
Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Logic Programming, 16-17

Inês Dutra
DCC-FCUP

ines@dcc.fc.up.pt (room: 1.31)

December 6, 2016

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Using repeat

% Version with repeat % Recursive version

read_stdin :- read_stdin :-

repeat, read(X),

read(X), read_all(X).

write(X),

nl, read_all(end_of_file) :- !.

X=end_of_file, !. read_all(X) :-

write(X), nl,

read(Y),

read_all(Y).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Handling errors

error_handling :-

catch(do_something(X,Y),

Error,

write(error(do_something(X,Y),Error))).

do_something(X,Y) :-

var(X), throw("Undefined variable").

do _something(X,Y) :- ...

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Using global variables

� assert, retract

� record, recorded

� set_value, get_value

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Interacting with the OS

� system

� cd

� getcwd

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Using the alarm

loop :- loop.

:- catch((alarm(10, throw(ball), _),loop),

ball,

format(’Quota exhausted.~n’,[])).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Profiling programs

list_profile :-

% get number of calls for each profiled procedure

setof(D-[M:P|D1],(current_module(M),

profile_data(M:P,calls,D),

profile_data(M:P,retries,D1)),LP),

% output so that the most often called

% predicates will come last:

write_profile_data(LP).

list_profile(Module) :-

% get number of calls for each profiled procedure

setof(D-[Module:P|D1],(profile_data(Module:P,calls,D),

profile_data(Module:P,retries,D1)),LP),

% output so that the most often called

% predicates will come last:

write_profile_data(LP).

write_profile_data([]).

write_profile_data([D-[M:P|R]|SLP]) :-

% swap the two calls if you want the most often

% called predicates first.

format(’~a:~w: ~32+~t~d~12+~t~d~12+~n’, [M,P,D,R]),

write_profile_data(SLP).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

More Profiling

yap_flag(call_counting,on), [-user].

l :- l. end_of_file.

yap_flag(call_counting,off).

catch((call_count(10000,_,_),l),

call_counter,format("limit_exceeded.~n",[])).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Statistics of Execution

?- statistics.

memory (total) 4784124 bytes

program space 3055616 bytes: 1392224 in use, 1663392 free

2228132 max

stack space 1531904 bytes: 464 in use, 1531440 free

global stack: 96 in use, 616684 max

local stack: 368 in use, 546208 max

trail stack 196604 bytes: 8 in use, 196596 free

0.010 sec. for 5 code, 2 stack, and 1 trail space overflows

0.130 sec. for 3 garbage collections which collected 421000 bytes

0.000 sec. for 0 atom garbage collections which collected 0 bytes

0.880 sec. runtime

1.020 sec. cputime

25.055 sec. elapsed time

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Programming with threads

% This program may not run in some versions of yap

% to run need to invoke both create_workers/2 and work/2

% create_workers(+Id, +N)

%

% Create a pool with given Id and number of workers.

create_workers(Id, N) :-

message_queue_create(Id),

forall(between(1, N, _),

thread_create(do_work(Id), _, [])).

do_work(Id) :-

repeat,

thread_get_message(Id, Goal),

(catch(Goal, E, print_message(error, E))

-> true

; print_message(error, goal_failed(Goal, worker(Id)))

),

fail.

% work(+Id, +Goal)

%

% Post work to be done by the pool

work(Id, Goal) :-

thread_send_message(Id, Goal).

Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog Programming in Prolog

Interfacing Prolog with C

// my_process.c

#include "YapInterface.h"

static int my_process_id(void)

{

YAP_Term pid = YAP_MkIntTerm(getpid());

YAP_Term out = YAP_ARG1;

return(YAP_Unify(out,pid));

}

void init_my_predicates()

{

YAP_UserCPredicate("my_process_id",my_process_id,1);

}

?- load_foreign_files([’my_process’],[],init_my_predicates).

	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog
	Programming in Prolog

