
Basic Concepts of the R Language

L. Torgo

ltorgo@dcc.fc.up.pt

Departamento de Ciência de Computadores
Faculdade de Ciências / Universidade do Porto

Oct, 2014



Basic Interaction

Basic interaction with the R console

The most common form of interaction with R is through the
command line at the console

User types a command
Presses the ENTER key
R “returns” the answer

It is also possible to store a sequence of commands in a file
(typically with the .R extension) and then ask R to execute all
commands in the file

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 2 / 94



Basic Interaction

Basic interaction with the R console (2)

We may also use the console as a simple calculator

1 + 3/5 * 6^2

## [1] 22.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 3 / 94



Basic Interaction

Basic interaction with the R console (3)

We may also take advantage of the many functions available in R

rnorm(5, mean = 30, sd = 10)

## [1] 28.100 4.092 29.904 10.611 23.599

# function composition example
mean(sample(1:1000, 30))

## [1] 530.3

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 4 / 94



Basic Interaction

Basic interaction with the R console (4)

We may produce plots

plot(sample(1:10, 5), sample(1:10, 5),
main = "Drawing 5 random points",
xlab = "X", ylab = "Y")

●

●

●

●

●

2 4 6 8 10

2
4

6
8

Drawing 5 random points

X

Y

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 5 / 94



Variables and Objects

The notion of Variable

In R, data are stored in variables.
A variable is a “place” with a name used to store information

Different types of objects (e.g. numbers, text, data tables, graphs,
etc.).

The assignment is the operation that allows us to store an object
on a variable
Later we may use the content stored in a variable using its name.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 6 / 94



Variables and Objects

The notion of Variable

In R, data are stored in variables.
A variable is a “place” with a name used to store information

Different types of objects (e.g. numbers, text, data tables, graphs,
etc.).

The assignment is the operation that allows us to store an object
on a variable
Later we may use the content stored in a variable using its name.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 6 / 94



Variables and Objects

The notion of Variable

In R, data are stored in variables.
A variable is a “place” with a name used to store information

Different types of objects (e.g. numbers, text, data tables, graphs,
etc.).

The assignment is the operation that allows us to store an object
on a variable
Later we may use the content stored in a variable using its name.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 6 / 94



Variables and Objects

The notion of Variable

In R, data are stored in variables.
A variable is a “place” with a name used to store information

Different types of objects (e.g. numbers, text, data tables, graphs,
etc.).

The assignment is the operation that allows us to store an object
on a variable
Later we may use the content stored in a variable using its name.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 6 / 94



Variables and Objects

Basic data types

R objects may store a diverse type of information.

R basic data types

Numbers: e.g. 5, 6.3, 10.344, -2.3, -7
Strings : e.g. "hello", "it is sunny", "my name is Ana"
Note: one the of the most frequent errors - confusing names of
variables with text values (i.e. strings)! hello is the name of a
variable, whilst "hello" is a string.
Logical values: TRUE, FALSE
Note: R is case-sensitive!
TRUE is a logical value; true is the name of a variable.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 7 / 94



Variables and Objects

Basic data types

R objects may store a diverse type of information.

R basic data types

Numbers: e.g. 5, 6.3, 10.344, -2.3, -7
Strings : e.g. "hello", "it is sunny", "my name is Ana"
Note: one the of the most frequent errors - confusing names of
variables with text values (i.e. strings)! hello is the name of a
variable, whilst "hello" is a string.
Logical values: TRUE, FALSE
Note: R is case-sensitive!
TRUE is a logical value; true is the name of a variable.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 7 / 94



Variables and Objects The Assignment Operation

The assignment - 1

The assignment operator “<-” allows to store some content on a
variable

vat <- 0.2

The above stores the number 0.2 on a variable named vat

Afterwards we may use the value stored on the variable using its
name

priceVAT <- 240 * (1 + vat)

This new example stores the value 288 (= 240 × (1 + 0.2)) on the
variable priceVAT

We may thus put expressions on the right-side of an assignment

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 8 / 94



Variables and Objects The Assignment Operation

The assignment - 1

The assignment operator “<-” allows to store some content on a
variable

vat <- 0.2

The above stores the number 0.2 on a variable named vat

Afterwards we may use the value stored on the variable using its
name

priceVAT <- 240 * (1 + vat)

This new example stores the value 288 (= 240 × (1 + 0.2)) on the
variable priceVAT

We may thus put expressions on the right-side of an assignment

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 8 / 94



Variables and Objects The Assignment Operation

The assignement - 2

What goes on in an assignment?

1 Calculate the result of the expression on the right-side of the
assignment (e.g. a numerical expression, a function call, etc.)

2 Store the result of the calculation in the variable indicated on the
left side

In this context, what do you think it is the value of x after the
following operations?

k <- 10
g <- k/2
x <- g * 2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 9 / 94



Variables and Objects The Assignment Operation

The assignement - 2

What goes on in an assignment?

1 Calculate the result of the expression on the right-side of the
assignment (e.g. a numerical expression, a function call, etc.)

2 Store the result of the calculation in the variable indicated on the
left side

In this context, what do you think it is the value of x after the
following operations?

k <- 10
g <- k/2
x <- g * 2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 9 / 94



Variables and Objects The Assignment Operation

Still the variables...

We may check the value stored in a variable at any time by typing
its name followed by hitting the ENTER key

x <- 23^3
x

## [1] 12167

The ^ signal is the exponentiation operator
The odd [1] will be explained soon...
And now a common mistake!

x <- true

## Error: object ’true’ not found

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 10 / 94



Variables and Objects The Assignment Operation

Still the variables...

We may check the value stored in a variable at any time by typing
its name followed by hitting the ENTER key

x <- 23^3
x

## [1] 12167

The ^ signal is the exponentiation operator
The odd [1] will be explained soon...
And now a common mistake!

x <- true

## Error: object ’true’ not found

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 10 / 94



Variables and Objects The Assignment Operation

Still the variables...

We may check the value stored in a variable at any time by typing
its name followed by hitting the ENTER key

x <- 23^3
x

## [1] 12167

The ^ signal is the exponentiation operator
The odd [1] will be explained soon...
And now a common mistake!

x <- true

## Error: object ’true’ not found

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 10 / 94



Variables and Objects The Assignment Operation

A last note on the assignment operation...

It is important to be aware that the assignment is destructive
If we assign some content to a variable and this variable was
storing another content, this latter value is “lost”,

x <- 23
x

## [1] 23

x <- 4
x

## [1] 4

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 11 / 94



Variables and Objects The Assignment Operation

A last note on the assignment operation...

It is important to be aware that the assignment is destructive
If we assign some content to a variable and this variable was
storing another content, this latter value is “lost”,

x <- 23
x

## [1] 23

x <- 4
x

## [1] 4

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 11 / 94



Functions

Functions

In R almost all operations are carried out by functions
A function is a mathematical notion that maps a set of arguments
into a result
- e.g. the function sin applied to 0.2 gives as result 0.1986693
In terms of notation a function has a name and can have 0 or
more arguments that are indicated within parentheses and
separated by commas
- e.g. xpto(0.2, 0.3) has the meaning of applying the function
with the name xpto to the numbers 0.2 and 0.3

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 12 / 94



Functions

Functions

In R almost all operations are carried out by functions
A function is a mathematical notion that maps a set of arguments
into a result
- e.g. the function sin applied to 0.2 gives as result 0.1986693
In terms of notation a function has a name and can have 0 or
more arguments that are indicated within parentheses and
separated by commas
- e.g. xpto(0.2, 0.3) has the meaning of applying the function
with the name xpto to the numbers 0.2 and 0.3

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 12 / 94



Functions

Functions

In R almost all operations are carried out by functions
A function is a mathematical notion that maps a set of arguments
into a result
- e.g. the function sin applied to 0.2 gives as result 0.1986693
In terms of notation a function has a name and can have 0 or
more arguments that are indicated within parentheses and
separated by commas
- e.g. xpto(0.2, 0.3) has the meaning of applying the function
with the name xpto to the numbers 0.2 and 0.3

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 12 / 94



Functions

Functions (2)

R uses exactly the same notation for functions.

sin(0.2)

## [1] 0.1987

sqrt(45) # sqrt() calculates the square root

## [1] 6.708

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 13 / 94



Functions

Creating new functions

Any time we execute a set of operations frequently it may be wise to
create a new function that runs them automatically.

Suppose we convert two currencies frequently (e.g. Euro-Dollar).
We may create a function that given a value in Euros and an
exchange rate will return the value in Dollars,

euro2dollar <- function(p, tx) p * tx
euro2dollar(3465, 1.36)

## [1] 4712

We may also specify that some of the function parameters have
default values

euro2dollar <- function(p, tx = 1.34) p * tx
euro2dollar(100)

## [1] 134

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 14 / 94



Functions

Creating new functions

Any time we execute a set of operations frequently it may be wise to
create a new function that runs them automatically.

Suppose we convert two currencies frequently (e.g. Euro-Dollar).
We may create a function that given a value in Euros and an
exchange rate will return the value in Dollars,

euro2dollar <- function(p, tx) p * tx
euro2dollar(3465, 1.36)

## [1] 4712

We may also specify that some of the function parameters have
default values

euro2dollar <- function(p, tx = 1.34) p * tx
euro2dollar(100)

## [1] 134

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 14 / 94



Functions

Creating new functions

Any time we execute a set of operations frequently it may be wise to
create a new function that runs them automatically.

Suppose we convert two currencies frequently (e.g. Euro-Dollar).
We may create a function that given a value in Euros and an
exchange rate will return the value in Dollars,

euro2dollar <- function(p, tx) p * tx
euro2dollar(3465, 1.36)

## [1] 4712

We may also specify that some of the function parameters have
default values

euro2dollar <- function(p, tx = 1.34) p * tx
euro2dollar(100)

## [1] 134

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 14 / 94



Functions Function composition

Function Composition

An important mathematical notion is that of function composition
- (f ◦ g)(x) = f (g(x)), that means to apply the function f to the
result of applying the function g to x
R is a functional language and we will use function composition
extensively as a form of performing several complex operations
without having to store every intermediate result

x <- 10
y <- sin(sqrt(x))
y

## [1] -0.02068

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 15 / 94



Functions Function composition

Function Composition

An important mathematical notion is that of function composition
- (f ◦ g)(x) = f (g(x)), that means to apply the function f to the
result of applying the function g to x
R is a functional language and we will use function composition
extensively as a form of performing several complex operations
without having to store every intermediate result

x <- 10
y <- sin(sqrt(x))
y

## [1] -0.02068

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 15 / 94



Functions Function composition

Function Composition - 2

x <- 10
y <- sin(sqrt(x))
y

## [1] -0.02068

We could instead do (without function composition):

x <- 10
temp <- sqrt(x)
y <- sin(temp)
y

## [1] -0.02068

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 16 / 94



Vectors

Vectors

Vectors are a type of R objects that can store sets of values of the
same base type
- e.g. the prices of an article sold in several stores
Everytime some set of data has something in common and are of
the same type, it may make sense to store them as a vector
A vector is another example of a content that we may store in a R
variable

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 17 / 94



Vectors

Vectors

Vectors are a type of R objects that can store sets of values of the
same base type
- e.g. the prices of an article sold in several stores
Everytime some set of data has something in common and are of
the same type, it may make sense to store them as a vector
A vector is another example of a content that we may store in a R
variable

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 17 / 94



Vectors

Vectors

Vectors are a type of R objects that can store sets of values of the
same base type
- e.g. the prices of an article sold in several stores
Everytime some set of data has something in common and are of
the same type, it may make sense to store them as a vector
A vector is another example of a content that we may store in a R
variable

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 17 / 94



Vectors

Vectors (2)

Let us create a vector with the set of prices of a product across 5
different stores

prices <- c(32.4, 35.4, 30.2, 35, 31.99)
prices

## [1] 32.40 35.40 30.20 35.00 31.99

Note that on the right side of the assignment we have a call to the
function c() using as arguments a set of 5 prices
The function c() creates a vector containing the values received
as arguments

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 18 / 94



Vectors

Vectors (2)

Let us create a vector with the set of prices of a product across 5
different stores

prices <- c(32.4, 35.4, 30.2, 35, 31.99)
prices

## [1] 32.40 35.40 30.20 35.00 31.99

Note that on the right side of the assignment we have a call to the
function c() using as arguments a set of 5 prices
The function c() creates a vector containing the values received
as arguments

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 18 / 94



Vectors

Vectors (3)

The function c() allows us to associate names to the set
members. In the above example we could associate the name of
the store with each price,

prices <- c(worten = 32.4, fnac = 35.4, mediaMkt = 30.2,
radioPop = 35, pixmania = 31.99)

prices

## worten fnac mediaMkt radioPop pixmania
## 32.40 35.40 30.20 35.00 31.99

This makes the vector meaning more clear and will also facilitate
the access to the data as we will see.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 19 / 94



Vectors

Vectors (4)

Besides being more clear, the
use of names is also
recommended as R will take
advantage of these names in
several situations.
An example is in the creation
of graphs with the data:

barplot(prices)
worten fnac mediaMkt radioPop pixmania

0
5

10
15

20
25

30
35

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 20 / 94



Vectors

Vectors (4)

Besides being more clear, the
use of names is also
recommended as R will take
advantage of these names in
several situations.
An example is in the creation
of graphs with the data:

barplot(prices)
worten fnac mediaMkt radioPop pixmania

0
5

10
15

20
25

30
35

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 20 / 94



Indexing Basic indexing

Basic Indexing

When we have objects containing several values (e.g. vectors) we
may want to access some of the values individually.
That is the main purpose of indexing: access a subset of the
values stored in a variable
In mathematics we use indices. For instance, x3 usually
represents the 3rd element in a set of values x .
In R the idea is similar:

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[3]

## mediaMkt
## 30.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 21 / 94



Indexing Basic indexing

Basic Indexing

When we have objects containing several values (e.g. vectors) we
may want to access some of the values individually.
That is the main purpose of indexing: access a subset of the
values stored in a variable
In mathematics we use indices. For instance, x3 usually
represents the 3rd element in a set of values x .
In R the idea is similar:

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[3]

## mediaMkt
## 30.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 21 / 94



Indexing Basic indexing

Basic Indexing

When we have objects containing several values (e.g. vectors) we
may want to access some of the values individually.
That is the main purpose of indexing: access a subset of the
values stored in a variable
In mathematics we use indices. For instance, x3 usually
represents the 3rd element in a set of values x .
In R the idea is similar:

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[3]

## mediaMkt
## 30.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 21 / 94



Indexing Basic indexing

Basic Indexing (2)

We may also use the vector position names to facilitate indexing
prices <- c(worten=32.4,fnac=35.4,

mediaMkt=30.2,radioPop=35,pixmania=31.99)
prices["worten"]

## worten
## 32.4

Please note that worten appears between quotation marks. This
is essencial otherwise we would have an error! Why?
Because without quotation marks R interprets worten as a
variable name and tries to use its value. As it does not exists it
complains,
prices[worten]

## Error: object ’worten’ not found

Read and interpret error messages is one of the key competences
we should practice.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 22 / 94



Indexing Basic indexing

Basic Indexing (2)

We may also use the vector position names to facilitate indexing
prices <- c(worten=32.4,fnac=35.4,

mediaMkt=30.2,radioPop=35,pixmania=31.99)
prices["worten"]

## worten
## 32.4

Please note that worten appears between quotation marks. This
is essencial otherwise we would have an error! Why?
Because without quotation marks R interprets worten as a
variable name and tries to use its value. As it does not exists it
complains,
prices[worten]

## Error: object ’worten’ not found

Read and interpret error messages is one of the key competences
we should practice.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 22 / 94



Indexing Basic indexing

Basic Indexing (2)

We may also use the vector position names to facilitate indexing
prices <- c(worten=32.4,fnac=35.4,

mediaMkt=30.2,radioPop=35,pixmania=31.99)
prices["worten"]

## worten
## 32.4

Please note that worten appears between quotation marks. This
is essencial otherwise we would have an error! Why?
Because without quotation marks R interprets worten as a
variable name and tries to use its value. As it does not exists it
complains,
prices[worten]

## Error: object ’worten’ not found

Read and interpret error messages is one of the key competences
we should practice.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 22 / 94



Indexing Basic indexing

Basic Indexing (2)

We may also use the vector position names to facilitate indexing
prices <- c(worten=32.4,fnac=35.4,

mediaMkt=30.2,radioPop=35,pixmania=31.99)
prices["worten"]

## worten
## 32.4

Please note that worten appears between quotation marks. This
is essencial otherwise we would have an error! Why?
Because without quotation marks R interprets worten as a
variable name and tries to use its value. As it does not exists it
complains,
prices[worten]

## Error: object ’worten’ not found

Read and interpret error messages is one of the key competences
we should practice.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 22 / 94



Indexing Vectors of indices

Vectors of indices

Using vectors as indices we may access more than one vector
position at the same time

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[c(2,4)]

## fnac radioPop
## 35.4 35.0

We are thus accessing positions 2 and 4 of vector prices
The same applies for vectors of names

prices[c("worten", "pixmania")]

## worten pixmania
## 32.40 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 23 / 94



Indexing Vectors of indices

Vectors of indices

Using vectors as indices we may access more than one vector
position at the same time

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[c(2,4)]

## fnac radioPop
## 35.4 35.0

We are thus accessing positions 2 and 4 of vector prices
The same applies for vectors of names

prices[c("worten", "pixmania")]

## worten pixmania
## 32.40 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 23 / 94



Indexing Vectors of indices

Vectors of indices

Using vectors as indices we may access more than one vector
position at the same time

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[c(2,4)]

## fnac radioPop
## 35.4 35.0

We are thus accessing positions 2 and 4 of vector prices
The same applies for vectors of names

prices[c("worten", "pixmania")]

## worten pixmania
## 32.40 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 23 / 94



Indexing Vectors of indices

Vectors of indices (2)

We may also use logical conditions to “query” the data!

prices[prices > 35]

## fnac
## 35.4

The idea is that the result of the query are the values in the vector
prices for which the logical condition is true
Logical conditions can be as complex as we want using several
logical operators available in R.
What do you think the following instruction produces as result?

prices[prices > mean(prices)]

## fnac radioPop
## 35.4 35.0

Please note that this another example of function composition!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 24 / 94



Indexing Vectors of indices

Vectors of indices (2)

We may also use logical conditions to “query” the data!

prices[prices > 35]

## fnac
## 35.4

The idea is that the result of the query are the values in the vector
prices for which the logical condition is true
Logical conditions can be as complex as we want using several
logical operators available in R.
What do you think the following instruction produces as result?

prices[prices > mean(prices)]

## fnac radioPop
## 35.4 35.0

Please note that this another example of function composition!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 24 / 94



Indexing Vectors of indices

Vectors of indices (2)

We may also use logical conditions to “query” the data!

prices[prices > 35]

## fnac
## 35.4

The idea is that the result of the query are the values in the vector
prices for which the logical condition is true
Logical conditions can be as complex as we want using several
logical operators available in R.
What do you think the following instruction produces as result?

prices[prices > mean(prices)]

## fnac radioPop
## 35.4 35.0

Please note that this another example of function composition!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 24 / 94



Indexing Vectors of indices

Vectors of indices (2)

We may also use logical conditions to “query” the data!

prices[prices > 35]

## fnac
## 35.4

The idea is that the result of the query are the values in the vector
prices for which the logical condition is true
Logical conditions can be as complex as we want using several
logical operators available in R.
What do you think the following instruction produces as result?

prices[prices > mean(prices)]

## fnac radioPop
## 35.4 35.0

Please note that this another example of function composition!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 24 / 94



Vetorization

Vectorization of operations

The great majority of R functions and operations can be applied to
sets of values (e.g vectors)
Suppose we want to know the prices after VAT in our vector
prices

vat <- 0.23
(1 + vat) * prices

## worten fnac mediaMkt radioPop pixmania
## 39.85 43.54 37.15 43.05 39.35

Notice that we have multiplied a number (1.2) by a set of numbers!
The result is another set of numbers that are the result of the
multiplication of each number by 1.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 25 / 94



Vetorization

Vectorization of operations

The great majority of R functions and operations can be applied to
sets of values (e.g vectors)
Suppose we want to know the prices after VAT in our vector
prices

vat <- 0.23
(1 + vat) * prices

## worten fnac mediaMkt radioPop pixmania
## 39.85 43.54 37.15 43.05 39.35

Notice that we have multiplied a number (1.2) by a set of numbers!
The result is another set of numbers that are the result of the
multiplication of each number by 1.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 25 / 94



Vetorization

Vectorization of operations

The great majority of R functions and operations can be applied to
sets of values (e.g vectors)
Suppose we want to know the prices after VAT in our vector
prices

vat <- 0.23
(1 + vat) * prices

## worten fnac mediaMkt radioPop pixmania
## 39.85 43.54 37.15 43.05 39.35

Notice that we have multiplied a number (1.2) by a set of numbers!
The result is another set of numbers that are the result of the
multiplication of each number by 1.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 25 / 94



Vetorization

Vectorization of operations (2)

Although it does not make a lot of sense, notice this other example
of vectorization,

sqrt(prices)

## worten fnac mediaMkt radioPop pixmania
## 5.692 5.950 5.495 5.916 5.656

By applying the function sqrt() to a vector instead of a single
number we get as result a vector with the same size, resulting
from applying the function to each individual member of the given
vector.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 26 / 94



Vetorization

Vectorization of operations (3)

We can do similar things with two sets of numbers
Suppose you have the prices of the product on the same stores in
another city,

prices2 <- c(worten=32.5,fnac=34.6,
mediaMkt=32,radioPop=34.4,pixmania=32.1)

prices2

## worten fnac mediaMkt radioPop pixmania
## 32.5 34.6 32.0 34.4 32.1

What are the average prices on each store over the two cities?

(prices + prices2)/2

## worten fnac mediaMkt radioPop pixmania
## 32.45 35.00 31.10 34.70 32.05

Notice how we have summed two vectors!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 27 / 94



Vetorization

Vectorization of operations (3)

We can do similar things with two sets of numbers
Suppose you have the prices of the product on the same stores in
another city,

prices2 <- c(worten=32.5,fnac=34.6,
mediaMkt=32,radioPop=34.4,pixmania=32.1)

prices2

## worten fnac mediaMkt radioPop pixmania
## 32.5 34.6 32.0 34.4 32.1

What are the average prices on each store over the two cities?

(prices + prices2)/2

## worten fnac mediaMkt radioPop pixmania
## 32.45 35.00 31.10 34.70 32.05

Notice how we have summed two vectors!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 27 / 94



Vetorization

Vectorization of operations (3)

We can do similar things with two sets of numbers
Suppose you have the prices of the product on the same stores in
another city,

prices2 <- c(worten=32.5,fnac=34.6,
mediaMkt=32,radioPop=34.4,pixmania=32.1)

prices2

## worten fnac mediaMkt radioPop pixmania
## 32.5 34.6 32.0 34.4 32.1

What are the average prices on each store over the two cities?

(prices + prices2)/2

## worten fnac mediaMkt radioPop pixmania
## 32.45 35.00 31.10 34.70 32.05

Notice how we have summed two vectors!
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 27 / 94



Vetorization

Logical conditions involving vectors

Logical conditions involving vectors are another example of
vectorization
prices > 35

## worten fnac mediaMkt radioPop pixmania
## FALSE TRUE FALSE FALSE FALSE

prices is a set of 5 numbers. We are comparing these 5
numbers with one number (35). As before the result is a vector
with the results of each comparison. Sometimes the condition is
true, others it is false.
Now we can fully understand what is going on on a statement like
prices[prices > 35]. The result of this indexing expression
is to return the positions where the condition is true, i.e. this is a
vector of Boolean values as you may confirm above.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 28 / 94



Vetorization

Logical conditions involving vectors

Logical conditions involving vectors are another example of
vectorization
prices > 35

## worten fnac mediaMkt radioPop pixmania
## FALSE TRUE FALSE FALSE FALSE

prices is a set of 5 numbers. We are comparing these 5
numbers with one number (35). As before the result is a vector
with the results of each comparison. Sometimes the condition is
true, others it is false.
Now we can fully understand what is going on on a statement like
prices[prices > 35]. The result of this indexing expression
is to return the positions where the condition is true, i.e. this is a
vector of Boolean values as you may confirm above.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 28 / 94



Vetorization

Logical conditions involving vectors

Logical conditions involving vectors are another example of
vectorization
prices > 35

## worten fnac mediaMkt radioPop pixmania
## FALSE TRUE FALSE FALSE FALSE

prices is a set of 5 numbers. We are comparing these 5
numbers with one number (35). As before the result is a vector
with the results of each comparison. Sometimes the condition is
true, others it is false.
Now we can fully understand what is going on on a statement like
prices[prices > 35]. The result of this indexing expression
is to return the positions where the condition is true, i.e. this is a
vector of Boolean values as you may confirm above.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 28 / 94



Vetorization

Hands On 1

A survey was carried out on several countries to find out the average
price of a certain product, with the following resulting data:

Portugal Spain Italy France Germany Greece UK Finland Belgium Austria
10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

1 What is the adequate data structure to store these values?
2 Create a variable with this data, taking full advantage of R facilities

in order to facilitate the access to the information. solution

3 Obtain another vector with the prices after VAT. solution

4 Which countries have prices above 10?
5 Which countries have prices above the average? solution

6 Which countries have prices between 10 and 11 euros?
7 How would you raise the prices by 10%? solution

8 How would you decrease by 2.5%, the prices of the countries with
price above the average? solution

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 29 / 94



Vetorization

Solutions to Exercises 1 and 2

Portugal Spain Italy France Germany Greece UK Finland Belgium Austria
10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

What is the adequate data structure to store these values?
Answer : A vector
Create a variable with this data, taking full advantage of R facilities
in order to facilitate the access to the information.
prices <- c(pt=10.3,es=10.6,it=11.5,fr=12.3,de=9.9,

gr=9.3,uk=11.4,fi=10.9,be=12.1,au=9.1)
prices

## pt es it fr de gr uk fi be au
## 10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 30 / 94



Vetorization

Solutions to Exercise 3

prices

## pt es it fr de gr uk fi be au
## 10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

Obtain another vector with the prices after VAT.

prices*1.23

## pt es it fr de gr uk fi be au
## 12.67 13.04 14.14 15.13 12.18 11.44 14.02 13.41 14.88 11.19

or if we wish to store the result,
pricesVAT <- prices*1.23
pricesVAT

## pt es it fr de gr uk fi be au
## 12.67 13.04 14.14 15.13 12.18 11.44 14.02 13.41 14.88 11.19

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 31 / 94



Vetorization

Solutions to Exercises 4 and 5

prices

## pt es it fr de gr uk fi be au
## 10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

Which countries have prices above 10?
prices[prices > 10]

## pt es it fr uk fi be
## 10.3 10.6 11.5 12.3 11.4 10.9 12.1

Which countries have prices above the average?
prices[prices > mean(prices)]

## it fr uk fi be
## 11.5 12.3 11.4 10.9 12.1

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 32 / 94



Vetorization

Solutions to Exercises 6 and 7

prices

## pt es it fr de gr uk fi be au
## 10.3 10.6 11.5 12.3 9.9 9.3 11.4 10.9 12.1 9.1

Which countries have prices between 10 and 11 euros?
prices[prices > 10 & prices < 11]

## pt es fi
## 10.3 10.6 10.9

How would you raise the prices by 10%?
prices <- prices*1.1
prices

## pt es it fr de gr uk fi be au
## 11.33 11.66 12.65 13.53 10.89 10.23 12.54 11.99 13.31 10.01

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 33 / 94



Vetorization

Solutions to Exercise 8

prices

## pt es it fr de gr uk fi be au
## 11.33 11.66 12.65 13.53 10.89 10.23 12.54 11.99 13.31 10.01

How would you decrease by 2.5%, the prices of the countries with
price above the average?

prices[prices > mean(prices)] <- prices[prices > mean(prices)]*0.975
prices

## pt es it fr de gr uk fi be au
## 11.33 11.66 12.33 13.19 10.89 10.23 12.23 11.69 12.98 10.01

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 34 / 94



Vetorization

Hands On 2

Go to the site http://www.xe.com and create a vector with the
information you obtain there concerning the exchange rate between
some currencies. You may use the ones appearing at the opening
page.

1 Create a function with 2 arguments: the first is a value in Euros
and the second the name of other currency. The function should
return the corresponding value in the specified currency. Solution

2 What happens if we make a mistake when specifying the currency
name? Try. Solution

3 Try to apply the function to a vector of values provided in the first
argument. Solution

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 35 / 94

http://www.xe.com


Vetorization

Solution to exercise 1

exchg <- c(usd=1.35402, gbp=0.82477, aud=1.54171,
cad=1.48437,nzd=1.63934, jpy=141.155)

exchg

## usd gbp aud cad nzd jpy
## 1.3540 0.8248 1.5417 1.4844 1.6393 141.1550

Create a function with 2 arguments: the first is a value in Euros
and the second the name of other currency. The function should
return the corresponding value in the specified currency.

conv <- function(eur,curr) eur*exchg[curr] # depends on "exchg"
conv(234,"jpy")

## jpy
## 33030

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 36 / 94



Vetorization

Solution to exercise 1 (cont.)

exchg <- c(usd=1.35402, gbp=0.82477, aud=1.54171,
cad=1.48437,nzd=1.63934, jpy=141.155)

exchg

## usd gbp aud cad nzd jpy
## 1.3540 0.8248 1.5417 1.4844 1.6393 141.1550

Create a function with 2 arguments: the first is a value in Euros
and the second the name of other currency. The function should
return the corresponding value in the specified currency.

conv2 <- function(eur,curr,camb) eur*camb[curr]
conv2(234,"jpy",exchg)

## jpy
## 33030

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 37 / 94



Vetorization

Solution to exercise 2

exchg

## usd gbp aud cad nzd jpy
## 1.3540 0.8248 1.5417 1.4844 1.6393 141.1550

What happens if we make a mistake when specifying the currency
name? Try.

conv(2356,"ukd")

## <NA>
## NA

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 38 / 94



Vetorization

Solution to exercise 3

exchg

## usd gbp aud cad nzd jpy
## 1.3540 0.8248 1.5417 1.4844 1.6393 141.1550

Try to apply the function to a vector of values provided in the first
argument.

conv(c(235,46576,675,453,234),"usd")

## [1] 318.2 63064.8 914.0 613.4 316.8

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 39 / 94



Matrices Basics

Matrices

As vectors, matrices can be used to store sets of values of the
same base type that are somehow related
Contrary to vectors, matrices “spread” the values over two
dimensions: rows and collumns
Let us go back to the prices at the stores in two cities. It would
make more sense to store them in a matrix, instead of two vectors
Columns could correspond to stores and rows to cities

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 40 / 94



Matrices Basics

Matrices

As vectors, matrices can be used to store sets of values of the
same base type that are somehow related
Contrary to vectors, matrices “spread” the values over two
dimensions: rows and collumns
Let us go back to the prices at the stores in two cities. It would
make more sense to store them in a matrix, instead of two vectors
Columns could correspond to stores and rows to cities

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 40 / 94



Matrices Basics

Matrices

As vectors, matrices can be used to store sets of values of the
same base type that are somehow related
Contrary to vectors, matrices “spread” the values over two
dimensions: rows and collumns
Let us go back to the prices at the stores in two cities. It would
make more sense to store them in a matrix, instead of two vectors
Columns could correspond to stores and rows to cities

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 40 / 94



Matrices Basics

Matrices (2)

Let us see how to create this matrix

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),

nrow=2,ncol=5,byrow=TRUE)
prc

## [,1] [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

The function matrix() can be used to create matrices
We have at least to provide the values and the number of columns
and rows

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 41 / 94



Matrices Basics

Matrices (2)

Let us see how to create this matrix

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),

nrow=2,ncol=5,byrow=TRUE)
prc

## [,1] [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

The function matrix() can be used to create matrices
We have at least to provide the values and the number of columns
and rows

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 41 / 94



Matrices Basics

Matrices (3)

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),

nrow=2,ncol=5,byrow=TRUE)
prc

## [,1] [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

The parameter nrow indicates which is the number of rows while
the parameter ncol provides the number of columns
The parameter setting byrow=TRUE indicates that the values
should be “spread” by row, instead of the default which is by
column

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 42 / 94



Matrices Basics

Matrices (3)

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),

nrow=2,ncol=5,byrow=TRUE)
prc

## [,1] [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

The parameter nrow indicates which is the number of rows while
the parameter ncol provides the number of columns
The parameter setting byrow=TRUE indicates that the values
should be “spread” by row, instead of the default which is by
column

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 42 / 94



Matrices Matrix indexing

Indexing matrices

As with vectors but this time with two dimensions
prc

## [,1] [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

prc[2, 4]

## [1] 34.4

We may also access a single column or row,

prc[1, ]

## [1] 32.40 35.40 30.20 35.00 31.99

prc[, 2]

## [1] 35.4 34.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 43 / 94



Matrices Matrix indexing

Indexing matrices

As with vectors but this time with two dimensions
prc

## [,1] [,2] [,3] [,4] [,5]
## [1,] 32.4 35.4 30.2 35.0 31.99
## [2,] 32.5 34.6 32.0 34.4 32.01

prc[2, 4]

## [1] 34.4

We may also access a single column or row,

prc[1, ]

## [1] 32.40 35.40 30.20 35.00 31.99

prc[, 2]

## [1] 35.4 34.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 43 / 94



Matrices Matrix indexing

Giving names to Rows and Columns

We may also give names to the two dimensions of matrices
colnames(prc) <- c("worten","fnac","mediaMkt","radioPop","pixmania")
rownames(prc) <- c("porto","lisboa")
prc

## worten fnac mediaMkt radioPop pixmania
## porto 32.4 35.4 30.2 35.0 31.99
## lisboa 32.5 34.6 32.0 34.4 32.01

The functions colnames() and rownames() may be used to get
or set the names of the respective dimensions of the matrix
Names can also be used in indexing
prc["lisboa", ]

## worten fnac mediaMkt radioPop pixmania
## 32.50 34.60 32.00 34.40 32.01

prc["porto", "pixmania"]

## [1] 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 44 / 94



Matrices Matrix indexing

Giving names to Rows and Columns

We may also give names to the two dimensions of matrices
colnames(prc) <- c("worten","fnac","mediaMkt","radioPop","pixmania")
rownames(prc) <- c("porto","lisboa")
prc

## worten fnac mediaMkt radioPop pixmania
## porto 32.4 35.4 30.2 35.0 31.99
## lisboa 32.5 34.6 32.0 34.4 32.01

The functions colnames() and rownames() may be used to get
or set the names of the respective dimensions of the matrix
Names can also be used in indexing
prc["lisboa", ]

## worten fnac mediaMkt radioPop pixmania
## 32.50 34.60 32.00 34.40 32.01

prc["porto", "pixmania"]

## [1] 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 44 / 94



Matrices Matrix indexing

Giving names to Rows and Columns

We may also give names to the two dimensions of matrices
colnames(prc) <- c("worten","fnac","mediaMkt","radioPop","pixmania")
rownames(prc) <- c("porto","lisboa")
prc

## worten fnac mediaMkt radioPop pixmania
## porto 32.4 35.4 30.2 35.0 31.99
## lisboa 32.5 34.6 32.0 34.4 32.01

The functions colnames() and rownames() may be used to get
or set the names of the respective dimensions of the matrix
Names can also be used in indexing
prc["lisboa", ]

## worten fnac mediaMkt radioPop pixmania
## 32.50 34.60 32.00 34.40 32.01

prc["porto", "pixmania"]

## [1] 31.99

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 44 / 94



Arrays

Arrays

Arrays are extensions of matrices to more than 2 dimensions
We can create an array with the function array()
a <- array(1:18, dim = c(3, 2, 3))
a

## , , 1
##
## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
##
## , , 2
##
## [,1] [,2]
## [1,] 7 10
## [2,] 8 11
## [3,] 9 12
##
## , , 3
##
## [,1] [,2]
## [1,] 13 16
## [2,] 14 17
## [3,] 15 18

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 45 / 94



Arrays

Arrays

Arrays are extensions of matrices to more than 2 dimensions
We can create an array with the function array()
a <- array(1:18, dim = c(3, 2, 3))
a

## , , 1
##
## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
##
## , , 2
##
## [,1] [,2]
## [1,] 7 10
## [2,] 8 11
## [3,] 9 12
##
## , , 3
##
## [,1] [,2]
## [1,] 13 16
## [2,] 14 17
## [3,] 15 18

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 45 / 94



Arrays

Indexing Arrays

Similar to matrices and vectors but now with multiple dimensions

a[1, 2, 1]

## [1] 4

a[1, , 2]

## [1] 7 10

a[, , 1]

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 46 / 94



Lists

Lists

Lists are ordered collections of other objects, known as the
components
List components do not have to be of the same type or size, which
turn lists into a highly flexible data structure.
List can be created as follows:
lst <- list(id=12323,name="John Smith",

grades=c(13.2,12.4,5.6))
lst

## $id
## [1] 12323
##
## $name
## [1] "John Smith"
##
## $grades
## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 47 / 94



Lists

Lists

Lists are ordered collections of other objects, known as the
components
List components do not have to be of the same type or size, which
turn lists into a highly flexible data structure.
List can be created as follows:
lst <- list(id=12323,name="John Smith",

grades=c(13.2,12.4,5.6))
lst

## $id
## [1] 12323
##
## $name
## [1] "John Smith"
##
## $grades
## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 47 / 94



Lists

Lists

Lists are ordered collections of other objects, known as the
components
List components do not have to be of the same type or size, which
turn lists into a highly flexible data structure.
List can be created as follows:
lst <- list(id=12323,name="John Smith",

grades=c(13.2,12.4,5.6))
lst

## $id
## [1] 12323
##
## $name
## [1] "John Smith"
##
## $grades
## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 47 / 94



Lists

Indexing Lists

To access the content of a component of a list we may use its
name,

lst$grades

## [1] 13.2 12.4 5.6

We may access several components at the same time, resulting in
a sub-list

lst[c("name", "grades")]

## $name
## [1] "John Smith"
##
## $grades
## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 48 / 94



Lists

Indexing Lists

To access the content of a component of a list we may use its
name,

lst$grades

## [1] 13.2 12.4 5.6

We may access several components at the same time, resulting in
a sub-list

lst[c("name", "grades")]

## $name
## [1] "John Smith"
##
## $grades
## [1] 13.2 12.4 5.6

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 48 / 94



Lists

Indexing Lists (2)

We may also access the content of the components through their
position, similarly to vector,

lst[[2]]

## [1] "John Smith"

Please note the double square brakets! Single square brakets
have different meaning in the context of lists,

lst[2]

## $name
## [1] "John Smith"

As you see the result is a list (i.e. a sub-list of lst), while with
double brakets the result is the actual content of the component,
whilst with double square brackets we got the content of the
component (in this case a string)

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 49 / 94



Lists

Indexing Lists (2)

We may also access the content of the components through their
position, similarly to vector,

lst[[2]]

## [1] "John Smith"

Please note the double square brakets! Single square brakets
have different meaning in the context of lists,

lst[2]

## $name
## [1] "John Smith"

As you see the result is a list (i.e. a sub-list of lst), while with
double brakets the result is the actual content of the component,
whilst with double square brackets we got the content of the
component (in this case a string)

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 49 / 94



Lists

Indexing Lists (2)

We may also access the content of the components through their
position, similarly to vector,

lst[[2]]

## [1] "John Smith"

Please note the double square brakets! Single square brakets
have different meaning in the context of lists,

lst[2]

## $name
## [1] "John Smith"

As you see the result is a list (i.e. a sub-list of lst), while with
double brakets the result is the actual content of the component,
whilst with double square brackets we got the content of the
component (in this case a string)

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 49 / 94



Data Frames

Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures
In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)
Each column represents some information that is provided about
the entities (e.g. name, address, etc.)
Contrary to matrices, data frames may store information of
different data type

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 50 / 94



Data Frames

Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures
In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)
Each column represents some information that is provided about
the entities (e.g. name, address, etc.)
Contrary to matrices, data frames may store information of
different data type

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 50 / 94



Data Frames

Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures
In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)
Each column represents some information that is provided about
the entities (e.g. name, address, etc.)
Contrary to matrices, data frames may store information of
different data type

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 50 / 94



Data Frames

Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures
In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)
Each column represents some information that is provided about
the entities (e.g. name, address, etc.)
Contrary to matrices, data frames may store information of
different data type

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 50 / 94



Data Frames

Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures
In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)
Each column represents some information that is provided about
the entities (e.g. name, address, etc.)
Contrary to matrices, data frames may store information of
different data type

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 50 / 94



Data Frames Creating data frames

Create Data Frames

Usually data sets are already stored in some infrastructure
external to R (e.g. other software, a data base, a text file, the Web,
etc.)
Nevertheless, sometimes we may want to introduce the data
ourselves
We can do it in R as follows
stud <- data.frame(nrs=c("43534543","32456534"),

names=c("Ana","John"),
grades=c(13.4,7.2))

stud

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 51 / 94



Data Frames Creating data frames

Create Data Frames

Usually data sets are already stored in some infrastructure
external to R (e.g. other software, a data base, a text file, the Web,
etc.)
Nevertheless, sometimes we may want to introduce the data
ourselves
We can do it in R as follows
stud <- data.frame(nrs=c("43534543","32456534"),

names=c("Ana","John"),
grades=c(13.4,7.2))

stud

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 51 / 94



Data Frames Creating data frames

Create Data Frames

Usually data sets are already stored in some infrastructure
external to R (e.g. other software, a data base, a text file, the Web,
etc.)
Nevertheless, sometimes we may want to introduce the data
ourselves
We can do it in R as follows
stud <- data.frame(nrs=c("43534543","32456534"),

names=c("Ana","John"),
grades=c(13.4,7.2))

stud

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 51 / 94



Data Frames Creating data frames

Create Data Frames (2)

If we have too many data to
introduce it is more practical to
add new information using a
spreadsheet like editor,

stud <- edit(stud)

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 52 / 94



Data Frames Indexing data frames

Querying the data

Data frames are visualized as a data table

stud

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

Data can be accessed in a similar way as in matrices

stud[2,3]

## [1] 7.2

stud[1,"names"]

## [1] Ana
## Levels: Ana John

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 53 / 94



Data Frames Indexing data frames

Querying the data

Data frames are visualized as a data table

stud

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

Data can be accessed in a similar way as in matrices

stud[2,3]

## [1] 7.2

stud[1,"names"]

## [1] Ana
## Levels: Ana John

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 53 / 94



Data Frames Indexing data frames

Querying the data (cont.)

You can check sets of rows

stud[1:2,]

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

Or columns

stud[,c("names","grades")]

## names grades
## 1 Ana 13.4
## 2 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 54 / 94



Data Frames Indexing data frames

Querying the data (cont.)

You can check sets of rows

stud[1:2,]

## nrs names grades
## 1 43534543 Ana 13.4
## 2 32456534 John 7.2

Or columns

stud[,c("names","grades")]

## names grades
## 1 Ana 13.4
## 2 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 54 / 94



Data Frames Indexing data frames

Querying the data (cont.)

You may also include logical tests on the row selection

stud[stud$grades > 13,"names"]

## [1] Ana
## Levels: Ana John

Or

stud[stud$grades <= 9.5, c("names","grades")]

## names grades
## 2 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 55 / 94



Data Frames Indexing data frames

Querying the data (cont.)

You may also include logical tests on the row selection

stud[stud$grades > 13,"names"]

## [1] Ana
## Levels: Ana John

Or

stud[stud$grades <= 9.5, c("names","grades")]

## names grades
## 2 John 7.2

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 55 / 94



Data Frames Indexing data frames

Querying the data (cont.)

Function subset() can be used to easily query the data set

subset(stud,grades > 13,names)

## names
## 1 Ana

subset(stud,grades <= 9.5,c(nrs,names))

## nrs names
## 2 32456534 John

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 56 / 94



Data Frames Indexing data frames

Hands On Data Frames - Boston Housing

Load in the data set named “Boston” that comes with the package
MASS. This data set describes the median house price in 506 different
regions of Boston. You may load the data doing:
data(Boston,package=’MASS’). This should create a data frame
named Boston. You may know more about this data set doing
help(Boston,package=’MASS’). With respect to this data answer
the following questions:

1 What are the data on the regions with an median price higher than
45? solução

2 What are the values of nox and tax for the regions with an
average number of rooms (rm) above 8? solução

3 Which regions have an average median price between 10 and 15?
solução

4 What is the average criminality rate (crim) for the regions with a
number of rooms above 6? solução

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 57 / 94



Data Frames Indexing data frames

Solution to Exercise 1

What are the data on the regions with an median price higher than
45?

data(Boston,package="MASS")
subset(Boston,medv > 45)

## crim zn indus chas nox rm age dis rad tax ptratio black
## 162 1.46336 0 19.58 0 0.6050 7.489 90.8 1.971 5 403 14.7 374.4
## 163 1.83377 0 19.58 1 0.6050 7.802 98.2 2.041 5 403 14.7 389.6
## 164 1.51902 0 19.58 1 0.6050 8.375 93.9 2.162 5 403 14.7 388.4
## 167 2.01019 0 19.58 0 0.6050 7.929 96.2 2.046 5 403 14.7 369.3
## 187 0.05602 0 2.46 0 0.4880 7.831 53.6 3.199 3 193 17.8 392.6
## 196 0.01381 80 0.46 0 0.4220 7.875 32.0 5.648 4 255 14.4 394.2
## 204 0.03510 95 2.68 0 0.4161 7.853 33.2 5.118 4 224 14.7 392.8
## 205 0.02009 95 2.68 0 0.4161 8.034 31.9 5.118 4 224 14.7 390.6
## 226 0.52693 0 6.20 0 0.5040 8.725 83.0 2.894 8 307 17.4 382.0
## 229 0.29819 0 6.20 0 0.5040 7.686 17.0 3.375 8 307 17.4 377.5
## 234 0.33147 0 6.20 0 0.5070 8.247 70.4 3.652 8 307 17.4 378.9
## 258 0.61154 20 3.97 0 0.6470 8.704 86.9 1.801 5 264 13.0 389.7
## 263 0.52014 20 3.97 0 0.6470 8.398 91.5 2.288 5 264 13.0 386.9
## 268 0.57834 20 3.97 0 0.5750 8.297 67.0 2.422 5 264 13.0 384.5
## 281 0.03578 20 3.33 0 0.4429 7.820 64.5 4.695 5 216 14.9 387.3
## 283 0.06129 20 3.33 1 0.4429 7.645 49.7 5.212 5 216 14.9 377.1
## 284 0.01501 90 1.21 1 0.4010 7.923 24.8 5.885 1 198 13.6 395.5
## 369 4.89822 0 18.10 0 0.6310 4.970 100.0 1.333 24 666 20.2 375.5
## 370 5.66998 0 18.10 1 0.6310 6.683 96.8 1.357 24 666 20.2 375.3
## 371 6.53876 0 18.10 1 0.6310 7.016 97.5 1.202 24 666 20.2 392.1
## 372 9.23230 0 18.10 0 0.6310 6.216 100.0 1.169 24 666 20.2 366.1
## 373 8.26725 0 18.10 1 0.6680 5.875 89.6 1.130 24 666 20.2 347.9
## lstat medv
## 162 1.73 50.0
## 163 1.92 50.0
## 164 3.32 50.0
## 167 3.70 50.0
## 187 4.45 50.0
## 196 2.97 50.0
## 204 3.81 48.5
## 205 2.88 50.0
## 226 4.63 50.0
## 229 3.92 46.7
## 234 3.95 48.3
## 258 5.12 50.0
## 263 5.91 48.8
## 268 7.44 50.0
## 281 3.76 45.4
## 283 3.01 46.0
## 284 3.16 50.0
## 369 3.26 50.0
## 370 3.73 50.0
## 371 2.96 50.0
## 372 9.53 50.0
## 373 8.88 50.0

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 58 / 94



Data Frames Indexing data frames

Solution to Exercise 2

What are the values of nox and tax for the regions with an
average number of rooms (rm) above 8?

subset(Boston,rm > 8,c(nox,tax))

## nox tax
## 98 0.4450 276
## 164 0.6050 403
## 205 0.4161 224
## 225 0.5040 307
## 226 0.5040 307
## 227 0.5040 307
## 233 0.5070 307
## 234 0.5070 307
## 254 0.4310 330
## 258 0.6470 264
## 263 0.6470 264
## 268 0.5750 264
## 365 0.7180 666

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 59 / 94



Data Frames Indexing data frames

Solution to Exercise 3

Which regions have an average median price between 10 and 15?

subset(Boston, medv > 10 & medv < 15)

## crim zn indus chas nox rm age dis rad tax ptratio black
## 21 1.25179 0 8.14 0 0.538 5.570 98.1 3.798 4 307 21.0 376.57
## 24 0.98843 0 8.14 0 0.538 5.813 100.0 4.095 4 307 21.0 394.54
## 26 0.84054 0 8.14 0 0.538 5.599 85.7 4.455 4 307 21.0 303.42
## 28 0.95577 0 8.14 0 0.538 6.047 88.8 4.453 4 307 21.0 306.38
## 31 1.13081 0 8.14 0 0.538 5.713 94.1 4.233 4 307 21.0 360.17
## 32 1.35472 0 8.14 0 0.538 6.072 100.0 4.175 4 307 21.0 376.73
## 33 1.38799 0 8.14 0 0.538 5.950 82.0 3.990 4 307 21.0 232.60
## 34 1.15172 0 8.14 0 0.538 5.701 95.0 3.787 4 307 21.0 358.77
## 35 1.61282 0 8.14 0 0.538 6.096 96.9 3.760 4 307 21.0 248.31
## 49 0.25387 0 6.91 0 0.448 5.399 95.3 5.870 3 233 17.9 396.90
## 130 0.88125 0 21.89 0 0.624 5.637 94.7 1.980 4 437 21.2 396.90
## 139 0.24980 0 21.89 0 0.624 5.857 98.2 1.669 4 437 21.2 392.04
## 141 0.29090 0 21.89 0 0.624 6.174 93.6 1.612 4 437 21.2 388.08
## 142 1.62864 0 21.89 0 0.624 5.019 100.0 1.439 4 437 21.2 396.90
## 143 3.32105 0 19.58 1 0.871 5.403 100.0 1.322 5 403 14.7 396.90
## 145 2.77974 0 19.58 0 0.871 4.903 97.8 1.346 5 403 14.7 396.90
## 146 2.37934 0 19.58 0 0.871 6.130 100.0 1.419 5 403 14.7 172.91
## 148 2.36862 0 19.58 0 0.871 4.926 95.7 1.461 5 403 14.7 391.71
## 157 2.44668 0 19.58 0 0.871 5.272 94.0 1.736 5 403 14.7 88.63
## 374 11.10810 0 18.10 0 0.668 4.906 100.0 1.174 24 666 20.2 396.90
## 375 18.49820 0 18.10 0 0.668 4.138 100.0 1.137 24 666 20.2 396.90
## 377 15.28800 0 18.10 0 0.671 6.649 93.3 1.345 24 666 20.2 363.02
## 378 9.82349 0 18.10 0 0.671 6.794 98.8 1.358 24 666 20.2 396.90
## 379 23.64820 0 18.10 0 0.671 6.380 96.2 1.386 24 666 20.2 396.90
## 380 17.86670 0 18.10 0 0.671 6.223 100.0 1.386 24 666 20.2 393.74
## 381 88.97620 0 18.10 0 0.671 6.968 91.9 1.417 24 666 20.2 396.90
## 382 15.87440 0 18.10 0 0.671 6.545 99.1 1.519 24 666 20.2 396.90
## 383 9.18702 0 18.10 0 0.700 5.536 100.0 1.580 24 666 20.2 396.90
## 384 7.99248 0 18.10 0 0.700 5.520 100.0 1.533 24 666 20.2 396.90
## 387 24.39380 0 18.10 0 0.700 4.652 100.0 1.467 24 666 20.2 396.90
## 389 14.33370 0 18.10 0 0.700 4.880 100.0 1.589 24 666 20.2 372.92
## 390 8.15174 0 18.10 0 0.700 5.390 98.9 1.728 24 666 20.2 396.90
## 394 8.64476 0 18.10 0 0.693 6.193 92.6 1.791 24 666 20.2 396.90
## 395 13.35980 0 18.10 0 0.693 5.887 94.7 1.782 24 666 20.2 396.90
## 396 8.71675 0 18.10 0 0.693 6.471 98.8 1.726 24 666 20.2 391.98
## 397 5.87205 0 18.10 0 0.693 6.405 96.0 1.677 24 666 20.2 396.90
## 403 9.59571 0 18.10 0 0.693 6.404 100.0 1.639 24 666 20.2 376.11
## 407 20.71620 0 18.10 0 0.659 4.138 100.0 1.178 24 666 20.2 370.22
## 418 25.94060 0 18.10 0 0.679 5.304 89.1 1.647 24 666 20.2 127.36
## 422 7.02259 0 18.10 0 0.718 6.006 95.3 1.875 24 666 20.2 319.98
## 424 7.05042 0 18.10 0 0.614 6.103 85.1 2.022 24 666 20.2 2.52
## 425 8.79212 0 18.10 0 0.584 5.565 70.6 2.063 24 666 20.2 3.65
## 427 12.24720 0 18.10 0 0.584 5.837 59.7 1.998 24 666 20.2 24.65
## 428 37.66190 0 18.10 0 0.679 6.202 78.7 1.863 24 666 20.2 18.82
## 429 7.36711 0 18.10 0 0.679 6.193 78.1 1.936 24 666 20.2 96.73
## 431 8.49213 0 18.10 0 0.584 6.348 86.1 2.053 24 666 20.2 83.45
## 432 10.06230 0 18.10 0 0.584 6.833 94.3 2.088 24 666 20.2 81.33
## 434 5.58107 0 18.10 0 0.713 6.436 87.9 2.316 24 666 20.2 100.19
## 435 13.91340 0 18.10 0 0.713 6.208 95.0 2.222 24 666 20.2 100.63
## 436 11.16040 0 18.10 0 0.740 6.629 94.6 2.125 24 666 20.2 109.85
## 440 9.39063 0 18.10 0 0.740 5.627 93.9 1.817 24 666 20.2 396.90
## 441 22.05110 0 18.10 0 0.740 5.818 92.4 1.866 24 666 20.2 391.45
## 445 12.80230 0 18.10 0 0.740 5.854 96.6 1.896 24 666 20.2 240.52
## 446 10.67180 0 18.10 0 0.740 6.459 94.8 1.988 24 666 20.2 43.06
## 447 6.28807 0 18.10 0 0.740 6.341 96.4 2.072 24 666 20.2 318.01
## 448 9.92485 0 18.10 0 0.740 6.251 96.6 2.198 24 666 20.2 388.52
## 449 9.32909 0 18.10 0 0.713 6.185 98.7 2.262 24 666 20.2 396.90
## 450 7.52601 0 18.10 0 0.713 6.417 98.3 2.185 24 666 20.2 304.21
## 451 6.71772 0 18.10 0 0.713 6.749 92.6 2.324 24 666 20.2 0.32
## 455 9.51363 0 18.10 0 0.713 6.728 94.1 2.496 24 666 20.2 6.68
## 456 4.75237 0 18.10 0 0.713 6.525 86.5 2.436 24 666 20.2 50.92
## 457 4.66883 0 18.10 0 0.713 5.976 87.9 2.581 24 666 20.2 10.48
## 458 8.20058 0 18.10 0 0.713 5.936 80.3 2.779 24 666 20.2 3.50
## 459 7.75223 0 18.10 0 0.713 6.301 83.7 2.783 24 666 20.2 272.21
## 475 8.05579 0 18.10 0 0.584 5.427 95.4 2.430 24 666 20.2 352.58
## 476 6.39312 0 18.10 0 0.584 6.162 97.4 2.206 24 666 20.2 302.76
## 478 15.02340 0 18.10 0 0.614 5.304 97.3 2.101 24 666 20.2 349.48
## 479 10.23300 0 18.10 0 0.614 6.185 96.7 2.171 24 666 20.2 379.70
## 492 0.10574 0 27.74 0 0.609 5.983 98.8 1.868 4 711 20.1 390.11
## 506 0.04741 0 11.93 0 0.573 6.030 80.8 2.505 1 273 21.0 396.90
## lstat medv
## 21 21.02 13.6
## 24 19.88 14.5
## 26 16.51 13.9
## 28 17.28 14.8
## 31 22.60 12.7
## 32 13.04 14.5
## 33 27.71 13.2
## 34 18.35 13.1
## 35 20.34 13.5
## 49 30.81 14.4
## 130 18.34 14.3
## 139 21.32 13.3
## 141 24.16 14.0
## 142 34.41 14.4
## 143 26.82 13.4
## 145 29.29 11.8
## 146 27.80 13.8
## 148 29.53 14.6
## 157 16.14 13.1
## 374 34.77 13.8
## 375 37.97 13.8
## 377 23.24 13.9
## 378 21.24 13.3
## 379 23.69 13.1
## 380 21.78 10.2
## 381 17.21 10.4
## 382 21.08 10.9
## 383 23.60 11.3
## 384 24.56 12.3
## 387 28.28 10.5
## 389 30.62 10.2
## 390 20.85 11.5
## 394 15.17 13.8
## 395 16.35 12.7
## 396 17.12 13.1
## 397 19.37 12.5
## 403 20.31 12.1
## 407 23.34 11.9
## 418 26.64 10.4
## 422 15.70 14.2
## 424 23.29 13.4
## 425 17.16 11.7
## 427 15.69 10.2
## 428 14.52 10.9
## 429 21.52 11.0
## 431 17.64 14.5
## 432 19.69 14.1
## 434 16.22 14.3
## 435 15.17 11.7
## 436 23.27 13.4
## 440 22.88 12.8
## 441 22.11 10.5
## 445 23.79 10.8
## 446 23.98 11.8
## 447 17.79 14.9
## 448 16.44 12.6
## 449 18.13 14.1
## 450 19.31 13.0
## 451 17.44 13.4
## 455 18.71 14.9
## 456 18.13 14.1
## 457 19.01 12.7
## 458 16.94 13.5
## 459 16.23 14.9
## 475 18.14 13.8
## 476 24.10 13.3
## 478 24.91 12.0
## 479 18.03 14.6
## 492 18.07 13.6
## 506 7.88 11.9

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 60 / 94



Data Frames Indexing data frames

Solution to Exercise 4

What is the average criminality rate (crim) for the regions with a
number of rooms above 6?

colMeans(subset(Boston, rm > 6, crim))

## crim
## 2.535

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 61 / 94



Time Series

Handling Time Series in R

R includes several data structures that can be used to store time
series
In this illustration we will use the infra-structured provided in
package xts
Note: this is an extra package that must be installed.
The function xts() can be used to create a time series,
library(xts)
sp500 <- xts(c(1102.94,1104.49,1115.71,1118.31),

as.Date(c("2010-02-25","2010-02-26",
"2010-03-01","2010-03-02")))

sp500

## [,1]
## 2010-02-25 1102.94
## 2010-02-26 1104.49
## 2010-03-01 1115.71
## 2010-03-02 1118.31

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 62 / 94



Time Series

Handling Time Series in R

R includes several data structures that can be used to store time
series
In this illustration we will use the infra-structured provided in
package xts
Note: this is an extra package that must be installed.
The function xts() can be used to create a time series,
library(xts)
sp500 <- xts(c(1102.94,1104.49,1115.71,1118.31),

as.Date(c("2010-02-25","2010-02-26",
"2010-03-01","2010-03-02")))

sp500

## [,1]
## 2010-02-25 1102.94
## 2010-02-26 1104.49
## 2010-03-01 1115.71
## 2010-03-02 1118.31

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 62 / 94



Time Series

Handling Time Series in R

R includes several data structures that can be used to store time
series
In this illustration we will use the infra-structured provided in
package xts
Note: this is an extra package that must be installed.
The function xts() can be used to create a time series,
library(xts)
sp500 <- xts(c(1102.94,1104.49,1115.71,1118.31),

as.Date(c("2010-02-25","2010-02-26",
"2010-03-01","2010-03-02")))

sp500

## [,1]
## 2010-02-25 1102.94
## 2010-02-26 1104.49
## 2010-03-01 1115.71
## 2010-03-02 1118.31

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 62 / 94



Time Series

Creating time series

The function xts has 2 arguments: the time series values and the
temporal tags of these values
The second argument must contain dates
The function as.Date() can be used to convert strings into dates
If we supply a matrix on the first argument we will get a
multivariate time series, with each column representing one of the
variables

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 63 / 94



Time Series

Creating time series

The function xts has 2 arguments: the time series values and the
temporal tags of these values
The second argument must contain dates
The function as.Date() can be used to convert strings into dates
If we supply a matrix on the first argument we will get a
multivariate time series, with each column representing one of the
variables

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 63 / 94



Time Series

Creating time series

The function xts has 2 arguments: the time series values and the
temporal tags of these values
The second argument must contain dates
The function as.Date() can be used to convert strings into dates
If we supply a matrix on the first argument we will get a
multivariate time series, with each column representing one of the
variables

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 63 / 94



Time Series Indexing time series

Indexing Time Series

We may index the objects created by the function xts() as
follows,

sp500[3]

## [,1]
## 2010-03-01 1115.71

However, it is far more interesting to make “temporal queries”,

sp500["2010-03-02"]

## [,1]
## 2010-03-02 1118.31

sp500["2010-03"]

## [,1]
## 2010-03-01 1115.71
## 2010-03-02 1118.31

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 64 / 94



Time Series Indexing time series

Indexing Time Series

We may index the objects created by the function xts() as
follows,

sp500[3]

## [,1]
## 2010-03-01 1115.71

However, it is far more interesting to make “temporal queries”,

sp500["2010-03-02"]

## [,1]
## 2010-03-02 1118.31

sp500["2010-03"]

## [,1]
## 2010-03-01 1115.71
## 2010-03-02 1118.31

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 64 / 94



Time Series Indexing time series

Indexing Time Series (2)

sp500["2010-02-26/"]

## [,1]
## 2010-02-26 1104.49
## 2010-03-01 1115.71
## 2010-03-02 1118.31

sp500["2010-02-26/2010-03-01"]

## [,1]
## 2010-02-26 1104.49
## 2010-03-01 1115.71

The index is a string that may represent intervals using the symbol
/ or by omitting part of a date. You may also use :: instead of /.

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 65 / 94



Time Series Indexing time series

Temporal Plots

The plot() function can be
used to obtain a temporal plot
of a time series
R takes care of selecting the
proper axes,

plot(sp500)

Fev 25
2010

Fev 26
2010

Mar 01
2010

Mar 02
2010

11
05

11
10

11
15

sp500

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 66 / 94



Time Series Indexing time series

Temporal Plots

The plot() function can be
used to obtain a temporal plot
of a time series
R takes care of selecting the
proper axes,

plot(sp500)

Fev 25
2010

Fev 26
2010

Mar 01
2010

Mar 02
2010

11
05

11
10

11
15

sp500

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 66 / 94



Time Series Indexing time series

Hands On Time Series

Package quantmod (an extra package that you need to install)
contains several facilities to handle financial time series. Among them,
the function getMetals allows you to download the prices of metals
from oanda.com. Explore the help page of the function to try to
understand how it works, and the answer the following:

1 Obtain the prices of gold of the current year solution

2 Show the prices in January solution

3 Show the prices from February 10 till March 15 solution

4 Obtain the prices of silver in the last 30 days
Tip: explore the function seq.Date() solution

5 Plot the prices of silver in the last 7 days
Tip: explore the function last() on package xts solution

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 67 / 94



Time Series Indexing time series

Solution to Exercise 1

Obtain the prices of gold of the current year

library(quantmod)
getMetals("gold",from="2014-01-01",base.currency="EUR")

## [1] "XAUEUR"

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 68 / 94



Time Series Indexing time series

Solution to Exercise 2

Show the prices in January

XAUEUR["2014-01"]

## XAU.EUR
## 2014-01-01 871.1
## 2014-01-02 874.2
## 2014-01-03 889.2
## 2014-01-04 903.4
## 2014-01-05 911.1
## 2014-01-06 911.1
## 2014-01-07 911.3
## 2014-01-08 907.8
## 2014-01-09 901.9
## 2014-01-10 903.2
## 2014-01-11 907.6
## 2014-01-12 913.8
## 2014-01-13 913.9
## 2014-01-14 914.6
## 2014-01-15 914.6
## 2014-01-16 910.4
## 2014-01-17 911.7
## 2014-01-18 916.4
## 2014-01-19 926.7
## 2014-01-20 926.7
## 2014-01-21 927.1
## 2014-01-22 921.7
## 2014-01-23 915.6
## 2014-01-24 915.5
## 2014-01-25 923.2
## 2014-01-26 929.2
## 2014-01-27 929.2
## 2014-01-28 926.4
## 2014-01-29 919.0
## 2014-01-30 921.1
## 2014-01-31 922.8

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 69 / 94



Time Series Indexing time series

Solution to Exercise 3

Show the prices from February 10 till March 15

XAUEUR["2014-02-10/2014-03-15"]

## XAU.EUR
## 2014-02-10 930.3
## 2014-02-11 933.2
## 2014-02-12 940.1
## 2014-02-13 947.0
## 2014-02-14 948.2
## 2014-02-15 957.4
## 2014-02-16 964.0
## 2014-02-17 964.0
## 2014-02-18 967.6
## 2014-02-19 963.2
## 2014-02-20 959.0
## 2014-02-21 957.7
## 2014-02-22 963.1
## 2014-02-23 964.7
## 2014-02-24 964.8
## 2014-02-25 968.0
## 2014-02-26 972.8
## 2014-02-27 974.5
## 2014-02-28 972.2
## 2014-03-01 966.6
## 2014-03-02 961.9
## 2014-03-03 962.0
## 2014-03-04 976.4
## 2014-03-05 976.8
## 2014-03-06 973.5
## 2014-03-07 973.3
## 2014-03-08 970.5
## 2014-03-09 966.3
## 2014-03-10 966.3
## 2014-03-11 963.5
## 2014-03-12 969.9
## 2014-03-13 979.8
## 2014-03-14 984.7
## 2014-03-15 990.6

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 70 / 94



Time Series Indexing time series

Solution to Exercise 4

Obtain the prices of silver in the last 30 days

fstDate <- Sys.Date() - 30
getMetals("silver",from=fstDate,base.currency="EUR")

## [1] "XAGEUR"

or a more general setting

fstDate <- seq.Date(from=Sys.Date(),by="-30 days",length.out=2)[2]
getMetals("silver",from=fstDate,base.currency="EUR")

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 71 / 94



Time Series Indexing time series

Solution to Exercise 5

Plot the prices of silver in the last 7 days

plot(last(XAGEUR,"7 days"),main="Silver in the Last 7 days")

Ago 19
2014

Ago 21
2014

Ago 23
2014

Ago 25
2014

14
.6

6
14

.6
7

14
.6

8
14

.6
9

Silver in the Last 7 days

Go Back© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 72 / 94



Data Manipulation with dplyr

The Package dplyr

dplyr is a package that greatly facilitates manipulating data in R
It has several interesting features like:

Implements the most basic data manipulation operations
Is able to handle several data sources (e.g. standard data frames,
data bases, etc.)
Very fast

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 73 / 94



Data Manipulation with dplyr Examples of data sources

Data sources

Data frame table
A wrapper for a local R data frame
Main advantage is printing

library(dplyr)
data(iris)
ir <- tbl_df(iris)
ir

## Source: local data frame [150 x 5]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## .. ... ... ... ... ...

Similar functions for other data sources (e.g. databases)
© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 74 / 94



Data Manipulation with dplyr The basic verbs

The basic operations

filter - show only a subset of the rows
select - show only a subset of the columns
arrange - reorder the rows
mutate - add new columns
summarise - summarise the values of a column

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 75 / 94



Data Manipulation with dplyr The basic verbs

The structure of the basic operations

First argument is a data frame table
Remaining arguments describe what to do with the data
Return an object of the same type as the first argument (except
summarise)
Never change the object in the first argument

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 76 / 94



Data Manipulation with dplyr The basic verbs

Filtering rows

filter(data, cond1, cond2, ...) corresponds to the rows of
data that satisfy ALL indicated conditions.

filter(ir,Sepal.Length > 6,Sepal.Width > 3.5)

## Source: local data frame [3 x 5]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.2 3.6 6.1 2.5 virginica
## 2 7.7 3.8 6.7 2.2 virginica
## 3 7.9 3.8 6.4 2.0 virginica

filter(ir,Sepal.Length > 7.7 | Sepal.Length < 4.4)

## Source: local data frame [2 x 5]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.3 3.0 1.1 0.1 setosa
## 2 7.9 3.8 6.4 2.0 virginica

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 77 / 94



Data Manipulation with dplyr The basic verbs

Ordering rows

arrange(data, col1, col2, ...) re-arranges the rows of
data by ordering them by col1, then by col2, etc.

arrange(ir,Species,Petal.Width)

## Source: local data frame [150 x 5]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.1 1.5 0.1 setosa
## 2 4.8 3.0 1.4 0.1 setosa
## 3 4.3 3.0 1.1 0.1 setosa
## 4 5.2 4.1 1.5 0.1 setosa
## 5 4.9 3.6 1.4 0.1 setosa
## 6 5.1 3.5 1.4 0.2 setosa
## 7 4.9 3.0 1.4 0.2 setosa
## 8 4.7 3.2 1.3 0.2 setosa
## 9 4.6 3.1 1.5 0.2 setosa
## 10 5.0 3.6 1.4 0.2 setosa
## .. ... ... ... ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 78 / 94



Data Manipulation with dplyr The basic verbs

Ordering rows - 2

arrange(ir,desc(Sepal.Width),Petal.Length)

## Source: local data frame [150 x 5]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.7 4.4 1.5 0.4 setosa
## 2 5.5 4.2 1.4 0.2 setosa
## 3 5.2 4.1 1.5 0.1 setosa
## 4 5.8 4.0 1.2 0.2 setosa
## 5 5.4 3.9 1.3 0.4 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 5.1 3.8 1.5 0.3 setosa
## 8 5.1 3.8 1.6 0.2 setosa
## 9 5.7 3.8 1.7 0.3 setosa
## 10 5.1 3.8 1.9 0.4 setosa
## .. ... ... ... ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 79 / 94



Data Manipulation with dplyr The basic verbs

Selecting columns

select(data, col1, col2, ...) shows the values of columns
col1, col2, etc. of data

select(ir,Sepal.Length,Species)

## Source: local data frame [150 x 2]
##
## Sepal.Length Species
## 1 5.1 setosa
## 2 4.9 setosa
## 3 4.7 setosa
## 4 4.6 setosa
## 5 5.0 setosa
## 6 5.4 setosa
## 7 4.6 setosa
## 8 5.0 setosa
## 9 4.4 setosa
## 10 4.9 setosa
## .. ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 80 / 94



Data Manipulation with dplyr The basic verbs

Selecting columns - 2

select(ir,-(Sepal.Length:Sepal.Width))

## Source: local data frame [150 x 3]
##
## Petal.Length Petal.Width Species
## 1 1.4 0.2 setosa
## 2 1.4 0.2 setosa
## 3 1.3 0.2 setosa
## 4 1.5 0.2 setosa
## 5 1.4 0.2 setosa
## 6 1.7 0.4 setosa
## 7 1.4 0.3 setosa
## 8 1.5 0.2 setosa
## 9 1.4 0.2 setosa
## 10 1.5 0.1 setosa
## .. ... ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 81 / 94



Data Manipulation with dplyr The basic verbs

Selecting columns - 3

select(ir,starts_with("Sepal"))

## Source: local data frame [150 x 2]
##
## Sepal.Length Sepal.Width
## 1 5.1 3.5
## 2 4.9 3.0
## 3 4.7 3.2
## 4 4.6 3.1
## 5 5.0 3.6
## 6 5.4 3.9
## 7 4.6 3.4
## 8 5.0 3.4
## 9 4.4 2.9
## 10 4.9 3.1
## .. ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 82 / 94



Data Manipulation with dplyr The basic verbs

Adding new columns

mutate(data, newcol1, newcol2, ...) adds the new columns
newcol1, newcol2, etc.

mutate(ir,sr=Sepal.Length/Sepal.Width,pr=Petal.Length/Petal.Width,rat=sr/pr)

## Source: local data frame [150 x 8]
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species sr pr
## 1 5.1 3.5 1.4 0.2 setosa 1.457 7.000
## 2 4.9 3.0 1.4 0.2 setosa 1.633 7.000
## 3 4.7 3.2 1.3 0.2 setosa 1.469 6.500
## 4 4.6 3.1 1.5 0.2 setosa 1.484 7.500
## 5 5.0 3.6 1.4 0.2 setosa 1.389 7.000
## 6 5.4 3.9 1.7 0.4 setosa 1.385 4.250
## 7 4.6 3.4 1.4 0.3 setosa 1.353 4.667
## 8 5.0 3.4 1.5 0.2 setosa 1.471 7.500
## 9 4.4 2.9 1.4 0.2 setosa 1.517 7.000
## 10 4.9 3.1 1.5 0.1 setosa 1.581 15.000
## .. ... ... ... ... ... ... ...
## Variables not shown: rat (dbl)

NOTE: It does not change the original data!

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 83 / 94



Data Manipulation with dplyr Chaining

Several Operations

select(filter(ir,Petal.Width > 2.3),Sepal.Length,Species)

## Source: local data frame [6 x 2]
##
## Sepal.Length Species
## 1 6.3 virginica
## 2 7.2 virginica
## 3 5.8 virginica
## 4 6.3 virginica
## 5 6.7 virginica
## 6 6.7 virginica

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 84 / 94



Data Manipulation with dplyr Chaining

Several Operations (cont.)

Function composition can become hard to understand...

arrange(
select(

filter(
mutate(ir,sr=Sepal.Length/Sepal.Width),
sr > 1.6),

Sepal.Length,Species),
Species,desc(Sepal.Length))

## Source: local data frame [103 x 2]
##
## Sepal.Length Species
## 1 5.0 setosa
## 2 4.9 setosa
## 3 4.5 setosa
## 4 7.0 versicolor
## 5 6.9 versicolor
## 6 6.8 versicolor
## 7 6.7 versicolor
## 8 6.7 versicolor
## 9 6.7 versicolor
## 10 6.6 versicolor
## .. ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 85 / 94



Data Manipulation with dplyr Chaining

The Chaining Operator as Alternative

mutate(ir,sr=Sepal.Length/Sepal.Width) %>% filter(sr > 1.6) %>%
select(Sepal.Length,Species) %>% arrange(Species,desc(Sepal.Length))

## Source: local data frame [103 x 2]
##
## Sepal.Length Species
## 1 5.0 setosa
## 2 4.9 setosa
## 3 4.5 setosa
## 4 7.0 versicolor
## 5 6.9 versicolor
## 6 6.8 versicolor
## 7 6.7 versicolor
## 8 6.7 versicolor
## 9 6.7 versicolor
## 10 6.6 versicolor
## .. ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 86 / 94



Data Manipulation with dplyr Summaries

Summarizing a set of rows

summarise(data, sumF1, sumF2, ...) summarises the rows in
data using the provided functions

summarise(ir,avgPL= mean(Petal.Length),varSW = var(Sepal.Width))

## Source: local data frame [1 x 2]
##
## avgPL varSW
## 1 3.758 0.19

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 87 / 94



Data Manipulation with dplyr Groups

Forming sub-groups of rows

group_by(data, crit1, crit2, ...) creates groups of rows
of data according to the indicated criteria, applied one over the other
(in case of draws)

sps <- group_by(ir,Species)
sps

## Source: local data frame [150 x 5]
## Groups: Species
##
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## .. ... ... ... ... ...

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 88 / 94



Data Manipulation with dplyr Groups

Summarization over groups

group_by(ir,Species) %>% summarise(mPL=mean(Petal.Length))

## Source: local data frame [3 x 2]
##
## Species mPL
## 1 setosa 1.462
## 2 versicolor 4.260
## 3 virginica 5.552

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 89 / 94



Data Manipulation with dplyr Groups

Hands On Data Manipulation with dplyr

Package mlbench (an extra package that you need to install) contains
several data sets (from UCI repository). After loading the data set Zoo
answer the following questions;

1 Create a data frame table with the data for easier manipulation
solução

2 What is the average number of legs for the different types of
animals? solução

3 Show the information on the airborne predators solução

4 For each combination of hair and eggs count how many animals
exist solução

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 90 / 94



Data Manipulation with dplyr Groups

Solution to Exercise 1

Create a data frame table with the data for easier manipulation

data(Zoo,package="mlbench")
library(dplyr)
z <- tbl_df(Zoo)

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 91 / 94



Data Manipulation with dplyr Groups

Solution to Exercise 2

What is the average number of legs for the different types of
animals?

group_by(z,type) %>% summarize(avgL=mean(legs))

## Source: local data frame [7 x 2]
##
## type avgL
## 1 mammal 3.366
## 2 bird 2.000
## 3 reptile 1.600
## 4 fish 0.000
## 5 amphibian 4.000
## 6 insect 6.000
## 7 mollusc.et.al 3.700

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 92 / 94



Data Manipulation with dplyr Groups

Solution to Exercise 3

Show the information on the airborne predators

filter(z,predator,airborne)

## Source: local data frame [7 x 17]
##
## hair feathers eggs milk airborne aquatic predator toothed backbone
## 1 FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
## 2 FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
## 3 FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
## 4 FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## 5 FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
## 6 FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
## 7 FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
## Variables not shown: breathes (lgl), venomous (lgl), fins (lgl), legs
## (int), tail (lgl), domestic (lgl), catsize (lgl), type (fctr)

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 93 / 94



Data Manipulation with dplyr Groups

Solution to Exercise 4

For each combination of hair and eggs count how many animals
exist

group_by(z,hair,eggs) %>% summarise(nAnimals=n())

## Source: local data frame [4 x 3]
## Groups: hair
##
## hair eggs nAnimals
## 1 FALSE FALSE 4
## 2 FALSE TRUE 54
## 3 TRUE FALSE 38
## 4 TRUE TRUE 5

Go Back

© L.Torgo (DCC-FCUP) Basic R Concepts Oct, 2014 94 / 94


	Basic Interaction
	Variables and Objects
	The Assignment Operation

	Functions
	Function composition

	Vectors
	Indexing
	Basic indexing
	Vectors of indices

	Vetorization
	Matrices
	Basics
	Matrix indexing

	Arrays
	Lists
	Data Frames
	Creating data frames
	Indexing data frames

	Time Series
	Indexing time series

	Data Manipulation with dplyr
	Examples of data sources
	The basic verbs
	Chaining
	Summaries
	Groups


