31,4, (1988), pp. 289-295

[9] LAMPORT L. Time, clocks and the ordering of events in a distributed systems. Comm. ACM, vol.21,7,
(1978), pp. 5.58-.565

[10] LE LANN G. Distributed systems : towards of a formal approach. IFIP Congress, North-Holland,
(1977), pp. 155-160

[11] LYNCH N.A., T U T T L E M. Hierarchical eorrect~ess proofs for distributed algorithms. Proc. 7th ACM
Symposium on PODC, (1987), pp. 137-151

[12] MAEKAWA M. A v ~ algorithm for mutual exclusion in decentralized systems. ACM Trans. on Comp.
Systems, vol.3,2, (1985), pp. 145-159

[13] MARTIN A.J. Distributed mutual exclusioT~ o~ a ring of processors. Science of Computer Programming,
vol.5, (1985), pp. 256-276

[14] NAIMI M., TREIIEL M. A distributed algorithm for mutual e~:clusion based on data structures and
fault tolerance. Proc. 6th Int. Phoenix IEEE C.olff. on Comp. and Comm., Scottsdale, (1987), pp. 35-39

[15] RAYMOND K. A tree-based algorithm for distributed mutual e.~:clusion. ACM Trans. on Comp. Sys-
tems, vol.7,1, (1989), pp. 61-77

49

[1.6] RAYNAL M. Algorithms for mutual exclusion. The MIT Press, (1986), 107 p.

[17] RAYNAL M. Networks and distributed computations : concepts, tools and algorithms. The MIT Press,
(1988), 166 p.

[18] RAYNAL M., I-IELARY J.M. Synchronization and control of distributed systems and programs. Wiley
and sons, (1990), 200 p.

[19] RICART G., AGRAWALA A.K. An optimal algorithm for mutual exclusion in computer networks.
Comm. ACM, vol.24,1, (1981), pp. 9-17

[20] RICART G., AGRAWALA A.K. Author response to "on mutual exclusion in computer networks" by
Carvalho and Roucairol. Comm. ACM, vol.26,2, (1983), pp. 147-148

[21] SANDERS B. The in.formation structure of distributed mutual exclusion algorithms. ACM Trans. on
Comp. systems, vol.5,3, (1987), pp. 284-299

[22] SEGALL A. Distributed network protocols. IF, EE Trans. on Inf. Theory, vol. IT 29,1, (1983), pp. 23-35

[23] SINGHAL M. A heuristically-aided algorithm for mutual exclusion in distributed systems. IEEE Trans.
on Computers, vol.38,5, (May 1989), pp. 051--662

[24] THOMAS R.H. A majority consensus approach to concurrency control for multiple copy databases.
ACM Trans. on Database Systems, vol.4,2, (1979), pp. 180-209

[25] Van de SNEPSCHEUT J.L. Fair mutual exclusion on a graph of processes. Distributed Computing,
vol.2, (1987), pp. 113-115

50

