
Prolog and Natural Language Semantics

Notes for AI3/4 Computational Semantics

Robin Cooper, Ian Lewin and Alan W Black

1992-93

1

Contents

1 Introduction 4

1.1 Related texts : 5

1.2 Practicalities : 6

2 Predicate calculus and NL interpretation 8

2.1 Introduction : 8

2.2 Syntax of predicate calculus : 8

2.3 Programs:pc.pl : 9

2.4 Semantics for predicate calculus : 10

2.5 Programs:satisfy-pc.pl : 13

2.6 Translating English to predicate calculus : 14

2.7 Combining the programs : 16

2.8 Programs:eng-pc.pl : 16

3 The �-calculus and natural language interpretation 18

3.1 Compositionality and the �-calculus : 18

3.2 A prolog version of the �-calculus : 19

3.3 Implementing �-reduction with uni�cation : 21

3.4 Using the l-calculus for computing logical form : 21

3.5 A problem with the implementation of �-reduction : : : : : : : : : : : : : : : : : : 22

3.6 Programs : 24

3.6.1 lambda.pl : 24

3.6.2 beta.pl : 25

3.6.3 eng-lambda.pl : 27

3.6.4 reduce.pl : 27

4 Quanti�cation 30

4.1 Introduction : 30

4.2 Generalized quanti�ers : 30

4.3 Programs : 34

5 Quanti�er Scope 36

5.1 The Problem(s) : 36

5.2 Hobbs and Shieber's algorithm : 37

5.3 Nested Noun Phrases : 38

5.4 Other Scope Ambiguities : 40

5.5 Programs: hs-one.pl : 41

5.6 Programs: hs-two.pl : 44

5.7 Programs:qscope.pl : 46

2

6 Questions and database query 50

6.1 Gap threading and semantic representation of questions and relative clauses : : : : 50

6.2 Answering questions : 51

6.3 Questions in CHAT-80 : 51

6.4 Programs:questions.pl : 53

6.5 Programs:answer.pl : 55

7 Discourse anaphora 56

7.1 Introduction : 56

7.2 Simple discourse representation structures : 56

7.3 Translating simple discourses : 57

7.4 Complex discourse representation structures : 58

7.5 Translating discourses with quanti�ed sentences : 59

7.6 Programs : 61

7.6.1 satisfy-simple-drs.pl : 61

7.6.2 eng-simple-drs.pl : 61

7.6.3 satisfy-complex-drs.pl : 63

7.6.4 eng-complex-drs.pl : 63

7.6.5 eng-global-drs.pl : 66

8 Anaphora resolution algorithms and DRS threading 70

8.1 Introduction : 70

8.2 The Hobbs syntactic algorithm : 70

8.3 A declarative version of the algorithm : 71

8.4 Hobbs' semantic approach : 72

8.5 Programs : 74

9 Discourse structure and anaphora resolution 78

9.1 Introduction : 78

9.2 Sidner's focusing algorithms : 78

9.3 Programmes for Chapter 9 : 83

9.3.1 focus-drs.pl : 83

9.3.2 Examples : 88

10 Summary 90

10.1 Semantics of �rst order predicate calculus (FOPC). : : : : : : : : : : : : : : : : : 90

10.2 Translation of English to FOPC : 90

10.3 Lambda calculus : 90

10.4 Quanti�ers : 90

10.5 Questions and Quanti�ers in CHAT : 91

10.6 Discourse anaphora : 91

10.7 Focus and discourse anaphora : 91

3

Chapter 1

Introduction

We will explore how Prolog can be used to provide semantic interpretation in natural language pro-

cessing. By semantics for natural language in this connection we understand not just the relating

of a semantic representation language to natural language but the evaluation of natural language

expressions with respect to databases encoded in Prolog. Evaluating a declarative sentence (on a

given reading) with respect to a database involves determining whether the sentence is true with

respect to the data base, whether the sentence appropriately describes the database. Evaluating

a question with respect to a database might determine what information in the database would

lead to appropriate answers to the question.

There are some central questions that we will discuss throughout. What kind of semantic

representation language will we need, if any? How can this semantic representation language be

related to a natural language in a regular way? What kind of databases are appropriate and how

can the semantic representation language be evaluated with respect to the databases?

The �rst half of these notes deals with sentence semantics.

In order to get things started we will make some standard assumptions. We will choose �rst

order predicate calculus as our semantic representation language. We will show how this language

can be evaluated in the simplest kind of prolog data base and then show some standard logic

programming techniques for relating natural language to predicate calculus.

We will then explore a more sophisticated logical language called the lambda calculus which

has been widely used in computational semantics. This will lead us to the examination of some

particularly di�cult computational problems associated with quanti�ed sentences like most men

have two children.

We will complete the �rst half by considering the semantics of questions and looking at how

questions and quanti�ers are treated in CHAT-80, the best known natural language system deve-

loped in Prolog.

The second half of these notes deals with phenomena that go beyond the boundary of the

sentence, i.e. discourse phenomena.

We will �rst look at cases of pronoun resolution in discourse and introduce the framework

of discourse representation theory (DRT) which has recently gained considerable attention in

computational semantics and is particularly interesting from a logic programming perspective.

We will then look at some more traditionally AI approaches to problems of pronoun resolution

and discourse structure and see how they might be incorporated into the logic programming

framework we have developed. In particular we will look at some uses of semantic networks

for representing focus and attempt to create declarative versions of algorithms that have been

proposed for determining pronoun resolution and discourse focus.

Finally, we will look at some of the AI work relating speech act theory to planning and language

generation. A topic of particular importance here is the representation of belief. We will attempt to

incorporate some of the classic AI work in this area into our general logic programming framework.

The purpose of this course is not just to understand some aspects of contemporary computa-

tional semantics but to have actual experience in writing Prolog programs that embody aspects

4

of semantics of natural language. As well as describing various semantic representation languages

and how to translate simple sentences into these semantics forms, we will also want to know how

write programs to achieve this.

1.1 Related texts

There is no one ideal text book to go with this course but there are a number of books which are

useful as background reading. As well as books there are a number of papers which we will look

at closely and should be read in order to understand that part of the course.

Some related books are

\Readings in Natural Language Processing" by Barbara Grosz, Karen Soarck Jones and Bonnie

Lynn Webber (Morgan Kaufman 1986): available in AI SB library. This book is a collection

of various \classic" papers in natural language processing, not just computational semantics.

A useful book to have if you are intested in NLP.

\Mathematical Methods in Linguistics" by Barbara Partee, Alice ter Muelen and Robert Wall

(Kluwer 1990). A very good background reference text. Covers many formal aspects of

semantics and computation.

\Prolog and Natural Language Analysis" by Fernando Pereira and Stuart Shieber (CSLI lec-

ture notes 1987). This book is closest to this course. The �rst few lectures are based on

information in this book. Some of the early Prolog programs used come from this text.

\Intorduction to Montague Semantics" by David Dowty, Robert Wall and Stanley Peters (Reidel

1981). A good introduction to Montague Grammar and the use of logic for semantic repre-

sentation. Covers MG is far more detail than is required for this course but is well written

and realtively readable.

During later parts of the course we will look at speci�c papers. All these are available in the South

Bridge library.

\An Algorithm for Generating Quanti�er Scopings" by Jerry Hobbs and Stuart Shieber, Com-

putational Linguistics, Vol. 13, Nos 1-2, pp 47-63 (1987).

\Discourse, anaphora and parsing" by Mark Johnson and Ewan Klein, COLING 86, pp. 669-75.

A good introduction to Discourse Representation Theory.

\A theory of truth and semantics representation" by Hans Kamp (1981) in Formal Methods

in the Study of Language, ed. by Jeroen Groenendijk, Theo Janssen and Martin Stokhof,

Amsterdam: Mathematisch Centrum, pp. 277-322. This is the original article on DRT,

good background but not necessary. Also see \From discourse to logic: Introduction to

Model Theoretic Semantics of Natural Language, Formal logic and Discourse Representation

Theory." by Hans Kamp and Uwe Reyle. This is the latest description of DRT it is not yet

published but there a number of preliminary copies around.

\Logic for Natural Language Analysis", by Fernando Pereira, Ph.D. thesis, University of Edin-

burgh. Reprinted as Technical Note 275, January 1983, AI Center, SRI International, Menlo

Park, California. This describes the details of the CHAT-80 question answering system.

\An E�cient Easily Adpatable System for Intepreting Natural Language Queries" by David

Warren and Fernando Pereira, Computational Linguistics, Vol. 8, Nos 3-4, pp 110-122

(1982). Again details of the CHAT-80 system.

\Focusing in the Comprehension of De�nite Anaphora", by Candy Sidner, Computational Models

of Discourse, eds. M. Brady and R. Berwick, pp 331-371. 1983. Also in Readings in Natural

Language Processing. This is the original paper describing the focusing algorithm we dicuss

in chapter 8.

5

1.2 Practicalities

With most sections of the course there are a set of related Prolog programs. You will be expected

to use these, both running them and modifying them. The programs are written for Sicstus Prolog

(though may work in other Prologs) they will be made available of DAI machines

/usr/local/dai/courses/ai3-4/computational_semantics/

Note they are not available on castle.

Each week a small number of exercises will be set. These will often require running some

programs and modifying them in some way. Also some exercises merely require comment on a

program's operation (or sometimes just comments on general aspects of a seamntic theory). The

best four marks will go forward to your �nal overall course mark. Yes that does mean you do

not need to submit more four course works, but doing the exercises will be very bene�cial to

understanding the course materials. There may be things in the exam which have only been

discussed in exercises. Note that the earlier exercises are easier than the later ones.

75% of the �nal course mark will be from a one and a half hour exam and 25% from your best

four courseworks.

6

7

Chapter 2

Predicate calculus and NL

interpretation

2.1 Introduction

In this chapter we will introduce a syntax and semantics for predicate calculus, where by semantics

we mean evaluation in a database. We will then show how to use a de�nite clause grammar to

translate English into predicate calculus. Putting all this together we will have a program that

will evaluate English sentences with respect to databases.

2.2 Syntax of predicate calculus

This discussion relates to the program pc.pl .

We will use prolog terms to represent formulae of predicate calculus. For example,

love(a,b)

~(love(a,b) & love(b,a))

We de�ne prolog operators such as and & to be the connectives. The predicate wff/1 will

tell you whether an arbitrary prolog term is a well-formed formula of predicate logic:

?- wff(~(love(a,b) & love(b,a))).

yes

We will use prolog variables to represent logical variables, although some purists will tell you that

this is inadvisable. We will �nd it very useful, however, when we come to treat the semantics.

Thus the following will be a well-formed formula

love(X,Y)

We use prolog functors to represent quanti�ers:

every(X,man(X) ---> run(X))

This corresponds to a more usual predicate logic representation like

8x[man(x)! run(x)]

Exercise 2.2.1

Use this program to determine whether the following are or are not well-formed formulae. Explain

why they are accepted or not.

8

man(X) & run(X)

~love(a,b) ---> love(b,a)

~(love(a,b) ---> love(b,a))

run(a,b)

see(a,b)

every(X,man(X),run(X))

some(X,man(a)&run(a))

some(a,man(X)&run(Y))

some(X,man(X)&run(Y))

Do you think the program gets the right results in all cases?

Exercise 2.2.2

How would you modify the program so that it displays the structure of a w� that it accepts?

Exercise 2.2.3

De�ne a predicate closed wff which accepts all and only those formulae which are sentences,

i.e. contain no free variables. Or at least discuss what problems might arise in adding such a

predicate to this program.

2.3 Programs:pc.pl

% Operators for connectives

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

% Definition of well-formed formulas

wff(For) :-

For =..[P|Args],

predicate(P,Args),

terms(Args).

wff((For1 & For2)) :-

wff(For1),

wff(For2).

wff((For1 \/ For2)) :-

wff(For1),

wff(For2).

wff((For1 ---> For2)) :-

wff(For1),

wff(For2).

wff((~ For)) :-

wff(For).

wff(For) :-

functor(For,Q,2),

quantifier(Q),

For =.. [Q,V,For1],

var(V),

wff(For1).

9

% Terms are constants or variables

terms([]).

terms([X|L]) :-

term(X),

terms(L).

term(X) :- var(X),!.

term(X) :- constant(X).

% A sample lexicon. Arity n represented by a list of

% length n.

predicate(run,[_]).

predicate(man,[_]).

predicate(woman,[_]).

predicate(love,[_,_]).

constant(a).

constant(b).

constant(c).

/* Quantifiers do not properly belong in the lexicon but

we will want to add more quantifiers as we extend

predicate calculus */

quantifier(every).

quantifier(some).

% Ancillary syntactic notion

closed_atomic_formula(For) :-

For =.. [_|Args],

constants(Args).

constants([]).

constants([Arg|Args]) :-

\+ var(Arg),

constant(Arg),

constants(Args).

2.4 Semantics for predicate calculus

This discussion relates to the �les sits.pl and satisfy-pc.pl .

We shall de�ne a predicate satisfy/2 which takes a database as its �rst argument and a

formula of predicate calculus (as de�ned by the syntax in pc.pl) as its second argument. The

�rst decision we have to make concerns the form that our databases will take. Here we will take

the simplest possible form of database. We will take a database as being essentially a collection

of closed atomic formulae of predicate calculus (alternatively, simple ground prolog terms with a

10

single functor and atoms as arguments). Thus we will allow our databases to contain clauses like

smile(a)

like(a,b)

but not

smile(X)

some(X,smile(X))

smile(a)&like(a,b)

~smile(a)

We will call our databases situations since a number of the ideas that we will develop as we

progress are inspired by situation semantics|though they may be more conventionally be called

models. We will assert clauses such as the following into the prolog database

sit1(woman(a)).

to indicate that a is a woman in database or situation sit1 . Sometimes we will talk of

sit1 as supporting the fact woman(a) or of the fact woman(a) as holding in sit1 . A sample

situation can be found in the �le sits.pl .

In the �le satisfy-pc.pl we de�ne a predicate satisfy/2 which de�nes our semantics for

predicate calculus. Its �rst argument is to be instantiated to a name of a situation, such as sit1 ,

and its second argument is to be a formula of predicate calculus. Note that the program does not

use the code we gave for de�ning the syntax of predicate calculus but that the formulae which can

be interpreted by satisfy/2 are precisely the well-formed formulae de�ned by the syntax with

the exception that the program is not limited by any particular lexicon for predicate calculus.

We have chosen to give pretty much the most straightforward semantics for predicate calculus

that one could think of, given our assumptions and the fact that we are using prolog. The simple

case for atomic formulae is special in that it requires that the formula is a prolog term representing

a fact that can be supported by a situation, i.e. that it is atomic and ground and checks to see

whether it is supported by the situation. Thus we get the following behaviour:

?- satisfy(sit1, woman(a)).

yes

?- satisfy(sit1, woman(X)).

no

Note that this is di�erent to what you might normally expect from a prolog system (where the

free variables would correspond to existential quanti�cation) and what you might normally expect

from intepretations of predicate calculus (where free variables are often interpreted as universal

quanti�cation).

Conjunction and disjunction are interpreted as you might expect (e.g. a situation will satisfy

p&q if it satis�es both p and q) and implication is interpreted equivalently to ~p\/q (i.e. the

material conditional). However, negation is not interpreted in the classical way since we use

prolog's negation to interpret it. Since sit1 does not contain a fact blurg(w) (and indeed no

fact with either blurg or w) we get the following:

?- satisfy(sit1,~blurg(w)).

yes

This means that the absence of information from a situation is taken to be negative information.

We could change this by allowing negative facts to be included in our situations, but this would

involve us in complications which are unnecessary for what we are going to do at the moment.

The treatment of quanti�cation is perhaps one of the most useful aspects of this program,

in that setting a spy point on satisfy/2 enables us to see exactly how variables are getting

bound and what is required for a quanti�ed sentence to be satis�ed. When we interpret quanti�ed

formulae we have to decide what domain we are quantifying over. This is not so important in the

case of the existential quanti�er since in order to interpret a formula like

11

some(X,run(X))

we just have to �nd some object which can be substituted for the X in run(X) so that the result

is true in the relevant situation. In the case of the universal quanti�er as in

every(X,run(X))

we have to determine that everything can be substituted for the X and that each of the resulting

clauses are true in the relevant situation. But everything where? Everything in the whole universe?

We shall take the domain to be everything in the situation which we are using to evaluate the

formula. The predicate domain/2 collects together everything which is an argument to a predicate

in the situation and calls that the domain of the situation. It also makes a note in the database of

what the domain of the situation is so that it does not have to compute it more than once. (Beware

of this feature if you change a situation in the middle of a session. I have added a utility predicate

reset domain/1 which will remove the information about the domain from the database.)

The rules for the quanti�ers call the predicates all/3 and exists/3 . A call

all(X,[a,b], satisfy(sit1,run(X)))

will, for example, check that both of the following succeed:

satisfy(sit1,run(a))

satisfy(sit1,run(b))

Note the use of the prolog double negation in both all/3 and exists/3 . This is a trick which

ensures that any uni�cation within the scope of the negations will not go beyond the scope of

those negations. Thus the variables will be able to uni�ed with di�erent atoms as is necessary in

the case of all/3 and they will remain as variables at the end of the computation so that the

logical formula we started with will remain uninstantiated at the end of the computation.

Exercise 2.4.1

Set a spy point on satisfy/2 . Try the following goals and explain what is going on in terms of

the information provided by the traces.

satisfy(sit1,every(X,man(X)--->some(Y,woman(Y)&love(X,Y))))

satisfy(sit1,some(Y,woman(Y)&every(X,man(X)--->love(X,Y))))

Exercise 2.4.2

For each of the following formulae create a situation which satis�es it and another which does

not. Use satisfy/2 to verify your answer and explain what crucial characteristics each of the

situations needs to have in order to allow or prevent satisfaction.

every(X,man(X)--->run(X))

every(X,~man(X)\/run(X))

~every(X,man(X)--->run(X))

every(X,man(X)&run(X))

some(X,man(X)&run(X))

some(X,man(X)--->run(X))

some(Y,woman(Y)&every(X,man(X)--->love(X,Y)))

Exercise 2.4.3

Suppose we were to add a quanti�er two to our logic so that we would allow a sentence like

two(X,man(X))

How might you extend the de�nition of satisfy/2 to accommodate this?

12

2.5 Programs:satisfy-pc.pl

% Operators for connectives

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

:- dynamic domain/2.

% Satisfaction

satisfy(Sit, P&Q) :-

satisfy(Sit,P),

satisfy(Sit,Q).

satisfy(Sit, P\/Q) :-

(satisfy(Sit,P); satisfy(Sit,Q)).

satisfy(Sit, P--->Q) :-

(satisfy(Sit,~P); satisfy(Sit,Q)).

satisfy(Sit, ~P) :-

\+ satisfy(Sit,P).

satisfy(Sit,some(X,P)) :-

domain(Sit,Dom),

exists(X,Dom,satisfy(Sit,P)).

satisfy(Sit,every(X,P)) :-

domain(Sit,Dom),

all(X,Dom,satisfy(Sit,P)).

satisfy(Sit,P) :-

fact(P),

support(Sit,P).

% Representation of situations

support(Sit,Fact) :-

Clause =.. [Sit,Fact],

Clause.

fact(Fact) :-

Fact =.. [_|Args],

atoms(Args).

atoms([]).

atoms([X|L]) :-

atom(X),

atoms(L).

% Quantifying over domains

domain(Sit,Dom) :-

13

setof(X,

Fact^P^Args^(support(Sit,Fact),

Fact =..[P|Args],member(X,Args)),Dom),

asserta((domain(Sit,Dom) :- !)).

all(_,[],_).

all(X,[Y|Dom],Clause) :-

\+ \+ (X = Y,Clause),

all(X,Dom,Clause).

exists(X,Dom,Clause) :-

\+ \+ (member(X,Dom),Clause).

% Utility

reset_domain(Sit) :-

retract((domain(Sit,_) :- !)).

An example situation

sit1(woman(a)).

sit1(run(a)).

sit1(man(b)).

sit1(love(b,a)).

sit1(man(j)).

sit1(love(j,a)).

sit1(man(c)).

sit1(woman(e)).

sit1(love(c,e)).

2.6 Translating English to predicate calculus

This section discusses the program eng-pc.pl . This is a dcg which parses English sentences

into predicate calculus. It involves some rather subtle argument passing and is not the easiest of

programs to understand. The complexity is caused by the mismatch between the syntax of quan-

ti�ed sentences in a natural language like English and their corresponding sentences in predicate

calculus. Compare the structures

s(np(det(every),n(man)),vp(v(runs)))

every(X,man(X)--->run(X))

The English sentence breaks into two major constituents every man and runs whereas the logical

sentence contains a constituent

man(X)--->run(X)

which does not correspond to any constituent in the English sentence. The complexity is even

greater when we look at sentences with more than one quanti�ed noun-phrase:

s(np(det(every),n(man)),vp(v(loves),np(det(a),n(woman))))

every(X,man(X)--->some(Y,woman(Y)&love(X,Y)))

Here what corresponds to the NP every man is the non-constituent of the logic

every(X,man(X)--->

and what corresponds to the NP a man is the non-constituent

14

some(Y,woman(Y)&

Thus we can think of the contribution of the NPs as being logical formulae with parts unspeci�ed:

every(X,man(X)---> ...)

some(Y,woman(Y)& ...)

Actually, we know a bit more than is represented here. We know that the variable which is being

quanti�ed over (X and Y respectively) will occur somewhere in the part of the formula represented

by `... '. Consider now what the contribution of the determiner without its following common

noun would be:

every(X,___---> ...)

some(Y,___& ...)

Thus the contribution of a determiner is a template for a logical form which speci�es a quanti�er,

a variable to be quanti�ed and a connective with slots to be �lled both to the left and right of

the connective. This program uses prolog variables to represent the slots as well as the logical

variables. You can see this by looking at the rules for determiners:

determiner(X,Range,Scope,every(X,Range ---> Scope)) -->

[every].

determiner(X,Range,Scope,some(X,Range & Scope)) --> [a].

The template logical form is the last argument to the functor determiner. The slot to the left of

the connective is labelled Range since intuitively the formula with which this will be uni�ed will

represent what is quanti�ed over, the range of the quanti�er, e.g. men, women, etc. The slot to

the right of the connective is labelled Scope since this is intuitively what the NP will have scope

over. The remaining variables are there to keep track of those parts of the logical form which

other rules will need to specify without making reference to the internal structure of the logical

form. Thus, for example, the rule that parses noun-phrases consisting of a determiner followed by

a noun is:

noun_phrase(X, Scope, For) -->

determiner(X, Range, Scope, For), noun(X, Range).

This will make sure that the variable in the logical form for the noun will be the same variable

as that in the logical form for the determiner and that the logical form for the noun will become

the range in the logical form for the determiner(i.e. the formula For). This logical form will

furthermore be the logical form of the NP.

Exercise 2.6.1

Explain the treatment of quanti�ed NPs (such as a man, every woman) in object position, e.g.

the italicized NP in

every man loves a woman

Exercise 2.6.2

Explain the treatment of proper nouns such as John and Mary.

Exercise 2.6.3

The program provides a predicate interpret/2 which allows calls of the form

interpret(Sentence,Logical Form).

Which of the variables need to be instantiated? Can the program be used to generate English

sentences from logical forms?

15

2.7 Combining the programs

It is straightforward to combine the programs eng-pc.pl and satisfy.pl so that we can

evaluate English sentences in databases. For example, we might de�ne:

satisfy_eng(Sit, Sent) :-

interpret(Sent,Logic),

satisfy(Sit,Logic).

Exercise 2.7.1

Show that the programs can be combined in this way, giving illustrative examples.

Exercise 2.7.2

The grammar treats two kinds of relative clauses: restrictive relative clauses (de�ned by the predi-

cate rel clause) and non-restrictive relative clauses (de�ned by the predicate non restr rel clause

). Explain what the syntactic and semantic di�erences are between these types of relative clause

according to this program. Can you think of any ways in which this treatment of relative clauses

is incomplete or inadequate?

2.8 Programs:eng-pc.pl

%Grammar with semantic representation

%Fernando Pereira

%Modified by RC

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

sentence(For) --> noun_phrase(X,Scope,For), verb_phrase(X,Scope).

noun_phrase(X,Scope,For) -->

determiner(X,Range,Scope,For), noun(X,Range_noun),

rel_clause(X,Range_noun,Range).

noun_phrase(X, Scope, For) -->

determiner(X, Range, Scope, For), noun(X, Range).

noun_phrase(X,Scope,Scope&For_rel) -->

proper_noun(X),

non_restr_rel_clause(X, Scope, Scope&For_rel).

noun_phrase(X,For,For) --> proper_noun(X).

verb_phrase(X,For) -->

trans_verb(X,Y,For_verb), noun_phrase(Y,For_verb,For).

verb_phrase(X,For) --> intrans_verb(X,For).

rel_clause(X,For,For&For_rel) --> [that], verb_phrase(X,For_rel).

non_restr_rel_clause(X,Scope,Scope&For_rel) -->

[who], verb_phrase(X,For_rel).

determiner(X,Range,Scope,every(X,Range ---> Scope)) --> [every].

determiner(X,Range,Scope,some(X,Range & Scope)) --> [a].

16

noun(X,man(X)) --> [man].

noun(X,woman(X)) --> [woman].

proper_noun(john) --> [john].

proper_noun(mary) --> [mary].

trans_verb(X,Y,loves(X,Y)) --> [loves].

intrans_verb(X,lives(X)) --> [lives].

interpret(S, Logic) :- sentence(Logic, S,[]).

17

Chapter 3

The �-calculus and natural

language interpretation

3.1 Compositionality and the �-calculus

In the program eng-pc.pl we did not associate a logical expression with each constituent of the

English syntax. What we associated with many constituents was a partially speci�ed template

for a logical expression where we used prolog variables not only as logical variables but also as

meta-variables holding a place for some piece of logical syntax. This is not compositional in the

strict theoretical sense since it does not associate a logical expression with each English constituent.

Furthermore it requires us to use additional arguments in our rules to keep track of all the variables

which need to be passed around. The program is quite hard to understand and it is hard to develop

large grammars in this style.

For these kinds of reasons it can be useful to use a version of the �- calculus rather than

predicate calculus in computing the logical form of a sentence. The �- calculus is a richer logic

than predicate calculus and allows us expressions which refer to arbitrary functions by taking an

expression of the logic and pre�xing it with � and a variable, often referred to as �-abstraction.

For example,

�x[run(x)]

is the function that will yield true when applied to an individual which is running. Similarly,

�x[love(x;m)]

�x[love(m; x)]

will be functions that yield true for any individual that loves m or is loved by m respectively.

There are expressions of the language which represent the application of these functions to

arguments.

�x[love(x;m)](a)

�x[love(m; x)](a)

These expressions are equivalent to

love(a,m)

love(m,a)

respectively. This equivalence is referred to as �-reduction or �-conversion.

There are two important things to notice about the �-calculus. Firstly, we cannot only place

�'s in front of formulas of the logic but any arbitrary expressions. Thus we can create complex

�-expressions with more than one �.

18

�x�y[love(x; y)]

�y�x[love(x; y)]

These can be thought of as representing functions which, when applied to an argument, return

another function as result. Thus the following equivalences hold in virtue of �- reduction.

�x�y[love(x; y)](a) = �y[love(a; y)]

�y�x[love(x; y)](a) = �x[love(x; a)]

Notice that the order of the �-variables makes a di�erence. By convention the parentheses are left

associative so we have:

�x�y[love(x; y)](a)(b)$ love(a,b)

�y�x[love(x; y)](a)(b)$ love(b,a)

The other important thing is that we allow variables to range over anything, not just individuals

and thus �-expressions may be appropriate arguments to other �-expressions. So, for example, we

might translate the NP `every man' by

�P [8x[man(x)! P (x)]]

and provide this with the argument

�y[love(m; y)]

thus

�P [8x[man(x)! P (x)]](�y[love(m; y)])

By two applications of �-reduction we would obtain the predicate calculus expression

8x[man(x)! love(m; x)]

Notice that the variable P has taken over the role of the prolog variable Scope that was used in

the program eng-pc.pl . Similarly we could translate the determiner `every' by

�Q�P [8x[Q(x)! P (x)]]

Exercise 3.1.1

What would the translation of the determiner `a' be?

Exercise 3.1.2

Show how �-reduction can be applied successively to the following to obtain an expression of

predicate calculus

�Q[�P [8x[Q(x)! P (x)]]](�y[woman(y)])(�z[smile(z)])

�P [8x[man(x)! P (x)]](�y[�P [8w[woman(w)! P (w)]](�z[love(y; z)])])

How do you think these expressions might arise in the translation of English sentences?

3.2 A prolog version of the �-calculus

This section relates to the program lambda.pl .

This program consists of an extension of our prolog version of predicate calculus and corre-

sponds to the syntax used by Pereira and Shieber although they do not give a complete de�nition

of their syntax. We will use the prolog operator `^' to represent `�' and place it after the variable.

Thus

19

�x�y[love(x; y)]

will be represented by

X^Y^love(X,Y)

We will use the prolog operator `*' to represent application of �-expressions to arguments. (Here

we di�er from Pereira and Shieber, who do not introduce any prolog notation for functional

application.) Thus

�x�y[love(x; y)](a)(b)

is represented by the prolog term

X^Y^love(X,Y)*a*b

and not by the non-term

X^Y^love(X,Y)(a)(b)

�-expressions, called �-terms in the program, are admitted by rules which keep track of their arity,

i.e. how many arguments they need to make a formula. Thus

lambda_term(X^For,1) :-

wff(For).

says that a formula with a single �-pre�x is a �-term with arity 1. Adding another �-pre�x to a

�-term with arity n creates a �-term with arity n + 1. Similarly, there is a rule that says that a

�-term with arity n applied to an argument is a �-term of arity n � 1, except in the case where

n = 1, where the result is a formula (given by an additional rule for the predicate wff/1 .

Note that there are no restrictions on what the argument can be other that to say that it is

some kind of term and that the notion of term has been extended to include not only variables

and constants but also formulae and �-terms. This lack of restriction means that we are dealing

with a version of the untyped �-calculus rather than the typed �-calculus. It is actually a version

of the typed �-calculus which has enjoyed wide application in natural language semantics, but it

would make things a little more complicated than they need to be for the purposes of our current

implementation if we were to code the type �-calculus in prolog.

Exercise 3.2.1

Use the program to determine which of the following are well- formed formulae. Indicate the

structure of those which are well-formed and explain what is wrong with those which are not

well-formed. (Add appropriate constants and predicates to the lexicon so that the failure is not

because a constant or predicate is missing or has the wrong arity.) Suggest English sentences

which might correspond to the well-formed formulae, where appropriate.

some(Y,X^run(X)*Y)

want(j,every(X,Y^man(Y)&snore(Y)*X--->wake(X)))

want(j,every(X,Y^(man(Y)&snore(Y))*X--->wake(X)))

want(j,X^walk(X))

want(j,X^walk(X)&Y^talk(Y))

P

P*X

P*a*b

P^every(X,man(X)--->P*X)*Y^run(Y)

Q^P^every(X,Q*X--->P*X)*Y^student(Y)*Z^clever(Z)

Q^(P^every(X,Q*X--->P*X)*Y^student(Y))*Z^clever(Z)

X^fun(X)*Y^swim(Y)

X^fun(X)*Y^fun(Y)

X^Y^love(X,Y)*a

20

Exercise 3.2.2

Write a pretty printer that will display these formulae in a more readable form.

3.3 Implementing �-reduction with uni�cation

This concerns the program beta.pl .

The heart of this is the one line program presented by Pereira and Shieber, which, using our

formalism, is

reduce(X^P*X,P).

It uni�es the variable in the �-pre�x with the argument and gives the �-term stripped of its pre�x

in the second argument. While this is a splendid example of concise prolog we shall see that it is

not without its problems.

The rest of this program, the de�nition of the predicate convert/2 , is recursive on the syntax

of the �-calculus and ensures that appropriate conversions take place inside the phrase that we

are reducing.

Exercise 3.3.1

Use the program to generate reductions of the formulae in the �rst exercise of the previous section.

Do the reductions con�rm your suggestions for corresponding English sentences? How much of a

syntax check does the conversion do, can non-well-formed formulae be converted?

Exercise 3.3.2

We have not given a semantics for the �-calculus as we did for predicate calculus, because we can

rely on reducing to an expression of predicate calculus and then testing whether that is satis�ed

by some situation. How might you go about providing a semantics for the �-calculus which would

satisfy the constraint that any formula would be satis�ed by exactly the same situations as its

reduction?

3.4 Using the l-calculus for computing logical form

This section refers to the program eng-lambda.pl .

Using the �-calculus allows us to give a program which gives a truly compositional semantics.

We can assign a logical expression to each constituent of English and we no longer have need

of templates with non-logical prolog variables like Scope and Range as we had in the previous

program. Furthermore we have no need of extra arguments to keep track of variables since the

�-expressions do it for us. The result is a program that is much easier to read and much closer to

a formalism that a linguist working in the Montague Grammar framework would employ.

For example, the rule introducing `every' is

determiner(Q^P^every(X,Q*X ---> P*X)) --> [every].

Although the logical form is complex, it is immediately clear what the proposed semantics is. The

rule for NPs consisting of determiners followed by nouns involves functional application as very

many of the rules do now.

noun_phrase(Det*Noun) -->

determiner(Det), noun(Noun).

Compare this with the corresponding rule in eng-pc.pl !

21

Exercise 3.4.1

Use the convert program to satisfy yourself that the program produces equivalent results to

eng-pc.pl . Illustrate with key examples. Note that a call like

interpret(Sent,Logic),convert(Logic,Reduction).

will make Logic look absolutely horrendous since convert/2 will do a lot of uni�cation. If you

want to see what the output of interpret really looks like call interpret without convert .

Exercise 3.4.2

Change the program so that it does �-conversion in each rule as the translation is built up rather

than at the end of the parse. What might the computational advantage of doing it one way or the

other be?

Exercise 3.4.3

Explain how transitive verbs are combined with their objects.

Exercise 3.4.4

Compare the treatment of proper names in this program with their treatment in eng-pc.pl .

Exercise 3.4.5

Complete the program so that it is equivalent to eng-pc.pl .

Exercise 3.4.6

How do things look for generating English sentences from logical forms now?

3.5 A problem with the implementation of �-reduction

Consider the following expression:

P^(P*j&P*m)*X^run(X)

By three applications of �-reduction, we should be able to reduce this to:

run(j)&run(m)

However, the predicate convert/2 will fail on this example. It fails at the stage where we work

on the intermediate reduction

X^run(X)*j&X^run(X)*m

We are now required to reduce both conjuncts. In working on the �rst conjunct the program

uni�es X with j and we obtain

run(j)&j^run(j)*m

There are two unfortunate things about this. Firstly, it is not a w� of the �-calculus since in

contains a �-pre�x which is not a variable. Secondly, when we come to try to reduce the right-

hand conjunct we will attempt to unify j with m which will, of course, fail. In the real �-calculus

we would at this stage get

run(j)&X^run(X)*m

22

The variable in the �-term in the right-hand conjunct is entirely independent of that in the

left-hand. While we happen to have used the same symbol for the variables they are bound by

di�erent operators. In exactly the same way two occurrences of the same variable within the scope

of di�erent quanti�ers are unrelated as in

9xF (x)&9xG(x)

Using prolog variables as logical variables has got us into trouble here because the prolog variables

are not getting bound in the way that logical variables do.

The solution to this problems involves making a copy of the �-term with new variables and

then doing the substitution involved in �-conversion. One has to be careful when doing this to

make sure that the variables which are not being substituted for remain the same. A solution to

this problems which makes clever use of bagof/3 is provided in the program reduce.pl . This

provides an alternative de�nition of the predicate reduce/2 in lambda.pl . It is nothing like as

elegant as the original de�nition of reduce/2 , but nothing that solves this problems using prolog

variables as logical variables is going to be toatally clean.

Exercise 3.5.1

Check that the program works with the example discussed in this section

Exercise 3.5.2

Why is it not possible to use double negation to solve this problem in a similar way that we used

it in doing the semantics of predicate calculus?

23

3.6 Programs

These programs are for Chapter 3.

3.6.1 lambda.pl

% Operators for connectives

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

% Operator for functional application

:- op(400, yfx, *).

% Definition of well-formed formulas

wff(For) :-

var(For),!.

wff(For) :-

For =..[P|Args],

predicate(P,Args),

terms(Args).

wff((For1 & For2)) :-

wff(For1),

wff(For2).

wff((For1 \/ For2)) :-

wff(For1),

wff(For2).

wff((For1 ---> For2)) :-

wff(For1),

wff(For2).

wff((~ For)) :-

wff(For).

wff((Lambda_term*Arg)) :-

lambda_term(Lambda_term,s(0)),

term(Arg).

wff(For) :-

functor(For,Q,2),

quantifier(Q),

For =.. [Q,V,For1],

var(V),

wff(For1).

% Terms are constants or variables

terms([]).

terms([X|L]) :-

term(X),

terms(L).

term(X) :- var(X),!.

24

term(X) :- constant(X).

term(X) :- wff(X).

term(X) :- lambda_term(X,_).

% Lambda terms.

lambda_term(P,_) :-

var(P),!.

lambda_term(X^For,s(0)) :-

var(X),

wff(For).

lambda_term(X^Lambda_term,s(N)) :-

var(X),

lambda_term(Lambda_term,N).

lambda_term(Lambda_term*Arg,s(N)) :-

lambda_term(Lambda_term,s(s(N))),

term(Arg).

% A sample lexicon. Arity n represented by a list

% of length n.

predicate(run,[_]).

predicate(man,[_]).

predicate(woman,[_]).

predicate(love,[_,_]).

constant(a).

constant(b).

constant(c).

/* Quantifiers do not properly belong in the lexicon but

we will want to add more quantifiers as we extend

predicate calculus */

quantifier(every).

quantifier(some).

% Ancillary syntactic notion

closed_atomic_formula(For) :-

For =.. [_|Args],

constants(Args).

constants([]).

constants([Arg|Args]) :-

\+ var(Arg),

constant(Arg),

constants(Args).

3.6.2 beta.pl

% beta.pl

25

/* Requires a lexicon for the lambda calculus */

% Operators for connectives

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

% Operator for functional application

:- op(400, yfx, *).

convert(P,P) :-

var(P),!.

convert(P*A,P*A) :-

var(P),!.

convert(X^P*A,Q) :- !,

reduce(X^P*A,P1),

convert(P1,Q).

convert(P*A,Q) :-

convert(P,P1),

% Prevent left recursion when P and P1 are identical

\+ P = P1,!,

convert(P1*A,Q).

convert(P&Q,P1&Q1) :- !,

convert(P,P1),

convert(Q,Q1).

convert(P\/Q,P1\/Q1) :- !,

convert(P,P1),

convert(Q,Q1).

convert(P--->Q,P1--->Q1) :- !,

convert(P,P1),

convert(Q,Q1).

convert(~P,~P1) :- !,

convert(P,P1).

convert(P,Q) :-

P =..[Quant,Var,Scope],

quantifier(Quant),!,

convert(Scope,NewScope),

Q =..[Quant,Var,NewScope].

convert(P,Q) :-

P =..[Pred|Args],

predicate(Pred,Args),!,

convert_all(Args,NewArgs),

Q =..[Pred|NewArgs].

convert(P,P).

convert_all([],[]).

convert_all([P|L],[Q|L1]) :-

convert(P,Q),

convert_all(L,L1).

reduce(X^P*X,P).

26

3.6.3 eng-lambda.pl

% Grammar with semantic representation

%

% An incomplete modification of eng-pc.pl using

% of the lambda-calculus

% Operators for connectives

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

% Operator for functional application

:- op(400, yfx, *).

sentence(NP*VP) --> noun_phrase(NP), verb_phrase(VP).

noun_phrase(Det*Noun) -->

determiner(Det), noun(Noun).

noun_phrase(P^(P*X)) --> proper_noun(X).

verb_phrase(X^(NP*(Y^(TV*Y*X)))) -->

trans_verb(TV), noun_phrase(NP).

verb_phrase(IV) --> intrans_verb(IV).

determiner(Q^P^every(X,Q*X ---> P*X)) --> [every].

determiner(Q^P^some(X,Q*X & P*X)) --> [a].

noun(X^man(X)) --> [man].

noun(X^woman(X)) --> [woman].

proper_noun(john) --> [john].

proper_noun(mary) --> [mary].

trans_verb(Y^X^love(X,Y)) --> [loves].

intrans_verb(X^live(X)) --> [lives].

interpret(S, Logic) :- sentence(Logic, S,[]).

3.6.4 reduce.pl

% Title: reduce.pl

% Authors: Guy Barry and David Beaver

reduce(X^P*Y,Q) :-

sub(Y,X,P,Q).

% sub(Val,Var,InTerm,OutTerm) :-

% OutTerm is a copy of InTerm where the variable

% Var has been replaced by the term or variable

27

% Val and all other variables remain unchanged

% (given that Var does not occur in Val).

sub(Val,Var,InTerm,OutTerm) :-

var(Var),

bagof(Term,

Var^(Var=Val,Term=InTerm),

[OutTerm]).

28

29

Chapter 4

Quanti�cation

4.1 Introduction

In this chapter we will look at two central problems having to do with quanti�ers in natural

language. One has to do with how we can extend our semantics to include quanti�ers other than

9 and 8, the standard quanti�ers of predicate calculus. The other has to do with the intepretation

of scope ambiguities in natural language.

4.2 Generalized quanti�ers

This discussion relates to the program satisfy-gq.pl . In addition to the determiners `a' and

`every' English contains a number of determiners that represent di�erent quanti�ers. Those we

treat here (at least in terms of logical representation if not in terms of English syntax) are: `no',

`one', `two', `exactly n', `at least n', `at most n', `many', `few' and `most'. These are called gene-

ralized or non-standard quanti�ers because they go beyond the classical existential and universal

quanti�ers. The term \generalized quanti�er" also refers to a particular semantic analysis of quan-

ti�ers which is necessary if we are to comprehend these quanti�ers as well as the existential and

universal quanti�ers in a general framework.

One way to view the basic insight of the generalized quanti�er analysis is that quanti�cation

involves the comparison of two sets. Consider the determiner `most'. If we try to symbolize the

sentence `most men run' in the kind of logical form that we have been considering so far, we �nd

that there is no connective which is appropriate:

most(X,man(X) ? run(X))

It is simply not possible to think of most as quantifying over the whole domain: e.g. \most x

are such that x is a man and x runs" or \most x are such that if x is a man then x runs" are

simply not appropriate paraphrases of `most men run' in the way that \for every x if x is a man

then x runs" is appropriate for `every man runs'. The sentence with `most' has to be viewed as

comparing two sets rather than making a statement about the whole domain. It compares the set

of men with the set of runners and requires that some suitably large proportion of the members

of the �rst set (say more than half) are also members of the second set. No logical connective will

express this for us, so we will adopt a notation for quanti�ed sentences which does not involve the

use of a connective:

most(X,man(X),run(X))

As it happens this is a common notation in the logic programming literature (�rst suggested by

Colmerauer) where it is given the name three-branch quanti�er (3BQ).

The notion of set comparison in the interpretation of quanti�ers is as good for standard quan-

ti�ers as it is for the non-standard ones. So, for example, we can think of the interpretation of

30

`every man runs' as requiring us to check that the set of men is a subset of the set of runners. So

we can use the same notation for all quanti�ers, e.g.

every(X,man(X),run(X))

In the program we include both versions of `some' and `every' for comparison. In these formulae

we will call the second argument of the quanti�er term the range and the third argument of the

quanti�er term the scope.

The program satisfy-gq.pl is not optimal from an e�ciency point of view since it is sup-

posed to emphasize that all natural language quanti�ers submit to a general analysis. However,

is does exploit one important concept from generalized quanti�er theory which has a consequence

for computation. This is the concept of conservativity. A quanti�er q is conservative just in case

the following holds:

q(X,P,Q)$ q(X,P,P&Q)

It seems that all natural language quanti�ers are conservative in this sense. Here are some English

examples which illustrate this:

many men run $ many men are men who run

few women sneeze $ few women are women who sneeze

every child smiles$ every child is a child who smiles

Computationally what this means is that in determining satisfaction we do not have to check all of

the scope set but only its intersection with the range set. Furthermore nearly all of the quanti�ers

fall into the following two categories:

absolute: you have to check the intersection for some cardinality property

relative: you have to compare the intersection with the range set

For example, `one' is absolute since you have to �nd the intersection of the range and scope sets

and check the cardinality of the intersection. On the other hand, `most' is relative since you have

to �nd the intersection of the range and scope sets and check that a certain proportion of the

members of the range set are in the intersection. This means that the computation of satisfaction

of some formula will normally involve two steps

1. compute the intersection of the range and scope sets

2. either check the cardinality of the result or compare the intersection with the range set

All of the quanti�ers treated in this program fall into this mould.

Some quanti�ers are vague. That is, you cannot tell simply from the sentence how precisely

to check the relevant sets. Consider `many'. If I say

many men run

many men in Scotland run

many men in the class run

I probably have a di�erent idea of what might constitute `many' in each case. Even given some

precise context I may not be able to say precisely what I mean by `many'. Does 20,000 Scots count

as many but not 19,999? Yet we have some idea that di�erent \ball-park" �gures are involved in

the di�erent sentences. A famous sentence from the linguistic literature (due to Barbara Partee)

is

many men date many women

This shows that we may have di�erent notions of what constitutes many for di�erent uses of

`many' in the same sentence. It is di�cult to know what to do for such quanti�ers in computational

applications. Consider what kind of world knowledge might have to built in in order for a practical

31

data-base query system to be able to sensibly answer a question like `Do many men date many

women?'. The solution taken in the present program is to build in an extra parameter in the

quanti�er expression which represents what counts as many, few or most. In the case of many and

few it will be some absolute number, but in the case of most it will be some proportion like 0.7 or

9/10. We assume that this number is given us by some other (intelligent) module. Note, however,

that such a module is unlikely to capture our intuitions about these sentences exactly since the

quanti�ers are truly vague - we cannot say precisely what number we have in mind for many even

when given a precise context. Perhaps a useful alteration to this program would be one which

uses something other than the arithmetic in standard Prolog and would allow us to leave the extra

parameter as a variable when we call satisfy . (This will not work in the present program.) In

this way it could place constraints on what the extra parameter could be. For example, if we have

a situation where �ve men are running and we ask whether

many(Num,X,man(X),run(X))

is satis�ed, it might instantiate Num to 5 and then leave the user to determine whether �ve

counts as many or not.

An important property that quanti�ers may have is monotonicity. Consider that the English

VP `arrived early' represents a subset of what is represented by `arrived'. Now note that

every man arrived early ! every man arrived

but not

no man arrived early ! no man arrived

We say that `every' is monotone increasing on its second argument, i.e.

if Q represents a subset of Q

0

every(X,P,Q)! every(X,P,Q

0

)

Notice also that

no man arrived ! no man arrived early

but not

every man arrived ! every man arrived early

The quanti�er `no' is monotone decreasing on its second argument, i.e.

if Q represents a subset of Q

0

no(X,P,Q

0

)! no(X,P,Q)

The quanti�er `every' is monotone decreasing on its �rst argument, i.e.

if Q represents a subset of Q

0

every(X,Q

0

,P) ! every(X,Q,P)

For example,

everybody who came drank a vodka martini ! everybody who came early drank a

vodka martini

Exercise 4.2.1

How must the program pc.pl be modi�ed to accommodate the new structure of quanti�ed

formulae?

32

Exercise 4.2.2

Which of the quanti�ers treated in satisfy-gq.pl are absolute and which are relative? Explain

why.

Exercise 4.2.3

Check that the semantics given in satisfy-gq.pl respects the following properties of quanti�ers, give

example situations to illustrate these properties and explain why it is not possible to construct a

situation which would satisfy a sentence that would violate the property.

monotone increasing on second argument - `some', `many', `every'

monotone decreasing on second argument - `no', `few', `at most 6'

monotone increasing on �rst argument - `some', `many'

monotone decreasing on �rst argument - `every', `no'

Exercise 4.2.4

Extend the program eng-lambda.pl (or your current extension of it) to include the quanti�ers

treated in satisfy-gq.pl . Discuss the choices you made with respect to numerals (like `two')

and vague quanti�ers.

Exercise 4.2.5

Incorporate quanti�ers corresponding to the and both into the program

satisfy-gq.pl

33

4.3 Programs

These programs are for Chapter 4

satisfy-gq.pl

satisfy-gq.pl

satisfy(Sit,P) :-

% closed_atomic_formula(P),

support(Sit,P).

satisfy(Sit, P&Q) :-

satisfy(Sit,P),

satisfy(Sit,Q).

satisfy(Sit, P\/Q) :-

(satisfy(Sit,P); satisfy(Sit,Q)).

satisfy(Sit, P--->Q) :-

(satisfy(Sit,~P); satisfy(Sit,Q)).

satisfy(Sit, ~P) :-

\+ satisfy(Sit,P).

satisfy(Sit,some(X,P)) :-

domain(Sit,Dom),

\+ \+ (member(X,Dom),satisfy(Sit,P)).

satisfy(Sit,some(X,P,Q)) :-

setof(X,(satisfy(Sit,P),satisfy(Sit,Q)),_).

satisfy(Sit,no(X,P,Q)) :-

\+ setof(X,(satisfy(Sit,P),satisfy(Sit,Q)),_).

satisfy(Sit,one(X,P,Q)) :-

setof(X,(satisfy(Sit,P),satisfy(Sit,Q)),[_]).

satisfy(Sit,two(X,P,Q)) :-

setof(X,(satisfy(Sit,P),satisfy(Sit,Q)),[_,_]).

satisfy(Sit,exactly(Num,X,P,Q)) :-

setof(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

length(Set,Num).

satisfy(Sit,at_least(Num,X,P,Q)) :-

set_of(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

length(Set,N),

N >= Num.

satisfy(Sit,at_most(Num,X,P,Q)) :-

set_of(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

length(Set,N),

N =< Num.

satisfy(Sit,every(X,P)) :-

domain(Sit,Dom),

all(Dom,X,satisfy(Sit,P)).

34

satisfy(Sit,every(X,P,Q)) :-

set_of(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

set_of(X,satisfy(Sit,P),Set).

satisfy(Sit,many(Num,X,P,Q)) :-

set_of(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

length(Set,N),

N >= Num.

satisfy(Sit,few(Num,X,P,Q)) :-

set_of(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

length(Set,N),

N =< Num.

satisfy(Sit,most(Prop,X,P,Q)) :-

set_of(X,(satisfy(Sit,P),satisfy(Sit,Q)),Set),

set_of(X,satisfy(Sit,P),Range),

length(Set,N),

length(Range,NR),

N/NR >= Prop.

domain(Sit,Dom) :-

setof(X,

P^Fact^Args^(support(Sit,Fact),

Fact =..[P|Args],member(X,Args)),Dom),

asserta((domain(Sit,Dom) :- !)).

support(Sit,Fact) :-

Clause =.. [Sit,Fact],

Clause.

all([],_,_).

all([X|Dom],Y,Clause) :-

\+ \+ (X = Y,Clause),

all(Dom,Y,Clause).

set_of(X,Goal,Set) :-

setof(X,Goal,L),!,

L = Set.

set_of(_,_,[]).

35

Chapter 5

Quanti�er Scope

5.1 The Problem(s)

The program eng-lambda.pl produces the following logical expression for a woman loves every

man

some(X,woman(X) & every(Y,man(Y) |> love(X,Y)))

The sentence also appears to have the following (perhaps more natural) reading

every(Y,man(Y) & some(Y,man(Y) |> love(X,Y)))

The di�erence between these two expressions lies in the relative scopes of the two quanti�ers

every and some. In the �rst, some outscopes every and in the second every outscopes some.

Ambiguities which arise in this fashion are called quanti�er scope ambiguities.

Scope ambiguities arise with all sorts of other operators apart from quanti�ers. The prime-

minister used to be a womanmight be taken to be true because it used to be the case that Margaret

Thatcher was prime-minister. Alternatively the sentence might be making an outrageous claim

about John Major.

Here we will concentrate largely on quanti�er scope ambiguities.

The task of deciding which quanti�ers should take scope over which others is a notoriously hard

problem. Our example shows that simply giving the subject np wide scope (as in eng-lambda.pl)

does not always produce the most plausible answer.

Clearly, contextual inuences and general world knowledge play a large part in scope determi-

nation

1. A TV set blurted out that each senator was o�ended

2. A quick test con�rmed that each drug was psychoactive

It is hard to imagine that for each senator a di�erent TV set blurted out that he was o�ended but

quite easy to imagine that each drug underwent a di�erent test.

On the other hand, syntactic structures certainly have some inuence. In some tests conducted

by Vanlehn (`Determining the Scope of English Quanti�ers' M.Sc. thesis at MIT 1978), small

variations in sentences with a very similar content sometimes produced quite divergent reactions.

1. At the conference yesterday, I managed to talk to a guy who is representing each raw rubber

producer in Brazil

2. At the conference yesterday, I managed to talk to a guy representing each raw rubber pro-

ducer in Brazil

3. At the conference yesterday, I managed to talk to a representative from each raw rubber

producer in Brazil

36

Nobody thought each outscoped a in 1, everyone thought that each outscoped a in 3 and people

were evenly divided on 2.

The algorithm encoded in qscope.pl was devised by Hobbs and Shieber and is described in

their paper `An Algorithm for Generating Quanti�er Scopings' (Computational Linguistics Volume

13 nos. 1-2). Some very low level routines which were not detailed in their paper have been added.

The program avoids the issue of trying to decide on the most plausible reading of a sentence

- instead it is designed to generate all (and only) the possible readings of a sentence. Another

program might be used to help decide which of the possible readings is actually the most likely

one. Alternatively, one could try asking the user to decide amongst them but this is not a

particularly attractive option. Ordinary speakers would have to be able to read and understand

quite complex logical expressions. Furthermore, the number of readings generated can be huge.

For the sentence

Some representative of every department in most companies saw a few samples of each

product

there are calculated to be 42 di�erent readings! It would be somewhat impractical to ask a user

to decide which of 42 di�erent readings was intended by the sentence he or she just used.

Exercise 5.1.1

Sometimes di�erent logical forms corresponding to di�erent quanti�er scopings are equivalent in

the sense that any situation that satis�es one will satisfy the other and any situation which does

not satisfy one will also not satisfy the other. For the following sentences, determine what the two

logical forms associated with them would be and test whether they are equivalent or not. If they

are not, show examples of situations that satisfy one and not the other and if possible the reverse

too|does either quanti�er scoping imply the other.

a) every man loves a woman

b) two women saw two samples

c) a child saw a dog

d) most students like a few professors

e) most professors like most students

5.2 Hobbs and Shieber's algorithm

In this section, we will describe the heart of Hobbs and Shieber's algorithm. This algorithm is

implemented in the program hs-one.pl. In the next section, we will discuss an amendment which

deals with some more complex cases of quanti�er scoping. The amended program can be found in

hs-two.pl. The full implementation, which deals with a wider range of issues than just quanti�er

scoping, can be found in qscope.pl.

hs-one.pl is designed to convert a formula which encodes predicate-argument relations, but

not quanti�er scopings, into a formula in the three-branch quanti�ers notation of Generalized

Quanti�er Theory.

The program takes initial input of the following form:

A w� is of form w�(predicate, [arg

1

: : :arg

n

]), where predicate is an atomic predicate symbol

and the arg

i

are constants, variables or complex terms. A complex term is of form term(quant,variable,w�),

where quant is one of `every', `a'. `most' etc.

Our example a woman loves every man becomes

w�(loves,[term(a,x,w�(woman,[x])),term(every,y,w�(man,[y]))])

This representation does show predicate-argument relations (e.g. that the noun phrase a woman

is the �rst argument to the predicate loves) but does not show which quanti�er takes wider scope.

The H&S representation for three-branch quanti�ers is this:

w�(quant,[var,w�

1

,w�

2

])

The H&S algorithm contains at the top-level a simple recursion called apply terms, which takes

37

an input form as argument and returns a scoped form as its result. The algorithm simply picks a

complex term, applies it, picks another and so on |until there are no more complex terms in the

formula.

apply terms

if there are no complex terms in the input wff,

then terminate and return input wff

else choose an applicable complex term (ct) in the wff

apply ct to the wff generating a new wff

recurse on the new wff

For the moment, we will say that an applicable complex term is just any complex term in the

w�.

It is important that the choice of which complex term to apply next to a formula is non-

deterministic. The di�erent orders in which one chooses complex terms will correspond to di�erent

quanti�er scopings for the formula.

The step of applying a complex term to a w� is equally straightforward. apply has two ar-

guments: a complex term to be applied and a form to apply it to. apply also returns an output

formula. apply has three steps

apply

1 let the complex term be term(q

1

,v

1

,w�

1

)

2 let tmp-w� be the result of substituting v

1

for term(q

1

,v

1

,w�

1

) in the input w�

3 return w�(q

1

,[v

1

,w�

1

,tmp-w�])

That is, the result of applying a complex term to a w� is a new w� whose �rst 3 parts are just

copied from the complex term and whose fourth part is the result of a simple substitution opera-

tion.

Exercise 5.2.1

Show that by choosing the complex terms in either order, the two readings of some woman loves

every man are obtained.

5.3 Nested Noun Phrases

Sometimes noun phrases contain other noun phrases. Sentences containing these nested noun

phrases may also be subject to quanti�er scope ambiguities.

Every representative of a company arrived

Exercise 5.3.1

Write down the two readings of this sentence in three-branch quanti�er notation

Suppose we represent this sentence in H&S notation as follows

w�(arrived,[term(every,x,w�(rep-of,[x,term(some,y,w�(cmp,[y]))]))])

If we call apply terms on this example, then one of the readings generated will contain a free

variable y which is not bound by the quanti�er over y. The formula does not correspond to a

reading of the original sentence. We will not be able to test whether a particular situation satis�es

this formula or not - because we are not told anywhere what the value of y should be.

Exercise 5.3.2

Given the representation of Every representative of a company arrived shown above, which order

of applying complex terms results in the output formula containing a free variable ?

38

The solution to the problem of nested noun phrases is contained in hs-two.pl. First, we

alter the top-level recursion of apply terms and add a ag which will cause the program to return

partially scoped answers as well as fully scoped answers. The ag is called Complete and if its

value is false, then partial answers will be returned.

The new de�nition of apply terms is as follows

apply terms

if there are no complex terms in the input wff,

then terminate & return input wff

else (either if Complete = false

then terminate & return input wff

else fail

or choose an applicable complex term (ct) in the wff

apply ct to the wff generating a new wff

recurse on the new wff with Complete as set on input)

The either-or clause is also non-deterministic. We can choose either disjunct to execute -

though if the branch we choose fails, then we must try the other, as usual. The idea is that if the

input formula does contain complex terms and Complete = false, then we can simply choose to

stop the recursion immediately with whatever partial result we have found so far. Alternatively,

we can choose to apply another complex term within the w�.

If Complete = true then even if we did choose the �rst disjunct that disjunct would fail so

we would end up taking the second disjunct anyway.

Exercise 5.3.3

What are the results of calling apply terms (with Complete = false) on a suitable input repre-

sentation of `some woman loves every man' ?

There is also a new de�nition of an applicable complex term. Before, any complex term within

a formula was applicable. Now we restrict the applicable complex terms to be only those complex

terms which are not nested within other complex terms. So given a representation of Every

representative of a company arrived, we could not now choose to apply a company �rst because it

is nested within every representative of a company.

The last change we make is to the de�nition of apply itself.

apply

1 let the complex term be term(q

1

,v

1

,w�

1

)

2 let tmp-w�

1

be the result of substituting v

1

for term(q

1

,v

1

,w�

1

) in the input w�

3 call apply terms on w�

1

(with Complete = false) returning tmp-w�

2

4 return w�(q

1

,[v

1

,tmp-w�

2

,tmp-w�

1

])

This is just the same as before except that instead of simply copying w�

1

into the output repre-

sentation, we now recurse on apply terms �rst, whilst also setting the ag Complete to false.

A Worked Example

Given the new de�nitions of apply terms and apply and settingComplete= true, call apply terms

on

w�(arrived,[term(every,x,w�(rep-of,[x,term(some,y,w�(cmp,[y]))]))])

There are complex terms in the formula so we do not terminate. Furthermore, Complete = true

so we must execute the second disjunct of the either-or clause.

Now we must choose an applicable complex term but there is only one{ every representative

of a company { (because the other is nested and therefore not applicable).

Now we must apply every representative of a company to our input w�. First we substitute x

for every representative of a company thereby generating

w�(arrived,[x])

39

Secondly, we call apply terms (this time with Complete = false) on the w� within every repre-

sentative of a company, i.e.

w�(rep-of,[x,term(some,y,w�(cmp,[y]))])

There are complex terms in this w� and furthermore Complete = false so we could choose the

�rst disjunct of the either-or clause. If we did this we would terminate this recursion and simply

return

w�(rep-of,[x,term(some,y,w�(cmp,[y]))])

unchanged. However, we will choose not to do this, and instead we will take the other branch of

the either-or clause.

First, we choose a complex term in the w� (there is only one): a company. Next, we substitute

y for a company in our current w�, generating

w�(rep-of,[x,y])

Then we call apply terms on `w�(cmp,[y])' - but since there are no complex terms in this w�,

the result is just `w�(cmp,[y])'. We can now return the result of recursing on representative of a

company, i.e.

w�(some,[y,w�(cmp,[y]),w�(rep-of,[x,y])])

Finally, we can now return the value of our original call to apply on every representative of a

company

w�(every,[x,w�(some,[y,w�(cmp,[y]),w�(rep-of,[x,y])]),w�(arrived,[x])])

Having called apply from within apply terms we must now recurse once more on apply terms itself

- but since there are no more complex terms within the w� the whole recursion terminates with

the above result.

The result is that `every' has wide scope and there are no free variables.

Exercise 5.3.4

Prove to yourself that, had we chosen the second disjunct of the either-or clause at a point in

the above example, the other reading of the sentence would have been obtained. (Note: don't

forget the �nal recursive call to apply terms after you've �nished applying every representative of

a company)

5.4 Other Scope Ambiguities

The full algorithm of Hobbs and Shieber is in qscope.pl. That algorithm not only deals with

quanti�er scope ambiguties but also with some other scope ambiguities. For example,

Five students aren't here

is ambiguous between the following two readings:

5x (students(x);� here(x))

� 5x (students(x); here(x))

By adding the clause opaque(not,1) to the program, the predicate not is declared opaque in its

�rst argument. That is, quanti�ers can take scope inside the scope of negation as well as outside.

Sentences involving verbs such as `hopes' and `believes' (often called propositional attitudes)

are also ambiguous in interesting ways.

Jack believes every famous impressionist painter is French

is ambiguous between the following two readings

believes(jack,8x (imp-painter(x),french(x)))

8x (imp-painter(x),believes(jack,french(x)))

On the �rst reading, Jack has the general belief that any famous impressionist painters will in fact

be French - and he need not have any beliefs concerning particular painters at all. For example,

he need not believe that Alfred Sisley is French, because he isn't aware that Sisley is a famous

impressionist painter. On the second reading, Jack believes of each individual who happens to

be a famous impressionist painter that that individual is French. Therefore he believes Sisley is

French. However, he need not have the general belief { he might not believe anything at all about

impressionist painters in general.

40

Exercise 5.4.1

Write a suitable clause declaring that `believes' is opaque. Test the program on some sentences

containing the verb `believes'.

Exercise 5.4.2

Find some other predicates that show interesting scoping behaviour. Experiment with qscope.pl

using the examples you can �nd.

Exercise 5.4.3

Test qscope.pl on examples of sentences that include di�erent combinations of scope-bearing

words (for example, `every',`not',`believes'). Comment on the plausibility of the results.

5.5 Programs: hs-one.pl

% gen(Form, ScopedForm)

% =====================

% Form ==> a wff with in-place complex terms

% ScopedForm <== a full scoping of Form

gen(Form, ScopedForm) :-

apply_terms(Form, ScopedForm).

% apply_terms(Form, ScopedForm)

% =======================================

% Form ==> a wff with in-place complex terms

% ScopedForm <== a full scoping of Form

%

% Applies one or more terms to the Form alone

apply_terms(Form, Form) :-

not(term(Form, Term)), !.

apply_terms(Form, ScopedForm) :-

applicable_term(Form, Term),

apply(Term, Form, AppliedForm),

apply_terms(AppliedForm, ScopedForm).

% apply(Term, Form, NewForm)

% ==========================

% Term ==> a complex term

% Form ==> the wff to apply Term to

% NewForm <== Form with the quantifier wrapped around it

apply(term(Quant, Var, Restrict),

Body,

wff(Quant, [Var, Restrict, OutBody])) :-

subst(Var, term(Quant, Var, Restrict), Body, OutBody).

% applicable_term(Form, Term)

% ===========================

% Form ==> an expression in the logical form language

41

% Term <== any term in Form

%

% In this version of the program, we simply allow any

% Term contained within Form to be applicable - so we

% can just define it by means of the term/2 already

% used in apply_terms/2

applicable_term(Form, Term) :-

term(Form,Term).

/***

My implementation of the low-level predicates not included

in the appendix of the paper. (all 3 programs identical

below this line)

**/

% quantifer(Quant)

% ================

% Quant ==> a valid quantifier

quantifier(every).

quantifier(most).

quantifier(some).

quantifier(each).

quantifier(a_few).

% subst(New, Old, OldForm, NewForm)

% =================================

% New ==> A pattern to substitute for Old

% Old ==> A pattern to be replaced by New

% OldForm ==> a wff with in-place complex terms

% NewForm <== OldForm with each occurrence of Old

% replaced by New

subst(New, Old, Old, New) :- !.

subst(New, Old, wff(Quant, ArgList),

wff(Quant, NewArgList)) :- !,

subst(New, Old, ArgList, NewArgList).

subst(New, Old, term(Quant, Var, Restrict),

term(Quant, Var, NewRestrict)) :- !,

subst(New, Old, Restrict, NewRestrict).

subst(B, A, [A|T], [B|NT]) :- !,

subst(B, A, T, NT).

subst(B, A, [H|T], [NH|NT]) :- !,

subst(B, A, H, NH),

subst(B, A, T, NT).

subst(B, A, Form, Form).

% term(Form, Term)

% ================

% Form ==> a wff or complex term

% Term <== a complex term contained in Form

42

%

% Extracts a term from Form.

% If Form is a wff, a term of form is a term of

% its argument list.

term(wff(Pred, ArgList), Term) :-

term(ArgList, Term).

% If Form is a term, then it is a term.

term(term(Quant, Var, Restrict),

term(Quant, Var, Restrict)).

% If Form is a term, then a term is a term of its

% restriction.

term(term(Quant, Var, Restrict), Term) :-

term(Restrict, Term).

% If Form is an argument list, a term is a term of

% its head or of its tail.

term([H|T], Term) :-

term(H, Term);

term(T, Term).

% free_in(VarList, Restriction)

% =============================

% VarList ==> a list of variables which should

% be free in Restriction

% Restriction ==> a wff or term

%

% Succeeds if each variable in VarList is free

% in Restriction

free_in([], R) :- !,

fail.

free_in([H], R) :- !,

free_in(H, R).

free_in([H|T], R) :- !,

free_in(H, R),

free_in(T, R).

% Var is a single variable. If Restriction is a wff,

% Var is free in it if it is free in its argument list.

free_in(Var, wff(Pred, ArgList)) :-

free_in(Var, ArgList).

% Var is a single variable. If Restriction is an argument

% list, Var is free in it if it is free in the head or

% the tail of that argument list.

free_in(Var, [H|T]) :-

free_in(Var, H);

free_in(Var, T).

% Var is a single variable. If Restriction is a complex

% term, Var is free in % it if Var is not the variable

43

% quantified over and if Var is free in the restriction

% of the complex term.

free_in(Var, term(Quant, Var1, Restriction)) :-

not Var = Var1,

free_in(Var, Restriction).

% Var is a single variable. If Restriction is just this

% variable, then Var is free in Restriction

free_in(Var, Var).

5.6 Programs: hs-two.pl

% gen(Form, ScopedForm)

% =====================

% Form ==> a wff with in-place complex terms

% ScopedForm <== a full scoping of Form

gen(Form, ScopedForm) :-

apply_terms(Form, true, ScopedForm).

% apply_terms(From, Complete, ScopedForm)

% =======================================

% Form ==> a wff with in-place complex terms

% Complete ==> true iff only full scopings are allowed

% ScopedForm <== a full or partial scoping of Form

%

% Applies one or more terms to the Form alone (not to any

% embedded forms).

apply_terms(Form, Complete, Form) :-

not(term(Form, Term)), !.

apply_terms(Form, false, Form).

apply_terms(Form, Complete, ScopedForm) :-

applicable_term(Form, Term),

apply(Term, Form, AppliedForm),

apply_terms(AppliedForm, Complete, ScopedForm).

% apply(Term, Form, NewForm)

% ==========================

% Term ==> a complex term

% Form ==> the wff to apply Term to

% NewForm <== Form with the quantifier wrapped around it

apply(term(Quant, Var, Restrict),

Body,

wff(Quant, [Var, PulledRestrict, OutBody])) :-

apply_terms(Restrict, false, PulledRestrict),

subst(Var, term(Quant, Var, Restrict), Body, OutBody).

% applicable_term(Form, Term)

44

% ===========================

% Form ==> an expression in the logical form language

% Term <== a top-level term in Form (that is, a term

% embedded in no other term) which is not free

% in any variable bound along the path from Form

% to Term.

applicable_term(Form, Term) :-

applicable_term(Form, Term, []).

% applicable_term(Form, Term, BlockingVars)

% ===

% Form ==> an expression in the logical form language

% Term <== a top-level term in Form (that is, a term

% embedded in no other term) which is not free

% in any variable bound along the path from

% Form to Term.

% BlockingVars ==> a list of variables bound along the

% path so far

% A term is an applicable top-level term...

applicable_term(term(Q, V, R), term(Q, V, R), BVs) :-

% if it meets the definition.

not(free_in(BVs, R)).

% An applicable term of the restriction or body of a

% quantifier is applicable only if the variable bound

% by the quantifier is not free in the term.

applicable_term(wff(Quant, [Var, Restrict, Body]),

Term, BVs) :-

quantifier(Quant), !,

(applicable_term(Restrict, Term, [Var|BVs]);

applicable_term(Body, Term, [Var|BVs])).

% An applicable term of any argument is an applicable

% term of the wff.

applicable_term(wff(Pred, Args), Term, BVs) :-

applicable_term(Args, Term, BVs).

% An applicable term of any argument is an applicable

% term of the whole list.

applicable_term([F|R], Term, BVs) :-

applicable_term(F, Term, BVs);

applicable_term(R, Term, BVs).

% Note the absence of a rule looking for applicable

% terms inside of complex terms. This limits the applicable

% terms to be top-level.

/**

Low-level predicates as in hs-one.pl

**/

45

5.7 Programs:qscope.pl

% gen(Form, ScopedForm)

% =====================

% Form ==> a wff with in-place complex terms

% ScopedForm <== a full scoping of Form

gen(Form, ScopedForm) :-

pull(Form, true, ScopedForm).

% pull(Form, Complete, ScopedForm)

% ================================

% Form ==> a wff with in-place complex terms

% Complete ==> true iff only full scopings are allowed

% ScopedForm <== a full or partial scoping of Form

%

% Applies terms at various level of embedding in Form,

% including applying to the entire Form, and to opaque

% argument positions inside Form.

pull(Form, Complete, ScopedForm) :-

pull_opaque_args(Form, PulledOpaque),

apply_terms(PulledOpaque, Complete, ScopedForm).

% pull_opaque_args(Form, ScopedForm)

% ==================================

% Form ==> a term or a wff with in-place

% complex terms

% ScopedForm <== Form with opaque argument positions

% recursively scoped

%

% Scopes arguments of the given Form recursively.

pull_opaque_args(wff(Pred, Args),

wff(Pred, ScopedArgs)) :- !,

pull_opaque_args(Pred, 1, Args, ScopedArgs).

pull_opaque_args(Term, Term).

% pull_opaque_args(Pred, ArgIndex, Args, ScopedArgs)

% ==

% Pred ==> the predicate of the wff whose

% arguments are being scoped

% ArgIndex ==> the index of the argument currently

% being scoped

% Args ==> list of args from ArgIndex on

% ScopedArgs <== Args with opaque argument positions

% recursively scoped

%

% Scopes a given argument if opaque; otherwise, scopes

% its subparts recursively.

46

% No more arguments.

pull_opaque_args(Pred, ArgIndex, [], []) :- !.

% Current argument position is opaque; scope it.

pull_opaque_args(Pred, ArgIndex,

[FirstArg|RestArgs],

[ScopedFirstArg|ScopedRestArgs]) :-

opaque(Pred, ArgIndex),

pull(FirstArg, false, ScopedFirstArg),

NextIndex is ArgIndex + 1,

pull_opaque_args(Pred, NextIndex, RestArgs,

ScopedRestArgs).

% Current argument position is not opaque; don't scope it.

pull_opaque_args(Pred, ArgIndex,

[FirstArg|RestArgs],

[ScopedFirstArg|ScopedRestArgs]) :-

pull_opaque_args(FirstArg, ScopedFirstArg),

NextIndex is ArgIndex + 1,

pull_opaque_args(Pred, NextIndex, RestArgs,

ScopedRestArgs).

% apply_terms(From, Complete, ScopedForm)

% =======================================

% Form ==> a wff with in-place complex terms

% Complete ==> true iff only full scopings are allowed

% ScopedForm <== a full or partial scoping of Form

%

% Applies one or more terms to the Form alone (not to any

% embedded forms).

apply_terms(Form, Complete, Form) :-

not(term(Form, Term)), !.

apply_terms(Form, false, Form).

apply_terms(Form, Complete, ScopedForm) :-

applicable_term(Form, Term),

apply(Term, Form, AppliedForm),

apply_terms(AppliedForm, Complete, ScopedForm).

% apply(Term, Form, NewForm)

% ==========================

% Term ==> a complex term

% Form ==> the wff to apply Term to

% NewForm <== Form with the quantifier wrapped around it

apply(term(Quant, Var, Restrict),

Body,

wff(Quant, [Var, PulledRestrict, OutBody])) :-

pull(Restrict, false, PulledRestrict),

subst(Var, term(Quant, Var, Restrict), Body, OutBody).

/**

47

applicable_term(Form,Term) & all Low level predicates

as in hs-two.pl

***/

48

49

Chapter 6

Questions and database query

6.1 Gap threading and semantic representation of questi-

ons and relative clauses

This discussion relates to the program questions.pl. Following Pereira and Shieber we will use a

�-term of arity one as the representation of a wh-question. Thus we will use X

^

write(terry,X)

as the logical form for `What did Terry write?'. The idea is that the answer would be the set of

things to which this term truthfully applies. For yes-no questions we will use a mock �-term with

a �-pre�x \yes

^

", e.g. yes

^

write(terry,shrdlu). The idea here is that the answer is \yes" if

the formula without the pre�x is satis�ed and \no" otherwise.

Wh-questions such as \what did Terry write?", \what did a student say that Terry wrote?"

(and also relative clauses) introduce long-distance (unbounded) dependencies between the wh-

phrase and a gap. This program uses the method of gap-threading to treat them. Gaps are

introduced by the rules

q(X

^

S) � � > whpron; sinv(S; [gap(np;X)]� []):

optrel(P

^

(X

^

(P �X&S))) �� > relpron; s(S; [gap(np;X)jOut]� Out).

and resolved by the rule

np(P

^

(P �X); [gap(np;X)jOut]� Out) � � > []:

the gap terms such as gap(np,X) encode both syntactic information about the category of the

gap and semantic information indicating which variable will occur in the �-pre�x in the logical

form of the question. We can think of the pairs of lists of gap terms as being associated with the

constituents being parsed by the rule of which the pair of lists is an argument. A pair of lists

In-Out indicate that the gaps listed in In are being sought within the constituent and that the

gaps listed in Out are being sought after the constituent has been parsed. Thus for example if the

pair [gap(np,X)]-[] is associated with a constituent then an NP-gap associated with the variable

X in the logical form must have been found within the constituent. If the in- and out-lists are

identical then no gap can have been found in the constituent. The program implements a couple

of syntactic constraints. No extraction is allowed from subject noun-phrases and no extraction is

allowed from relative clauses (the complex NP constraint). These are implemented by requiring

the in- and out-lists to be identical for subject noun-phrases and for noun-phrases containing

relative clauses. Gap information is not passed down into relative clauses.

Exercise 6.1.1

For what kind of wh-questions may a logical form which is a �-term of arity one be inadequate?

How could you extend the program to accommodate them?

50

Exercise 6.1.2

Add to the program questions.pl so that it will treat questions with \which", such as \which

programs did Terry write?"

Exercise 6.1.3

Add to the program so that it will treat questions where the wh-phrase is a PP, e.g. \where did

Terry work?", \in which room did Terry work?"

6.2 Answering questions

This concerns the program answer.pl. Giving the semantics for questions here involves specifying

what the answer to the questions would be with respect to a given situation. We de�ne a predicate

answer(Sit,X

^

For,Ans). In the case where X is a variable (corresponding to a wh- question in

English) Ans will be instantiated to a list. This will be the list of things in the domain of Sit

which, when substituted for X in For, will make it be the case that Sit satis�es For. The program

makes explicit reference to the domain of Sit requiring it to be computed and requiring that any

instantiation of X which allows For to be satis�ed be a member of the domain. This is redundant

in the case of positive questions. However, it is important in the case of negative questions like

X

^

run(X)

so that we obtain some reasonable answer.

The answers for yes/no-questions (where X is instantiated to yes) are straightforward. The

answer is \yes" if For is satis�ed and \no" otherwise.

Exercise 6.2.1

Suppose we wanted to treat �-terms of arbitrary arity as questions, i.e. not only X

^

For but also

X

^

Y

^

For, X

^

Y

^

Z

^

For etc. How could the program be modi�ed to �nd suitable answers for these?

Are there any English questions that might correspond to these \�-questions"?

Exercise 6.2.2

How appropriate is the treatment of negative questions here? Would we still have to compute the

domain of the situation if we allowed negative formulae in our situation databases?

6.3 Questions in CHAT-80

This relates to the �les in the directory chat. CHAT-80 is a program that was written in Edinburgh

by Fernando Pereira and David Warren around 1980. The natural language part of the program

was described in Pereira's PhD thesis written in the AI department. It still serves as a paradigm

example of the logic programming approach to NLP because of its large grammatical coverage, its

impressive e�ciency and the clarity with which it is coded. In particular it serves as a paradigm

example of an application of the kind of approach to computational semantics we have been

pursuing here. While the semantics in the system is in some ways less theoretically sophisticated

and general than what we have been studying here, there are a number of features which make it

more e�cient.

To load chat you will need to consult the �le load.pl in the chat directory. Type

?- hi.

to get the program started. It will now accept and answer questions concerning a geographical

database. You will �nd examples of questions it will handle in the �le demox. To leave the

program type

51

Question: bye.

To see something of what it is doing give the command:

Question: trace.

There are four main components:

1. parsing the sentence, producing a parse tree

2. translating the parse tree to a logical form

3. planning, rearranging the logical form to make it more e�cient to query the database with

4. evaluation of the logical form in the database, i.e. answering the question.

Two important things that it does not do are

1. generate an answer to the question in English

2. handle any kind of discourse phenomena, relating a question to a previous question.

The method of parsing long distance dependencies uses the gap-threading technique, though in a

somewhat di�erent form than we have presented it. Pereira's thesis is the source of this technique.

We are most interested here in the fourth component, evaluation and the relevant code is to be

found in the �le talkr.pl

The logical form produced for questions seems more procedural than what we have looked

at since it appears that the logical form is a prolog procedure for answering the question. This

di�erence is, however, only apparent since the logical form is not called as a prolog procedure

but rather interpreted by a predicate answer/1 quite similar to the predicate answer/3 that we

have de�ned. There is a predicate satisfy/1 quite similar to the related predicates we have been

working with. One major di�erence is that there is only one database so that there is no need for

the argument Sit which we have been using. Apart from the de�nite article the, about which I

will not say anything here, the natural language determiners treated are a, some, no, every, all,

any, each and the numerals. Existential quanti�cation (represented by X

^

For - don't confuse this

with �-abstraction but think of the notation used for existential quanti�cation in bagof etc.) is

treated in the standard prolog way:

satisfy(X

^

P) :- !, satisfy(P).

i.e. no real quanti�cation at all. This accounts for a and some. The determiner no is accounted

for by the prolog negation of this. The treatment of the universal determiners every, all , any and

each exploits the logical equivalence between 8 and � 9 �. Thus at the level of logical form these

determiners will result in something of the form

\+ exists ... \+ ...

Hence the evaluation of all of these quanti�ers boils down to prolog pattern matching.

An exception to this treatment is cases where each has scope over a whole question. The general

approach to scope phenomena is a rather pragmatic one. Only one scoping is produced. In general

the order of the quanti�ers in the logical form is the same as the corresponding determiners in the

English sentence. The exception to this is that each and any are marked as strong and will take

scope over other quanti�ers, except that they do not take scope outside a relative clause. When

each takes scope over a whole question this is a special case. Consider: `which country borders

each European country?' The reading taken for this could be paraphrased as: for each European

country answer which country borders it. The answer is a list of pairs consisting of a European

country and a country which borders it. The logical form is

52

answer([X,Y]) :-

country(X),

& european(X),

& country(Y),

& borders(Y,X).

This question is to be compared with \which country borders every European country?" Here the

answer sought is a single country which borders all European countries, i.e. none.

Exercise 6.3.1

Find examples handled by chat that illustrates the fact that each and any take widest scope but

do not take scope beyond relative clauses. Explain what is going on and discuss whether the

readings are intuitively correct? Are there other possible readings for these sentences? Is the

reading assigned by chat the most preferred reading (according to your intuitions)?

6.4 Programs:questions.pl

/* This is a version of Program 4.5 on p. 124 of Pereira

and Shieber. It differs from the original program

in that it employs the method of gap threading discussed

in the following section (4.2.7). It also uses the

lambda calculus in the manner of eng-lambda.pl. I

have also added some extra rules and fixed a bug.

rhc */

/* Needs beta.pl and logic-lexicon.pl */

% Operators for connectives

:- op(500,xfy,[&,\/]).

:- op(550,xfy,--->).

:- op(450,fx,~).

% Operator for functional application

:- op(400, yfx, *).

q(VP) --> whpron, vp(VP, []-[]).

q(X^S) --> whpron, sinv(S, [gap(np,X)]-[]).

q(yes^S) --> sinv(S,[]-[]).

s(S) --> s(S,[]-[]).

s(NP*VP,In-Out) --> np(NP, In-In), vp(VP, In-Out).

sinv(NP*VP,In-Out) -->

aux, np(NP, In-In), vp(VP, In-Out).

sbar(S,In-Out) --> [that], s(S,In-Out).

np(Det*(Rel*N), In-In) -->

det(Det), n(N), optrel(Rel).

np(P^(P*X), In-In) --> pn(X).

np(P^(P*X), [gap(np,X)|Out]-Out) --> [].

53

vp(X^(NP*(Y^(TV*Y*X))), In-Out) -->

tv(TV), np(NP, In-Out).

vp(VP, In-In) --> iv(VP).

vp(STV*Sbar, In-Out) -->

stv(STV), sbar(Sbar,In-Out).

optrel(N^N) --> [].

optrel(P^(X^(P*X&VP*X))) -->

relpron, vp(VP, []-[]).

optrel(P^(X^(P*X&S))) -->

relpron, s(S, [gap(np, X)|Out]-Out).

det(LF) --> [D], {det(D,LF)}.

det(every, Q^P^every(X,Q*X ---> P*X)).

det(a, Q^P^some(X,Q*X & P*X)).

n(LF) --> [N], {n(N,LF)}.

n(program, X^program(X)).

n(student, X^student(X)).

pn(E) --> [PN], {pn(PN, E)}.

pn(terry, terry).

pn(shrdlu, shrdlu).

tv(LF) --> [TV], {tv(TV,LF)}.

tv(wrote, Y^X^write(X,Y)).

tv(write, Y^X^write(X,Y)).

tv(writing, Y^X^write(X,Y)).

stv(LF) --> [STV], {stv(STV,LF)}.

stv(said, Y^X^say(X,Y)).

stv(say, Y^X^say(X,Y)).

stv(saying, Y^X^say(X,Y)).

iv(LF) --> [IV], {iv(IV,LF)}.

iv(halts, X^halt(X)).

relpron --> [RelPron], {relpron(RelPron)}.

relpron(that).

relpron(who).

relpron(whom).

whpron --> [WhPron], {whpron(WhPron)}.

whpron(what).

whpron(who).

whpron(whom).

aux --> [Aux], {aux(Aux)}.

aux(is).

aux(did).

parse(S,LF) :-

(q(L,S,[]);

54

s(L,S,[])),

convert_question(L,LF).

convert_question(X^P,X^Q) :-

!,convert(P,Q).

convert_question(P,Q) :-

convert(P,Q).

6.5 Programs:answer.pl

/* Requires satisfy-pc.pl */

answer(Sit,X^For,Ans) :-

var(X),!,

domain(Sit,Dom),

setof(X,(member(X,Dom),satisfy(Sit,For)),Ans).

answer(Sit,yes^For,yes) :-

satisfy(Sit,For),!.

answer(Sit,yes^For,no).

55

Chapter 7

Discourse anaphora

7.1 Introduction

In this chapter we move from the discussion of the semantics of sentences to the discussion of simple

discourses, that is, the semantic processing of several sentences one following after the other. We

will focus on the phenomenon of anaphora, that is, when pronouns are linked to previous noun-

phrases, either within the same sentence or elsewhere in the preceding discourse. Here are some

of the kinds of examples we want to handle. The subscripts on the noun-phrases indicate what

the antecedents of the pronouns are. The stars indicate that the discourse cannot be read with

the anaphora resolution as indicated.

John

1

owns a donkey

2

. It

2

loves him

1

.

A man

1

owns a donkey

2

. It

2

loves him

1

.

A man

1

owns a donkey that loves him

1

.

Every man

1

owns a donkey

2

. *It

2

loves him

1

.

Every man

1

owns a donkey

2

. *Mary loves him

1

.

Every man

1

owns a donkey

2

. *It

2

loves Mary.

Every man

1

owns a donkey that loves him

1

.

Every man that owns a donkey

1

beats it

1

.

We will use the framework of discourse representation theory (DRT) developed by Hans Kamp to

treat these phenomena. The implementation of it we will discuss is based on the ideas developed

in the implementation of DRT by Mark Johnson and Ewan Klein. The basic idea is that we will

translate English discourses into discourse representation structures (DRSs) rather than logical

form and we will de�ne satisfaction for DRSs.

7.2 Simple discourse representation structures

This discussion relates to the program satisfy-simple-drs.pl At an abstract level simple DRSs

are like our situations. A DRS consists of two components: a domain and a set of constraints on

that domain. Here is an example in diagrammatic notation:

X,Y

man(X)

donkey(Y)

own(X,Y)

love(Y,X)

56

This di�ers from our situations in two ways. Firstly the domain is made explicit. Secondly, the

domain is parametric, i.e. it consists of objects which are to be matched against the domain

of a situation when we do semantics. In the theory these are often called discourse referents or

discourse markers. We shall use prolog variables to implement them. As with logical variables

this is a design choice. The Johnson and Klein implementation uses prolog atoms for discourse

referents. We shall implement DRS with a pair of lists:

[[X,Y],[man(X),donkey(Y),own(X,Y),love(Y,X)]]

The semantics for simple DRSs is quite straightforward. A situation satis�es a DRS if there

is some binding for the discourse referents such that all the constraints are supported by the

situation under that binding. Recall that support/2 is the predicate which checks that a basic

fact is included in a situation. Prolog looks after �nding the binding for you so that does not have

to be implemented explicitly.

Exercise 7.2.1

It is possible for a situation to satisfy a DRS more than one way, giving di�erent instantiations

for the variables in the DRS. Give examples and explain what is going on.

7.3 Translating simple discourses

This discussion relates to the program eng-simple-drs.pl .

The technique that we will use for deriving DRSs for English sentences is a similar kind

of threading to that we used for gaps in the previous chapter. (We have taken the idea of using

threading from Johnson and Klein.) With each English constituent we associate an ingoing and an

outgoing discourse representation. Here is a diagrammatic representation of the ow of discourse

information in the sentence.

John owns a donkey.

donkey

a

owns

John

�

�

�

�

�

@

@

@

@

@

�

�

�

�

�

@

@

@

@

@

�

�

�

�

�

@

@

@

@

@

X

n(X,John)

X

n(X,John)

own(X,Y)

X Y

n(X,John)

own(X,Y)

X Y

n(X,John)

own(X,Y)

donkey(Y)

S

VP

NP

�

�

�

�	

C

C

C

CW

C

C

C

CW

@

@

@

@

@

@

@

@

@

@I

The output DRS of this sentence would then be the input DRS for a following sentence in the

discourse. Note that there has been a change in how we treat proper names. We are no longer

thinking of them as representing constants. Rather they function to introduce new discourse

referents and add constraints about the name and the gender of the thing associated with the

discourse referent. If a discourse referent with these constraints already exists in the DRS (e.g. if

we have used the name `John' twice in the same discourse) a new discourse referent will not be

added.

57

The inde�nite NP functions in the same way as a proper name except that it will always

introduce a new discourse referent. If we use the NP `a donkey' twice. There will be two discourse

referents for donkeys in the DRS. It is an important aspect of the discourse representation approach

that the inde�nite NP does not introduce a representation of existential quanti�cation into the

DRS. The e�ect of existential quanti�cation comes in the semantics for the DRS where you try

to �nd some way of assigning discourse referents to individuals in the situation that satis�es the

DRS.

Pronouns on the other hand never introduce new discourse referents. They will always require

that there is a discourse referent previously introduced into the DRS which has the appropriate

gender constraints.

In addition to assigning input and output DRSs to constituents this program also assigns

something like a logical form. This is because we need to keep track of the relationship between

constituents and various parts of constraints. For example, the two arguments in the constraint

introduced by a transitive verb must be associated with the appropriate NPs.

Exercise 7.3.1

Explain how this program treats the discourses:

John

1

owns a donkey

2

. It

2

loves him

1

.

A man

1

owns a donkey

2

. It

2

loves him

1

.

A man

1

owns a donkey that loves him

1

.

Indicate what the input and output DRSs are at important points and how the anaphora resolution

is determined.

Exercise 7.3.2

Discuss the treatment of gender here. Are there cases in English where it would be problematic?

Are there cases in other languages which would cause problems? Do you have any ideas how it

might be done better?

Exercise 7.3.3

Is the sentence

John likes him

treated correctly here? Explain.

7.4 Complex discourse representation structures

This discussion relates to the program satisfy-complex-drs.pl .

It is possible to introduce all of the connectives (negation, conjunction, disjunction and impli-

cation) and generalized quanti�ers into DRSs. Here we will be concerned only with implication

and universal quanti�cation which are introduced by the same addition to DRSs. We allow DRSs

of the form:

X

man(X)

live(X)

)

run(X)

58

This discourse represent corresponds to the two English sentences

every man who lives runs

if a man lives he runs

Here the constraint consists of two embedded DRSs joined by an arrow. The e�ect of universal

quanti�cation comes in the interpretation of this constraint. In order for a situation to support

such a constraint it must be the case that for each of the bindings of discourse referents which

make the situation satisfy the left-hand DRS, the right-hand DRS is also satis�ed on that binding.

Thus here the semantics for the DRS requires universal quanti�cation. Note, however, that again

the quanti�cation is not represented directly within the DRS where the constraint corresponding

to `man' occurs. Thus it can be possible for an inde�nite NP within an if-clause to have the e�ect

of a universal quanti�er.

Exercise 7.4.1

Suppose we were to introduce a di�erent arrow into our discourse representation to represent the

quanti�er `two'. How might you change satisfy-complex-drs.pl to accommodate it? How

about `exactly n' ?

7.5 Translating discourses with quanti�ed sentences

This discussion relates to the programs eng-complex-drs.pl and eng-global-drs.pl .

In the program eng-complex-drs.pl a major distinction is made between proper names

and inde�nite NPs on the one hand and quanti�ed NPs (using the category qnp) on the other.

It is possible to have a single category of NP in the syntax but this would make the pro-

gram somewhat harder to understand. The only addition to this program over the program

eng-simple-drs.pl is that of universally quanti�ed NPs. It is the determiner `every' which

requires the introduction of the complex constraint as described in the previous section. Here is

a diagrammatic representation of the ow of information for the sentence `every donkey lives'.

every

donkey

lives

S

NP

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

P) Q

X

d(X)

) Q

X

d(X)

)

live(X)

�

�

�

�

�

�

�

�

�

�

�

�	

�

�

��

�

�

��

In this implementation information from the antecedent DRS is copied into the consequent DRS.

It is important to do this to make sure that the information is accessible to pronouns. The general

59

case is that any discourse referent which is in an enclosing DRS is available for anaphora resolu-

tion to an pronoun being processed in relation to a DRS within it. In addition any information is

accessible in an antecedent DRS is accessible to the consequent DRS. This implementation fails in

an important way in that it treats proper names just like inde�nites, adding them to the current

DRS rather than the largest (global) DRS. Thus according to eng-complex-drs.pl both of the

following discourses will not parse:

Every donkey likes a man. He lives.

Every donkey likes John. He lives.

Since we are only dealing with one quanti�er scope here, where there could be a di�erent man

for each donkey, the �rst discourse is correctly rejected. But the second is incorrectly rejected

since the discourse referent for John is added to an embedded consequent DRS and thus is not

accessible from the global DRS to which the constraint about living is to be added. This is

corrected in the program eng-global-drs.pl . In this program proper names are distinguished

from inde�nite NPs in that the former will add a discourse referent to the global DRS and the

latter will add a discourse referent to the local DRS. Pronoun resolution checks �rst the local DRS

for an antecedent and then the global DRS. Both of these programs successfully treat the so-called

donkey sentences:

Every man that owns a donkey

1

beats it

1

.

The problem with such sentences is that, given the assumptions that `every' corresponds to a

universal quanti�er and `a' corresponds to an existential there is no way to get a predicate cal-

culus representation of the apparent reading where the universal quanti�er has wider scope than

the existential and the pronoun gets bound by the existential. In the discourse representation

framework such sentences are successfully treated because the discourse referent introduced by `a

donkey' is in e�ect universally quanti�ed over since it occurs in the antecedent DRS introduced

by `every'.

Exercise 7.5.1

Explain how the following discourses are treated by the program eng-complex-drs.pl .

Every man

1

owns a donkey

2

. *It

2

loves him

1

.

Every man

1

owns a donkey

2

. *Mary loves him

1

.

Every man

1

owns a donkey

2

. *It

2

loves Mary.

Every man

1

owns a donkey that loves him

1

.

Every man that owns a donkey

1

beats it

1

.

Give enough detail to show how the threading of DRS information allows the crucial di�erences

to be made.

Exercise 7.5.2

Explain how the treatment of global DRSs is implemented in eng-global-drs.pl discussing

the examples

*Every donkey likes a man. He lives. Every donkey likes John. He lives.

60

7.6 Programs

These are programs for chapter 6.

7.6.1 satisfy-simple-drs.pl

satisfy(Sit,[Dom,Constr]) :-

support_all(Sit,Constr).

support_all(_,[]).

support_all(Sit,[X|L]) :-

support(Sit,X),

support_all(Sit,L).

support(Sit,Fact) :-

Clause =.. [Sit,Fact],

Clause.

7.6.2 eng-simple-drs.pl

/* A simple implementation of discourse representation

using simple drs's */

/* You may need to define member and append, depending

on the prolog you are using */

s(DRSIn,DRSOut) --> np(DRSIn,DRS1,X),

vp(DRS1,DRSOut,X^Cond).

np(DRSIn,DRSOut,X) -->

det(DRSIn,DRS1),

noun(DRS1,DRS2,X^Cond),

optrel(DRS2,DRSOut,X^Cond1).

np(DRSIn,DRSOut,X) -->

proper_noun(DRSIn,DRSOut,X).

np(DRSIn,DRSOut,X) -->

pronoun(DRSIn,DRSOut,X).

optrel(DRS,DRS,X^_) --> [].

optrel(DRSIn,DRSOut,X^Cond) -->

[that],vp(DRSIn,DRSOut,X^Cond).

vp(DRSIn,DRSOut,X^Cond) -->

trans_verb(DRSIn,DRS1,Y^X^Cond),

np(DRS1,DRSOut,Y).

vp(DRSIn,DRSOut,X^Cond) -->

intrans_verb(DRSIn,DRSOut,X^Cond).

det(DRS,DRS) -->

[a].

noun([Dom,Constr],[[X|Dom],

61

[man(X),male(X)|Constr]],X^man(X)) -->

[man].

noun([Dom,Constr],[[X|Dom],

[woman(X),female(X)|Constr]],X^woman(X)) -->

[woman].

noun([Dom,Constr],[[X|Dom],

[donkey(X),neuter(X)|Constr]],X^donkey(X)) -->

[donkey].

proper_noun(DRSIn,DRSOut,X) -->

[john],{check_add(X,[named(X,john),male(X)],

DRSIn,DRSOut)}.

proper_noun(DRSIn,DRSOut,X) -->

[mary],{check_add(X,[named(X,mary),female(X)],

DRSIn,DRSOut)}.

pronoun(DRS,DRS,X) -->

[he], {check(X,[male(X)],DRS)}.

pronoun(DRS,DRS,X) -->

[she], {check(X,[female(X)],DRS)}.

pronoun(DRS,DRS,X) -->

[it], {check(X,[neuter(X)],DRS)}.

trans_verb([Dom,Constr],

[Dom,[love(X,Y)|Constr]],

Y^X^love(X,Y)) -->

[loves].

trans_verb([Dom,Constr],

[Dom,[beat(X,Y)|Constr]],

Y^X^beat(X,Y)) -->

[beats].

trans_verb([Dom,Constr],

[Dom,[own(X,Y)|Constr]],

Y^X^own(X,Y)) -->

[owns].

intrans_verb([Dom,Constr],

[Dom,[live(X)|Constr]],

X^live(X)) -->

[lives].

drs_sent(Sent,DRSIn,DRSOut) :-

s(DRSIn,DRSOut,Sent,[]).

drs([],DRS,DRS).

drs([Sent|Disc],DRSIn,DRSOut) :-

drs_sent(Sent,DRSIn,DRS1),

drs(Disc,DRS1,DRSOut).

drs(Disc,DRS) :-

drs(Disc,[[],[]],DRS).

62

check(X,Cs,[Dom,Constr]) :-

member(X,Dom),

strict_members(Cs,Constr).

check_add(X,Cs,DRS,DRS) :-

check(X,Cs,DRS),!.

check_add(X,Cs,[Dom,Constr],[[X|Dom],NewConstr]) :-

append(Cs,Constr,NewConstr).

strict_member(X,[Y|L]) :-

X == Y.

strict_member(X,[_|L]) :-

strict_member(X,L).

strict_members([],_).

strict_members([X|L],L1) :-

strict_member(X,L1),

strict_members(L,L1).

7.6.3 satisfy-complex-drs.pl

:- op(150,xfy,=>).

satisfy(Sit,[Dom,Constr]) :-

support_all(Sit,Constr).

support_all(_,[]).

support_all(Sit,[X|L]) :-

support(Sit,X),

support_all(Sit,L).

support(Sit, [Dom,Constr]=>DRS) :-

!,bagof(Dom,support_all(Sit,Constr),Bindings),

satisfy_all(Sit,Bindings,Dom,DRS).

support(Sit,Fact) :-

Clause =.. [Sit,Fact],

Clause.

satisfy_all(_,[],_,_).

satisfy_all(Sit,[B|Bindings],Dom,DRS) :-

\+ \+ (B=Dom,satisfy(Sit,DRS)),

satisfy_all(Sit,Bindings,Dom,DRS).

7.6.4 eng-complex-drs.pl

/* A simple implementation of discourse representation

using complex drs's for universal quantification*/

/* You may need to define member and append, depending

on the prolog you are using */

:- op(150,xfy,=>).

63

s(DRSIn,DRSOut) --> np(DRSIn,DRS1,X),

vp(DRS1,DRSOut,X^Cond).

s(DRSIn,DRSOut) --> qnp(DRSIn,DRSOut,X^P^(Q=>P)),

vp(Q,P,X^Cond).

np(DRSIn,DRSOut,X) -->

det(DRSIn,DRS1),

noun(DRS1,DRS2,X^Cond),

optrel(DRS2,DRSOut,X^Cond1).

qnp(DRSIn,DRSOut,X^P^DRS) -->

det(DRSIn,DRSOut,Q^P^DRS),

noun(DRSIn,DRS1,X^Cond),

optrel(DRS1,Q,X^Cond1).

np(DRSIn,DRSOut,X) -->

proper_noun(DRSIn,DRSOut,X).

np(DRSIn,DRSOut,X) -->

pronoun(DRSIn,DRSOut,X).

optrel(DRS,DRS,X^_) --> [].

optrel(DRSIn,DRSOut,X^Cond) -->

[that],vp(DRSIn,DRSOut,X^Cond).

vp(DRSIn,DRSOut,X^Cond) -->

trans_verb(DRSIn,DRS1,Y^X^Cond),

np(DRS1,DRSOut,Y).

vp(DRSIn,DRSOut,X^Cond) -->

trans_verb(Q,P,Y^X^Cond),

qnp(DRSIn,DRSOut,Y^P^(Q=>P)).

vp(DRSIn,DRSOut,X^Cond) -->

intrans_verb(DRSIn,DRSOut,X^Cond).

det(DRS,DRS) -->

[a].

det([Dom,Constr],[Dom,[Q=>P|Constr]],Q^P^(Q=>P)) -->

[every].

noun([Dom,Constr],[[X|Dom],

[man(X),male(X)|Constr]],X^man(X)) -->

[man].

noun([Dom,Constr],[[X|Dom],

[woman(X),female(X)|Constr]],X^woman(X)) -->

[woman].

noun([Dom,Constr],[[X|Dom],

[donkey(X),neuter(X)|Constr]],X^donkey(X)) -->

[donkey].

proper_noun(DRSIn,DRSOut,X) -->

[john],{check_add(X,[named(X,john),male(X)],

DRSIn,DRSOut)}.

64

proper_noun(DRSIn,DRSOut,X) -->

[mary],{check_add(X,[named(X,mary),female(X)],

DRSIn,DRSOut)}.

pronoun(DRS,DRS,X) -->

[he], {check(X,[male(X)],DRS)}.

pronoun(DRS,DRS,X) -->

[him], {check(X,[male(X)],DRS)}.

pronoun(DRS,DRS,X) -->

[she], {check(X,[female(X)],DRS)}.

pronoun(DRS,DRS,X) -->

[her], {check(X,[female(X)],DRS)}.

pronoun(DRS,DRS,X) -->

[it], {check(X,[neuter(X)],DRS)}.

trans_verb([Dom,Constr],

[Dom,[love(X,Y)|Constr]],

Y^X^love(X,Y)) -->

[loves].

trans_verb([Dom,Constr],

[Dom,[beat(X,Y)|Constr]],

Y^X^beat(X,Y)) -->

[beats].

trans_verb([Dom,Constr],

[Dom,[own(X,Y)|Constr]],

Y^X^own(X,Y)) -->

[owns].

intrans_verb([Dom,Constr],

[Dom,[live(X)|Constr]],

X^live(X)) -->

[lives].

drs_sent(Sent,DRSIn,DRSOut) :-

s(DRSIn,DRSOut,Sent,[]).

drs([],DRS,DRS).

drs([Sent|Disc],DRSIn,DRSOut) :-

drs_sent(Sent,DRSIn,DRS1),

drs(Disc,DRS1,DRSOut).

drs(Disc,DRS) :-

drs(Disc,[[],[]],DRS).

check(X,Cs,[Dom,Constr]) :-

member(X,Dom),

strict_members(Cs,Constr).

check_add(X,Cs,DRS,DRS) :-

check(X,Cs,DRS),!.

check_add(X,Cs,[Dom,Constr],[[X|Dom],NewConstr]) :-

append(Cs,Constr,NewConstr).

65

strict_member(X,[Y|L]) :-

X == Y.

strict_member(X,[_|L]) :-

strict_member(X,L).

strict_members([],_).

strict_members([X|L],L1) :-

strict_member(X,L1),

strict_members(L,L1).

7.6.5 eng-global-drs.pl

/* A simple implementation of discourse representation

using complex drs's for universal quantification*/

/* You may need to define member and append, depending

on the prolog you are using */

:- op(150,xfy,=>).

s(Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut) -->

np(Gl_DRSIn,DRSIn,DRS1,X,Gl_DRS1),

vp(Gl_DRS1,DRS1,DRSOut,X^Cond,Gl_DRSOut).

s(Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut) -->

qnp(Gl_DRSIn, DRSIn,DRSOut,X^P^(Q=>P),Gl_DRS1),

vp(Gl_DRS1,Q,P,X^Cond,Gl_DRSOut).

np(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut) -->

det(Gl_DRSIn,DRSIn,DRS1,Gl_DRS1),

noun(Gl_DRS1,DRS1,DRS2,X^Cond,Gl_DRS2),

optrel(Gl_DRS2,DRS2,DRSOut,X^Cond1,Gl_DRSOut).

qnp(Gl_DRSIn,DRSIn,DRSOut,X^P^DRS,Gl_DRSOut) -->

det(Gl_DRSIn,DRSIn,DRSOut,Q^P^DRS,Gl_DRS1),

noun(Gl_DRS1,DRSIn,DRS1,X^Cond,Gl_DRS2),

optrel(Gl_DRS2,DRS1,Q,X^Cond1,Gl_DRSOut).

np(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut) -->

proper_noun(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut).

np(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut) -->

pronoun(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut).

optrel(Gl_DRS,DRS,DRS,X^_,Gl_DRS) --> [].

optrel(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut) -->

[that],vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut).

vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut) -->

trans_verb(Gl_DRSIn,DRSIn,DRS1,Y^X^Cond,Gl_DRS1),

np(Gl_DRS1,DRS1,DRSOut,Y,Gl_DRSOut).

vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut) -->

trans_verb(Gl_DRSIn,Q,P,Y^X^Cond,Gl_DRS1),

66

qnp(Gl_DRS1,DRSIn,DRSOut,Y^P^(Q=>P),Gl_DRSOut).

vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut) -->

intrans_verb(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut).

det(Gl_DRS,DRS,DRS,Gl_DRS) -->

[a].

det(Gl_DRS,[Dom,Constr],

[Dom,[Q=>P|Constr]],Q^P^(Q=>P),Gl_DRS) -->

[every].

noun(Gl_DRS,[Dom,Constr],[[X|Dom],

[man(X),male(X)|Constr]],X^man(X),Gl_DRS) -->

[man].

noun(Gl_DRS,[Dom,Constr],[[X|Dom],

[woman(X),female(X)|Constr]],X^woman(X),Gl_DRS) -->

[woman].

noun(Gl_DRS,[Dom,Constr],[[X|Dom],

[donkey(X),neuter(X)|Constr]],X^donkey(X),Gl_DRS) -->

[donkey].

proper_noun(Gl_DRSIn,DRS,DRS,X,Gl_DRSOut) -->

[john],{check_add(X,[named(X,john),male(X)],

Gl_DRSIn,Gl_DRSOut)}.

proper_noun(Gl_DRSIn,DRS,DRS,X,Gl_DRSOut) -->

[mary],{check_add(X,[named(X,mary),female(X)],

Gl_DRSIn,Gl_DRSOut)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS) -->

[he], {check(X,[male(X)],DRS);

check(X,[male(X)],Gl_DRS)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS) -->

[him], {check(X,[male(X)],DRS);

check(X,[male(X)],Gl_DRS)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS) -->

[she], {check(X,[female(X)],DRS);

check(X,[female(X)],Gl_DRS)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS) -->

[her], {check(X,[female(X)],DRS);

check(X,[female(X)],Gl_DRS)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS) -->

[it], {check(X,[neuter(X)],DRS);

check(X,[neuter(X)],Gl_DRS)}.

trans_verb(Gl_DRS,[Dom,Constr],

[Dom,[love(X,Y)|Constr]],

Y^X^love(X,Y),Gl_DRS) -->

[loves].

trans_verb(Gl_DRS,[Dom,Constr],

[Dom,[beat(X,Y)|Constr]],

Y^X^beat(X,Y),Gl_DRS) -->

[beats].

trans_verb(Gl_DRS,[Dom,Constr],

67

[Dom,[own(X,Y)|Constr]],

Y^X^own(X,Y),Gl_DRS) -->

[owns].

intrans_verb(Gl_DRS,[Dom,Constr],

[Dom,[live(X)|Constr]],

X^live(X),Gl_DRS) -->

[lives].

drs_sent(Sent,Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut) :-

s(Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut,Sent,[]).

drs([],Gl_DRS,DRS,DRS,Gl_DRS).

drs([Sent|Disc],Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut) :-

drs_sent(Sent,Gl_DRSIn,DRSIn,DRS1,Gl_DRS1),

drs(Disc,Gl_DRS1,DRS1,DRSOut,Gl_DRSOut).

drs(Disc,DRS) :-

drs(Disc,[[],[]],[[],[]],DRSOut,Gl_DRSOut),

merge_drs(Gl_DRSOut,DRSOut,DRS).

merge_drs([Dom1,Constr1],[Dom2,Constr2],[Dom,Constr]) :-

append(Dom1,Dom2,Dom),

append(Constr1,Constr2,Constr).

check(X,Cs,[Dom,Constr]) :-

member(X,Dom),

strict_members(Cs,Constr).

check_add(X,Cs,DRS,DRS) :-

check(X,Cs,DRS),!.

check_add(X,Cs,[Dom,Constr],[[X|Dom],NewConstr]) :-

append(Cs,Constr,NewConstr).

strict_member(X,[Y|L]) :-

X == Y.

strict_member(X,[_|L]) :-

strict_member(X,L).

strict_members([],_).

strict_members([X|L],L1) :-

strict_member(X,L1),

strict_members(L,L1).

68

69

Chapter 8

Anaphora resolution algorithms

and DRS threading

8.1 Introduction

In this chapter we will look at Hobbs' \naive" algorithm for pronoun resolution and see how we

might encode it logically using the kind of DRS threading that we used in the previous chapter.

We will then look at Hobbs' proposals for a semantic algorithm and evaluate them.

8.2 The Hobbs syntactic algorithm

This algorithm is in some ways more sophisticated than what we did in the previous chapter. In

other ways it is less sophisticated. The algorithm tells you how to traverse a parse tree that has

been previously built starting with a pronoun that you want to resolve and searching the tree to

�nd an appropriate antecedent. If the pronoun does not get resolved to an antecedent in the tree

in which the pronoun is located then trees for previous sentences in the discourse are searched.

Thus the algorithm assumes a rather di�erent kind of program to the one we developed. Firstly,

it assumes that parse trees are being built for sentences in the discourse and are stored so that we

may retrieve them. Secondly, it is an algorithm that searches back in the syntactic representation

for possible antecedents after the parse is completed. It does not carry a list of possible antecedents

around during the parse in the way that the DRS-threading programs do. Here is Hobbs' informal

characterization of the algorithm.

(1) Begin at the NP node immediately dominating the pronoun.

(2) Go up the tree to the �rst NP or S node encountered. Call this node X, and call

the path used to reach it p.

(3) Traverse all branches below node X to the left of path p in a left-to-right, breadth-

�rst fashion. Propose as the antecedent any NP node that is encountered which has

an NP or S node between it and X.

(4) If node X is the highest S node in the sentence, traverse the surface parse trees of

previous sentences in the text in order of recency, the most recent �rst; each tree is

traversed in a left-to-right, breadth-�rst manner, and when an NP node is encountered,

it is proposed as antecedent. If X is not the highest S node in the sentence, continue

to step 5.

(5) From node X, go up the tree to the �rst NP or S node encountered. Call this new

node X, and call the path traversed to reach it p.

(6) If X is an NP node and if the path p to X did not pass through the Nbar node that

X immediately dominates, propose X aa the antecedent.

70

(7) Traverse all branches below node X to the left of path p in a left-to-right, breadth-

�rst manner. Propose any NP node encountered as the antecedent.

(8) If X is an S node, traverse all branches of node X to the right of path p in a left-

to-right, breadth-�rst manner, but do not go below any NP or S node encountered.

Propose any NP node encountered as the antecedent.

(9) Go to step 4.

This algorithm builds in precede and command conditions on antecedents for pronouns within

sentences. Clause (3) will not allow

John

1

likes him

1

since an NP or S node does not intervene between the NP John and the �rst S dominating the

pronoun him. However, it does allow

John's

1

mother likes him

1

That John

1

is always sick bothers him

1

Clause (4) will allow any NP in a preceding sentence to be an antecedent. This is less sophisticated

than our previous treatment. Clause (6) is to distinguish between examples like

Mr Smith saw a driver

1

in his

1

truck

where according to Hobbs' analysis in his truck is a sister of the Nbar driver directly dominated

by NP, and

Mr Smith

1

saw a driver of his

1

truck

which, according to Hobbs' analysis has an Nbar node dominating both the Nbar driver and the

PP of his truck.

If the pronoun is in an embedded sentence, clause (7) will allow any NP to the left of the

sentence to be an antecedent for the pronoun.

John

1

thinks that he

1

is sick

The fact that John

1

has spots makes me think that he

1

is sick

Clause (8) allows antecedents to the right of the pronoun. It allows

The fact that he

1

has spots makes John

1

feel uneasy

but disallows

The fact that he

1

has spots makes me think that John

1

is sick

It appears that Hobbs made an error here since this sentence should be allowed.

Exercise 8.2.1

Explain how Hobbs' algorithm would work in the following discourse:

A man that knows Mary loves her. He owns a donkey that loves her.

8.3 A declarative version of the algorithm

This discussion relates to the program Hobbs-drs.pl . This program is not an implementation

of the complete Hobbs algorithm but shows in principle how it can be encoded in a logic program

using threading. The program is designed to treat the following examples:

*John

1

loves him

1

John

1

loves a woman that loves him

1

71

The technique is to thread yet another argument through the syntactic parse. This time the

argument is a list of discourse referents that are local to the NP or sentence being processed. The

idea is that a pronoun can only be resolved to a discourse referent that is available in the same

way as the previous programs and is not on the local list. Any discourse referent that is added to

the DRS is also added to the local list. The ingoing local list to an S or NP is not passed down

to the constituents of the S or NP since they are no longer local there. They are, however, passed

along in the outlist of the S or NP as they are local to the clause in which the S or NP occurs.

The discourse referent contributed by the head noun of a relative clause (e.g. man in a man that

likes Mary) is local both to the relative clause and to the clause in which the NP a man that likes

Mary occurs.

This program allows pronouns to be resolved during a single pass parse and does not require

that we search a syntactic tree for antecedents after the parse has been completed.

Exercise 8.3.1

How could you modify this program to give a simple treatment of reexive pronouns (like himself)?

Exercise 8.3.2

A treatment of the local lists with respect to NPs whereby discourse referents in the ingoing local

list to an NP are not local for constituents within the NP will not quite work for the examples a

driver in his truck and a driver of his truck. Explain what the problem is and suggest what the

solution might be.

Exercise 8.3.3

Hobbs' algorithm expresses a preference for certain antecedents in that it �nds some before others.

How far does the order of discourse referents in the domain of the constructed DRS correspond to

this?

Exercise 8.3.4

Explain how this program works on the following discourse:

A man that knows Mary loves her. He owns a donkey that loves her.

8.4 Hobbs' semantic approach

I will not discuss this in detail. It shows how a heuristic approach involving world knowledge

can be inovked to resolve pronouns that do not get the right antecedent immediately assigned

by the \naive" algorithm. Another way to view this is as a �lter which chooses among the

several possibilities presented by the structural approach. While such heuristics are necessary and

important in any practical system it is di�cult to make any general sense of them that will give

us principles that can be transported from one domain to another. Hobbs' approach represents

an early attempt to �nd some kind of general patterns but it has its limitations. Let us consider

one example:

The FBI said they had tentative identi�cations on the fugitives, but didnt know where

they were.

We are concerned with the problem of �nding an antecedent for they. Hobbs' proposal rests on

the fact that the conjunction but suggests contrast. He says we can make the following inferences

from the �rst conjunct:

the FBI had tentative identi�cations on the fugitives

! the FBI had tentatively identi�ed the fugitives

! the FBI (tentatively) knows the names of the fugitives

72

This contrasts with

the FBI does not know the location of X

which can be inferred from the second conjunct. X therefore gets resolved to the fugitives because

of the contrasting pattern.

This all seems quite intuitive and in some sense to correspond to the kind of reasoning that

a human being might go through. On the other hand, it involves forward chaining reasoning on

both conjuncts. One can imagine that in a very restricted system it might work but if there is any

richness to the inferences we can draw it seems that it would be very di�cult to know in advance

which chains of inference from the two conjuncts would lead us to the appropriate contrast.

Hobbs suggests an alternative treatment of this example based on searching the lexicon for

inferences we can draw about previous entities mentioned in the discourse to see if we can make

it match what is asserted about the referent of the pronoun. In this example he suggests forward

chaining on fugitive.

fugitive(X)

! hide-from(X, police)

! cause(X, not(know(police,location(X))))

! not(know(police,location(X)))

This last is exactly what we know from the second conjunct about the referent of they. Therefore

they should be resolved to the fugitives. This, like the previous solution, has the problem of doing

forward chaining in a potentially large space of possible inferences. Furthermore we have to choose

the appropriate word in the preceding discourse to do the inferencing on. But there is not just a

search problem here. If we could really make this inference from fugitive then it would appear that

the second conjunct of the sentence is redundant and it is di�cult to see why we should use but to

indicate contrast if what is expressed by the second conjunct follows from the �rst. Furthermore,

this analysis of fugitive might have the unfortunate consequence that a sentence like

the police found the fugitives

is contradictory, because if the police found them they presumably know where they are and yet

according to this being a fugitive means that the police do not know where you are.

73

8.5 Programs

Hobbs-drs.pl

/* A simple implementation of discourse representation

using complex drs's for universal quantification*/

/* You may need to define member and append, depending

on the prolog you are using */

:- op(150,xfy,=>).

s(Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut,

LocList,LocList) -->

np(Gl_DRSIn,DRSIn,DRS1,X,Gl_DRS1,

[],LocList1),

vp(Gl_DRS1,DRS1,DRSOut,X^Cond,

Gl_DRSOut,LocList1,_).

s(Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut,

LocList,LocList) -->

qnp(Gl_DRSIn, DRSIn,DRSOut,X^P^(Q=>P),

Gl_DRS1,[],LocList1),

vp(Gl_DRS1,Q,P,X^Cond,Gl_DRSOut,LocList1,_).

np(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut,

LocListIn,LocListOut) -->

det(Gl_DRSIn,DRSIn,DRS1,Gl_DRS1),

noun(Gl_DRS1,DRS1,DRS2,X^Cond,

Gl_DRS2,[],LocList1),

optrel(Gl_DRS2,DRS2,DRSOut,X^Cond1,

Gl_DRSOut,LocList1,_),

{append(LocListIn,LocList1,LocListOut)}.

qnp(Gl_DRSIn,DRSIn,DRSOut,X^P^DRS,Gl_DRSOut,

LocListIn,LocListOut) -->

det(Gl_DRSIn,DRSIn,DRSOut,Q^P^DRS,Gl_DRS1),

noun(Gl_DRS1,DRSIn,DRS1,X^Cond,

Gl_DRS2,[],LocList1),

optrel(Gl_DRS2,DRS1,Q,X^Cond1,

Gl_DRSOut,LocList1,_),

{append(LocListIn,LocList1,LocListOut)}.

np(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut,

LocListIn,LocListOut) -->

proper_noun(Gl_DRSIn,DRSIn,DRSOut,X,

Gl_DRSOut,LocListIn,LocListOut).

np(Gl_DRSIn,DRSIn,DRSOut,X,Gl_DRSOut,

LocListIn,LocListOut) -->

pronoun(Gl_DRSIn,DRSIn,DRSOut,X,

Gl_DRSOut,LocListIn,LocListOut).

optrel(Gl_DRS,DRS,DRS,X^_,Gl_DRS,LocList,LocList) --> [].

74

optrel(Gl_DRSIn,DRSIn,DRSOut,X^Cond,

Gl_DRSOut,LocListIn,LocListIn) -->

[that],vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,

Gl_DRSOut,LocListIn,_).

vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut,

LocListIn,LocListOut) -->

trans_verb(Gl_DRSIn,DRSIn,DRS1,Y^X^Cond,Gl_DRS1),

np(Gl_DRS1,DRS1,DRSOut,Y,Gl_DRSOut,

LocListIn,LocListOut).

vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut,

LocListIn,LocListOut) -->

trans_verb(Gl_DRSIn,Q,P,Y^X^Cond,Gl_DRS1),

qnp(Gl_DRS1,DRSIn,DRSOut,Y^P^(Q=>P),

Gl_DRSOut,LocListIn,LocListOut).

vp(Gl_DRSIn,DRSIn,DRSOut,X^Cond,Gl_DRSOut,

LocList,LocList) -->

intrans_verb(Gl_DRSIn,DRSIn,DRSOut,

X^Cond,Gl_DRSOut).

det(Gl_DRS,DRS,DRS,Gl_DRS) -->

[a].

det(Gl_DRS,[Dom,Constr],[Dom,[Q=>P|Constr]],

Q^P^(Q=>P),Gl_DRS) -->

[every].

noun(Gl_DRS,[Dom,Constr],[[X|Dom],

[man(X),male(X)|Constr]],X^man(X),Gl_DRS,

LocListIn,[X|LocListIn]) -->

[man].

noun(Gl_DRS,[Dom,Constr],[[X|Dom],

[woman(X),female(X)|Constr]],X^woman(X),Gl_DRS,

LocListIn,[X|LocListIn]) -->

[woman].

noun(Gl_DRS,[Dom,Constr],[[X|Dom],

[donkey(X),neuter(X)|Constr]],X^donkey(X),Gl_DRS,

LocListIn,[X|LocListIn]) -->

[donkey].

proper_noun(Gl_DRSIn,DRS,DRS,X,Gl_DRSOut,

LocListIn,[X|LocListIn]) -->

[john],{check_add(X,[named(X,john),male(X)],

Gl_DRSIn,Gl_DRSOut),

\+ strict_member(X,LocListIn)}.

proper_noun(Gl_DRSIn,DRS,DRS,X,Gl_DRSOut,

LocListIn,[X|LocListIn]) -->

[mary],{check_add(X,[named(X,mary),female(X)],

Gl_DRSIn,Gl_DRSOut),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS,

LocListIn,[X|LocListIn]) -->

75

[he], {(check(X,[male(X)],DRS);

check(X,[male(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS,

LocListIn,[X|LocListIn]) -->

[him], {(check(X,[male(X)],DRS);

check(X,[male(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS,

LocListIn,[X|LocListIn]) -->

[she], {(check(X,[female(X)],DRS);

check(X,[female(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS,

LocListIn,[X|LocListIn]) -->

[her], {(check(X,[female(X)],DRS);

check(X,[female(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS,DRS,DRS,X,Gl_DRS,

LocListIn,[X|LocListIn]) -->

[it], {(check(X,[neuter(X)],DRS);

check(X,[neuter(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

trans_verb(Gl_DRS,[Dom,Constr],

[Dom,[love(X,Y)|Constr]],

Y^X^love(X,Y),Gl_DRS) -->

[loves].

trans_verb(Gl_DRS,[Dom,Constr],

[Dom,[beat(X,Y)|Constr]],

Y^X^beat(X,Y),Gl_DRS) -->

[beats].

trans_verb(Gl_DRS,[Dom,Constr],

[Dom,[own(X,Y)|Constr]],

Y^X^own(X,Y),Gl_DRS) -->

[owns].

trans_verb(Gl_DRS,[Dom,Constr],

[Dom,[know(X,Y)|Constr]],

Y^X^knows(X,Y),Gl_DRS) -->

[knows].

intrans_verb(Gl_DRS,[Dom,Constr],

[Dom,[live(X)|Constr]],

X^live(X),Gl_DRS) -->

[lives].

drs_sent(Sent,Gl_DRSIn,DRSIn,DRSOut,

Gl_DRSOut,LocListIn,LocListOut) :-

s(Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut,

LocListIn,LocListOut,Sent,[]).

drs([],Gl_DRS,DRS,DRS,Gl_DRS).

drs([Sent|Disc],Gl_DRSIn,DRSIn,DRSOut,Gl_DRSOut) :-

76

drs_sent(Sent,Gl_DRSIn,DRSIn,DRS1,Gl_DRS1,[],_),

drs(Disc,Gl_DRS1,DRS1,DRSOut,Gl_DRSOut).

drs(Disc,DRS) :-

drs(Disc,[[],[]],[[],[]],DRSOut,Gl_DRSOut),

merge_drs(Gl_DRSOut,DRSOut,DRS).

merge_drs([Dom1,Constr1],[Dom2,Constr2],[Dom,Constr]) :-

append(Dom1,Dom2,Dom),

append(Constr1,Constr2,Constr).

check(X,Cs,[Dom,Constr]) :-

member(X,Dom),

strict_members(Cs,Constr).

check_add(X,Cs,DRS,DRS) :-

check(X,Cs,DRS),!.

check_add(X,Cs,[Dom,Constr],[[X|Dom],NewConstr]) :-

append(Cs,Constr,NewConstr).

strict_member(X,[Y|L]) :-

X == Y.

strict_member(X,[_|L]) :-

strict_member(X,L).

strict_members([],_).

strict_members([X|L],L1) :-

strict_member(X,L1),

strict_members(L,L1).

77

Chapter 9

Discourse structure and anaphora

resolution

9.1 Introduction

In this chapter we will look at the paper on Focusing in the Comprehension of De�nite Anaphora

by Candy Sidner. We will �rst examine one of her example dialogues and introduce her algorithms

by hand-running them on the discourse. We will then consider what it would mean to get the

e�ect of her algorithms in the discourse representation framework we have been working with.

9.2 Sidner's focusing algorithms

The discourse we will examine is similar to the one labelled D29 in Sidner's paper:

1. Alfred and Zohar liked to play baseball.

2. They played it every day after school before dinner.

3. After their game, Alfred and Zohar had ice cream cones.

4. They tasted really good.

5. They were Italian and they often had chocolate sprinkles on

6. One day they met a man at the ice-cream parlour.

7. He told them that he had seen them playing.

8. He wanted them to play for his team.

Having parsed the �rst sentence, we set up some possibilities for what might be in focus, since

it is things in focus that pronouns will get resolved to. To do this we use the Expected Focus

Algorithm which is used only on the �rst sentence of the discourse:

Expected Focus Algorithm

Choose an expected discourse focus as:

1. The subject of a sentence if the sentence is an is-a or a there-insertion sentence.

2. The �rst member of the default expected focus list (DEF list), computed from the

thematic relations of the verb, as follows:

Order the set of phrases in the sentence using the following preference schema:

theme unless the theme is a verb complement in which case the

theme from the complement is used

all other thematic positions with the agent last

the verb phrase

78

There is a similar algorithm to choose an expected actor focus though this is not made explicit

in the paper.

The result of applying these two algorithms to the �rst sentence is:

Default Expected Focus List - [baseball, Alfred and Zohar, liked to play baseball]

Discourse Focus - baseball

Actor Focus - Alfred and Zohar

Now we come to the second sentence. After parsing the �rst job is to resolve the pronouns given

the information about focus we have from the �rst sentence. This is done by the rule R1 whose

basic form is given by:

R1

If the pronoun under interpretation appears in a sentence thematic relation other than

agent, choose the discourse focus as the co-speci�er unless any of the syntactic, semantic

and inferential knowledge constraints rule out the choice. If the pronoun appears in

agent position, choose the actor focus as co-speci�er in the same way.

This assigns the actor focus to they and the discourse focus to it. Now we apply the Focusing

algorithm which is used on every sentence other than the �rst in the discourse

1

:

Focusing algorithm

Preliminaries: If the Focus Stack has not been set by previous applications of this

algorithm, Focus Stack := [].

If the Discourse Focus has not been set by previous applications of this algorithm,

Current Focus := Expected Focus computed by Expected Focus algorithm. Otherwise

Current Focus := Discourse Focus.

Alternate Focus List := Potential Focus List, if there is one. Otherwise, Alternate

Focus List := Default Expected Focus List.

0. Initialization: Make note of the existence of do-anaphora, anaphora co- specifying

the Current Focus and the Alternate Focus List, implicit speci�cations, anaphors which

specify elements not in the discourse or the lack of an anaphor use.

1. Do-anaphora: If the sentence contains do-anaphora, take the last member of the

Alternate Focus List as the focus (Discourse Focus?). Stack the Current Focus in the

Focus Stack and halt.

2. Focus set collection: If you are on the third sentence of the discourse or later and

if focus sets are being collected and no anaphora occur in the current sentence, continue

the collection. If some anaphor appears in the current sentence, use its co-speci�er as

the focus. Halt.

3. Choosing between Current Focus and the Alternate Focus List:

If there is an anaphor co-specifying the Current Focus and another co-specifying some

member,F , of the Alternate Focus List,

then

if neither anaphors corresponding to the Current Focus and F are in agent

position

then

if only F is represented by a pronoun

then (Discourse) Focus := F , push Current Focus onto Focus Stack

and Current Focus := F

else retain Current Focus as Discourse Focus

endif

1

I have slightly paraphrased Sidner's original de�nition.

79

else

if the anaphor corresponding to the Current Focus is not in agent

position

then retain the Current Focus as (Discourse) Focus.

else (Discourse) Focus := F .

endif

endif

endif

Halt.

4. Retaining the Current Focus as (Discourse) Focus: If only the Current

Focus has anaphors which co-specify it, retain the Current Focus as (Discourse) Focus.

Halt.

5. Alternate Focus List as Focus: If the anaphors only co-specify a member of the

Alternate Focus List, move the focus to it. If several members of the Alternate Focus

List are co-speci�ed, choose the focus in the manner suggested by the Expected Focus

Algorithm. Halt.

6. Focus stack use: If the anaphors only co-specify a member of the focus stack,

move the focus to the stack member by popping the stack. Halt.

7. Implicit speci�cation: If a de�nite noun phrase implicitly speci�es an element

associated with the focus, retain the Current Focus and ag the de�nite noun phrase

as implicit speci�cation. If speci�cation is associated with a member of the Alternate

Focus List, move the (Discourse) Focus to that member and ag the de�nite noun

phrase as implicit speci�cation. Halt.

8. Lack of anaphora: If there are no anaphors co-specifying any of the Current

Focus, Alternate Focus List or Focus Stack but the Current Focus can �ll a non-

obligatory case-role (argument-role) in the sentence or if the verb- phrase is related to

the Current Focus by nominalization, retain the Current Focus and halt.

9. Focus set initialization: If there are no foci mentioned and the sentence is

discourse initial, collect focus sets.

10. No focus used: Otherwise if there are no foci mentioned, retain the Current

Focus as (Discourse) Focus.

Looking at the second sentence of our discourse this algorithm applies in the following way:

The preliminaries will give us:

Focus Stack - []

Current Focus - baseball

Alternate Focus List - [(baseball?), Alfred and Zohar, liked to play baseball]

0. Initialization:

We note that they co-speci�es Alfred and Zohar on the Alternative Focus List and that

it co-speci�es the Current Focus, baseball.

1. Do-anaphora:

This step does not apply.

2. Focus set collection:

This step does not apply.

3. Choosing between Current Focus and the Alternate Focus List:

80

This step con�rms baseball as the Current Focus. There are anaphors co- specifying

the Current Focus (it) and another co-specifying some member of the Alternate Focus

List (they). It is not the case that they are both in agent position, but it is the case

that the anaphor corresponding to the current focus (it) is not in agent position. Thus

we retain the Current Focus as the Discourse Focus. And halt.

After applying the focus algorithm, we compute the Potential Focus List in preparation for

the next sentence.

Potential Focus List Algorithm

1. If a cleft of pseudocleft sentence is used, the potential focus is the cleft item if and

only if the element is non-clefting position co-speci�es the focus. When it does not,

the sentence is incoherent.

2. Otherwise order a potential focus list of all the noun-phrases �lling a thematic

relation in the sentence, excluding a noun phrase in agent position and the noun

phrase which co-speci�es the focus if one exists. The last member of the Potential

Focus List is the verb phrase of the sentence.

Clause (1) of this algorithm does not apply. By clause (2) we obtain

Potential Focus List - [every day, school, dinner, played it every day after school before

dinner]

Now we move on to sentence (3) of the discourse. First the pronoun interpretation rule, R1.

Sidner says that it is not detailed enough to resolve their. However, perhaps we can take their to

be an agent, in which case R1 will require the Actor Focus to be co- speci�ed, as desired. Sidner

suggests that their game should count as a mention of baseball, and therefore counts as an anaphor

co-specifying the focus and keeping it in focus. We enter the Focusing Algorithm with:

Focus Stack - []

Current Focus - baseball

Alternate Focus List - [every day, school, dinner, played it every day after school before

dinner]

If their is regarded as the only anaphor, then the only clause of the Focus Algorithm that applies is

(10) which maintains the current discourse focus. If their game is counted as an anaphor then this

also will maintain the current discourse focus, by clause (4) since Alfred and Zohar are no longer

maintained on the Alternate Focus List. Thus either way, baseball continues as the Discourse

Focus. Computing the Potential Focus List yields:

Potential Focus List - [ice-cream cones, had ice-cream cones]

We now come to the fourth sentence. Pronoun Interpretation goes as follows: they is not in agent

position, thus we try to choose the discourse focus as the thing co-speci�ed. However, baseball

does not match they, �rstly for syntactic reasons (there is a clash between singular and plural)

and secondly for semantic reasons (baseball doesn't taste of anything). So Sidner suggests that

the rule R1 needs to be made more sophisticated. In case of such a failure the Potential Focus

List is to be used to resolve the pronouns. This provides us with ice-cream cones as desired.

We now move on to the Focusing Algorithm. The preliminaries yield:

Focus Stack - []

Current Focus - baseball

Alternate Focus List - [ice-cream cones, had ice-cream cones]

During Initializationwe notice that there is one anaphor which refers to something on the Alternate

Focus List. Clause (5) is the one that is relevant. We thus move the focus to ice-cream cones.

This means that we set Current Focus := ice-cream cones and push baseball onto the Focus Stack,

i.e. Focus Stack := [ice-cream cones].

Finally, computing the Potential Focus List for this sentence yields [tasted really good].

81

Exercise 9.2.1

Analyze the rest of the discourse in a similar fashion.

Exercise 9.2.2

Explain how the program focus-drs.pl treats the discourse

A man owns a donkey. It loves him.

82

9.3 Programmes for Chapter 9

9.3.1 focus-drs.pl

/* A simple implementation of discourse representation using

complex drs's for universal quantification*/

/* You may need to define member and append, depending on

the prolog you are using */

:- op(150,xfy,=>).

:- op(100,xfy,:).

s(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,

LocList-LocList,FocIn-FocOut) -->

np(Gl_DRSIn-Gl_DRS1,DRSIn-DRS1,X,

[]-LocList1,FocIn-Foc1),

vp(Gl_DRS1-Gl_DRSOut,DRS1-DRSOut,X^Cond,

LocList1-_,Foc1-FocOut).

s(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,

LocList-LocList,FocIn-FocOut) -->

qnp(Gl_DRSIn-Gl_DRS1, DRSIn-DRSOut,X^P^(Q=>P),

[]-LocList1,FocIn-Foc1),

vp(Gl_DRS1-Gl_DRSOut,Q-P,X^Cond,

LocList1-_,Foc1-FocOut).

np(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,_:X,

LocListIn-LocListOut,FocIn-FocOut) -->

det(Gl_DRSIn-Gl_DRS1,DRSIn-DRS1,FocIn-Foc1),

noun(Gl_DRS1-Gl_DRS2,DRS1-DRS2,X^Cond,

[]-LocList1,Foc1-Foc2),

optrel(Gl_DRS2-Gl_DRSOut,DRS2-DRSOut,X^Cond1,

LocList1-_,Foc2-FocOut),

{append(LocListIn,LocList1,LocListOut)}.

qnp(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,_:X^P^DRS,

LocListIn-LocListOut,FocIn-FocOut) -->

det(Gl_DRSIn-Gl_DRS1,DRSIn-DRSOut,Q^P^DRS,

FocIn-Foc1),

noun(Gl_DRS1-Gl_DRS2,DRSIn-DRS1,X^Cond,

[]-LocList1,Foc1-Foc2),

optrel(Gl_DRS2-Gl_DRSOut,DRS1-Q,X^Cond1,

LocList1-_,Foc2-FocOut),

{append(LocListIn,LocList1,LocListOut)}.

np(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X,

LocListIn-LocListOut,FocIn-FocOut) -->

proper_noun(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X,

LocListIn-LocListOut,FocIn-FocOut).

np(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X,

LocListIn-LocListOut,FocIn-FocOut) -->

pronoun(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X,

83

LocListIn-LocListOut,FocIn-FocOut).

optrel(Gl_DRS-Gl_DRS,DRS-DRS,X^_,LocList-LocList,Foc-Foc) --> [].

optrel(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X^Cond,

LocListIn-LocListIn,FocIn-FocOut) -->

[that],vp(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X^Cond,

LocListIn-_,FocIn-FocOut).

vp(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X^Cond,

LocListIn-LocListOut,FocIn-FocOut) -->

trans_verb(Gl_DRSIn-Gl_DRS1,DRSIn-DRS1,Y^X^Cond,

FocIn-Foc1),

np(Gl_DRS1-Gl_DRSOut,DRS1-DRSOut,Y,

LocListIn-LocListOut,Foc1-FocOut).

vp(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X^Cond,

LocListIn-LocListOut,FocIn-FocOut) -->

trans_verb(Gl_DRSIn-Gl_DRS1,Q-P,Y^X^Cond,

FocIn-Foc1),

qnp(Gl_DRS1-Gl_DRSOut,DRSIn-DRSOut,Y^P^(Q=>P),

LocListIn-LocListOut,Foc1-FocOut).

vp(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,X^Cond,

LocList-LocList,FocIn-FocOut) -->

intrans_verb(Gl_DRSIn-Gl_DRSOut,

DRSIn-DRSOut,X^Cond,FocIn-FocOut).

det(Gl_DRS-Gl_DRS,DRS-DRS,Foc-Foc) -->

[a].

det(Gl_DRS-Gl_DRS,[Dom,Constr]-[Dom,[Q=>P|Constr]],

Q^P^(Q=>P),Foc-Foc) -->

[every].

noun(Gl_DRS-Gl_DRS,[Dom,Constr]-[[X|Dom],

[man(X),male(X)|Constr]],X^man(X),

LocListIn-[X|LocListIn],Foc-Foc) -->

[man].

noun(Gl_DRS-Gl_DRS,[Dom,Constr]-[[X|Dom],

[woman(X),female(X)|Constr]],X^woman(X),

LocListIn-[X|LocListIn],Foc-Foc) -->

[woman].

noun(Gl_DRS-Gl_DRS,[Dom,Constr]-[[X|Dom],

[donkey(X),neuter(X)|Constr]],X^donkey(X),

LocListIn-[X|LocListIn],Foc-Foc) -->

[donkey].

proper_noun(Gl_DRSIn-Gl_DRSOut,DRS-DRS,_:X,

LocListIn-[X|LocListIn],Foc-Foc) -->

[john],{check_add(X,[named(X,john),male(X)],

Gl_DRSIn,Gl_DRSOut),

\+ strict_member(X,LocListIn)}.

proper_noun(Gl_DRSIn-Gl_DRSOut,DRS-DRS,_:X,

LocListIn-[X|LocListIn],Foc-Foc) -->

[mary],{check_add(X,[named(X,mary),female(X)],

84

Gl_DRSIn,Gl_DRSOut),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS-Gl_DRS,DRS-DRS,R:X,

LocListIn-[X|LocListIn],

(Foci,Anaphors,NewInfo)-

(Foci,[X|Anaphors],NewInfo)) -->

[he],

{r1(Foci,R:X),

(strict_check(X,[male(X)],DRS);

strict_check(X,[male(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS-Gl_DRS,DRS-DRS,R:X,LocListIn-[X|LocListIn],

(Foci,Anaphors,NewInfo)-

(Foci,[X|Anaphors],NewInfo)) -->

[him],

{r1(Foci,R:X),

(strict_check(X,[male(X)],DRS);

strict_check(X,[male(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS-Gl_DRS,DRS-DRS,R:X,LocListIn-[X|LocListIn],

(Foci,Anaphors,NewInfo)-

(Foci,[X|Anaphors],NewInfo)) -->

[she],

{r1(Foci,R:X),

(strict_check(X,[female(X)],DRS);

strict_check(X,[female(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS-Gl_DRS,DRS-DRS,R:X,LocListIn-[X|LocListIn],

(Foci,Anaphors,NewInfo)-

(Foci,[X|Anaphors],NewInfo)) -->

[her],

{r1(Foci,R:X),

(strict_check(X,[female(X)],DRS);

strict_check(X,[female(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

pronoun(Gl_DRS-Gl_DRS,DRS-DRS,R:X,LocListIn-[X|LocListIn],

(Foci,Anaphors,NewInfo)-

(Foci,[X|Anaphors],NewInfo)) -->

[it],

{r1(Foci,R:X),

(strict_check(X,[neuter(X)],DRS);

strict_check(X,[neuter(X)],Gl_DRS)),

\+ strict_member(X,LocListIn)}.

trans_verb(Gl_DRS-Gl_DRS,[Dom,Constr]-

[Dom,[love(exp:X,th:Y)|Constr]],

th:Y^exp:X^love(exp:X,th:Y),

(Foci,Anaphors,NewInfo)-

(Foci,Anaphors,[love(exp:X,th:Y)|NewInfo])) -->

[loves].

trans_verb(Gl_DRS-Gl_DRS,[Dom,Constr]-

[Dom,[beat(ag:X,th:Y)|Constr]],

85

th:Y^ag:X^beat(ag:X,th:Y),

(Foci,Anaphors,NewInfo)-

(Foci,Anaphors,[beat(ag:X,th:Y)|NewInfo])) -->

[beats].

trans_verb(Gl_DRS-Gl_DRS,[Dom,Constr]-

[Dom,[own(ag:X,th:Y)|Constr]],

th:Y^ag:X^own(ag:X,th:Y),

(Foci,Anaphors,NewInfo)-

(Foci,Anaphors,[own(ag:X,th:Y)|NewInfo])) -->

[owns].

trans_verb(Gl_DRS-Gl_DRS,[Dom,Constr]-

[Dom,[know(exp:X,th:Y)|Constr]],

th:Y^exp:X^knows(exp:X,th:Y),

(Foci,Anaphors,NewInfo)-

(Foci,Anaphors,[know(exp:X,th:Y)|NewInfo])) -->

[knows].

intrans_verb(Gl_DRS-Gl_DRS,[Dom,Constr]-

[Dom,[live(th:X)|Constr]],

th:X^live(th:X),

(Foci,Anaphors,NewInfo)-

(Foci,Anaphors,[live(th:X)|NewInfo])) -->

[lives].

drs_sent(Sent,Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,

LocListIn-LocListOut,FocIn-FocOut) :-

s(Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,

LocListIn-LocListOut,FocIn-Foc1,Sent,[]),

update_foc(Foc1,FocOut).

drs([],Gl_DRS-Gl_DRS,DRS-DRS,Foc-Foc).

drs([Sent|Disc],Gl_DRSIn-Gl_DRSOut,DRSIn-DRSOut,FocIn-FocOut) :-

drs_sent(Sent,Gl_DRSIn-Gl_DRS1,

DRSIn-DRS1,[]-_,FocIn-Foc1),

drs(Disc,Gl_DRS1-Gl_DRSOut,DRS1-DRSOut,Foc1-FocOut).

drs(Disc,DRS) :-

drs(Disc,[[],[]]-Gl_DRSOut,[[],[]]-DRSOut,

((nil,nil,[],[]),[],[])-FocOut),

merge_drs(Gl_DRSOut,DRSOut,DRS).

drs(Disc,DRS,FocOut) :-

drs(Disc,[[],[]]-Gl_DRSOut,[[],[]]-DRSOut,

((nil,nil,[],[]),[],[])-FocOut),

merge_drs(Gl_DRSOut,DRSOut,DRS).

merge_drs([Dom1,Constr1],[Dom2,Constr2],[Dom,Constr]) :-

append(Dom1,Dom2,Dom),

append(Constr1,Constr2,Constr).

r1((_,ActorFocus,_,_),ag:ActorFocus).

r1((DiscourseFocus,_,_,_),th:DiscourseFocus).

r1((DiscourseFocus,_,_,_),exp:DiscourseFocus).

86

r1((_,_,AltFocusList,_), _:X) :-

member(X,AltFocusList).

r1((_,_,_,[X|FocusStack]), _:X).

update_foc((FociIn,Anaphors,NewInfo),(FociOut,[],[])) :-

expected_focus(FociIn,FociOut,Anaphors,NewInfo),!.

update_foc((FociIn,Anaphors,NewInfo),(FociOut,[],[])) :-

focus(FociIn,FociOut,Anaphors,NewInfo).

expected_focus((X,Y,[],[]),

(DiscourseFocus,ActorFocus,AltFocusList,[]),

_,[Cond|NewInfo]) :-

X==nil,Y==nil,

role(th,Cond,DiscourseFocus),

role(ag,Cond,ActorFocus),

other_roles(Cond,AltFocusList1),

(\+ ActorFocus ==

nil -> append(AltFocusList1,

[ActorFocus],AltFocusList);

AltFocusList1=AltFocusList).

role(R,Cond,X) :-

Cond =.. [Pred|Args],

member(R:X,Args),!.

role(_,_,nil).

other_roles(Cond,L) :-

Cond =.. [Pred|Args],

bagof(X,R^(member(R:X,Args),\+(R=ag;R=th)),L),!.

other_roles(_,[]).

focus((DFocusIn,AFocusIn,AltFLIn,FStackIn),

(DFocusOut,AFocusIn,AltFLOut,FStackIn),

Anaphors,[Cond|NewInfo]) :-

strict_member(DFocusIn,Anaphors),

strict_shared_member(Anaphors,AltFLIn,X),

role(ag,Cond,A),

(\+A==DFocusIn -> DFocusIn = DFocusOut; X = DFocusOut),

potential_focus(DFocusIn,Cond,AltFLOut).

focus((DFocusIn,AFocusIn,AltFLIn,FStackIn),

(DFocusIn,AFocusIn,AltFLOut,FStackIn),

Anaphors,[Cond|NewInfo]) :-

strict_member(DFocusIn,Anaphors),!,

potential_focus(DFocusIn,Cond,AltFLOut).

focus((DFocusIn,AFocusIn,AltFLIn,FStackIn),

(X,AFocusIn,AltFLOut,[DFocusIn|FStackIn]),

[X],[Cond|NewInfo]) :-

strict_member(X,AltFLIn),!,

potential_focus(DFocusIn,Cond,AltFLOut).

focus((DFocusIn,AFocusIn,AltFLIn,[Y|FStackIn]),

(X,AFocusIn,AltFLOut,FStackIn),

87

[X],[Cond|NewInfo]) :-

X==Y,!,

potential_focus(DFocusIn,Cond,AltFLOut).

focus((DFocusIn,AFocusIn,AltFLIn,FStackIn),

(DFocusIn,AFocusIn,AltFLOut,FStackIn),

_,[Cond|NewInfo]) :-

potential_focus(DFocusIn,Cond,AltFLOut).

potential_focus(DFocusIn,Cond,AltFLOut) :-

Cond =..[_|Args],

bagof(X,R^(member(R:X,Args),\+R=ag,

\+X==DFocusIn),AltFLOut),!.

potential_focus(_,_,[]).

check(X,Cs,[Dom,Constr]) :-

member(X,Dom),

strict_members(Cs,Constr).

strict_check(X,Cs,[Dom,Constr]) :-

strict_member(X,Dom),

strict_members(Cs,Constr).

check_add(X,Cs,DRS,DRS) :-

check(X,Cs,DRS),!.

check_add(X,Cs,[Dom,Constr],[[X|Dom],NewConstr]) :-

append(Cs,Constr,NewConstr).

strict_member(X,[Y|L]) :-

X == Y.

strict_member(X,[_|L]) :-

strict_member(X,L).

strict_members([],_).

strict_members([X|L],L1) :-

strict_member(X,L1),

strict_members(L,L1).

strict_shared_member([X|L1],L2,X) :-

strict_member(X,L2).

strict_shared_member([_|L1],L2,X) :-

strict_shared_member(L1,L2,X).

9.3.2 Examples

?- drs([[john,lives]],DRS,Foc).

DRS = [[_64],

[named(_64,john),male(_64),live(th : _64)]],

Foc = (_64, nil, [], []), [], [] ;

no

88

?- drs([[john,loves,mary]],DRS,Foc).

DRS = [[_110,_64],

[named(_110,mary),female(_110),named(_64,john),

male(_64),love(exp : _64,th : _110)]],

Foc = (_110, nil, [_64], []), [], [] ;

no

?- drs([[a,man,owns,a,donkey]],DRS,Foc).

DRS = [[_123,_54],

[donkey(_123),neuter(_123),

own(ag : _54,th : _123),man(_54),male(_54)]],

Foc = (_123, _54, [_54], []), [], [] ;

no

?- drs([[a,man,owns,a,donkey],[it,lives]],DRS,Foc).

DRS = [[_123,_54],

[live(th : _123),donkey(_123),neuter(_123),

own(ag : _54,th : _123),man(_54),male(_54)]],

Foc = (_123, _54, [], []), [], [] ;

no

?- drs([[a,man,owns,a,donkey],[he,lives]],DRS,Foc).

DRS = [[_123,_54],

[live(th : _54),donkey(_123),neuter(_123),

own(ag : _54,th : _123),man(_54),male(_54)]],

Foc = (_54, _54, [_54], [_123]), [], [] ;

no

?- drs([[a,man,owns,a,donkey],[he,loves,it]],DRS,Foc).

DRS = [[_123,_54],

[love(exp : _54,th : _123),donkey(_123),

neuter(_123),own(ag : _54,th : _123),man(_54),

male(_54)]],

Foc = (_123, _54, [_54], []), [], [] ;

no

?- drs([[a,man,owns,a,donkey],[it,loves,him]],DRS,Foc).

DRS = [[_123,_54],

[love(exp : _123,th : _54),donkey(_123),

neuter(_123),own(ag : _54,th : _123),man(_54),

male(_54)]],

Foc = (_123, _54, [_54], []), [], [] ;

no

?- drs([[a,man,owns,a,donkey],[it,owns,him]],DRS,Foc).

no

?- drs([[every,man,owns,a,donkey]],DRS,Foc).

DRS = [[],

[[[_55],[man(_55),male(_55)]] =>

[[_129,_55],

[donkey(_129),neuter(_129),

own(ag : _55,th : _129),man(_55),male(_55)]]]],

Foc = (_129, _55, [_55], []), [], [] ;

no

?-

89

Chapter 10

Summary

This course concerned Prolog and Natural Language Semantics. We took semantics in this context

to mean the evaluation of expressions (natural language or logic) in databases - in particular

specifying whether sentences are true with respect to a database. We used the predicate satisfy

to compute this. There were seven main topics dealt with in the course.

10.1 Semantics of �rst order predicate calculus (FOPC).

Notice that in de�ning the predicate satisfy we prepared for things coming later in the course

by giving it two arguments satisfy(Situation,Formula) rather than one satisfy(Formula) .

We took a situation or database to be a collection of atomic facts in prolog, i.e. ground expressions

like like(john,mary) - no variables and no negation.

10.2 Translation of English to FOPC

We gave a little program which translated a fragment of English into FOPC. This could be

combined with the satisfy program to de�ne satisfaction for English sentences.

10.3 Lambda calculus

The preceding program involved a good deal of passing around of extra arguments in order to

compensate for the mismatch between the syntactic structures of English and FOPC. The lambda-

calculus provides a logical expression corresponding to each subconstituent of the English syntax

and thus, in principal at least, makes the programming of the mapping between natural lan-

guage syntax and logical form more straightforward. We did not do semantics directly for the

lambda-calculus. Rather we relied on beta- reduction to reduce the lambda-calculus expressions

to expressions of FOPC which could then be fed to satisfy .

10.4 Quanti�ers

We then looked at some semantic problems with FOPC as a logical form language for natural

language. In particular we looked at generalized quanti�ers (including most, few, many), how the

generalized quanti�er analysis from the theoretical literature might be exploited in prolog and

relations to the three branch quanti�er (3BQ) representation.

We also looked at problems in the computation of di�erent quanti�er scopings and the Hobbs

and Shieber algorithm for doing this.]

90

10.5 Questions and Quanti�ers in CHAT

We looked at the CHAT-80 system as an example of a system which employs something like this

logic programming approach to sentence semantics and compared CHAT's satisfy-predicate with

the variants we had developed. We looked in some detail at the treatment of questions in CHAT

(semantic representation, and a little about the optimization used when querying the database).

We went through the technique of gap-threading and the treatment of questions given in sample

programs in Pereira and Shieber's book.

10.6 Discourse anaphora

We now went beyond the level of the sentence and looked in some detail at the implementation of

Discourse Representation Theory (DRT). There are two main aspects to this: the way in which we

derive DRSs during the parsing of the sentence and the semantics we give for the DRSs. Having

seen that it is possible to give a declarative account of the construction of DRSs on the basis

of natural language syntax we showed how it might be possible to give a declarative version of

Hobbs' algorithm for assigning discourse antecedents using the same kind of techniques. We went

through Hobbs' algorithm in some detail and showed how part of it can be encoded in a logic

grammar format using threading of local discourse referent lists.

10.7 Focus and discourse anaphora

We went in some detail through certain aspects of Sidner's algorithms concerning focus and showed

how a declarative version of her algorithms might be grafted onto the treatment of DRT we had

given previously.

91

