
Predictive Analytics

L. Torgo

ltorgo@fc.up.pt

Faculdade de Ciências / LIAAD-INESC TEC, LA
Universidade do Porto

Dec, 2014

Introduction

What is Prediction?

Definition

Prediction (forecasting) is the ability to anticipate the future.
Prediction is possible if we assume that there is some regularity in
what we observe, i.e. if the observed events are not random.

Example

Medical Diagnosis: given an historical record containing the symptoms
observed in several patients and the respective diagnosis, try to
forecast the correct diagnosis for a new patient for which we know the
symptoms.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 2 / 240



Introduction

Prediction Models

Are obtained on the basis of the assumption that there is an
unknown mechanism that maps the characteristics of the
observations into conclusions/diagnoses. The goal of prediction
models is to discover this mechanism.

Going back to the medical diagnosis what we want is to know how
symptoms influence the diagnosis.

Have access to a data set with “examples” of this mapping, e.g.
this patient had symptoms x , y , z and the conclusion was that he
had disease p
Try to obtain, using the available data, an approximation of the
unknown function that maps the observation descriptors into the
conclusions, i.e. Prediction = f (Descriptors)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 3 / 240

Introduction

“Entities” involved in Predictive Modelling

Descriptors of the observation:
set of variables that describe the properties (features, attributes)
of the cases in the data set
Target variable:
what we want to predict/conclude regards the observations
The goal is to obtain an approximation of the function
Y = f (X1,X ,2 , · · · ,Xp), where Y is the target variable and
X1,X ,2 , · · · ,Xp the variables describing the characteristics of the
cases.
It is assumed that Y is a variable whose values depend on the
values of the variables which describe the cases. We just do not
know how!
The goal of the modelling techniques is thus to obtain a good
approximation of the unknown function f ()

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 4 / 240



Introduction

How are the Models Used?

Predictive models have two main uses:

1 Prediction
use the obtained models to make predictions regards the target
variable of new cases given their descriptors.

2 Comprehensibility
use the models to better understand which are the factors that
influence the conclusions.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 5 / 240

Introduction Types of Prediction Problems

Types of Prediction Problems

Depending on the type of the target variable (Y ) we may be facing
two different types of prediction models:

1 Classification Problems - the target variable Y is nominal
e.g. medical diagnosis - given the symptoms of a patient try to
predict the diagnosis

2 Regression Problems - the target variable Y is numeric
e.g. forecast the market value of a certain asset given its
characteristics

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 6 / 240



Introduction Types of Prediction Problems

Examples of Prediction Problems

Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
         5.1         3.5          1.4         0.2     setosa
         4.9         3.0          1.4         0.2     setosa
         7.0         3.2          4.7         1.4 versicolor
         6.4         3.2          4.5         1.5 versicolor
         6.8         3.0          5.5         2.1  virginica
         5.7         2.5          5.0         2.0  virginica
         ...         ...          ...         ...        ...

Species = f(Sepal.Length, ...)

Classification Task

  season  size  speed mxPH mnO2     Cl Chla   ...   a1
  winter small medium 8.00  9.8 60.800 50.0   ...  0.0
  spring small medium 8.35  8.0 57.750  1.3   ...  1.4
  autumn small medium 8.10 11.4 40.020 15.6   ...  3.3
  spring small medium 8.07  4.8 77.364  1.4   ...  3.1
  autumn small medium 8.06  9.0 55.350 10.5   ...  9.2
  winter small   high 8.25 13.1 65.750 28.4   ... 15.1
     ...   ...    ...  ...  ...    ...  ...   ...  ...

a1 = f(season, size, ...)

Regression Task

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 7 / 240

Introduction Types of Models

Types of Prediction Models

There are many techniques that can be used to obtain prediction
models based on a data set.
Independently of the pros and cons of each alternative, all have
some key characteristics:

1 They assume a certain functional form for the unknown function f ()
2 Given this assumed form the methods try to obtain the best

possible model based on:
1 the given data set
2 a certain preference criterion that allows comparing the different

alternative model variants

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 8 / 240



Introduction Types of Models

Functional Forms of the Models

There are many variants. Examples include:
Mathematical formulae - e.g. linear discriminants
Logical approaches - e.g. classification or regression trees, rules
Probabilistic approaches - e.g. naive Bayes
Other approaches - e.g. neural networks, SVMs, etc.
Sets of models (ensembles) - e.g. random forests, adaBoost

These different approaches entail different compromises in terms
of:

Assumptions on the unknown form of dependency between the
target and the predictors
Computational complexity of the search problem
Flexibility in terms of being able to approximate different types of
functions
Interpretability of the resulting model
etc.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 9 / 240

Introduction Types of Models

Which Models or Model Variants to Use?

This question is often known as the Model Selection problem
The answer depends on the goals of the final user - i.e. the
Preference Biases of the user
Establishing which are the preference criteria for a given
prediction problem allows to compare and select different models
or variants of the same model

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 10 / 240



Evaluation Metrics

Evaluation Metrics Classification Problems

Classification Problems

The setting

Given data set {< xi , yi >}Ni=1, where xi is a feature vector
< x1, x2, · · · , xp > and yi ∈ Y is the value of the nominal variable Y
There is an unknown function Y = f (x)

The approach

Assume a functional form hθ(x) for the unknown function f (),
where θ are a set of parameters
Assume a preference criterion over the space of possible
parameterizations of h()

Search for the “optimal” h() according to the criterion and the data
set

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 12 / 240



Evaluation Metrics Classification Problems

Classification Error
Error Rate

Given a set of test cases Ntest we can obtain the predictions for
these cases using some classification model.
The Error Rate (L0/1) measures the proportion of these
predictions that are incorrect.
In order to calculate the error rate we need to obtain the
information on the true class values of the Ntest cases.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 13 / 240

Evaluation Metrics Classification Problems

Classification Error
Error Rate

Given a test set for which we know the true class the error rate
can be calculated as follows,

L0/1 =
1

Ntest

Ntest∑
i=1

I(ĥθ(xi), yi)

where I() is an indicator function such that I(x , y) = 0 if x = y and
1 otherwise; and ĥθ(xi) is the prediction of the model being
evaluated for the test case i that has as true class the value yi .

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 14 / 240



Evaluation Metrics Classification Problems

Confusion Matrices

A square nc × nc matrix, where nc is the number of class values
of the problem
The matrix contains the number of times each pair
(ObservedClass,PredictedClass) occurred when testing a
classification model on a set of cases

Pred.
c1 c2 c3

O
bs

. c1 nc1,c1 nc1,c2 nc1,c3

c2 nc2,c1 nc2,c2 nc2,c3

c3 nc3,c1 nc3,c2 nc3,c3

The error rate can be calculated from the information on this table.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 15 / 240

Evaluation Metrics Classification Problems

An Example in R

trueVals <- c("c1","c1","c2","c1","c3","c1","c2","c3","c2","c3")
preds <- c("c1","c2","c1","c3","c3","c1","c1","c3","c1","c2")
confMatrix <- table(trueVals,preds)
confMatrix

## preds
## trueVals c1 c2 c3
## c1 2 1 1
## c2 3 0 0
## c3 0 1 2

errorRate <- 1-sum(diag(confMatrix))/sum(confMatrix)
errorRate

## [1] 0.6

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 16 / 240



Evaluation Metrics Classification Problems

Cost-Sensitive Applications

In the error rate one assumes that all errors and correct
predictions have the same value
This may not be adequate for some applications

Cost/benefit Matrices
Table where each entry specifies the
cost (negative benefit) or benefit of
each type of prediction

Pred.
c1 c2 c3

O
bs

. c1 B1,1 C1,2 C1,3
c2 C2,1 B2,2 C2,3
c3 C3,1 C3,2 B3,3

Models are then evaluated by the total balance of their predictions,
i.e. the sum of the benefits minus the costs.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 17 / 240

Evaluation Metrics Classification Problems

An Example in R

trueVals <- c("c1","c1","c2","c1","c3","c1","c2","c3","c2","c3")
preds <- c("c1","c2","c1","c3","c3","c1","c1","c3","c1","c2")
confMatrix <- table(trueVals,preds)
costMatrix <- matrix(c(10,-2,-4,-2,30,-3,-5,-6,12),ncol=3)
colnames(costMatrix) <- c("predC1","predC2","predC3")
rownames(costMatrix) <- c("obsC1","obsC2","obsC3")
costMatrix

## predC1 predC2 predC3
## obsC1 10 -2 -5
## obsC2 -2 30 -6
## obsC3 -4 -3 12

utilityPreds <- sum(confMatrix*costMatrix)
utilityPreds

## [1] 28

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 18 / 240



Evaluation Metrics Classification Problems

Predicting a Rare Class
E.g. predicting outliers

Problems with two classes
One of the classes is much less frequent and it is also the most
relevant

Preds.
Pos Neg

O
bs

. Pos True Positives (TP) False Negatives (FN))
Neg False Positives (FP) True Negatives (TN)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 19 / 240

Evaluation Metrics Classification Problems

Precision and Recall

Preds.
P N

O
bs

. P TP FN
N FP TN

Precision - proportion of the
signals (events) of the model that
are correct

Prec =
TP

TP + FP
Recall - proportion of the real
events that are captured by the
model

Rec =
TP

TP + FN

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 20 / 240



Evaluation Metrics Classification Problems

Precision and Recall
Examples

 Prevs.
P N

P 2 2
N 1 1O

b
s
.

Precision =
TP

TP + FP
=

2
2 + 1

= 0.667

Recall =
TP

TP + FN
=

2
2 + 2

= 0.5

ErrorRate =
2 + 1

2 + 2 + 1 + 1
= 0.5

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 21 / 240

Evaluation Metrics Classification Problems

The F-Measure
Combining Precision and Recall into a single measure

Sometimes it is useful to have a single measure - e.g. optimization
within a search procedure
Maximizing one of them is easy at the cost of the other (it is easy
to have 100% recall - always predict “P”).
What is difficult is to have both of them with high values
The F-measure is a statistic that is based on the values of
precision and recall and allows establishing a trade-off between
the two using a user-defined parameter (β),

Fβ =
(β2 + 1) · Prec · Rec
β2 · Prec + Rec

where β controls the relative importance of Prec and Rec. If β = 1
then F is the harmonic mean between Prec and Rec; When
β → 0 the weight of Rec decreases. When β →∞ the weight of
Prec decreases.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 22 / 240



Evaluation Metrics Regression Problems

Regression Problems

The setting

Given data set {< xi , yi >}Ni=1, where xi is a feature vector
< x1, x2, · · · , xp > and yi ∈ < is the value of the numeric variable
Y
There is an unknown function Y = f (x)

The approach

Assume a functional form hθ(x) for the unknown function f (),
where θ are a set of parameters
Assume a preference criterion over the space of possible
parameterizations of h()

Search for the “optimal” h() according to the criterion and the data
set

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 23 / 240

Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Squared Error

Given a set of test cases Ntest we can obtain the predictions for
these cases using some regression model.
The Mean Squared Error (MSE) measures the average squared
deviation between the predictions and the true values.
In order to calculate the value of MSE we need to have both the
predicitons and the true values of the Ntest cases.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 24 / 240



Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Squared Error (cont.)

If we have such information the MSE can be calculated as follows,

MSE =
1

Ntest

Ntest∑
i=1

(ŷi − yi)
2

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MSE is measured in a unit that is squared of the
original variable scale. Because of the this is sometimes common
to use the Root Mean Squared Error (RMSE), defined as
RMSE =

√
MSE

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 25 / 240

Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Absolute Error

The Mean Absolute Error (MAE) measures the average absolute
deviation between the predictions and the true values.
The value of the MAE can be calculated as follows,

MAE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MAE is measured in the same unit as the original
variable scale.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 26 / 240



Evaluation Metrics Regression Problems

Relative Error Metrics

Relative error metrics are unit less which means that their scores
can be compared across different domains.
They are calculated by comparing the scores of the model under
evaluation against the scores of some baseline model.
The relative score is expected to be a value between 0 and 1, with
values nearer (or even above) 1 representing performances as
bad as the baseline model, which is usually chosen as something
too naive.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 27 / 240

Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The most common baseline model is the constant model
consisting of predicting for all test cases the average target
variable value calculated in the training data.
The Normalized Mean Squared Error (NMSE) is given by,

NMSE =

∑Ntest
i=1 (ŷi − yi)

2∑Ntest
i=1 (ȳ − yi)2

The Normalized Mean Absolute Error (NMAE) is given by,

NMAE =

∑Ntest
i=1 |ŷi − yi |∑Ntest
i=1 |ȳ − yi |

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 28 / 240



Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The Mean Average Percentage Error (MAPE) is given by,

MAPE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |
yi

The Correlation between the predictions and the true values (ρŷ ,y )
is given by,

ρŷ ,y =

∑Ntest
i=1 (ŷi − ¯̂y)(yi − ȳ)√∑Ntest

i=1 (ŷi − ¯̂y)2
∑Ntest

i=1 (yi − ȳ)2

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 29 / 240

Evaluation Metrics Regression Problems

An Example in R

trueVals <- c(10.2,-3,5.4,3,-43,21,
32.4,10.4,-65,23)

preds <- c(13.1,-6,0.4,-1.3,-30,1.6,
3.9,16.2,-6,20.4)

mse <- mean((trueVals-preds)^2)
mse

## [1] 494

rmse <- sqrt(mse)
rmse

## [1] 22.23

mae <- mean(abs(trueVals-preds))
mae

## [1] 14.35

nmse <- sum((trueVals-preds)^2) /
sum((trueVals-mean(trueVals))^2)

nmse

## [1] 0.5916

nmae <- sum(abs(trueVals-preds)) /
sum(abs(trueVals-mean(trueVals)))

nmae

## [1] 0.6563

mape <- mean(abs(trueVals-preds)/trueVals)
mape

## [1] 0.2908

corr <- cor(trueVals,preds)
corr

## [1] 0.6745

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 30 / 240



Linear Discriminant

Linear Discriminant

The Linear Discriminant

The Idea
Search for linear combinations of the variables that better separate
between the objects of the classes

The formalism for two classes - Fisher linear discriminant

Let Ĉ the pooled sample covariance matrix

Ĉ =
1

n1 + n2

(
n1Ĉ1 + n2Ĉ2

)
where ni is the number of training cases per class and Ĉi are the p × p sample covariance

matrices for each class. The sample covariance between two variables is given by

Cov(X ,Y ) =
1
n

n∑
i=1

(xi − x̄)(yi − ȳ)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 32 / 240



Linear Discriminant

The Linear Discriminant (cont.)

The formalism (cont.)

The following is the score of the separation provided by a
p-dimensional vector w,

Sw =
wT µ̂1 −wT µ̂2

wT Ĉw
Given this score the goal is to find the vector w that maximizes it.
There is a solution for this maximization problem given by,

ŵlda = Ĉ−1(µ̂1 − µ̂2)

Canonical discriminant functions extend the idea for more than
two classes

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 33 / 240

Linear Discriminant

Canonical Discriminant Functions

Example

library(MASS)
data(iris)
lda(Species ~ ., iris)

## Call:
## lda(Species ~ ., data = iris)
##
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333 0.3333 0.3333
##
## Group means:
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## setosa 5.006 3.428 1.462 0.246
## versicolor 5.936 2.770 4.260 1.326
## virginica 6.588 2.974 5.552 2.026
##
## Coefficients of linear discriminants:
## LD1 LD2
## Sepal.Length 0.8294 0.0241
## Sepal.Width 1.5345 2.1645
## Petal.Length -2.2012 -0.9319
## Petal.Width -2.8105 2.8392
##
## Proportion of trace:
## LD1 LD2
## 0.9912 0.0088© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 34 / 240



Linear Discriminant

Using LDA for prediction in R

sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
l <- lda(Species ~ ., tr)
preds <- predict(l,ts)
(mtrx <- table(preds$class,ts$Species))

##
## setosa versicolor virginica
## setosa 16 0 0
## versicolor 0 18 0
## virginica 0 1 15

(err <- 1-sum(diag(mtrx))/sum(mtrx))

## [1] 0.02

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 35 / 240

Hands on Linear Discriminants

Hands on LDAs - the Vehicle data set

The data set Vehicle is available in package mlbench. Load it and
explore its help page to grab a minimal understanding of the data and
then answer the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 80%-20%.

2 Obtain a linear discriminant using the larger set.
3 Obtain the predictions of the obtained model on the smaller set.
4 Obtain a confusion matrix of the predictions and calculate the

respective accuracy.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 36 / 240



Multiple Linear Regression

Multiple Linear Regression

Multiple Linear Regression

Multiple linear regression is probably the most used statistical
method
It is one of the many possible approaches to the multiple
regression problem where given a training data set
D = {〈xi , yi〉}ni=1 we want to obtain an approximation of the
unknown regression function f () that maps the predictors values
into a target continuous variable value.
In matrix notation we have D = X|Y, where X is a matrix n × p,
and Y is a matrix n × 1.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 38 / 240



Multiple Linear Regression

Multiple Linear Regression (cont.)

A regression model rD(.) can be seen as a function that transforms
a vector of values of the predictors, x, into a real number, Y . This
model is an approximation of the unknown f () function.
Regression models assume the following relationship,
yi = r(β,xi) + εi , where r(β,xi) is a regression model with
parameters β and εi are observation errors.
The goal of a learning method is to obtain the model parameters β
that minimize a certain preference criterion.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 39 / 240

Multiple Linear Regression

Multiple Linear Regression (cont.)

In the case of multiple linear regression the functional form that is
assumed is the following:

Y = β0 + β1 · X1 + · · ·+ βp · Xp

The goal is to find the vector of parameters β that minimizes the
sum of the squared errors∑n

i=1(yi − (β0 + β1 · X1 + · · ·+ βp · Xp))2

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 40 / 240



Multiple Linear Regression

Multiple Linear Regression
Pros and Cons

Well-known and over-studied topic with many variants of this
simple methodology (e.g. Drapper and Smith, 1981)
Simple and effective approach when the “linearity” assumption is
adequate to the data.
Form of the model is intuitive - a set of additive effects of each
variable towards the prediction
Computationally very efficient
Too strong assumptions on the shape of the unknown regression
function

Drapper and Smith (1981): Applied Regression Analysis, 2nd edition. Wiley Series in Probability

and Mathematical Statistics.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 41 / 240

Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R

library(DMwR)
data(algae)
algae <- algae[-c(62, 199), ] # the 2 incomplete samples
clean.algae <- knnImputation(algae) # lm() does not handle NAs!
la1 <- lm(a1 ~ ., clean.algae[, 1:12])
la1

##
## Call:
## lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
## Coefficients:
## (Intercept) seasonspring seasonsummer seasonwinter sizemedium
## 42.94206 3.72698 0.74760 3.69295 3.26373
## sizesmall speedlow speedmedium mxPH mnO2
## 9.68214 3.92208 0.24676 -3.58912 1.05264
## Cl NO3 NH4 oPO4 PO4
## -0.04017 -1.51124 0.00163 -0.00543 -0.05224
## Chla
## -0.08802

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 42 / 240



Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R
(cont.)
summary(la1)

##
## Call:
## lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.68 -11.89 -2.57 7.41 62.19
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.94206 24.01088 1.79 0.0754 .
## seasonspring 3.72698 4.13774 0.90 0.3689
## seasonsummer 0.74760 4.02071 0.19 0.8527
## seasonwinter 3.69295 3.86539 0.96 0.3406
## sizemedium 3.26373 3.80205 0.86 0.3918
## sizesmall 9.68214 4.17997 2.32 0.0217 *
## speedlow 3.92208 4.70631 0.83 0.4057
## speedmedium 0.24676 3.24187 0.08 0.9394
## mxPH -3.58912 2.70353 -1.33 0.1860
## mnO2 1.05264 0.70502 1.49 0.1372
## Cl -0.04017 0.03366 -1.19 0.2343
## NO3 -1.51124 0.55134 -2.74 0.0067 **
## NH4 0.00163 0.00100 1.63 0.1052
## oPO4 -0.00543 0.03988 -0.14 0.8918
## PO4 -0.05224 0.03075 -1.70 0.0911 .
## Chla -0.08802 0.08000 -1.10 0.2727
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.6 on 182 degrees of freedom
## Multiple R-squared: 0.373, Adjusted R-squared: 0.321
## F-statistic: 7.22 on 15 and 182 DF, p-value: 2.44e-12

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 43 / 240

Multiple Linear Regression

The Diagnostic Information of the summary() Call

Distribution of the residuals (errors) of the model - should have
mean zero and should be normally distributed and as small as
possible
Estimate of each coefficient and respective standard error
Test of the hypothesis that each coefficient is null, i.e. H0 : βi = 0

Uses a t-test
Calculates a t-value as βi/sβi

Presents a column (Pr(>t)) with the level at which the hypothesis is
rejected. A value of 0.0001 would mean that we are 99.99%
confident that the coefficient is not null
Coefficients for which we can reject the hypothesis are tagged with
a symbol

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 44 / 240



Multiple Linear Regression

The Diagnostic Information of the summary() Call
(cont.)

We are also given the R2 coefficients (multiple and adjusted).
These coefficients indicate the degree of fit of the model to the
data, i.e. the proportion of variance explained by the model.
Values near 1 (100%) are better. The adjusted coefficient is more
demanding as it takes into account the size of the model
Finally, there is also a test of the hypothesis that there is no
dependence of the target variable on the predictors, i.e.
H0 : β1 = β2 = · · · = βp = 0. The F -statistic is used with this
purpose. R provides the confidence level at which we are sure to
reject this hypothesis. A p-level of 0.0001 means that we are
99.99% confident that the hypothesis is not true.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 45 / 240

Multiple Linear Regression

Simplifying the Linear Model
final.la1 <- step(la1)

summary(final.la1)

##
## Call:
## lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,
## 1:12])
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.87 -12.73 -3.74 8.42 62.93
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 57.2855 20.9613 2.73 0.0069 **
## sizemedium 2.8005 3.4019 0.82 0.4114
## sizesmall 10.4064 3.8224 2.72 0.0071 **
## mxPH -3.9708 2.4820 -1.60 0.1113
## Cl -0.0523 0.0317 -1.65 0.1003
## NO3 -0.8953 0.3515 -2.55 0.0116 *
## PO4 -0.0591 0.0112 -5.29 3.3e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.5 on 191 degrees of freedom
## Multiple R-squared: 0.353, Adjusted R-squared: 0.332
## F-statistic: 17.3 on 6 and 191 DF, p-value: 5.55e-16

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 46 / 240



Multiple Linear Regression

Using the Models for Prediction

data(testAlgae)
data(algaeSols)
clean.test.algae <- knnImputation(test.algae,

k = 10, distData = clean.algae[, 1:11])
preds <- predict(final.la1,clean.test.algae)
regr.eval(algae.sols$a1,preds,

train.y=clean.algae$a1)

## mae mse rmse mape nmse nmae
## 12.7843 296.0934 17.2074 Inf 0.7048 0.7975

But there are no negative algae
frequencies!...

plot(algae.sols$a1,preds,main='Errors Scaterplot',
ylab='Predicted Values',xlab='True Values')

abline(0,1,col='red',lty=2)

●

●

●●

● ●
●

● ●

●

●

●

●● ●

●

●

●

●●

●●

●
●

●
●

●

●

●●
●

●

● ●

●
● ● ●

●● ●

●●●

●

●

●
●

●

●
●

●

●
●

●

●

●● ●● ●

●
●●

●

●●

●●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

● ●
●
●
●

●● ●
●

●
●

● ●
●
● ●

●●

●

●

●

●

●● ●●
● ●

●

● ●
●● ●

●
●

●

●
●

●

●

●●

●

●

●●
●●●

●

●

●
●●

0 20 40 60 80

−
60

−
40

−
20

0
20

40

Errors Scaterplot

True Values

P
re

di
ct

ed
 V

al
ue

s

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 47 / 240

Hands on Linear Regression

Hands on Linear Regression - the Boston data set

The data set Boston is available in package MASS. Load it and
explore its help page to grab a minimal understanding of the data and
then answer the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 70%-30%.

2 Obtain a multiple linear regression model using the larger set.
3 Check the diagnostic information provided for the model.
4 Obtain the predictions of the obtained model on the smaller set.
5 Obtain the mean squared error of these predictions and also an

error scatter plot.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 48 / 240



Tree-based Models

Tree-based Models

Tree-based Models

Tree-based models (both classification and regression trees) are
models that provide as result a model based on logical tests on
the input variables
These models can be seen as a partitioning of the input space
defined by the input variables
This partitioning is defined based on carefully chosen logical tests
on these variables
Within each partition all cases are assigned the same prediction
(either a class label or a numeric value)
Tree-based models are known by their (i) computational efficiency;
(ii) interpretable models; (iii) embedded variable selection; (iv)
embedded handling of unknown variable values and (v) few
assumptions on the unknown function being approximated

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 50 / 240



Tree-based Models

An Example of Trees Partitioning

X_1

X_1

X_2

< 2
>= 2

<5
>=5

< 1 >= 1

21

X_1

X_2
5

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 51 / 240

Tree-based Models

An Example of a Classification Tree

|

Cell.size< 2.5

Bare.nuclei< 5.5 Cell.shape< 2.5

Cl.thickness< 5.5 Cell.size< 4.5

Bare.nuclei< 2.5

Marg.adhesion< 3.5

Cell.size>=2.5

Bare.nuclei>=5.5 Cell.shape>=2.5

Cl.thickness>=5.5 Cell.size>=4.5

Bare.nuclei>=2.5

Marg.adhesion>=3.5

benign   
458/241

benign   
417/12

benign   
416/5

malignant
1/7

malignant
41/229

benign   
18/5

benign   
18/1

malignant
0/4

malignant
23/224

malignant
18/52

benign   
10/4

benign   
10/1

malignant
0/3

malignant
8/48

malignant
5/172

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 52 / 240



Tree-based Models

An Example of a Regression Tree

|

rm< 6.941

lstat>=14.4

crim>=6.992

nox>=0.6055 nox>=0.531

dis>=1.385

rm< 6.543

lstat>=7.57

rm< 7.437

crim>=7.393

dis>=1.886

ptratio>=18.3

rm>=6.941

lstat< 14.4

crim< 6.992

nox< 0.6055 nox< 0.531

dis< 1.385

rm>=6.543

lstat< 7.57

rm>=7.437

crim< 7.393

dis< 1.886

ptratio< 18.3

22.5
n=506

19.9
n=430

15
n=175

12
n=74

11.1
n=62

16.6
n=12

17.1
n=101

16.2
n=77

20
n=24

23.3
n=255

22.9
n=250

21.6
n=195

21
n=152

24
n=43

27.4
n=55

45.6
n=5

37.2
n=76

32.1
n=46

14.4
n=3

33.3
n=43

32.7
n=41

45.6
n=2

45.1
n=30

33.3
n=3

46.4
n=27

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 53 / 240

Tree-based Models

Tree-based Models

Most tree-based models are binary trees with logical tests on each
node
Tests on numerical predictors take the form xi < α, with α ∈ <
Tests on nominal predictors take the form xj ∈ {v1, · · · , vm}
Each path from the top (root) node till a leaf can be seen as a
logical condition defining a region of the predictors space.
All observations “falling” on a leaf will get the same prediction

the majority class of the training cases in that leaf for classification
trees
the average value of the target variable for regression trees

The prediction for a new test case is easily obtained by following a
path from the root till a leaf according to the case predictors values

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 54 / 240



Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm

1: function RECURSIVEPARTITIONING(D)
Input : D, a sample of cases, {〈xi,1, · · · , xi,p, yi〉}Ntrain

i=1
Output : t , a tree node

2: if <TERMINATION CRITERION> then
3: Return a leaf node with the majority class in D
4: else
5: t ← new tree node
6: t .split ← <FIND THE BEST PREDICTORS TEST>
7: t .leftNode← RecursivePartitioning(x ∈ D : x � t .split)
8: t .rightNode← RecursivePartitioning(x ∈ D : x 2 t .split)
9: Return the node t

10: end if
11: end function

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 55 / 240

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm - an example

Weather Temp. Humidity Wind Decision
rain 26 high 15 dontPlay
rain 35 normal 102 dontPlay
overcast 27 high 99 Play
overcast 26 normal 97 Play
rain 12 high 120 Play
overcast 21 normal 74 Play
sun 30 normal 89 dontPlay
sun 19 high 111 dontPlay
sun 14 normal 81 Play
overcast 10 normal 70 Play
rain 11 normal 95 Play
rain 15 high 94 Play
sun 19 high 41 dontPlay
sun 35 normal 38 dontPlay
rain 29 high 79 dontPlay
rain 26 normal 75 dontPlay
overcast 30 high 108 Play
overcast 30 normal 16 Play
rain 33 high 96 Play
overcast 30 normal 13 Play
sun 32 normal 55 dontPlay
sun 11 high 108 dontPlay
sun 33 normal 103 Play
overcast 14 normal 32 Play
rain 28 normal 44 Play
rain 21 high 84 Play
sun 29 high 105 dontPlay
sun 15 normal 63 dontPlay

Weather

{rain}

Weather Temp Humidity Wind Decision

rain 26 high 15 dontPlay

rain 35 normal 102 dontPlay

rain 12 high 120 Play

rain 11 normal 95 Play

rain 15 high 94 Play

rain 29 high 79 dontPlay

rain 26 normal 75 dontPlay

rain 33 high 96 Play

rain 28 normal 44 Play

rain 21 high 84 Play

Weather Temp Humidity Wind Decision

overcast 27 high 99 Play

overcast 26 normal 97 Play

overcast 21 normal 74 Play

overcast 10 normal 70 Play

overcast 30 high 108 Play

overcast 30 normal 16 Play

overcast 30 normal 13 Play

overcast 14 normal 32 Play

sun 30 normal 89 dontPlay

sun 19 high 111 dontPlay

sun 14 normal 81 Play

sun 19 high 41 dontPlay

sun 35 normal 38 dontPlay

sun 32 normal 55 dontPlay

sun 11 high 108 dontPlay

sun 33 normal 103 Play

sun 29 high 105 dontPlay

sun 15 normal 63 dontPlay

{overcast, sun}

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 56 / 240



Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

Key Issues of the RP Algorithm

When to stop growing the tree - termination criterion
Which value to put on the leaves
How to find the best split test

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 57 / 240

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

When to Stop?

Too large trees tend to overfit the training data and will perform badly
on new data - a question of reliability of error estimates

Which value?
Should be the value that better represents the cases in the leaves

What are the good tests?

A test is good if it is able to split the cases of sample in such a way that
they form partitions that are “purer” than the parent node

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 58 / 240



Tree-based Models Building a tree-based model

Classification vs Regression Trees

They are both grown using the Recursive Partitioning algorithm
The main difference lies on the used preference criterion
This criterion has impact on:

The way the best test for each node is selected
The way the tree avoids over fitting the training sample

Classification trees typically use criteria related to error rate (e.g.
the Gini index, the Gain ratio, entropy, etc.)
Regression trees typically use the least squares error criterion

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 59 / 240

Tree-based Models Selecting the best splits

How to Evaluate a Test in Classification Trees?
Gini Impurity

The Gini index of a data set D where each example belongs to
one of c classes is given by,

Gini(D) = 1−
c∑

i=1

p2
i

where pi is the probability of class i usually estimated with the
observed frequency on the training data
If the data set is split on a logical test T then the resulting Gini
index is given by,

GiniT (D) =
|DT |
|D|

Gini(DT ) +
|D¬T |
|D|

Gini(D¬T )

In this context the reduction in impurity given by T is,

∆GiniT (D) = Gini(D)−GiniT (D)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 60 / 240



Tree-based Models Selecting the best splits

Gini Impurity - an example

Tempo Temp Humidade Vento Decisão
chuva 26 alta 15 nãoJogar
chuva 35 normal 102 nãoJogar
chuva 12 alta 120 jogar
chuva 11 normal 95 jogar
chuva 15 alta 94 jogar
chuva 29 alta 79 nãoJogar
chuva 26 normal 75 nãoJogar
chuva 33 alta 96 jogar
chuva 28 normal 44 jogar
chuva 21 alta 84 jogar
enublado 27 alta 99 jogar
enublado 26 normal 97 jogar
enublado 21 normal 74 jogar
enublado 10 normal 70 jogar
enublado 30 alta 108 jogar
enublado 30 normal 16 jogar
enublado 30 normal 13 jogar
enublado 14 normal 32 jogar
sol 30 normal 89 nãoJogar
sol 19 alta 111 nãoJogar
sol 14 normal 81 jogar
sol 19 alta 41 nãoJogar
sol 35 normal 38 nãoJogar
sol 32 normal 55 nãoJogar
sol 11 alta 108 nãoJogar
sol 33 normal 103 jogar
sol 29 alta 105 nãoJogar
sol 15 normal 63 nãoJogar

Gini(D) = 1−
(( 16

16 + 12

)2
+

( 12

16 + 12

)2
)

= 0.49

GiniTempo∈{chuva}(D) =
10

28
· Gini(DTempo∈{chuva})

+
18

28
· Gini(DTempo/∈{chuva})

=0.489

Gini(DTempo∈{chuva}) = 1−
(( 4

4 + 6

)2
+

( 6

4 + 6

)2
)

= 0.48

Gini(DTempo/∈{chuva}) = 1−
(( 8

8 + 10

)2
+

( 10

8 + 10

)2
)

= 0.49

∆GiniTempo∈{chuva}(D) = 0.49− 0.489 = 0.001

Calcule o valor de ∆GiniTempo∈{enublado}(D)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 61 / 240

Tree-based Models Selecting the best splits

Which Tests are Tried?
Numeric Predictors

Given a set of data D and a continuous variable A let VA,D be the
set of values of A occurring in D
Start by ordering the set VA,D

Evaluate all tests A < x where x takes as values all mid-points
between every successive value in the ordered set

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 62 / 240



Tree-based Models Selecting the best splits

Numeric Predictors - an example

Given the unsorted values of Temp:
26 35 27 26 12 21 30 19 14 10 11 15 19 35 29 26 30 30 33 30 32
11 33 14 28 21 29 15
Start by ordering them:
10 11 11 12 14 14 15 15 19 19 21 21 26 26 26 27 28 29 29 30 30
30 30 32 33 33 35 35
Then try (i.e. evaluate) all tests in between each value:

Temp < 10.5
Temp < 11.5
Temp < 13
Temp < 14.5
etc.

Choose the test with the best score to be the best test in variable
Temp

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 63 / 240

Tree-based Models Selecting the best splits

Which Tests are Tried?
Nominal Predictors

Given a set of data D and a nominal variable A let VA,D be the set
of values of A occurring in D
Evaluate all possible combinations of subset of values in VA,D

Note that there are some optimizations that reduce the
computational complexity of this search

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 64 / 240



Tree-based Models Selecting the best splits

Nominal Predictors - an example

Given the values of Tempo:
chuva, enublado, sol
Try (i.e. evaluate) all subsets of these values:

Tempo ∈ {chuva}
Temp ∈ {enublado}
Temp ∈ {sol}

Choose the test with the best score to be the best test in variable
Tempo

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 65 / 240

Tree-based Models Selecting the best splits

How to Evaluate a Test in Regression Trees?
Least Squares Regression Trees

Regression trees are usually grown by trying to minimize the
sum of the squared errors, leading to Least Squares Regression
Trees
According to the LS (Least Squares) criterion the error in a node
of the tree is given by,

Err(t) =
1
nt

∑
〈xi ,yi 〉∈Dt

(yi − kt )
2

where Dt is the sample of cases in node t , nt is the cardinality of
this set and kt is the constant used in the node
It can be easily proven that the constant k that minimizes this error
is the average target variable value of the cases in the leaf

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 66 / 240



Tree-based Models Selecting the best splits

Least Squares Regression Trees

Any logical test s divides the cases in Dt in two partitions, DtL and
DtR . The resulting pooled error is given by,

Err(t , s) =
ntL
nt
× Err(tL) +

ntR
nt
× Err(tR)

where ntL/nt (ntR/nt ) is the proportion of cases going to the left
(right) branch of t
We can estimate the value of the split s by the respective error
reduction,

∆(s, t) = Err(t)− Err(t , s)

Finding the best split test for a node t involves evaluating all
possible tests for this node using the above equations

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 67 / 240

Tree-based Models Selecting the best splits

Least Squares Regression Trees (cont.)

For continuous variables this requires a sorting operation on the
values of this variable occurring in the node
After this sorting, a fast incremental algorithm (Torgo, 1999) can
be used to find the best cut-point value for the test
With respect to nominal variables, Breiman and colleagues (1984)
have proved a theorem that avoids trying all possible
combinations of values, reducing the computational complexity of
this task from O(2v−1 − 1) to O(v − 1), where v is the number of
values of the nominal variable

Breiman et al. (1984): Classification and Regression Trees

Torgo L. (1999): Inductive learning of tree-based regression models. PhD thesis, Department of

Computer Science, Faculty of Sciences, University of Porto.

Torgo,L. (2011) : Regression Trees. In Encyclopedia of Machine Learning, C.Sammut and

G.I.Webb (Eds.). Pages 842–845, Springer.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 68 / 240



Tree-based Models When to Stop Growing the Trees

Deciding when to stop growing the trees

The scores discussed before keep improving as we grow the tree
At an extreme, an overly large tree, will perfectly fit the given
training data (i.e. all cases are correctly predicted by the tree)
Such huge trees are said to be overfitting the training data and will
most probably perform badly on a new set of data (a test set), as
they have captured spurious characteristics of the training data

T
re

e 
E

r r
or

Tree Size

Measured on 
training data

Measured on 
test (new) data

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 69 / 240

Tree-based Models When to Stop Growing the Trees

Deciding when to stop growing the trees - 2

As we go down in the tree the decisions on the tests are made on
smaller and smaller sets, and thus potentially less reliable
decisions are made
The standard procedure in tree learning is to grow an overly large
tree and then use some statistical procedure to prune unreliable
branches from this tree. The goal of this procedure is to try to
obtain reliable estimates of the error of the tree. This procedure is
usually called post-prunning a tree.
An alternative procedure (not so frequently used) is to decide
during tree growth when to stop. This is usually called
pre-prunning.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 70 / 240



Tree-based Models When to Stop Growing the Trees

(Post-)Pruning a Tree
Cost-complexity and Error-complexity Pruning

Grown and overly large tree
Generate a sequence of sub-trees

Error-complexity criterion for regression trees
Cost-complexity criterion for regression trees

Use cross validation to estimate the error of these trees
Use the x-SE rule to select the best sub-tree

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 71 / 240

Tree-based Models When to Stop Growing the Trees

Classification and Regression Trees in R
The package rpart

Package rpart implements most of the ideas of the system
CART that was described in the book “Classification and
Regression Trees” by Breiman and colleagues
This system is able to obtain classification and regression trees.
For classification trees it uses the Gini score to grow the trees and
it uses Cost-Complexity post-pruning to avoid over fitting
For regression trees it uses the least squares error criterion and it
uses Error-Complexity post-pruning to avoid over fitting
On package DMwR you may find function rpartXse() that grows
and prunes a tree in a way similar to CART using the above
infra-structure

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 72 / 240



Tree-based Models When to Stop Growing the Trees

Illustration using a classification task - Glass

library(DMwR)
data(Glass,package='mlbench')
ac <- rpartXse(Type ~ .,Glass)
prettyTree(ac)

|

Ba< 0.335

Al< 1.42

Ca< 10.48

RI>=1.517

Mg< 3.865

Mg>=2.26

Na< 13.5

Ba>=0.335

Al>=1.42

Ca>=10.48

RI< 1.517

Mg>=3.865

Mg< 2.26

Na>=13.5

2
70/76/17/13/9/29

2
69/75/17/12/9/3

1
63/31/13/1/3/2

1
63/21/13/0/2/2

1
60/17/6/0/1/1

1
59/11/5/0/1/1

2
1/6/1/0/0/0

3
3/4/7/0/1/1

2
0/10/0/1/1/0

2
6/44/4/11/6/1

2
6/41/4/0/1/0

5
0/3/0/11/5/1

5
0/1/0/11/0/0

6
0/2/0/0/5/1

7
1/1/0/1/0/26

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 73 / 240

Tree-based Models When to Stop Growing the Trees

How to use the trees for Predicting?

tr <- Glass[1:200,]
ts <- Glass[201:214,]
ac <- rpartXse(Type ~ .,tr)
predict(ac,ts)

## 1 2 3 5 6 7
## 201 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 202 0.2 0.2667 0.4667 0.00000 0.06667 0.0000
## 203 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 204 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 205 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 206 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 207 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 208 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 209 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 210 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 211 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 212 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 213 0.0 0.0000 0.0000 0.09091 0.00000 0.9091
## 214 0.0 0.0000 0.0000 0.09091 0.00000 0.9091

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 74 / 240



Tree-based Models When to Stop Growing the Trees

How to use the trees for Predicting? (cont.)

predict(ac,ts,type='class')

## 201 202 203 204 205 206 207 208 209 210 211 212 213 214
## 7 3 7 7 7 7 7 7 7 7 7 7 7 7
## Levels: 1 2 3 5 6 7

ps <- predict(ac,ts,type='class')
table(ps,ts$Type)

##
## ps 1 2 3 5 6 7
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 1
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## 7 0 0 0 0 0 13

mc <- table(ps,ts$Type)
err <- 100*(1-sum(diag(mc))/sum(mc))
err

## [1] 7.143

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 75 / 240

Tree-based Models When to Stop Growing the Trees

Illustration using a regression task
Forecasting Algae a1

library(DMwR)
data(algae)
d <- algae[,1:12]
ar <- rpartXse(a1 ~ .,d)

prettyTree(ar)

|

PO4>=43.82 PO4< 43.82

16.9
n=200

8.92
n=148

39.7
n=52

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 76 / 240



Tree-based Models When to Stop Growing the Trees

How to use the trees for Predicting?

tr <- d[1:150,]
ts <- d[151:200,]
ar <- rpartXse(a1 ~ .,tr)
preds <- predict(ar,ts)
mae <- mean(abs(preds-ts$a1))
mae

## [1] 12.28

cr <- cor(preds,ts$a1)
cr

## [1] 0.5124

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 77 / 240

Hands on Tree-based Models

Hands on Tree-based Models - the Wines data

File Wine.Rdata contains two data frames with data on green wine
quality: (i) redWine and (ii) whiteWine. Each of these data sets
contains a series of tests with green wines (red and white). For each of
these tests the values of several physicochemical variables together
with a quality score assigned by wine experts (column quality).

1 Build a regression tree for the white wines data set
2 Obtain a graph of the obtained regression tree
3 Apply the tree to the data used to obtain the model and calculate

the mean squared error of the predictions
4 Split the data set in two parts: 70% of the tests and the remaining

30%. Using the larger part to obtain a regression tree and apply it
to the other part. Calculate again the mean squared error.
Compare with the previous scores and comment.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 78 / 240



Bayesian Classification
Naive Bayes

Naive Bayes

Bayesian Classification

Bayesian classifiers are statistical classifiers - they predict the
probability that a case belongs to a certain class
Bayesian classification is based on the Bayes’ Theorem (next
slide)
A particular class of Bayesian classifiers - the Naive Bayes
Classifier - has shown rather competitive performance on several
problems even when compared to more “sophisticated” methods
Naive Bayes is available in R on package e1071, through function
naiveBayes()

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 80 / 240



Naive Bayes Bayes Theorem

The Bayes’ Theorem - 1

Let D be a data set formed by n cases {〈x, y〉}ni=1, where x is a
vector of p variable values and y is the value on a target nominal
variable Y ∈ Y
Let H be a hypothesis that states that a certain test cases belongs
to a class c ∈ Y
Given a new test case x the goal of classification is to estimate
P(H|x), i.e. the probability that H holds given the evidence x
More specifically, if Y is the domain of the target variable Y we
want to estimate the probability of each of the possible values
given the test case (evidence) x

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 81 / 240

Naive Bayes Bayes Theorem

The Bayes’ Theorem - 2

P(H|x) is called the posterior probability, or a posteriori
probability, of H conditioned on x
We can also talk about P(H), the prior probability, or a priori
probability, of the hypothesis H
Notice that P(H|x) is based on more information than P(H), which
is independent of the observation x
Finally, we can also talk about P(x|H) as the posterior probability
of x conditioned on H

Bayes’ Theorem

P(H|x) =
P(x|H)P(H)

P(x)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 82 / 240



Naive Bayes The Naive Bayes Classifier

The Naive Bayes Classifier

How it works?

We have a data set D with cases belonging to one of m classes
c1, c2, · · · , cm

Given a new test case x this classifier produces as prediction the
class that has the highest estimated probability, i.e.
maxi∈{1,2,··· ,m} P(ci |x)

Given that P(x) is constant for all classes, according to the Bayes
Theorem the class with the highest probability is the one
maximizing the quantity P(x|ci)P(ci)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 83 / 240

Naive Bayes The Naive Bayes Classifier

The Naive Bayes Classifier - 2

How it works? (cont.)

The class priors P(ci)’s are usually estimated from the training data
as |Dci |/|D|, where |Dci | is the number of cases in D that belong to
class ci
Regards the quantities P(x|ci)’s the correct computation would be
computationally very demanding. The Naive Bayes classifier
simplifies this task by naively assuming class condition independence.
This essentially resumes to assuming that there is no dependence
relationship among the predictors of the problem. This independence
allows us to use,

P(x|ci) =

p∏
k=1

P(xk |ci)

Note that the quantities P(x1|ci),P(x2|ci), · · · ,P(xp|ci) can be easily
estimated from the training data

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 84 / 240



Naive Bayes The Naive Bayes Classifier

The Naive Bayes Classifier - 3

How to estimate P(x1|ci),P(x2|ci), · · · ,P(xp|ci)

If Xk is a nominal variable then P(xk |ci) is the number of values in
D of class ci that have the value xk in variable (predictor) Xk ,
divided by the number of cases in D of class ci

If Xk is a numeric variable things are slightly more complex. We
typically assume that the variable follows a normal distribution with
a mean µ and standard deviation σ, defined by,

f (x , µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2

Thus we estimate P(xk |ci) = f (xk , µci , σci ), where µci (σci ) is the
mean (standard deviation) of the values of variable Xk for the
cases belonging to class ci

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 85 / 240

Naive Bayes The Naive Bayes Classifier

An Illustrative Example

Weather Temp Humidity Wind Decision
rain 26 high 15 dontPlay
rain 35 normal 102 dontPlay
rain 12 high 120 play
rain 11 normal 95 play
rain 15 high 94 play
rain 29 high 79 dontPlay
rain 26 normal 75 dontPlay
rain 33 high 96 play
rain 28 normal 44 play
rain 21 high 84 play
overcast 27 high 99 play
overcast 26 normal 97 play
overcast 21 normal 74 play
overcast 10 normal 70 play
overcast 30 high 108 play
overcast 30 normal 16 play
overcast 30 normal 13 play
overcast 14 normal 32 play
sun 30 normal 89 dontPlay
sun 19 high 111 dontPlay
sun 14 normal 81 play
sun 19 high 41 dontPlay
sun 35 normal 38 dontPlay
sun 32 normal 55 dontPlay
sun 11 high 108 dontPlay
sun 33 normal 103 play
sun 29 high 105 dontPlay
sun 15 normal 63 dontPlay

How to classify 〈sun,16,normal ,70〉?

P(play) = 16/28 = 0.57 P(dontPlay) = 12/28 = 0.43

P(〈sun, 16, normal, 70〉|play) =P(sun|play)× P(16|play)× · · ·
P(sun|play) = 2/16 = 0.125

P(16|play) = f (16, µ(Temp)play , σ(Temp)play )

= f (16, 22.18, 8.38) = 0.23

P(normal|play) =10/16 = 0.625

P(70|play) =f (70, µ(Wind)play , σ(Wind)play )

= f (70, 76.625, 33.06) = 0.42

P(〈sun, 16, normal, 70〉|play) =0.125× 0.23× 0.625× 0.42

= 0.0075

P(〈sun, 16, normal, 70〉|play)× P(play) =0.0075× 0.57

= 0.004275

Repeat for
P(〈sun, 16, normal, 70〉 | dontPlay)× P(dontPlay)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 86 / 240



Naive Bayes The Naive Bayes Classifier

Naive Bayes in R
library(e1071)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nb <- naiveBayes(Species ~ ., tr)
(mtrx <- table(predict(nb,ts),ts$Species))

##
## setosa versicolor virginica
## setosa 12 0 0
## versicolor 0 21 1
## virginica 0 0 16

(err <- 1-sum(diag(mtrx))/sum(mtrx))

## [1] 0.02

head(predict(nb,ts,type='raw'))

## setosa versicolor virginica
## [1,] 1 1.742e-19 6.014e-34
## [2,] 1 1.969e-19 3.725e-35
## [3,] 1 2.991e-18 2.648e-34
## [4,] 1 5.136e-19 2.007e-32
## [5,] 1 3.718e-18 2.193e-32
## [6,] 1 2.880e-20 3.149e-37

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 87 / 240

Naive Bayes The Naive Bayes Classifier

Laplace Correction

What if one of the P(xk |ci)’s is equal to zero? This can easily
happen in nominal variables if one of the values does not occur in
a class.
This would make the product P(x|ci) =

∏p
k=1 P(xk |ci) = 0

This zero probability would cancel the effects of all other P(xk |ci)’s

The Laplace correction or Laplace estimator is a technique for
probability estimation that tries to overcome these issues

It consist in estimating P(xk |ci) by |Dxk ,ci |+q
|Dci |+q , where q is an integer

greater than zero (typically 1)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 88 / 240



Naive Bayes The Naive Bayes Classifier

Laplace Correction in R
library(e1071)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nb <- naiveBayes(Species ~ ., tr,laplace=1)
(mtrx <- table(predict(nb,ts),ts$Species))

##
## setosa versicolor virginica
## setosa 12 0 0
## versicolor 0 21 1
## virginica 0 0 16

(err <- 1-sum(diag(mtrx))/sum(mtrx))

## [1] 0.02

head(predict(nb,ts,type='raw'))

## setosa versicolor virginica
## [1,] 1 1.742e-19 6.014e-34
## [2,] 1 1.969e-19 3.725e-35
## [3,] 1 2.991e-18 2.648e-34
## [4,] 1 5.136e-19 2.007e-32
## [5,] 1 3.718e-18 2.193e-32
## [6,] 1 2.880e-20 3.149e-37

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 89 / 240

k -Nearest Neighbors



k-Nearest Neighbors

k Nearest Neighbors

The k-nearest neighbor method was first described in the early
1950s.
This method is computationally intensive with large data sets and
it did not enjoy lots of popularity because of this.
With the advent of cheap computing power its popularity has
increased a lot because it is a very simple and effective method
that can easily handle both classification and regression problems.
k-nearest neighbors can be seen as methods that learn by
analogy - i.e. they are based on the notion of similarity between
cases.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 91 / 240

k-Nearest Neighbors

k Nearest Neighbors (cont.)

The Basic Idea

If we are given a new test case x for which we want a prediction
1 search in the training set for the most similar cases (the nearest

neighbors) to x
2 use the outcomes of these cases to obtain the prediction for x

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 92 / 240



k-Nearest Neighbors

k Nearest Neighbors
Main Characteristics

The k-nearest neighbors are known as lazy learners as they do
not learn any model of the data
Learning in k-nearest neighbors consists simply in storing the
training data

Variants here include storing in data structures that provide efficient
querying of the nearest neighbors

They do not make any assumption on the unknown functional form
we are trying to approximate, which means that with sufficient
data they are applicable to any problem
They usually achieve good results but...

They require a proper distance metric to be defined - issues like
normalization, irrelevant variables, unknown values, etc., may have
a strong impact on their performance

They have fast training time, but slow prediction time

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 93 / 240

k-Nearest Neighbors Distance Functions

The Notion of Similarity

The key issue on kNN is the notion of similarity
This notion is strongly related with the notion of distance between
observations
Distances among observations in a data set can be used to find
the neighbors of a test case

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 94 / 240



k-Nearest Neighbors Distance Functions

How to Calculate the Distance between 2 Cases?

The notion of distance is related to the differences between the
values on the variables describing the cases

ID Income Sex Position Age
1 2500 f manager 35
2 2750 f manager 30
3 4550 m director 50

Case 1 is “closer” to case 2 than to 3

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 95 / 240

k-Nearest Neighbors Distance Functions

The Euclidean Distance Function

d(x,y) =

√√√√ p∑
i=1

(xi − yi)2

where xi is the value of case x on variable i

Example

Given two cases x =< 3,5,1 > and y =< 12,5.4,−3 > their
Euclidean distance is given by

d(x,y) =
√

(3− 12)2 + (5− 5.4)2 + (1− (−3))2 = 9.85697

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 96 / 240



k-Nearest Neighbors Distance Functions

A Generalization - the Minkowski distance

d(x,y) =

( p∑
i=1

|xi − yi |r
)1/r

where if

r = 1 we have what is known as the Manhattan distance (or
L1-norm)
r = 2 we have the Euclidean distance
etc.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 97 / 240

k-Nearest Neighbors Distance Functions

Potential Problems with Distance Calculation

In domains where cases are described by many variables several
problems may arise that may distort the notion of distance between
any two cases.

Different scales of variables
Different importance of variables
Different types of data (e.g. both numeric and nominal variables,
et.c)
etc.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 98 / 240



k-Nearest Neighbors Distance Functions

Heterogeneous Distance Functions

How to calculate the distance between two cases described by
variables with different type (e.g. numeric and nominal variables)?
A possible solution,

d(x,y) =

p∑
i=1

δi(xi , yi)

emque,

δi(v1, v2) =


1 if i is nominal e v1 6= v2
0 if i is nominal e v1 = v2
|v1−v2|
range(i) if i is numeric

The distance between < 2500, f, director, 35 > and < 2750, f, director,
30 > would be given by |2500−2750|

range(Salary) + 0 + 0 + |35−30|
range(Age)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 99 / 240

k-Nearest Neighbors k Nearest Neighbors Classification

1-Nearest Neighbor Classifier

Method

Search for the training case most similar to the test case
Predict for the test case the class of this nearest neighbor

Very simple method
May suffer with the presence of outliers
Frequently achieves good results

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 100 / 240



k-Nearest Neighbors k Nearest Neighbors Classification

k-Nearest Neighbor Classifier

Use the k nearest neighbors to obtain the classification of the test
case
Namely, the majority class on the k neighbors is the prediction of
the mehtod
What should be the value of k?

Frequent values are 3, 5 and 7
Odd numbers to avoid draws!
It can be estimated experimentally

Global estimation searches for the ideal k for a given data set
Local estimation methods try to estimate the ideal k for each test
case (computationally very demanding!)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 101 / 240

k-Nearest Neighbors k Nearest Neighbors Classification

k-nearest neighbors in R

Package class contains function knn()

library(class)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn3 <- knn(tr[,-5],ts[,-5],tr[,5],k=3)
(mtrx <- table(nn3,ts$Species))

##
## nn3 setosa versicolor virginica
## setosa 12 0 0
## versicolor 0 20 1
## virginica 0 1 16

(err <- 1-sum(diag(mtrx))/sum(mtrx))

## [1] 0.04

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 102 / 240



k-Nearest Neighbors k Nearest Neighbors Classification

k-nearest neighbors in R - 2

Package DMwR has a wrapper function with a “standard”
interface,

library(class)
library(DMwR)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn3 <- kNN(Species ~ .,tr,ts,k=3,norm=TRUE)
(mtrx <- table(nn3,ts$Species))

##
## nn3 setosa versicolor virginica
## setosa 12 0 0
## versicolor 0 20 3
## virginica 0 1 14

(err <- 1-sum(diag(mtrx))/sum(mtrx))

## [1] 0.08

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 103 / 240

k-Nearest Neighbors k Nearest Neighbors Classification

Trying to find the “ideal” value of k in R

trials <- c(1,3,5,7,11,13,15)
nreps <- 10
res <- matrix(NA,nrow=length(trials),ncol=2)
for(k in seq_along(trials)) {

errs <- rep(0,nreps)
for(r in 1:nreps) {

sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn3 <- kNN(Species ~ .,tr,ts,k=trials[k],norm=TRUE)
mtrx <- table(nn3,ts$Species)
errs[r] <- 1-sum(diag(mtrx))/sum(mtrx)

}
res[k,] <- c(mean(errs),sd(errs))

}
dimnames(res) <- list(paste('k',trials,sep='='),c('avg','std'))
res

## avg std
## k=1 0.082 0.02741
## k=3 0.050 0.02708
## k=5 0.056 0.01265
## k=7 0.052 0.03676
## k=11 0.040 0.02108
## k=13 0.046 0.02503
## k=15 0.070 0.02539

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 104 / 240



k-Nearest Neighbors k Nearest Neighbors Regression

k-Nearest Neighbor Regression

Method

Search for the training case most similar to the test case
Predict for the test case the average of the target variable values
of the neighbors

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 105 / 240

k-Nearest Neighbors k Nearest Neighbors Regression

k-nearest neighbors regression in R

Package caret has a function that to obtain these models

library(caret)
data(Boston,package="MASS")
set.seed(1234)
sp <- sample(1:506,354)
tr <- Boston[sp,]
ts <- Boston[-sp,]
tgt <- which(colnames(Boston) == "medv")
nn3 <- knnreg(tr[,-tgt],tr[,tgt],k=3)
pnn3 <- predict(nn3,ts[,-tgt])
(mse <- mean((pnn3-ts[,tgt])^2))

## [1] 44.93

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 106 / 240



Support Vector Machines

Support Vector Machines (SVMs)

A Bit of History...

SVM’s were introduced in 1992 at the COLT-92 conference
They gave origin to a new class of algorithms named kernel
machines
Since then there has been a growing interest on these methods
More information may be obtained at
www.kernel-machines.org

A good reference on SVMs:
N. Cristianini and J. Shawe-Taylor: An introduction to Support
Vector Machines. Cambridge University Press, 2000.
SVMs have been applied with success in a wide range of areas
like: bio-informatics, text mining, hand-written character
recognition, etc.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 108 / 240

www.kernel-machines.org


Support Vector Machines (SVMs) The Basic Idea

Two Linearly Separable Classes

b

w

Class       , y= +1

Class       , y = −1

X2

X1

Obtain a linear separation of the cases (binary classification
problems)
Very simple and effective for linearly separable problems
Most real-world problems are not linearly separable!

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 109 / 240

Support Vector Machines (SVMs) The Basic Idea

The Basic Idea of SVMs

Map the original data into a new space of variables with very high
dimension.
Use a linear approximation on this new input space.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 110 / 240



Support Vector Machines (SVMs) The Basic Idea

The Idea in a Figure

Map the original data into a new (higher dimension) coordinates
system where the classes are linearly separable

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 111 / 240

Support Vector Machines (SVMs) The Separating Hyperplane

Maximum Margin Hyperplane

Class       , y= +1

Class       , y = −1

X2

X1

Class       , y= +1

Class       , y = −1

X2

X1

There is an infinite number of
hyperplanes separating the two
classes!
Which one should we choose?!
We want the one that ensures a better
classification accuracy on unseen data
SVMs approach this problem by
searching for the maximum margin
hyperplane

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 112 / 240



Support Vector Machines (SVMs) The Separating Hyperplane

The Support Vectors

Class       , y= +1

Class       , y = −1

X2

X1

H1

H2

All cases that fall on the hyperplanes H1
and H2 are called the support vectors.

Removing all other cases would not
change the solution!

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 113 / 240

Support Vector Machines (SVMs) The Separating Hyperplane

The Optimal Hyperplane

SVMs use quadratic optimization algorithms to find the optimal
hyperplane that maximizes the margin that separates the cases
from the 2 classes
Namely, these methods are used to find a solution to the following
equation,

LD =
n∑

i=1

αi −
1
2

n∑
i,j

αiαjyiyj(xi · xj)

Subject to :

αi ≥ 0∑
i

αiyi = 0

In the found solution, the αi ’s > 0 correspond to the support
vectors that represent the optimal solution

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 114 / 240



Support Vector Machines (SVMs) The Problem of Linear Separability

Recap

Most real world problems are not linearly separable
SVMs solve this by “moving” into a extended input space where
classes are already linearly separable
This means the maximum margin hyperplane needs to be found
on this new very high dimension space

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 115 / 240

Support Vector Machines (SVMs) The Problem of Linear Separability

The Kernel trick

The solution to the optimization equation involves dot products
that are computationally heavy on high-dimensional spaces
It was demonstrated that the result of these complex calculations
is equivalent to the result of applying certain functions (the kernel
functions) in the space of the original variables.

The Kernel Trick
Instead of calculating the dot products in a high dimensional space,
take advantage of the proof that K (x, z) = φ(x) · φ(z) and simply
replace the complex dot products by these simpler and efficient
calculations

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 116 / 240



Support Vector Machines (SVMs) The Problem of Linear Separability

Summary of the SVMs Method

As problems are usually non-linear on the original feature space,
move into a high-dimension space where linear separability is
possible
Find the optimal separating hyperplane on this new space using
quadratic optimization algorithms
Avoid the heavy computational costs of the dot products using the
kernel trick

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 117 / 240

Support Vector Machines (SVMs) Multiple Classes

How to handle more than 2 classes?

Solve several binary classification tasks
Essentially find the support vectors that separate each class from
all others

The Algorithm

Given a m classes task
Obtain m SVM classifiers, one for each class
Given a test case assign it to the class whose separating
hyperplane is more distant from the test case

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 118 / 240



Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R
The package e1071

library(e1071)
data(Glass,package='mlbench')
tr <- Glass[1:200,]
ts <- Glass[201:214,]
s <- svm(Type ~ .,Glass)
predict(s,ts)

## 201 202 203 204 205 206 207 208 209 210 211 212 213 214
## 7 7 7 7 7 7 7 7 7 7 7 7 7 7
## Levels: 1 2 3 5 6 7

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 119 / 240

Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R (2)
The package e1071

ps <- predict(s,ts)
table(ps,ts$Type)

##
## ps 1 2 3 5 6 7
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## 7 0 0 0 0 0 14

mc <- table(ps,ts$Type)
error <- 100*(1-sum(diag(mc))/sum(mc))
error

## [1] 0

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 120 / 240



Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression

Vapnik (1995) proposed the notion of ε support vector regression
The goal in ε-SV Regression is to find a function f (x) that has at
most ε deviation from the given training cases
In other words we do not care about errors smaller than ε

V. Vapnik (1995). The Nature of Statistical Learning Theory. Springer.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 121 / 240

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

ε-SV Regression uses the following error metric,

|ξ|ε =

{
0 if |ξ| ≤ ε
|ξ| − ε otherwise

x

x
x x

x x x x

x x

x 0

−ε

−ε

+ε

+ε

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 122 / 240



Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

The theoretical development of this idea leads to the following
optimization problem,

Minimize :
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

Subject to :


yi −w · x− b ≤ ε+ ξi
w · x + b − yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

where C corresponds to the cost to pay for each violation of the
error limit ε

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 123 / 240

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

As within classification we use the kernel trick to map a non-linear
problem into a high dimensional space where we solve the same
quadratic optimization problem as in the linear case
In summary, by the use of the |ξ|ε loss function we reach a very
similar optimization problem to find the support vectors of any
non-linear regression problem.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 124 / 240



Support Vector Machines (SVMs) SVMs for Regression

SVMs for regression in R

library(e1071)
library(DMwR)
data(Boston,package='MASS')
set.seed(1234)
sp <- sample(1:nrow(Boston),354)
tr <- Boston[sp,]
ts <- Boston[-sp,]
s <- svm(medv ~ .,tr,cost=10,epsilon=0.02)
preds <- predict(s,ts)
regr.eval(ts$medv,preds)

## mae mse rmse mape
## 2.6678 13.8211 3.7177 0.1634

plot(ts$medv,preds,main='Errors Scaterplot',
ylab='Predictions',xlab='True')

abline(0,1,col='red',lty=2)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

Errors Scaterplot

True

P
re

di
ct

io
ns

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 125 / 240

Hands On SMVs

Hands on SVMs

The file Wine.Rdata contains 2 data frames with data about the
quality of “green” wines: i) redWine and ii) whiteWine. Each of
these data sets has information on a series of wine tasting sessions to
“green” wines (both red and white). For each wine sample several
physico-chemical properties of the wine sample together with a quality
score assigned by a committee of wine experts (variable quality).

1 Obtain and SVM for forecasting the quality of the red variant of
“green” wines

2 Split the data set in two parts: one with 70% of the samples and
the other with the remaining 30%. Obtain an SVM with the first
part and apply it to the second. What was the resulting mean
absolute error?

3 Using the round() function, round the predictions obtained in the
previous question to the nearest integer. Calculate the error rate
of the resulting integers when compared to the true values

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 126 / 240



Artificial Neural Networks

Artificial Neural Networks (ANNs) Introduction

Artificial Neural Networks (ANNs)

Models with a strong biological inspiration.
McCulloch e Pitts (1943) proposed the first artificial model of a
neuron.
An artificial neural network is composed by a set of units
(neurons) that are connected. These connections have an
associated weight.
Each unit has an activation level as well as means to update this
level.
Some units are connected to the outside world. We have input
and output neurons.
Learning within ANNs consists of updating the weights of the
network connections.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 128 / 240



Artificial Neural Networks (ANNs) Introduction

The Problem

ini =
∑

ai

g

Input
Function

Activation
Function

Output

Input
Connections

ai wi,j
ai = g(ini)

Output
Connections

Each unit has a very simple function:
Receive the input impulses and calculate its ouput as a function of
these impulses.

This calculation is divided in two parts:
a linear computation (of the inputs):

ini =
∑

j

wj,i · aj

A non-linear computation (the activation function)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 129 / 240

Artificial Neural Networks (ANNs) Activation Functions

Activation Functions

Different activation functions provide different behaviours.

Some common functions
The Step Function

step(x) =

{
1 if x ≥ t
0 if x < t

The Sign Function

sign(x) =

{
+1 if x ≥ 0
−1 if x < 0

The Sigmoid Functions

sigmoid(x) =
1

1 + exp−x

ai

+1

t ini

ai

+1

ini

-1

ai

+1

ini

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 130 / 240



Artificial Neural Networks (ANNs) Activation Functions

Activation Functions - 2

The units can have thresholds that represent the minimum value
of the weighted sum of the inputs (ini ) that activates the neuron.

There are also thresholded versions of the sign and sigmoid
functions

In the majority of cases we treat the thresholds as an extra input
unit

The extra unit has a fixed activation value a0 = −1
The weight of this unit is equal to −t
With this approximation we have units with a threshold of zero (as
the real threshold is treated as an extra weight).
Mathematically we get:

ai = stept

 n∑
j=1

wj,i · aj

 = step0

 n∑
j=0

wj,i · aj


where w0,i = t and a0 = −1

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 131 / 240

Artificial Neural Networks (ANNs) Types of Networks

Networks of Computation Units (ANNs)

There are two main types of ANNs:
Feed-forward networks

Networks with uni-directional connections (from input to output), and
without cycles.

Recurrent networks
Networks with arbitrary connections

Usually the networks are structured in layers
On a feed-forward network each unit is connected only to units in
the following layer. There are not connections from units on a
certain layer and units on previous layers.
Due to the possible feedback effects, recurrent networks are
potentially more instable, possibly exhibiting caotic behaviors.
Usually they take longer to converge.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 132 / 240



Artificial Neural Networks (ANNs) Types of Networks

Feed-forward Networks

I1

I2

W1,3

W4,5W2,4

W2,3

W1,4

W3,5H3

H4

O5

There are networks without “hidden” layers. These are usually
known as perceptron networks.

These networks have a very simple learning process but strong
limitations in the functions they may learn

Networks with hidden layers are called multilayer networks
If we fix the structure of the network we may represent the output
of a network as follows:

a5 = g(W3,5a3 + W4,5a4) = g
(
W3,5g(W1,3a1 + W2,3a2) + W4,5g(W1,4a1 + W2,4a2)

)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 133 / 240

Artificial Neural Networks (ANNs) Types of Networks

Perceptron Networks

Rosenblatt (1958) introduced the notion of perceptron networks.
This work was then further extended by Minsky and Papert (1969).
Each output unit, O, gets its activation value from,

O = step0

 n∑
j=0

Wj Ij

 = step0(W · I)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 134 / 240



Artificial Neural Networks (ANNs) Types of Networks

The Limitations of Perceptron Networks

This class of networks may only represent certain classes of
boolean functions.

I2

I1
1

10
I1and I2

I2

I1
1

10 I2

I1
1

10
I1or I2

?

I1xor I2

Perceptrons are limited to linearly separable functions
A perceptron produces a 1 iif W · I > 0

In the case I1andI2 the plane separating 1 from 0 is I1 + I2 = 1.5

There is a learning algorithm for perceptrons that ensures the
ability to learn any linearly separable functions, provided enough
examples are given.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 135 / 240

Artificial Neural Networks (ANNs) Types of Networks

Feed-forward Multi-Layer Architectures

The following is a frequently used multilayer feed-forward network
architecture:

...

Ik Wk ,j

aj

Input
Layer

Hidden
Layer

Output
Layer

Wj,i

O1

Om

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 136 / 240



Artificial Neural Networks (ANNs) Backpropagation

The Backpropagation Algorithm

This is the most popular algorithm for learning ANNs
It has similarities with the learning algorithm used in perceptron
networks

Each example is presented to the network
If the correct output is produced nothing is done
If there is an error we need to re-adjust the network weights
This adjustment is simple in perceptrons as there is a single
connection between the input and output nodes
In multilayer networks things are not that simple as we need to
divide the adjustments across the nodes and layers of the network

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 137 / 240

Artificial Neural Networks (ANNs) Backpropagation

Weight Adjustment through Backpropagation

ini

Wj,i

Oiaj

Let Erri = (Ti −Oi) be the error in output unit Oi

The updating rule from the hidden units to the output unit Oi is

Wj,i = Wj,i + η · aj ·∆i where ∆i = g′(ini) · Erri

where g′(.) is the derivative of the activation function g(.) and η is
known as the learning rate.
If using the sigmoid activation function this results in:

∆i = Oi · (1−Oi) · Erri = Oi · (1−Oi) · (Ti −Oi)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 138 / 240



Artificial Neural Networks (ANNs) Backpropagation

Weight Adjustment through Backpropagation - 2

To update the weights of the connections between the input units
and the hidden units we need a quantity similar to Erri . This is
where the backpropagation idea enters:

Each hidden unit j is responsible for a certain fraction of the error
∆i in the output nodes to which it is connected. Thus each ∆i value
is going to be divided according to the weight of the connection
between the respective hidden and output units, thus propagating
the errors backwards:

∆j = g′(inj ) ·
∑

i

Wj,i ·∆i Wk,j = Wk,j + η · Ik ·∆j

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 139 / 240

Artificial Neural Networks (ANNs) Backpropagation

The Backpropagation Algorithm
1: function BACKPROPAGATION(ANN,Data, η)
2: repeat
3: for all ex ∈ Data do
4: O ← OutputANN(ANN, ex)

5: for all i ∈ OutputUnits(ANN) do
6: Erri ← Ti − Oi
7: ∆i ← Erri · g′(ini )

8: end for
9: for all j ∈ HiddenUnits(ANN) do
10: Errj ← 0

11: for all i ∈ OutputUnits(ANN) do
12: Errj ← wj,i · ∆i

13: wj,i ← Wj,i + η · aj · ∆i

14: end for
15: Deltaj ← Errj · g′(inj )

16: end for
17: for all k ∈ InputUnits(ANN) do
18: for all j ∈ HiddenUnits(ANN) do
19: Wk,j = Wk,j + η · Ik · ∆j

20: end for
21: end for
22: end for
23: until Converge(ANN)

24: return ANN
25: end function

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 140 / 240



Artificial Neural Networks (ANNs) ANNs in R

Obtaining a feed-forward multilayer ANN in R

library(nnet)
data(iris)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn <- nnet(Species ~ .,tr,size=5, decay =0.1, maxit=1000)

## # weights: 43
## initial value 119.514232
## iter 10 value 54.207924
## iter 20 value 23.457619
## iter 30 value 18.693044
## iter 40 value 17.815623
## iter 50 value 17.705735
## iter 60 value 17.407647
## iter 70 value 17.377002
## iter 80 value 17.361747
## iter 90 value 17.257140
## iter 100 value 17.221449
## iter 110 value 17.218631
## final value 17.218628
## converged

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 141 / 240

Artificial Neural Networks (ANNs) ANNs in R

Obtaining a feed-forward multilayer ANN in R

(mtrx <- table(predict(nn,ts,type='class'),ts$Species))

##
## setosa versicolor virginica
## setosa 12 0 0
## versicolor 0 20 0
## virginica 0 1 17

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 142 / 240



Artificial Neural Networks (ANNs) ANNs in R

Obtaining a feed-forward multilayer ANN in R
nn

## a 4-5-3 network with 43 weights
## inputs: Sepal.Length Sepal.Width Petal.Length Petal.Width
## output(s): Species
## options were - softmax modelling decay=0.1

summary(nn)

## a 4-5-3 network with 43 weights
## options were - softmax modelling decay=0.1
## b->h1 i1->h1 i2->h1 i3->h1 i4->h1
## 1.47 0.97 1.29 -1.65 -2.02
## b->h2 i1->h2 i2->h2 i3->h2 i4->h2
## -0.16 -0.30 -0.85 1.44 0.63
## b->h3 i1->h3 i2->h3 i3->h3 i4->h3
## 0.19 0.34 0.97 -1.66 -0.73
## b->h4 i1->h4 i2->h4 i3->h4 i4->h4
## -1.95 -1.19 -1.66 2.04 2.53
## b->h5 i1->h5 i2->h5 i3->h5 i4->h5
## -0.16 -0.30 -0.85 1.44 0.63
## b->o1 h1->o1 h2->o1 h3->o1 h4->o1 h5->o1
## 0.57 1.33 -1.77 2.45 -0.65 -1.77
## b->o2 h1->o2 h2->o2 h3->o2 h4->o2 h5->o2
## -0.55 1.73 1.35 -2.10 -2.98 1.35
## b->o3 h1->o3 h2->o3 h3->o3 h4->o3 h5->o3
## -0.02 -3.06 0.42 -0.35 3.64 0.42

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 143 / 240

Artificial Neural Networks (ANNs) ANNs in R

Obtaining a feed-forward multilayer ANN in R

nn

## a 4-5-3 network with 43 weights
## inputs: Sepal.Length Sepal.Width Petal.Length Petal.Width
## output(s): Species
## options were - softmax modelling decay=0.1

head(predict(nn,ts))

## setosa versicolor virginica
## 1 0.9889885 0.010335105 0.0006764155
## 3 0.9869150 0.012323611 0.0007613524
## 9 0.9783846 0.020543622 0.0010718246
## 11 0.9897715 0.009585496 0.0006430209
## 12 0.9837816 0.015337819 0.0008805736
## 14 0.9875598 0.011704266 0.0007359794

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 144 / 240



Artificial Neural Networks (ANNs) ANNs in R

Tunning the ANN

set.seed(1234)
trials <- expand.grid(sz=c(3,5,7),dc=c(0.1,0.01,0.05))
nreps <- 10
res <- matrix(NA,nrow=nrow(trials),ncol=2)
for(k in 1:nrow(trials)) {

errs <- rep(0,nreps)
for(r in 1:nreps) {

sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn <- nnet(Species ~ .,tr,

size=trials[k,"sz"],decay=trials[k,"dc"],
maxit=1000,trace=F)

mtrx <- table(predict(nn,ts,type='class'),ts$Species)
errs[r] <- 1-sum(diag(mtrx))/sum(mtrx)

}
res[k,] <- c(mean(errs),sd(errs))

}

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 145 / 240

Artificial Neural Networks (ANNs) ANNs in R

Tunning the ANN - 2

dimnames(res) <- list(apply(trials,1,
function(x) paste(colnames(trials)[1],x[1],colnames(trials)[2],x[2],sep='_')),

c('avg','std'))
res

## avg std
## sz_3_dc_0.1 0.020 0.01333333
## sz_5_dc_0.1 0.018 0.01475730
## sz_7_dc_0.1 0.028 0.02699794
## sz_3_dc_0.01 0.026 0.02118700
## sz_5_dc_0.01 0.022 0.01751190
## sz_7_dc_0.01 0.022 0.01988858
## sz_3_dc_0.05 0.026 0.02319004
## sz_5_dc_0.05 0.034 0.01897367
## sz_7_dc_0.05 0.026 0.01349897

res[which.min(res[,1]),,drop=FALSE]

## avg std
## sz_5_dc_0.1 0.018 0.0147573

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 146 / 240



Artificial Neural Networks (ANNs) Summary

Pros and Cons of ANNs

Pros
Tolerance of noisy data
Ability to classify patterns on which they have not been trained
Successful on a wide range of real-world problems
Algorithms are inherently parallel

Cons
Long training times
Resulting models are essentially black boxes

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 147 / 240

Multivariate Adaptive
Regression Splines



Multivariate Adaptive Regression Splines

Additive Models

Main idea:
A complex function may be decomposed in an additive way such
that each term has a simpler form.
Main advantage/motivation: additive models are very interpretable

A Generalized Additive Model (GAM) (Hastie and Tibshirani,
1990) can be defined as,

r(x) = α +
a∑

i=1

fi(Xi)

where the fi ’s are univariate functions.

Hastie,T., Tibshirani,R. (1990) : Generalized Additive Models. Chapman & Hall.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 149 / 240

Multivariate Adaptive Regression Splines

Additive Models (cont.)

r(x) = α +
a∑

i=1

fi(Xi)

These models can be further generalized over functions with more
than one variable.
The model parameters are usually obtained through the
backfitting algorithm (Friedman and Stuetzle, 1981).

Friedman,J., Stuetzle,W. (1981) : Projection pursuit regression. Journal of the American

Statistical Association, 76 (376), 817-823

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 150 / 240



Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS)

These are another example of additive models, this time with the
form,

r(x) = c0 +

p∑
i=1

ci

Ki∏
k=1

[
sk ,i

(
Xv(k ,i) − tk ,i

)]
+

where
[
sk ,i

(
Xv(k ,i) − tk ,i

)]
+

are two-sided trucanted base
functions.
These models can be re-written in an easier to understand format
as follows,

r(x) = c0 +
∑

ci · Bi(x)

where the Bi ’s are basis functions and the ci ’s are constants.

Friedman,J. (1991) : Multivariate Adaptive Regression Splines. Annals of Statistics, 19:1, 1-141.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 151 / 240

Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) - 2

The basis functions usually take one of the following forms:
1 the constant 1 (for the intercept)
2 a hinge function with the form max(0,X − k) or max(0, k − X ),

where k are constants
3 a product of two or more hinge functions, which try to capture the

interactions between two or more variables

0 2 4 6 8 10

0
1

2
3

4

Two Examples of Hinge Functions

x

max(0,X−5.3)
max(0,3.6−X)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 152 / 240



Multivariate Adaptive Regression Splines

MARS - the algorithm

MARS builds models in two phases: the forward and backward
passes

1 Forward pass
start with an intercept (mean of the target)
iteratively keep adding new basis function terms
this is carried out until a certain termination criterion is met

2 Backward pass
iteratively tries to remove each term in turn
use a cross validation criterion to compare and select alternatives

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 153 / 240

Multivariate Adaptive Regression Splines

Obtaining MARS Models in R

library(DMwR)
library(earth) # extra package to install
data(Boston, package="MASS")
sp <- sample(1:nrow(Boston),as.integer(0.7*nrow(Boston)))
tr <- Boston[sp,]
ts <- Boston[-sp,]
mars <- earth(medv ~ .,tr)
preds <- predict(mars,ts)
regr.eval(ts$medv,preds,train.y=tr$medv)

## mae mse rmse mape nmse nmae
## 2.7063 12.7442 3.5699 0.1264 0.1722 0.4122

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 154 / 240



Multivariate Adaptive Regression Splines

Obtaining MARS Models in R (cont.)

summary(mars)

## Call: earth(formula=medv~., data=tr)
##
## coefficients
## (Intercept) 30.3372
## h(crim-4.22239) -0.4881
## h(crim-22.0511) 0.4375
## h(nox-0.488) -23.4996
## h(rm-6.405) 6.6240
## h(rm-7.454) 10.5300
## h(rm-7.923) -22.6268
## h(dis-2.4298) -0.7862
## h(2.4298-dis) 6.6821
## h(rad-7) 0.4358
## h(tax-300) -0.0141
## h(ptratio-14.7) -0.7006
## h(black-395.5) -1.3363
## h(395.5-black) -0.0074
## h(lstat-6.07) -0.6514
## h(6.07-lstat) 2.5575
## h(lstat-24.56) 0.7851
##
## Selected 17 of 23 terms, and 9 of 13 predictors
## Importance: rm, lstat, ptratio, nox, dis, crim, rad, tax, black, ...
## Number of terms at each degree of interaction: 1 16 (additive model)
## GCV 15.53 RSS 4520 GRSq 0.8263 RSq 0.8564

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 155 / 240

Model Ensembles



Model Ensembles Motivation

Model Ensembles

What?

Ensembles are collections of models that are used together to
address a certain prediction problem

Why? (Diettrich, 2002)

For complex problems it is hard to find a model that “explains” all
observed data.
Averaging over a set of models typically leads to significantly
better results.

Dietterich, T. G. (2002). Ensemble Learning. In The Handbook of Brain Theory and
Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press,
2002. 405-408.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 157 / 240

Model Ensembles Motivation

The Bias-Variance Decomposition of Prediction Error

The prediction error of a model can be split in two main
components: the bias and the variance components

The bias component is the part of the error that is due to the poor
ability of the model to fit the seen data
The variance component has to do with the sensibility of the
model to the given training data

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 158 / 240



Model Ensembles Motivation

The Bias-Variance Decomposition of Prediction Error

Decreasing the bias by adjusting more to the training sample will
most probably lead to a higher variance - the over-fitting
phenomenon
Decreasing the variance by being less sensitive to the given
training data will most probably have as consequence a higher
bias
In summary: there is a well-known bias-variance trade-off in
learning a prediction model

Ensembles are able to reduce both components of the error

Their approach consist on applying the same algorithm to different
samples of the data and use the resulting models in a voting schema

to obtain predictions for new cases

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 159 / 240

Model Ensembles Types of Ensembles

Independent or Parallel Models

One of the ways of obtaining an ensemble is to construct them
independently in a way that ensures some diversity among them
There are several ways we can reach this diversity among which
we may refer:

Applying the models on somewhat different training sets
Applying the models on data sets using different predictors

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 160 / 240



Model Ensembles Types of Ensembles

Coordinated or Sequential Models

Another way of obtaining an ensemble is to construct a “larger”
model by composing it from smaller models integrated somehow
where each simpler model has some weighted participation in the
ensemble predictions
The task of this type of ensembles is then to choose the right
component models and their respective weight, so that the
weighted sum of these components has a good predictive
performance

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 161 / 240

Model Ensembles Ensembles using Independent Models

Bagging (Breiman, 1996)

Bagging (Bootstrap Aggregating) is a method that obtains a set of
k models using different bootstrap samples of the given training
data

For each model a sample with replacement of the same size as the
available data is obtained
This means that for each model there is a small proportion of the
examples that will be different

If the base learner has a high variance (i.e. very sensitive to
variations on the training sample), this will ensure diversity among
the k models
In this context, bagging should be applied to base learners with
high variance

Breiman, L. (1996): Bagging predictors. In Machine Learning, 24: 123–140.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 162 / 240



Model Ensembles Ensembles using Independent Models

A Simple Implementation of Bagging in R

simpleBagging <- function(form,data,model='rpartXse',nModels=100,...) {
ms <- list()
n <- nrow(data)
for(i in 1:nModels) {

tr <- sample(n,n,replace=T)
ms[[i]] <- do.call(model,c(list(form,data[tr,]),...))

}
ms

}

predict.simpleBagging <- function(models,test) {
ps <- sapply(models,function(m) predict(m,test))
apply(ps,1,mean)

}

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 163 / 240

Model Ensembles Ensembles using Independent Models

Using it...

data(Boston,package='MASS')
library(DMwR)

## Loading required package: methods
## Loading required package: lattice
## Loading required package: grid

set.seed(123)
trPerc <- 0.7
sp <- sample(1:nrow(Boston),as.integer(trPerc*nrow(Boston)))
tr <- Boston[sp,]
ts <- Boston[-sp,]

m <- simpleBagging(medv ~ .,tr,nModels=300,se=0.5)
ps <- predict.simpleBagging(m,ts)
mean(abs(ps-ts$medv))

## [1] 2.316893

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 164 / 240



Model Ensembles Ensembles using Independent Models

A More “Sophisticated” Implementation
Package ipred

library(ipred)
data(Boston,package='MASS')
set.seed(123)
trPerc <- 0.7
sp <- sample(1:nrow(Boston),as.integer(trPerc*nrow(Boston)))
tr <- Boston[sp,]
ts <- Boston[-sp,]

m <- bagging(medv ~ .,tr,nbagg=100)
ps <- predict(m,ts)
mean(abs(ps-ts$medv))

## [1] 2.839413

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 165 / 240

Model Ensembles Ensembles using Independent Models

Varying the Predictors

Another way of generating a diverse set of models is by using
different randomly chosen predictors
The idea is similar to bagging but instead of generating samples of
the cases we generate samples of the variables

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 166 / 240



Model Ensembles Ensembles using Independent Models

A Simple Implementation in R

randPreds <- function(tgtName,data,model='rpartXse',
nVars=(ncol(data)-1)%/%2,nModels=20,...) {

np <- ncol(data)-1
if (np <= nVars)

stop(paste("Nro de colunas nos dados insuficiente para escolher",
nVar,"variáveis"))

tgtCol <- which(colnames(data) == tgtName)
preds <- (1:ncol(data))[-tgtCol]

ms <- list()
for(i in 1:nModels) {

cols <- sample(preds,nVars)
form <- as.formula(paste(paste(names(data)[tgtCol],'~'),

paste(names(data)[cols],collapse='+')))
ms[[i]] <- do.call(model,c(list(form,data),...))

}
ms

}

predict.randPreds <- function(models,test) {
ps <- sapply(models,function(m) predict(m,test))
apply(ps,1,mean)

}

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 167 / 240

Model Ensembles Ensembles using Independent Models

Using it...

data(Boston,package='MASS')
library(DMwR)
set.seed(123)
trPerc <- 0.7
sp <- sample(1:nrow(Boston),as.integer(trPerc*nrow(Boston)))
tr <- Boston[sp,]
ts <- Boston[-sp,]

m <- randPreds("medv",tr,nModels=300,se=0.5)
ps <- predict.randPreds(m,ts)
mean(abs(ps-ts$medv))

## [1] 2.940712

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 168 / 240



Model Ensembles Ensembles using Independent Models

Random Forests (Breiman, 2001)

Random Forests put the ideas of sampling the cases and
sampling the predictors, together in a single method

Random Forests combine the ideas of bagging together with the
idea of random selection of predictors

Random Forests consist of sets of tree-based models where each
tree is obtained from a bootstrap sample of the original data and
uses some form of random selection of variables during tree
growth

Breiman, L. (2001): "Random Forests". Machine Learning 45 (1): 5—32.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 169 / 240

Model Ensembles Ensembles using Independent Models

Random Forests - the algorithm

For each of the k models

Draw a random sample with replacement to obtain the training set
Grow a classification or regression tree

On each node of the tree choose the best split from a randomly
selected subset m of the predictors

The trees are fully grown, i.e. no pruning is carried out

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 170 / 240



Model Ensembles Ensembles using Independent Models

Random Forests in R
The package randomForest

library(randomForest)
data(Boston,package="MASS")
samp <- sample(1:nrow(Boston),354)
tr <- Boston[samp,]
ts <- Boston[-samp,]
m <- randomForest(medv ~ ., tr)
ps <- predict(m,ts)
mean(abs(ts$medv-ps))

## [1] 2.378855

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 171 / 240

Model Ensembles Ensembles using Independent Models

A classification example

data(Glass,package='mlbench')
set.seed(1234)
sp <- sample(1:nrow(Glass),150)
tr <- Glass[sp,]
ts <- Glass[-sp,]
m <- randomForest(Type ~ ., tr,ntree=3000)
ps <- predict(m,ts)
table(ps,ts$Type)

##
## ps 1 2 3 5 6 7
## 1 13 5 3 0 0 1
## 2 2 18 0 3 0 2
## 3 0 0 1 0 0 0
## 5 0 0 0 4 0 0
## 6 0 1 0 0 3 0
## 7 0 0 0 0 0 8

mc <- table(ps,ts$Type)
err <- 100*(1-sum(diag(mc))/sum(mc))
err

## [1] 26.5625

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 172 / 240



Model Ensembles Ensembles using Independent Models

Other Uses of Random Forests
Variable Importance

data(Boston,package='MASS')
library(randomForest)
m <- randomForest(medv ~ ., Boston,

importance=T)
importance(m)

## %IncMSE IncNodePurity
## crim 16.001604 2511.3914
## zn 2.719681 184.4274
## indus 11.992644 2501.0269
## chas 4.496731 208.3667
## nox 18.440180 2702.4705
## rm 37.873226 13288.7533
## age 11.793865 1198.7370
## dis 17.957678 2423.8487
## rad 7.259293 320.4829
## tax 14.721102 1157.0856
## ptratio 15.715445 2716.8744
## black 11.498495 826.2531
## lstat 29.172401 11871.6578

varImpPlot(m,main="Feature Relevance Scores")

zn
chas
rad
black
age
indus
tax
ptratio
crim
dis
nox
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 15 25 35
%IncMSE

zn
chas
rad
black
tax
age
dis
indus
crim
nox
ptratio
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

0 4000 10000
IncNodePurity

Feature Relevance Scores

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 173 / 240

Hands on Random Forests

Hands on Linear Regression and Random Forests
the Algae data set

Load in the data set algae and answer the following questions:

1 How would you obtain a random forest to forecast the value of
alga a4

2 Repeat the previous exercise but now using a linear regression
model. Try to simplify the model using the step() function.

3 Obtain the predictions of the two previous models for the data
used to obtain them. Draw a scatterplot comparing these
predictions

4 Load the data set testAlgae. It contains a data frame named
test.algae with some extra 140 water samples for which we
want predictions. Use the previous two models to obtain
predictions for a4 on these new samples. Check what happened
to the test cases with NA’s. Fill-in the NA’s on the test set and
repeat the experiment.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 174 / 240



Hands on Random Forests Ensembles using Coordinated Models

Boosting

Boosting was developed with the goal of answering the question:
Can a set of weak learners create a single strong learner?
In the above question a “weak” learner is a model that alone is
unable to correctly approximate the unknown predictive function,
while a “strong” learner has that ability
Boosting algorithms work by iteratively creating a strong learner by
adding at each iteration a new weak learner to make the ensemble
Weak learners are added with weights that reflect the learner’s
accuracy
After each addition the data is re-weighted such that cases that
are still poorly predicted gain more weight
This means that each new weak learner will focus on the errors of
the previous ones

Rob Schapire (1990). Strength of Weak Learnability. Machine Learning Vol. 5, pages
197–227.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 175 / 240

Hands on Random Forests Ensembles using Coordinated Models

The AdaBoost Algorithm (Freund & Shapire, 1996)

AdaBoost (Adaptive Boosting) is an ensemble algorithm that can
be used to improve the performance of a base algorithm
It consists of an iterative process where new models are added to
form an ensemble
It is adaptive in the sense that at each new iteration of the
algorithm the new models are built to try to overcome the errors
made in the previous iterations
At each iteration the weights of the training cases are adjusted so
that cases that were wrongly predicted get their weight increased
to make new models focus on accurately predicting them
AdaBoost was created for classification although variants for
regression exist

Y. Freund and R. Schapire (1996). Experiments with a new boosting algorithm, in
Proc. of 13th International Conference on Machine Learning

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 176 / 240



Hands on Random Forests Ensembles using Coordinated Models

The AdaBoost Algorithm

The goal of the algorithm is to reach a form of additive model
composed of k weak models

H(xi) =
∑

k

wkhk (xi)

where wk is the weight of the weak model hk (xi)

All training cases start with a weight equal to d1(xi) = 1/n, where
n is the training set size

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 177 / 240

Hands on Random Forests Ensembles using Coordinated Models

The AdaBoost Algorithm

At iteration r the algorithm builds the weak model hr (xi) such that
this model minimizes the weighted training error. This error is
e =

∑
i dr (xi)I(yi 6= hr (xi)), where dr (xi) is the weight of case

〈xi , yi〉 at iteration r
The weight of this weak model is calculated by

wr =
1
2

ln
(

1− e
e

)
Finally, the case weights for iteration r + 1 are updated by

dr+1(xi) = dr (xi)
exp(−wr I(yi 6= hr (xi)))

Zr

where Zr is chosen to make all dr+1 sum up to 1

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 178 / 240



Hands on Random Forests Ensembles using Coordinated Models

AdaBoost for Classification in R
Package adabag

This package uses classification trees as the weak learners
library(adabag)
data(iris)
set.seed(1234)
trPerc <- 0.7
sp <- sample(1:nrow(iris),as.integer(trPerc*nrow(iris)))

tr <- iris[sp,]
ts <- iris[-sp,]

m <- boosting(Species ~ ., tr)
ps <- predict(m,ts)

ps$confusion

## Observed Class
## Predicted Class setosa versicolor virginica
## setosa 11 0 0
## versicolor 0 20 1
## virginica 0 1 12

ps$error

## [1] 0.04444

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 179 / 240

Hands on Random Forests Ensembles using Coordinated Models

Bagging in package adabag

This package also includes a function implementing bagging,

library(adabag)
data(iris)
set.seed(1234)
trPerc <- 0.7
sp <- sample(1:nrow(iris),as.integer(trPerc*nrow(iris)))

tr <- iris[sp,]
ts <- iris[-sp,]

m <- bagging(Species ~ ., tr,mfinal=50)
ps <- predict(m,ts)

ps$confusion

## Observed Class
## Predicted Class setosa versicolor virginica
## setosa 11 0 0
## versicolor 0 20 1
## virginica 0 1 12

ps$error

## [1] 0.04444

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 180 / 240



Hands on Random Forests Ensembles using Coordinated Models

Error curves

This package also includes a function that allows you to check the
evolution of the error as you increase the number of weak learners,

library(adabag)
data(BreastCancer,package="mlbench")
set.seed(1234)
trPerc <- 0.7
sp <- sample(1:nrow(BreastCancer),as.integer(trPerc*nrow(BreastCancer)))

tr <- BreastCancer[sp,-1]
ts <- BreastCancer[-sp,-1]

m <- bagging(Class ~ ., tr,mfinal=100)
ps <- predict(m,ts)

ptr <- errorevol(m,tr)
pts <- errorevol(m,ts)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 181 / 240

Hands on Random Forests Ensembles using Coordinated Models

Error curves (cont.)
plot(ptr$error,type="l",xlab="nr.models",ylab="error",ylim=c(0,0.1))
lines(pts$error,col="red")

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

nr.models

er
ro

r

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 182 / 240



Hands on Random Forests Ensembles using Coordinated Models

AdaBoost for Regression in R
Package gbm

Package gbm implements the Gradient Boosting Machine (Friedman,
2001)

library(gbm)
data(Boston,package='MASS')

set.seed(1234)
trPerc <- 0.7
sp <- sample(1:nrow(Boston),as.integer(trPerc*nrow(Boston)))
tr <- Boston[sp,]
ts <- Boston[-sp,]

m <- gbm(medv ~ .,distribution='gaussian',data=tr,
n.trees=20000,verbose=F)

ps <- predict(m,ts,type='response',n.trees=20000)
mean(abs(ps-ts$medv))

## [1] 2.636

J.H. Friedman (2001). Greedy Function Approximation: A Gradient Boosting Machine, Annals of Statistics, 29(5):1189-1232.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 183 / 240

Hands on Boosting

Hands on Mars and Gradient Boosting

Load in the data set Boston Housing from package MASS and
answer the following questions:

1 Split the data set into training and testing sets and obtain a MARS
model and a GBM model with the training set.

2 Check the predictions of the models on the test set. Obtain their
mean squared error.

3 Read the help pages of the two functions that obtain MARS and
GBM and explore a few variants of these models and check the
results in terms of the performance on the test set

4 Produce a barplot with the errors of the different variants you have
considered.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 184 / 240



Evaluation Methodologies
and Comparison of Models

Performance Estimation

Performance Estimation

The setting

Predictive task: unknown function Y = f (x) that maps the values
of a set of predictors into a target variable value (can be a
classification or a regression problem)
A (training) data set {< xi , yi >}Ni=1, with known values of this
mapping
Performance evaluation criterion(a) - metric(s) of predictive
performance (e.g. error rate or mean squared error)
How to obtain a reliable estimates of the predictive performance
of any solutions we consider to solve the task using the available
data set?

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 186 / 240



Performance Estimation Resubstituition estimates

Reliability of Estimates
Resubstitution estimates

Given that we have a data set one possible way to obtain an
estimate of the performance of a model is to evaluate it on this
data set
This leads to what is known as a resubstitution estimate of the
prediction error
These estimates are unreliable and should not be used as they
tend to be over-optimistic!

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 187 / 240

Performance Estimation Resubstituition estimates

Reliability of Estimates
Resubstitution estimates (2)

Why are they unreliable?
Models are obtained with the goal of optimizing the selected
prediction error statistic on the given data set
In this context it is expected that they get good scores!
The given data set is just a sample of the unknown distribution of
the problem being tackled
What we would like is to have the performance of the model on this
distribution
As this is usually impossible the best we can do is to evaluate the
model on new samples of this distribution

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 188 / 240



Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation

Main Goal of Performance Estimation
Obtain a reliable estimate of the expected prediction error of a model
on the unknown data distribution

In order to be reliable it should be based on evaluation on unseen
cases - a test set

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 189 / 240

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (2)

Ideally we want to repeat the testing several times
This way we can collect a series of scores and provide as our
estimate the average of these scores, together with the standard
error of this estimate
In summary:

calculate the sample mean prediction error on the repetitions as an
estimate of the true population mean prediction error
complement this sample mean with the standard error of this
estimate

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 190 / 240



Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (3)

The golden rule of Performance Estimation:

The data used for evaluating (or comparing) any models cannot
be seen during model development.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 191 / 240

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (4)

An experimental methodology should:
Allow obtaining several prediction error scores of a model,
E1,E2, · · · ,Ek
Such that we can calculate a sample mean prediction error

E =
1
k

k∑
i=1

Ei

And also the respective standard error of this estimate

SE(E) =
sE√

k

where sE is the sample standard deviation of E measured as√
1

k−1

∑k
i=1(Ei − E)2

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 192 / 240



The Holdout Method

The Holdout Method and Random Subsampling

The holdout method consists on randomly dividing the available
data sample in two sub-sets - one used for training the model;
and the other for testing/evaluating it

A frequently used proportion is 70% for training and 30% for testing

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 193 / 240

The Holdout Method

The Holdout Method (2)

If we have a small data sample there is the danger of either having
a too small test set (unreliable estimates as a consequence), or
removing too much data from the training set (worse model than
what could be obtained with the available data)
We only get one prediction error score - no average score nor
standard error
If we have a very large data sample this is actually the preferred
evaluation method

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 194 / 240



The Holdout Method

Random Subsampling

The Random Subsampling method is a variation of holdout
method and it simply consists of repeating the holdout process
several times by randomly selecting the train and test partitions

Has the same problems as the holdout with the exception that we
already get several scores and thus can calculate means and
standard errors
If the available data sample is too large the repetitions may be too
demanding in computation terms

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 195 / 240

The Holdout Method

The Holdout method in R

library(DMwR)
set.seed(1234)
data(Boston,package='MASS')
## random selection of the holdout
trPerc <- 0.7
sp <- sample(1:nrow(Boston),as.integer(trPerc*nrow(Boston)))
## division in two samples
tr <- Boston[sp,]
ts <- Boston[-sp,]
## obtaining the model and respective predictions on the test set
m <- rpartXse(medv ~.,tr)
p <- predict(m,ts)
## evaluation
regr.eval(ts$medv,p,train.y=tr$medv)

## mae mse rmse mape nmse nmae
## 3.2320067 22.1312980 4.7043913 0.1731599 0.2369631 0.4529675

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 196 / 240



Cross Validation

The k-fold Cross Validation Method

The idea of k-fold Cross Validation (CV) is similar to random
subsampling
It essentially consists of k repetitions of training on part of the data
and then test on the remaining
The diference lies on the way the partitions are obtained

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 197 / 240

Cross Validation

The k-fold Cross Validation Method (cont.)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 198 / 240



Cross Validation

Leave One Out Cross Validation Method (LOOCV)

Similar idea to k-fold Cross Validation (CV) but in this case on
each iteration a single case is left out of the training set
This means it is essentially equivalent to n-fold CV, where n is the
size of the available data set

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 199 / 240

Bootstrap

The Bootstrap Method

Train a model on a random sample of size n with replacement
from the original data set (of size n)

Sampling with replacement means that after a case is randomly
drawn from the data set, it is “put back on the sampling bag”
This means that several cases will appear more than once on the
training data
On average only 63.2% of all cases will be on the training set

Test the model on the cases that were not used on the training set
Repeat this process many times (typically around 200)
The average of the scores on these repetitions is known as the ε0
bootstrap estimate
The .632 bootstrap estimate is obtained by .368× εr + .632× ε0,
where εr is the resubstitution estimate

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 200 / 240



Bootstrap

Bootstrap in R

data(Boston,package='MASS')
nreps <- 200
scores <- vector("numeric",length=nreps)
n <- nrow(Boston)
set.seed(1234)
for(i in 1:nreps) {

# random sample with replacement
sp <- sample(n,n,replace=TRUE)
# data splitting
tr <- Boston[sp,]
ts <- Boston[-sp,]
# model learning and prediction
m <- lm(medv ~.,tr)
p <- predict(m,ts)
# evaluation
scores[i] <- mean((ts$medv-p)^2)

}
# calculating means and standard errors
summary(scores)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.37 21.70 24.20 24.56 26.47 48.82

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 201 / 240

The Infra-Structure of package performanceEstimation

The Infra-Structure of package
performanceEstimation

The package performanceEstimation provides a set of functions
that can be used to carry out comparative experiments of different
models on different predictive tasks
This infra-structure can be applied to any model/task/evaluation
metric
Installation:

Official release (from CRAN repositories):
install.packages("performanceEstimation")

Development release (from Github):
library(devtools) # You need to install this package before!
install_github("ltorgo/performanceEstimation",ref="develop")

Install from github!

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 202 / 240



The Infra-Structure of package performanceEstimation

The Infra-Structure of package
performanceEstimation

The main function of the package is
performanceEstimation()

It has 3 arguments:
1 The predictive tasks to use in the comparison
2 The models to be compared
3 The estimation task to be carried out

The function implements a wide range of experimental
methodologies including all we have discussed

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 203 / 240

The Infra-Structure of package performanceEstimation

A Simple Example

Suppose we want to estimate the mean squared error of
regression trees in a certain regression task using cross validation

library(performanceEstimation)
library(DMwR)
data(Boston,package='MASS')
res <- performanceEstimation(

PredTask(medv ~ .,Boston),
Workflow("standardWF",learner="rpartXse"),
EstimationTask(metrics="mse",method=CV(nReps=1,nFolds=10)))

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 204 / 240



The Infra-Structure of package performanceEstimation

A Simple Example (2)

summary(res)

##
## == Summary of a Cross Validation Performance Estimation Experiment ==
##
## Task for estimating mse using
## 1 x 10 - Fold Cross Validation
## Run with seed = 1234
##
## * Predictive Tasks :: Boston.medv
## * Workflows :: rpartXse
##
## -> Task: Boston.medv
## *Workflow: rpartXse
## mse
## avg 21.02393
## std 10.15683
## med 19.02955
## iqr 12.91203
## min 9.40574
## max 40.72403
## invalid 0.00000

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 205 / 240

The Infra-Structure of package performanceEstimation

A Simple Example (3)

plot(res)

Boston.medv

10

20

30

40

m
se

rpartX
se

Alternative Workflows

D
is

tr
ib

ut
io

n 
of

 S
ta

tis
tic

s 
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 206 / 240



The Infra-Structure of package performanceEstimation Predictive Tasks

Predictive Tasks

Objects of class PredTask describing a predictive task
Classification
Regression
Time series forecasting

Created with the constructor with the same name
data(iris)
PredTask(Species ~ ., iris)

## Prediction Task Object:
## Task Name :: iris.Species
## Task Type :: classification
## Target Feature :: Species
## Formula :: Species ~ .
## Task Data Source :: iris

PredTask(Species ~ ., iris,"IrisDS",copy=TRUE)

## Prediction Task Object:
## Task Name :: IrisDS
## Task Type :: classification
## Target Feature :: Species
## Formula :: Species ~ .
## Task Data Source :: internal 150x5 data frame.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 207 / 240

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Workflows

Objects of class Workflow describing an approach to a predictive
task

Standard Workflows
Function standardWF for classification and regression
Function timeseriesWF for time series forecasting

User-defined Workflows

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 208 / 240



The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks

library(e1071)
Workflow("standardWF",learner="svm",learner.pars=list(cost=10,gamma=0.1))

## Workflow Object:
## Workflow ID :: svm
## Workflow Function :: standardWF
## Parameter values:
## learner -> svm
## learner.pars -> cost=10 gamma=0.1

“standardWF” can be omitted ...
Workflow(learner="svm",learner.pars=list(cost=5))

## Workflow Object:
## Workflow ID :: svm
## Workflow Function :: standardWF
## Parameter values:
## learner -> svm
## learner.pars -> cost=5

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 209 / 240

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

Main parameters of the constructor:
Learning stage

learner - which function is used to obtain the model for the training
data
learner.pars - list with the parameter settings to pass to the
learner

Prediction stage
predictor - function used to obtain the predictions (defaults to
predict())
predictor.pars - list with the parameter settings to pass to the
predictor

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 210 / 240



The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

Main parameters of the constructor (cont.):
Data pre-processing

pre - vector with function names to be applied to the training and test
sets before learning
pre.pars - list with the parameter settings to pass to the functions

Predictions post-processing
post - vector with function names to be applied to the predictions
post.pars - list with the parameter settings to pass to the functions

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 211 / 240

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

data(algae,package="DMwR")
res <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"A1"),
Workflow(learner="lm",pre="centralImp",post="onlyPos"),
EstimationTask("mse",method=CV()) # defaults to 1x10-fold CV

)

##
##
## ##### PERFORMANCE ESTIMATION USING CROSS VALIDATION #####
##
## ** PREDICTIVE TASK :: A1
##
## ++ MODEL/WORKFLOW :: lm
## Task for estimating mse using
## 1 x 10 - Fold Cross Validation
## Run with seed = 1234
## Repetition 1
## Fold: 1 2 3 4 5 6 7 8 9 10

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 212 / 240



The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Evaluating Variants of Workflows
Function workflowVariants()

library(e1071)
data(Boston,package="MASS")
res2 <- performanceEstimation(

PredTask(medv ~ .,Boston),
workflowVariants(learner="svm",

learner.pars=list(cost=1:5,gamma=c(0.1,0.01))),
EstimationTask(metrics="mse",method=CV()))

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 213 / 240

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Evaluating Variants of Workflows (cont.)
summary(res2)

##
## == Summary of a Cross Validation Performance Estimation Experiment ==
##
## Task for estimating mse using
## 1 x 10 - Fold Cross Validation
## Run with seed = 1234
##
## * Predictive Tasks :: Boston.medv
## * Workflows :: svm.v1, svm.v2, svm.v3, svm.v4, svm.v5, svm.v6, svm.v7, svm.v8, svm.v9, svm.v10
##
## -> Task: Boston.medv
## *Workflow: svm.v1
## mse
## avg 14.80685
## std 10.15295
## med 12.27015
## iqr 11.87737
## min 5.35198
## max 38.39681
## invalid 0.00000
##
## *Workflow: svm.v2
## mse
## avg 11.995178
## std 7.908371
## med 8.359433
## iqr 11.626306
## min 4.842848
## max 28.480351
## invalid 0.000000
##
## *Workflow: svm.v3
## mse
## avg 11.045068
## std 7.014775
## med 7.185975
## iqr 10.693513
## min 4.421629
## max 24.199194
## invalid 0.000000
##
## *Workflow: svm.v4
## mse
## avg 10.773223
## std 6.684297
## med 7.147570
## iqr 10.088544
## min 4.364334
## max 23.082813
## invalid 0.000000
##
## *Workflow: svm.v5
## mse
## avg 10.650186
## std 6.489002
## med 7.406310
## iqr 9.664462
## min 4.304427
## max 22.870107
## invalid 0.000000
##
## *Workflow: svm.v6
## mse
## avg 18.832056
## std 11.033421
## med 16.086489
## iqr 15.678784
## min 6.716207
## max 40.813201
## invalid 0.000000
##
## *Workflow: svm.v7
## mse
## avg 16.530852
## std 10.333326
## med 13.753694
## iqr 14.738903
## min 6.144193
## max 37.115054
## invalid 0.000000
##
## *Workflow: svm.v8
## mse
## avg 15.483001
## std 10.027918
## med 12.141047
## iqr 13.340164
## min 6.020978
## max 35.789052
## invalid 0.000000
##
## *Workflow: svm.v9
## mse
## avg 14.988977
## std 9.923290
## med 11.289272
## iqr 12.788812
## min 6.101292
## max 34.914317
## invalid 0.000000
##
## *Workflow: svm.v10
## mse
## avg 14.598540
## std 9.777895
## med 10.957707
## iqr 12.188397
## min 6.069622
## max 33.883953
## invalid 0.000000

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 214 / 240



The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Exploring the Results

getWorkflow("svm.v1",res2)

## Workflow Object:
## Workflow ID :: svm.v1
## Workflow Function :: standardWF
## Parameter values:
## learner.pars -> cost=1 gamma=0.1
## learner -> svm

topPerformers(res2)

## $Boston.medv
## Workflow Estimate
## mse svm.v5 10.65

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 215 / 240

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Visualizing the Results

plot(res2)

Boston.medv

●

10

20

30

40

m
se

svm
.v1

svm
.v2

svm
.v3

svm
.v4

svm
.v5

svm
.v6

svm
.v7

svm
.v8

svm
.v9

svm
.v10

Alternative Workflows

D
is

tr
ib

ut
io

n 
of

 S
ta

tis
tic

s 
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 216 / 240



The Infra-Structure of package performanceEstimation Estimation Tasks

Estimation Tasks

Objects of class EstimationTask describing the estimation task
Main parameters of the constructor

metrics - vector with names of performance metrics
method - object of class EstimationMethod describing the method
used to obtain the estimates

EstimationTask(metrics=c("F","rec","prec"),method=Bootstrap(nReps=100))

## Task for estimating F,rec,prec using
## 100 repetitions of e0 Bootstrap experiment
## Run with seed = 1234

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 217 / 240

The Infra-Structure of package performanceEstimation Estimation Tasks

Performance Metrics

Many classification and regression metrics are available
Check the help page of functions classificationMetrics and
regressionMetrics

User can provide a function that implements any other metric
she/he wishes to use

Parameters evaluator and evaluator.pars of the
EstimationTask constructor

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 218 / 240



The Infra-Structure of package performanceEstimation Exploring the Results

Comparing Different Algorithms on the Same Task

library(randomForest)
library(e1071)
res3 <- performanceEstimation(

PredTask(medv ~ ., Boston),
workflowVariants("standardWF",

learner=c("rpartXse","svm","randomForest")),
EstimationTask(metrics="mse",method=CV(nReps=2,nFolds=5)))

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 219 / 240

The Infra-Structure of package performanceEstimation Exploring the Results

Some auxiliary functions

rankWorkflows(res3,3)

## $Boston.medv
## $Boston.medv$mse
## Workflow Estimate
## 1 randomForest 10.95412
## 2 svm 14.89183
## 3 rpartXse 18.92990

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 220 / 240



The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot(res3)

Boston.medv

●

10

20

30

m
se

rpartX
se

svm

random
F

orest

Alternative Workflows

D
is

tr
ib

ut
io

n 
of

 S
ta

tis
tic

s 
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 221 / 240

The Infra-Structure of package performanceEstimation Exploring the Results

An example using Holdout and a classification task

data(Glass,package='mlbench')
res4 <- performanceEstimation(

PredTask(Type ~ ., Glass),
workflowVariants(learner="svm", # You may omit "standardWF" !

learner.pars=list(cost=c(1,10),
gamma=c(0.1,0.01))),

EstimationTask(metrics="err",method=Holdout(nReps=5,hldSz=0.3)))

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 222 / 240



The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot(res4)

Glass.Type

●

●

●

0.3

0.4

0.5

err

svm
.v1

svm
.v2

svm
.v3

svm
.v4

Alternative Workflows

D
is

tr
ib

ut
io

n 
of

 S
ta

tis
tic

s 
S

co
re

s

Hold Out Performance Estimation Results

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 223 / 240

The Infra-Structure of package performanceEstimation Exploring the Results

An example involving more than one task

data(Glass,package='mlbench')
data(iris)
res5 <- performanceEstimation(

c(PredTask(Type ~ ., Glass),PredTask(Species ~.,iris)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),
gamma=c(0.1,0.01))),

workflowVariants(learner="rpartXse",
learner.pars=list(se=c(0,0.5,1)),
predictor.pars=list(type="class"))),

EstimationTask(metrics="err",method=CV(nReps=3)))

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 224 / 240



The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot(res5)

Glass.Type iris.Species

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

● ●

0.0

0.2

0.4

0.6

err

svm
.v1

svm
.v2

svm
.v3

svm
.v4

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

svm
.v1

svm
.v2

svm
.v3

svm
.v4

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

Alternative Workflows

D
is

tr
ib

ut
io

n 
of

 S
ta

tis
tic

s 
S

co
re

s
Cross Validation Performance Estimation Results

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 225 / 240

The Infra-Structure of package performanceEstimation Exploring the Results

The Results (2)

topPerformers(res5)

## $Glass.Type
## Workflow Estimate
## err svm.v1 0.294
##
## $iris.Species
## Workflow Estimate
## err svm.v2 0.04

topPerformer(res5,"err","Glass.Type")

## Workflow Object:
## Workflow ID :: svm.v1
## Workflow Function :: standardWF
## Parameter values:
## learner.pars -> cost=1 gamma=0.1
## learner -> svm

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 226 / 240



Hands on Performance Estimation

Hands on Performance Estimation
the Algae data set

Load in the data set algae and answer the following questions:

1 Estimate the MSE of a regression tree for forecasting alga a1
using 10-fold Cross validation.

2 Repeat the previous exercise this time trying some variants of
random forests. Check what are the characteristics of the best
performing variant.

3 Compare the results in terms of mean absolute error of the default
variants of a regression tree, a linear regression model and a
random forest, in the task of predicting alga a3. Use 2 repetitions
of a 5-fold Cross Validation experiment.

4 Carry out an experiment designed to select what are the best
models for each of the seven harmful algae. Use 10-fold Cross
Validation. For illustrative purposes consider only the default
variants of regression trees, linear regression and random forests.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 227 / 240

Hands on Performance Estimation Testing the Statistical Significance of Differences

Are the Observed Differences Statistically Significant?

Statistical Hypothesis Testing

Test if some result is unlikely to have occurred by chance
The null hypothesis: there is no difference among a set of
alternative workflows
This hypothesis is rejected if the result of the test has a p-value
less than a certain selected threshold (typically 0.01 or 0.05, i.e.
99% or 95% confidence)

There are many statistical tests that could be used
The work by Demsar (2006) includes what are the current
recommendations for different experimental setups

J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30, 2006.

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 228 / 240



Hands on Performance Estimation Testing the Statistical Significance of Differences

Paired Comparisons on a Task

Wilcoxon Signed Rank Test

The null hypothesis: the difference between the two workflows is
zero
This hypothesis is rejected if the result of the test has a p-value
less than a certain selected threshold (typically 0.01 or 0.05, i.e.
99% or 95% confidence)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 229 / 240

Hands on Performance Estimation Testing the Statistical Significance of Differences

A Simple Example

library(performanceEstimation)
library(DMwR) # because of rpartXse
data(Boston,package="MASS")
res <- performanceEstimation(

PredTask(medv ~ .,Boston),
workflowVariants(learner="rpartXse",learner.pars=list(se=c(0,0.5,1))),
EstimationTask(metrics="mse",method=CV(nReps=3,nFolds=10)))

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 230 / 240



Hands on Performance Estimation Testing the Statistical Significance of Differences

A Simple Example

pres <- pairedComparisons(res)

## Warning in pairedComparisons(res): With less 2 tasks the Friedman,
Nemenyi and Bonferroni-Dunn tests are not calculated.

pres$mse$WilcoxonSignedRank.test

## , , Boston.medv
##
## MedScore DiffMedScores p.value
## rpartXse.v1 18.18101 NA NA
## rpartXse.v2 19.54956 -1.36855309 0.5837571
## rpartXse.v3 18.21299 -0.03198033 0.5027610

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 231 / 240

Hands on Performance Estimation Testing the Statistical Significance of Differences

Which ones are significant at some level?

signifDiffs(pres,p.limit=0.05)

## $mse
## $mse$WilcoxonSignedRank.test
## $mse$WilcoxonSignedRank.test$Boston.medv
## MedScore DiffMedScores p.value
## 18.18101 NA NA
##
##
## $mse$t.test
## $mse$t.test$Boston.medv
## AvgScore DiffAvgScores p.value
## 19.65952 NA NA

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 232 / 240



Hands on Performance Estimation Testing the Statistical Significance of Differences

Paired Comparisons on a Multiple Tasks

Demsar (2006) recommended procedure

Step 1: Friedman test
Null hypothesis: all workflows are equivalent and so their rankings
across the tasks are equal

If this hypothesis is rejected then we can move to the second step
Paired comparisons among all pairs of workflows

Nemenyi post-hoc test
Null hypothesis: there is no significant difference among the ranks of
a certain pair of workflows

Paired comparisons against a baseline
Bonferroni-Dunn post-hoc test
Null hypothesis: there is no significant difference among the ranks of
a certain workflow and the baseline

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 233 / 240

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks

library(performanceEstimation)
library(e1071)
library(randomForest)
tgts <- 12:18
tasks <- c()
for(t in tgts)

tasks <- c(tasks,
PredTask(as.formula(paste(colnames(algae)[t],'~ .')),

algae[,c(1:11,t)],
paste0("algaA",t-11),
copy=TRUE))

res.algae <- performanceEstimation(
tasks,
workflowVariants(learner=c("svm","lm","randomForest"),

pre="knnImp"),
EstimationTask("mae",method=CV())
)

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 234 / 240



Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks (cont.)

Can we reject the hypothesis that the workflows have the same
ranking across all tasks?

pres <- pairedComparisons(res.algae)
pres$mae$F.test

## $chi
## [1] 12.28571
##
## $FF
## [1] 43
##
## $critVal
## [1] 0.3574087
##
## $rejNull
## [1] TRUE

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 235 / 240

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks (cont.)

Are there any significant differences among the workflows?

pres$mae$Nemenyi.test

## $critDif
## [1] 1.252761
##
## $rkDifs
## svm lm randomForest
## svm 0.0000000 1.857143 0.7142857
## lm 1.8571429 0.000000 1.1428571
## randomForest 0.7142857 1.142857 0.0000000
##
## $signifDifs
## svm lm randomForest
## svm FALSE TRUE FALSE
## lm TRUE FALSE FALSE
## randomForest FALSE FALSE FALSE

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 236 / 240



Hands on Performance Estimation Testing the Statistical Significance of Differences

CD diagrams for the Nemenyi test

Average rank differences that are not statistically significant are
connected

CDdiagram.Nemenyi(pres)

svm

randomForestlm

Critical Difference = 1.3

4 3 2 1
Average Rank

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 237 / 240

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks (cont.)

Suppose “lm” was our baseline system and we wanted to check if the
other alternatives were able to improve over it on these tasks

pres <- pairedComparisons(res.algae,baseline="lm")
pres$mae$BonferroniDunn.test

## $critDif
## [1] 1.19808
##
## $baseline
## [1] "lm"
##
## $rkDifs
## svm randomForest
## 1.857143 1.142857
##
## $signifDifs
## svm randomForest
## TRUE FALSE

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 238 / 240



Hands on Performance Estimation Testing the Statistical Significance of Differences

CD diagrams for the Bonferroni Dunn test

Are the average ranks of the other systems significantly better than the
one of “lm”?

CDdiagram.BD(pres)

svm

randomForestlm

Critical Difference = 1.2; Baseline = lm

4 3 2 1
Average Rank

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 239 / 240

Hands on Statistical Significance

Hands on Statistical Significance

Using the algae data set from package DMwR answer the following
questions

1 For the 7 different algae, choose a reasonable set of SVM variants
and estimate their MSE error.

2 Check if these alternatives are significantly better than the SVM
with the default parameter settings

3 Present the results of the previous question visually

© L.Torgo (FCUP - LIAAD / UP) Prediction Dec, 2014 240 / 240


	Introduction
	Types of Prediction Problems
	Types of Models

	Evaluation Metrics
	Classification Problems
	Regression Problems

	Linear Discriminant
	Hands on Linear Discriminants
	Multiple Linear Regression
	Hands on Linear Regression
	Tree-based Models
	Building a tree-based model
	Selecting the best splits
	When to Stop Growing the Trees

	Hands on Tree-based Models
	Naive Bayes
	Bayes Theorem
	The Naive Bayes Classifier

	k-Nearest Neighbors
	Distance Functions
	k Nearest Neighbors Classification
	k Nearest Neighbors Regression

	Support Vector Machines (SVMs)
	The Basic Idea
	The Separating Hyperplane
	The Problem of Linear Separability
	Multiple Classes
	SVMs em R
	SVMs for Regression

	Hands On SMVs
	Artificial Neural Networks (ANNs)
	Introduction
	Activation Functions
	Types of Networks
	Backpropagation
	ANNs in R
	Summary

	Multivariate Adaptive Regression Splines
	Model Ensembles
	Motivation
	Types of Ensembles
	Ensembles using Independent Models

	Hands on Random Forests
	Ensembles using Coordinated Models

	Hands on Boosting
	Performance Estimation
	Resubstituition estimates
	Goals of Performance Estimation 

	The Holdout Method
	Cross Validation
	Bootstrap
	The Infra-Structure of package performanceEstimation
	Predictive Tasks
	Workflows and Workflow Variants
	Estimation Tasks
	Exploring the Results

	Hands on Performance Estimation
	Testing the Statistical Significance of Differences

	Hands on Statistical Significance

