Naive Bayes Example created by André Rodrigues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Naïve Bayes Classifier

Simplest probabilistic model for classification:

$$P(X \mid Y = y) = \prod_{i=1}^{d} P(X_i \mid Y = y)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

where X is a set of attributes and Y is the class.

Naïve Bayes Classifier

Naive Bayes assumes that attributes X are independent given the class variable Y.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Naïve Bayes Classifier

To classify a test example, the Naive Bayes classifier computes the posterior probability for each class Y:

$$P(Y \mid X) = P(Y) \prod_{i=1}^{d} P(X_i \mid Y = y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given a set of observations...

···· ·			· · · ·	
Runny nose	Headache	Chills	Fever	Flu
no	strong	true	false	no
no	strong	true	true	no
little	\mathbf{strong}	\mathbf{true}	false	yes
high	mild	\mathbf{true}	false	yes
\mathbf{high}	no	false	false	yes
high	no	false	true	no
little	no	false	\mathbf{true}	yes
no	mild	true	false	no
no	no	false	false	yes
high	mild	false	false	yes
no	\mathbf{mild}	false	\mathbf{true}	yes
little	mild	\mathbf{true}	true	yes
little	strong	false	false	yes
high	mild	true	true	no

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

...build the Naïve Bayes Classifier and...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

...Conditional Probability Tables (CPTs or network parameters)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

...Conditional Probability Tables (CPTs or network parameters)

Runny nose				
	yes	no	P(yes)	P(no)
no	2	3	$\frac{2}{9}$	$\frac{3}{5}$
little	4	0	$\frac{4}{9}$	$\frac{0}{5}$
high	3	2	$\frac{3}{9}$	$\frac{2}{5}$
total	9	5	100 %	100%

Headache				
	yes	no	P(yes)	P(no)
strong	2	2	$\frac{2}{9}$	$\frac{2}{5}$
mild	4	2	$\frac{4}{9}$	$\frac{2}{5}$
no	3	1	$\frac{3}{9}$	$\frac{1}{5}$
total	9	5	100%	100%

Chills				
	yes	no	P(yes)	P(no)
true	3	4	$\frac{3}{9}$	$\frac{4}{5}$
false	6	1	$\frac{6}{9}$	$\frac{1}{5}$
total	9	5	100%	100%

Fever				
	yes	no	P(yes)	P(no)
false	6	2	6	2
10100	Ŭ	1	9	5
true	3	3	3	3
			$\overline{9}$	$\overline{5}$
total	9	5	100%	100%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now, use the model to predict classes

Given a new patient with symptoms: Runny nose=no, Headache=no, Chills=true, Fever=true Calculate:

 $PYes = P(Flu = Yes \mid RN = no, H = no, Chills = true, Fever = true)$

 $PNo = P(Flu = No \mid RN = no, H = no, Chills = true, Fever = true$ If PYes > PNo, patient has Flu, otherwise, patient has no Flu.