
Implementation of Prolog Implementation of Prolog

Implementation of Prolog

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
People Location Year Type Technique
Battani &
Meloni

Marseille 1973 Fortran in-
terpreter

structure
sharing

David H.D.
Warren

Edinburgh 1977 DEC-10
Prolog
(native
code)

structure
sharing +
multiple
stacks +
TRO

David H.D.
Warren

SRI 1983 abstract
machine +
emulator

structure
copying
+ goal
stacking

David
H.D.Warren

SRI 1984 WAM +
emulator

structure
copying
+ envi-
ronment
stacking

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Implementations based on the WAM: Quintus Prolog,
Berkeley machine (PLM), NEC machine (HPM), ECRC
machine (KCM).

• Prolog systems: SICStus Prolog, Arity Prolog, Mac Prolog,
LPA Prolog, SWI Prolog, IC-Prolog, Turbo-Prolog,
GNU-Prolog etc.

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Differences between compilation of Prolog programs and
compilation of imperative languages:

I logical variable (no destructive assignment. Once the
variable is instantiated to a value, this can not change
unless on backtracking).

I backtracking (it does not recover space on procedure exit,
unless it is executing the last clause of a predicate).

I in imperative programming we remove the last execution
stack on exit (call: push, exit: pop). In Prolog, stacks stay
there till the last clause of a predicate is executed.

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• WAM (Warren Abstract Machine)
I Types of terms WAM: constant (integers or atoms),

variable, structure, list, floating point.
I Procedure: set of clauses with same name and arity.
I Term Representation:

+---+---+
|TAG| N |
+---+---+

I variable: REF can be a pointer to another variable, to a
structure or to a list in the heap, or to itself
(non-instantiated var)
+---+---+
|VAR|REF|
+---+---+

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
• constant: N, in general, is an index in a symbol table

(normally implemented as a hash table).
+---+---+
|CTE| N |
+---+---+

• structure:
+---+---+
|STR| P | P points to the structure
+---+---+
+---+---+

P: |FN |ARI| functor name is found in a table
+---+---+ using index FN, ARI (arity of the term)

• list:
+---+---+
|LIS| P |
+---+---+

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Variable Classification:
I regarding location during execution:

• local: do not appear in functors (compound terms)
• global: appear in functors

Ex: p(X,f(X,a),Y). % X is global, Y is local

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• regarding lifetime:
I temporary: appear only in the head and/or in the first

literal of the clause body.
I permanent: can appear in the head and after the first literal

in the clause body.
Ex: d((U*V),X,((DU*V)+(U*DV))) :-

d(U,X,DU), % V, X and DV are permanent
d(V,X,DV). % U and DU are temporary

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• regarding creation time:
I conditional: created and not instantiated before a

choicepoint. Can have different values depending on the
alternative clauses in the choicepoint.

I inconditional: is already instantiated when the choicepoint
is created, therefore it does not change values.

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Components of the abstract machine:
I Instruction set
I Registers
I Memory areas:

• code + data
• local stack: stores information about environments,

choicepoints and local variables
• Heap (global): stores structures (compound terms) and

variables that appear in structures (global variables)
• Trail: stores addresses of conditional variables: those that

need to be unbound upon failure of a clause of a predicate

• algorithms: dereferencing, unification and backtracking

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Structure sharing: structures are not copied to the heap.
Instead, the variables are copied. There are pointers from
the runtime environment to the code area.

• Struture copying: there is no pointer from the execution
environment to the code area.

• Structure Sharing x Structure Copying:
I Sharing saves memory, but it can lose locality
I Copying uses more space, but it can win in locality

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
• Registers:

Reg purpose pointer to
P program counter code area
CP continuation pointer code area
E local stack top environment

stacking
B last choicepoint local stack
TR trail top trail
H heap top heap
HB last choicepoint heap
S heap structure being

unified
heap

Xi arguments of second
and upper levels

code area

Ai arguments of first level code area
Yi local variables code area

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Instruction Set:
Control:
allocate allocates space to local variables
call P/n, N prepares environment with label

P/n indicating that there are N lo-
cal variables in the stack

execute P/n jumps to label P/n
First level unification:
get variable Ri,Aj creates a slot for a variable in the

heap (if Ri is Xi) or in the stack
(if Ri is Yi), dereference whatever
comes in Aj and unifies with Ri
get value Ri,Aj dereferences Ri and
Aj and unifies Ri with Aj

get constant c,Ai dereferences Ai and unifies with c
get structure F/n,Ai dereferences Ai and unifies with F/n

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Instruction Set:
Unification of upper level terms:
unify variable Ri dereferences what is pointed by S,

creates slot in the heap, Ri points
to that slot, unifies S with Ri

unify constant c dereferences whatever is pointed by
S, unifies with c

unify structure F/n dereferences whatever is pointed by
S, unifies with F/n and invokes uni-
fication again

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Instruction Set:
PUT Instructions: transfer values from arguments to
registers
put variable Ri,Aj
put constant c,Aj
put structure F/n,Aj

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Instructions * variable are generated for the first
occurrence of a variable in the clause. The subsequent
occurrences of the same variable generate * value.

• Instructions * constant are generated when constants are
found in the code.

• Instructions * structure are generated when we find
compound terms of first or upper level in the code.

• Instructions for choicepoints: generated at each clause
entry and only executed if the argument that comes is an
unbound variable (in this case, can not index and jump
directly to a given clause)
try me else L, retry me else L, trust me

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
• Indexing instructions:

first level:
switch_on_term Lv,Lc,Ll,Ls
dereferences register A1 (first argument). If it is:
-- variable, jump to Lv
-- constant, jump to Lc
-- list, jump to Ll
-- structure, jump to Ls

second level:
switch_on_constant N, {c1:L1, c2:L2,...,cn:LN}
switch_on_structure N, {s1:L1, s2:L2,...,sn:LN}

third level:
try L
retry L
trust L

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Indexing instructions are generated by the compiler after
the code for all clauses of a predicate is generated.

• Although these instructions index only on the first
argument, there are Prolog implementations that generate
code for indexing on more than the first argument.

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• Read and Write Mode in the unification instructions:
I Read Mode: used for unification of already existing

structure.
I Write Mode: to build a new structure.

In read mode:
unify_variable X X := next argument of S
unify_value X unify X with next argument of S
unify_constant C unify C with next argument of S

In write mode:
unify_variable X X := reference to next arg of H := indefinido
unify_value X next argument of H := X
unify_constant C next argument of H := C

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

• General form of a Prolog compiled code:

p :- q, r, s. p :- q

allocate get args de p
get args de P put args de q
put args de q execute q
call q, n
put args de r p.
call r, n1
put args de s get args de P
deallocate proceed
execute s

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
gf(X,Z) :- parent(X,Y), parent(Y,Z).
parent(joao,maria).
parent(joao,jose).
parent(jose,maria).
?- gf(joao,X).

consulta/0: allocate % query code
put_constant joao,A1 % gf(joao,
put_variable Y1,A2 % X
call gf/2,1 %
proceed %).

parent/2:
parent/2_1: try_me_else parent/2_2 % code for first fact

get_constant joao, A1
get_constant maria, A2
proceed

parent/2_2: retry_me_else parent/2_3 % code for second fact
get_constant joao, A1
get_constant jose, A2
proceed

parent/2_3: trust_me % code for third fact
get_constant jose, A1
get_constant maria, A2
proceed

gf/2: allocate % code for rule gf/2
get_variable Y1,A1
get_variable Y2,A2
put_value Y1,A1
put_variable Y3,A2
call parent/2,2
put_value Y3,A1
put_value Y2,A2
call parent/2,2
proceed

Implementation of Prolog Implementation of Prolog

Implementation of Prolog

Structures:

?-p(Z,h(Z,W),f(W)). % first level : A1 = Z, A2 = h(Z,W), A3 = f(W),
% second level: X4 = Z, X5 = W

p(f(X),h(Y,f(a)),Y). % first level : A1 = f(X), A2 = h(Y,f(a)), A3 = Y
% second level: X4 = X, X5 = Y, X6 = f(a)
% third level : X7 = a

consulta/0: put_variable X4,A1 % p(Z, Z was renamed to X4
put_structure h/2,A2 % h
set_value X4 % (Z,
set_variable X5 % W),
put_structure f/1,A3 % f(
set_value X5 % W
call p/3,0 %).

p/3: get_structure f/1,A1 % p(f
unify_variable X4 % (X),
get_structure h/2,A2 % h
unify_variable X5 % (Y,
unify_variable X6 % X6),
get_value X5,A3 % Y),
get_structure f/1,X6 % X6 = f
unify_variable X7 % (X7)
get_structure a/0,X7 % X7 = a
proceed

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
List concatenation:

app([],L,L).
app([X|L1],L2,[X|L3]) :- app(L1,L2,L3).

app/3:
switch_on_term C1a,C1,C2,fail

C1a: try_me_else C2a % app(
C1: get_constant nil,A1 % [],

get_value A2,A3 % L, L
proceed %).

C2a: trust_me % app(
C2: get_list A1 % [

unify_variable X4 % X|
unify_variable A1 % L1], L2,
get_list A3 % [
unify_value X4 % X|
unify_variable A3 % L3]) :-
execute app/3 % app(L1,L2,L3).

NB: This code is extremely optimized. Various instructions that
would normally be generated do not appear in this code.
Exercise: generate the normal code for app/3 without
optimizations.

Implementation of Prolog Implementation of Prolog

Implementation of Prolog
Quicksort:

qs([],R,R).
qs([X|L],R0,R) :-

split(L,X,L1,L2),
qs(L1,R0,[X|R1]),
qs(L2,R1,R).

qs/3: switch_on_term C1a,C1,C2,fail

C1a: try_me_else C2a % qs(
C1: get_constant nil,A1 % [],

get_value A2,A3 % R, R
proceed %).

C2a: trust_me % qs(NB: Again, this code is extremely optimized, including
C2: allocate reuse of registers to minimize their use. The instruction

get_list A1 % [put_unsafe_value is used to save variables that in the stack
unify_variable Y6 % X| in the heap, in case there is reutilization of space (instruction
unify_variable A1 % L], execute may reutilize the current stack environment).
get_variable Y5,A2 % R0,
get_variable Y3,A3 % R) :-
put_value Y6,A2 % split(L,X,
put_variable Y4,A3 % L1,
put_variable Y1,A4 % L2
call split/4,6 %),
put_unsafe_value Y4,A1 % qs(L1,
put_value Y5,A2 R0,
put_list A3 % [
unify_value Y6 % X|
unify_variable Y2 % R1]
call qs/3,3 %),
put_unsafe_value Y1,A1 % qs(L2,
put_value Y2,A2 % R1,
put_value Y3,A3 % R
deallocate
execute qs/3 %).

	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog
	Implementation of Prolog

