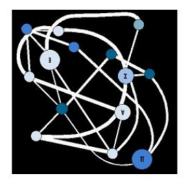
Handling Multi-Relational Data Handling Multi-Relational Data Handling Multi-Relational Data Handling M

Handling Multi-Relational Data

April 23, 2019



◆ □ → < □ → < □ → □ = ∽ へ ○
 1 / 32
 ↓
</p>

HANDLING MULTI-RELATIONAL DATA HANDLING MULTI-RELATIONAL DATA HANDLING MULTI-RELATIONAL DATA

Handling Multi-Relational Data

- Value: ability to transform a "tsunami" of data into knowledge
- Veracity: quality

Handling Multi-Relational Data

- Most machine learning methods build models based on a 2-dimensional table, where, usually, rows are instances and columns are variables
 - exception: itemset mining
- How about multi-relational or multi-modal data?
- **Relations** may exist among instances, not only among variables
- How to capture all relations?

Limitations of a single 2-dimensional table

- data may need to be preprocessed: often big/full join of multiple tables
- joining multiple tables may introduce redundancy or bias
- consume space
 - if data is missing, may use compression techniques for sparse matrices (e.g., CSR - compact sparse format)

Handling Multi-Relational Data: example 1

TRAINS GOING EAST

- 2.
- 10 HT 3. Δ A)
- 4.
- 5.

- ». LOOHOH

TRAINS GOING WEST

L 4 000

. UHER

2.

- < ロト < 同ト < ヨト < ヨト ъ

Handling Multi-Relational Data: example 2

Relations among instances, variables with multiple values

Patient	Location	Size	Date	Calcifications
P1	С	0.1	20050403	F, A
P1	С	0.2	20060412	F
P1	9	0.1	20060412	А
P2	12	0.3	20050415	М

Ideal system to handle big data

- uncertainty
- multiple relations
- multiple modalities
- streamed data
- explain the model!
- ...all of this consuming a minimum number of resources!

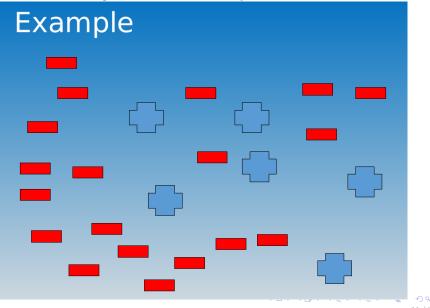
Models that can explain

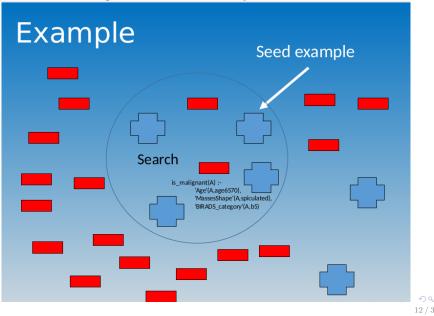
- Rules
- Decision trees (hierarchical propositional rules)
- Bayesian networks
- But...
 - Decision trees and Bayesian networks are not multi-relational
 - Rules can be multi-relational if the representation is in first-order logic

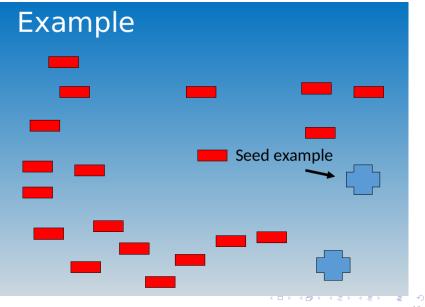
Example of first order logic representation

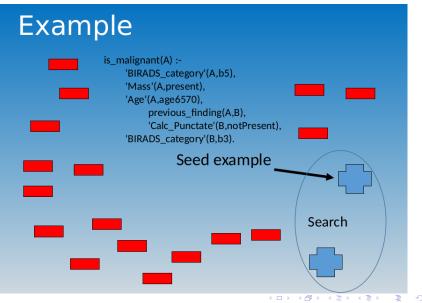
· └º╆┥╤┱┝ᡬᢩᢆᢩᡬᡛᡛ᠋ᢩᡛ				
short(car_12).	load(car_11,rectangle,3).			
closed(car_12).	load(car_12,triangle,1).			
long(car_11).	load(car_13,hexagon,1).			
long(car_13).	load(car_14,circle,1).			
short(car_14).	wheels(car_11,2).			
open_car(car_11).	wheels(car_12,2).			
open_car(car_13).	wheels(car_13,3).			
open_car(car_14).	wheels(car_14,2).			
shape(car_11,rectangle).	has_car(east1,car_11).			
shape(car_12,rectangle).	has_car(east1,car_12).			
shape(car_13,rectangle).	has_car(east1,car_13).			
shape(car_14,rectangle).	has_car(east1,car_14).			

- Given E = E+ U E-,BK, language and constraints C
- Repeat until E+ is empty:
 - Select any example e from E+
 - Build a list of candidate literals using C, BK and e
 - Search for a "good" hypothesis H (parallelization is here on the coverage step)
 - Add H to theory T
 - Remove from E+ positive examples covered by H
- Return T and its confusion matrix

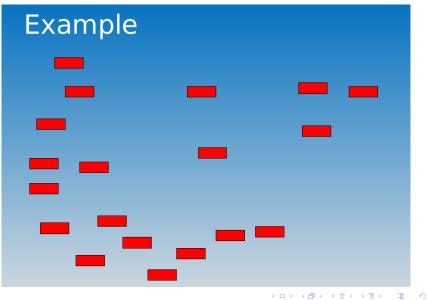








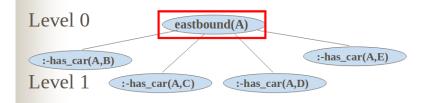
14/32



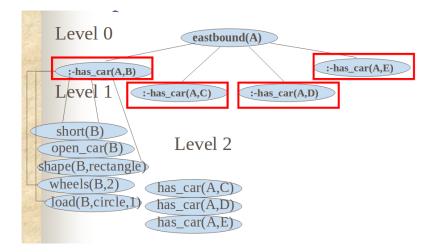
15/32

Handling Multi-Relational Data Handling Multi-Relational Data Handling Multi-Relational Data Handling M

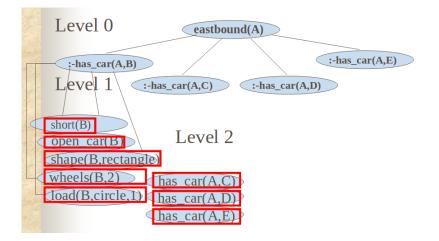
Search tree for hypothesis



Search tree for hypothesis



Search tree for hypothesis



Handling Multi-Relational Data Handling Multi-Relational Data Handling Multi-Relational Data Handling M

Opportunities for optimization

- representation for the coverage lists
- parallel search
- parallel coverage
- tree compression

Parallelizing the coverage

MODEL	is_malignant(A) :- 'BIRADS_category'(A,b5), MODEL 'Mass'(A,present), 'Age'(A,age6570), previous_finding(A,B), 'Calc_Punctate'(B,notPresent), 'BIRADS_category'(B,b3).						
		,	(0,00).				
	Case #	Mass		Age	Class		
		,		Age 51	Class benign		
DATA	Case #	Mass					

. . .

Present

Case n

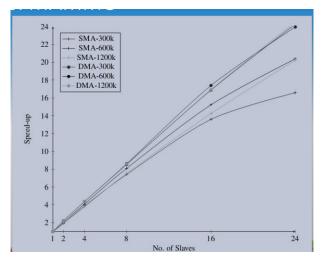
benign

55

Parallelizing the coverage

MODEL Apply hyp. I and count (# basign an	'Mas: 'Age' (MAP) REDUCE)	DS_category s'(A,present), (A,age6570), previous_find 'Calc_Puncta	ding(A,B), te'(B,notPres	ent),	
# benign an malignant	'BIRA	DS_category	'(B,b3).		
	Case #	DS_category'	'(B,b3).	Age	Class
	DIKA	,		Age 51	Class benign
	Case #	Mass		-	
malignant	Case # Case 1	Mass absent	••••	51	benign

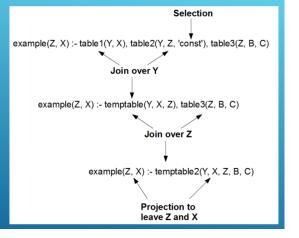
Parallelizing the coverage (mammo, 1.5GB)



▲ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 22 / 32</p>

Parallelizing the coverage: GPU-Datalog

 Datalog rules can be evaluated using the relational algebra operators select, join and projection.



Parallelizing the coverage: GPU-Datalog parsing

- Facts and rules are converted to numbers
- Each distinct string is assigned a unique id, equal strings are assigned the same id
- Capitalize on the GPU capability to process numbers

Parallelizing the coverage: GPU-Datalog preprocessing

- For each rule, specify which operations to perform and with which arguments
- Create small arrays for each operation, e.g.: $p(A,X,Y,Z), q(Z,X,B,C,Y). \rightarrow [1,1,2,4,3,0]$
- Arrays are loaded in the shared memory of the GPU
 - ▶ allow each thread to work with the correct arguments without having to calculate them

Parallelizing the coverage: GPU-Datalog memory management

- Minimization of transfers between GPU memory and host memory by maintaining facts and rule results in GPU memory for as long as possible.
- To do so, maintain a list with information about each fact and rule result resident in GPU memory.
- Apply the Least Recently Used (LRU) page replacement algorithm.

Parallelizing the coverage: GPU-Datalog selection

- The size of the result in a selection is not known beforehand.
- Selection uses three different kernel executions:
 - ▶ first kernel: marks all the rows that satisfy the selection arguments with a value one.
 - ▶ second kernel: performs a prefix sum on the marks to determine the size of the results buffer and the location where each GPU thread must write the results.
 - ▶ last kernel: writes the results.

Parallelizing the coverage: GPU-Datalog and learning FOL

- BK and examples represented in first-order language (Prolog syntax)
- BK is parsed and sent to the GPUs with Examples
- While searching for a good hypothesis (on the host):
 - Coverage step (on the GPU) using bottom-up evaluation of the hypotheses
 - Parse the hypothesis
 - Send it to GPU
 - Perform database operations using BK and E
 - Return count to host

Handling Multi-Relational Data Handling Multi-Relational Data Handling Multi-Relational Data Handling M

GPU Datalog: Experimental Evaluation

- Join over 4 tables of 5 million entries
- Transitive closure of a graph
- Same-generation benchmark

GPU Datalog: Experimental Evaluation

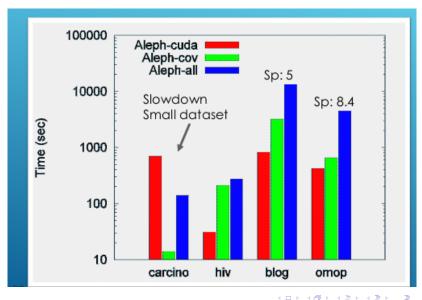
System	Join	Closure	Same- gen
YAP	125.20	3.51	0.02
XSB	287.81	4.08	0.03
MITRE	N/A	5.28	4.67
CUDA	1.07	0.12	0.02

Times in seconds

Parallelizing the coverage with GPU-Datalog: datasets

Application	ВК	Examples
Carcino	21,303	297
hiv	2,310,575	48,766
omop	4,802,317	125,000
blog	5,124,092	50,000

Parallelizing the coverage with GPU-Datalog: datasets



32 / 32