Programming in Prolog - List of Exercises \#3

1. Write a program that can print all elements of a list
```
?- print_list([a,b,c]).
a b c
```

2. Write a program that creates a list with first and last elements given.
```
?- create_list(5,12,S).
S=[5,6,7,8,9,10,11,12]
```

3. Write a program that calculates the mean value of a list of numbers.
4. Write a program that detects if a list contains a number, and returns the number (or numbers) in an argument.
5. Write a program that increments each integer element found in a list. For example:
?- increment_elements([5, $6, a, 8, b], S)$.
$S=[6,7, a, 9, b]$
6. Write a program that can encapsulate each element of a list as a list. For example:
?- encaps([a,b,1,d,e],S).
S = [[a], [b], [1], [d], [e]]
7. Write a program that insert zeros between elements of a list. For example:
```
?- insert_zeros([1,2,3,4,5],S).
S = [1,0,2,0,3,0,4,0,5,0]
```

8. Write a program that can clone a list:
```
?- clone([g,6,7],S).
S = [[g,6,7][g,6,7]]
```

9. Write a program that, given a list of elements, modify its Nth element with a given element. For example:
```
?- modify([m,o,d,i,f,y,e,t],6,i,Y).
Y = [m,o,d,i,f,y,i,t]
```

10. Write a program that generates random integers between I and J, for a square matrix with N rows. For example:
\% random_matrix(I,J,N,Mat).
?- random_matrix ($0,9,3, \mathrm{M}$).
$M=[[2,4,5],[1,0,3],[9,3,2]]$
11. Consider a representation of sets as lists. Define the following predicates:
(a) $\operatorname{subset}(\mathrm{L}, \mathrm{K})$, which holds iff L is a subset of K .
(b) disjoint (L, K), which holds iff L and K are disjoint (i.e. they have no elements in common).
(c) union($\mathrm{L}, \mathrm{K}, \mathrm{M}$), which holds iff M is the union of L and K .
(d) intersection(L, K, M), which holds iff M is the intersection of L and K.
(e) difference ($\mathrm{L}, \mathrm{K}, \mathrm{M}$), which holds iff M is the difference of L and K .

Consider two different implementations: (1) the input list can have repeated elements, (2) the input list does not have repeated elements (it is, in fact, a set).
12. Define a predicate length (L, N) which holds iff N is the length of the list L .
13. Define a predicate sumlist (L, N) which, given a list of integers L , returns the sum N of all the elements of L . (the input list must contain only numbers.)
14. Define a predicate add_up_list (L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position. For example:

```
?- add_up_list([1,2,3,4],K).
    K = [1,3,6,10];
    no
```

15. Define a predicate merge ($\mathrm{L}, \mathrm{K}, \mathrm{M}$) which, given two ordered lists of integers L and K , returns an ordered list M containing all the elements of L and K .
16. Consider a representation of binary trees as terms, as follows:
```
emptybt the empty binary tree
consbt(N,T1,T2) the binary tree with root N
and left and right subtrees T1 and T2
```

(a) Define a predicate preorder (T,L) which holds iff L is the list of nodes produced by the preorder traversal of the binary tree T .
(b) Define a predicate search_tree (L, T) which, given a list of integers L , returns a balanced search-tree T containing the elements of L .

