
Programming in Prolog - List of Exercises #3

1. Write a program that can print all elements of a list

?- print_list([a,b,c]).

a b c

2. Write a program that creates a list with first and last elements given.

?- create_list(5,12,S).

S=[5,6,7,8,9,10,11,12]

3. Write a program that calculates the mean value of a list of numbers.

4. Write a program that detects if a list contains a number, and returns the
number (or numbers) in an argument.

5. Write a program that increments each integer element found in a list. For
example:

?- increment_elements([5,6,a,8,b],S).

S=[6,7,a,9,b]

6. Write a program that can encapsulate each element of a list as a list. For
example:

?- encaps([a,b,1,d,e],S).

S = [[a],[b],[1],[d],[e]]

7. Write a program that insert zeros between elements of a list. For example:

?- insert_zeros([1,2,3,4,5],S).

S = [1,0,2,0,3,0,4,0,5,0]

8. Write a program that can clone a list:

?- clone([g,6,7],S).

S = [[g,6,7][g,6,7]]

9. Write a program that, given a list of elements, modify its Nth element with a
given element. For example:

?- modify([m,o,d,i,f,y,e,t],6,i,Y).

Y = [m,o,d,i,f,y,i,t]



10. Write a program that generates random integers between I and J, for a square
matrix with N rows. For example:

% random_matrix(I,J,N,Mat).

?- random_matrix(0,9,3,M).

M = [[2,4,5],[1,0,3],[9,3,2]]

11. Consider a representation of sets as lists. Define the following predicates:

(a) subset(L,K), which holds iff L is a subset of K.

(b) disjoint(L,K), which holds iff L and K are disjoint (i.e. they have no
elements in common).

(c) union(L,K,M), which holds iff M is the union of L and K.

(d) intersection(L,K,M), which holds iff M is the intersection of L and K.

(e) difference(L,K,M), which holds iff M is the difference of L and K.

Consider two different implementations: (1) the input list can have repeated
elements, (2) the input list does not have repeated elements (it is, in fact, a
set).

12. Define a predicate length(L,N) which holds iff N is the length of the list L.

13. Define a predicate sumlist(L,N) which, given a list of integers L, returns the
sum N of all the elements of L. (the input list must contain only numbers.)

14. Define a predicate add_up_list(L,K) which, given a list of integers L, returns
a list of integers in which each element is the sum of all the elements in L up
to the same position. For example:

?- add_up_list([1,2,3,4],K).

K = [1,3,6,10];

no

15. Define a predicate merge(L,K,M) which, given two ordered lists of integers L
and K, returns an ordered list M containing all the elements of L and K.

16. Consider a representation of binary trees as terms, as follows:

emptybt the empty binary tree

consbt(N,T1,T2) the binary tree with root N

and left and right subtrees T1 and T2

(a) Define a predicate preorder(T,L) which holds iff L is the list of nodes
produced by the preorder traversal of the binary tree T.

(b) Define a predicate search_tree(L,T) which, given a list of integers L,
returns a balanced search-tree T containing the elements of L.


