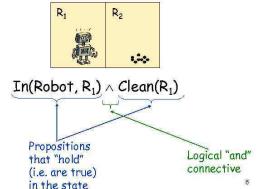

Knowledge Representation

Knowledge Representation: WHAT?

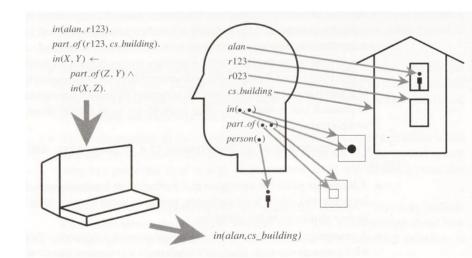

- To express knowledge that can be handled by a computer
 - Symbolic (logic-based, semantic networks, knowledge graphs, ontologies, etc)
 - Numerical (attribute-value, matrices, markov models, gaussian models etc)

Knowledge Representation: WHY?

- to formalize knowledge, two goals:
 - be more precise and non ambiguous
 - ▶ to make it "computable"
- to be able to express relations
- to handle categorical data
- to be able to perform sound reasoning
- to support learning new knowledge

Knowledge Representation: Example

State Representation


https://present5.com/action-planning-where-logic-based-representation-of-knowledge-makes/

Knowledge Representation

Refs to KR used for these slides:

- chapters 7, 8 e 12, Artificial Intelligence: a Modern Approach, 3rd ed., by Stuart Russell and Peter Norvig
- part II, Artificial Intelligence, 2nd ed., by Elaine Rich and Kevin Knight
- What is a Knowledge Representation? https://groups.csail.mit.edu/medg/ftp/psz/k-rep.html
- The Cyc Language: http://www.opencyc.org/doc
- Prolog: http://www.dcc.fc.up.pt/~vsc/Yap/

Knowledge Representation

Exact Knowledge

- positive: "Indivíduos sob estresse têm infarte"
- negative: "Indivíduos que não estão sob estresse não têm infarte"
- unknown: "Mulheres podem ou não ter infarte"

Uncertainty

- positive: "Indivíduos sob estresse têm 70% de probabilidade de terem um infarte"
- negative: "Indivíduos que não estão sob estresse têm 70% de probabilidade de não sofrerem um infarte"
- unknown: "Mulheres têm 10% de probabilidade de sofrer um infarte" (prevalência)

Representation

- Knowledge x Data?
- **Knowledge:** "symbolic representation of aspects of some universe of speech"

Examples of "knowledge"

- José is an employee at UP
- All UP employees have salaries above 25,000 euros (:-)
- All UP employees know they must have a good lifestyle
- José does not think he has a good lifestyle
- All who know José does not think he has a good lifestyle are disappointed

Representation

- Data: "symbolic representation of simple aspects of some universe of speech"
- special case of "knoweledge"

Exemplos de "dados"

- José is married to Maria
- José is an employee at UP
- The average salary at UP is 25,000 euros

Representation

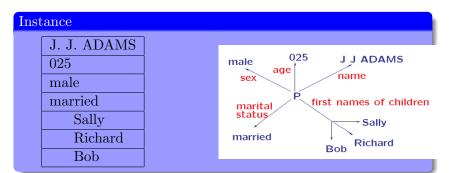
• Knowledge Representation: to express **knowledge** in a way that can be handled by the computer.

Differents formalisms	
Natural Language	Rules
Databases	Decision Trees
Frames	Logic
Scripts	Ontologies
Semantic Networks	Causal Network
Genetic Algorithms	Neural Network
Constraints	Markov models
Programming Languages and Data Structures	Object Oriented

Representation using Natural Language

Texto Clínico

"Forwarded because of asymmetric density in the ULQ of the left breast. This change has been around since 2005 but the ultrasound evaluation of the exterior suggests the need for biopsy. Breast exam with palpable change with about 30 mm in the ULQ of the left breast."


Disavantages:

ambiguous, redundant, weak structure, sintax and semantics not well understood.

Representation using Databases

Database person record = { name : max 20 characters age: 3 digits in range 000-120 sex : male or female marital status : married, bachelor, spinster, divorced, widowed, or engaged first names of children: up to 10 names each max 15 characters

Representation in Databases: an instance

Discussion

- only simple aspects can be represented (data)
- entity and relations
- Reasoning = lookup

Representation in a single table

Most learners use this kind of representation: single flat table

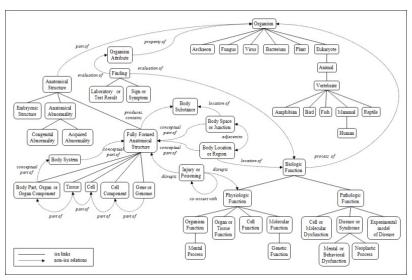
Usual: aggregate data in a single table!

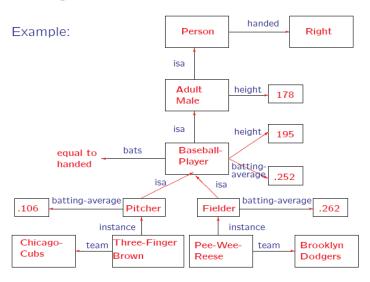
Patient	Location	Size	Date	Calcifications
P1	С	0.1	20050403	F, A
P1	С	0.2	20060412	F
P1	9	0.1	20060412	A
P2	12	0.3	20050415	M

Exercise

1. TRAINS GOING EAST

2. TRAINS GOING WEST





Representation in Semantic Networks

http://umls.it.ilstu.edu/umls.html

Representation in Semantic Network

https://www.cs.bham.ac.uk/~mmk/Teaching/AI/16.html

Properties of Semantic Networks

- allow structuring knowledge
- use "default" values
- clear sintax, but semantic needs to be worked out

Example based in the Cyc language

```
"Donald Trump belongs to the collection of U.S. presidents"
```

(#\$isa #\$DonaldTrump #\$UnitedStatesPresident)

```
"All trees are plants"
```

```
(#$genls #$Tree-ThePlant #$Plant)
```

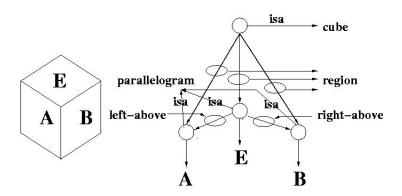
"Paris is the capital of France."

```
(#$capitalCity #$France #$Paris)
```

"if OBJ is an instance of the collection SUBSET and SUBSET is a subcollection of SUPERSET, then OBJ is an instance of the collection SUPERSET".

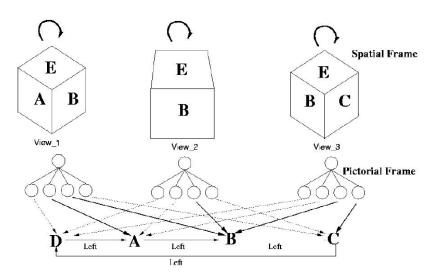
```
(#$implies
  (#$and
    (#$isa ?OBJ ?SUBSET)
    (#$genls ?SUBSET ?SUPERSET))
  (#$isa ?OBJ ?SUPERSET))
```

Frames


• A Frame is a collection of slots whose contents can be a value or a pointer to another Frame. (how is this different from a relational database??)

Birthday party		
Dress:	sports social	
Gift:	must please the birthday person	
GIIt.	must be bought and wrapped	
Games:	hide-and-seek	
Games:	put the tail on the donkey	
Decoration:	n: baloons, surprise bags, crepe paper	
Menu:	Cake, Ice cream, Soft drink, hot dog	
Cake:	light up candles, blow candles,	
Cake:	make a wish, sing happy birthday	
Ice cream:	napolitan	

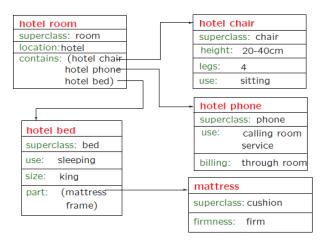
Frames


- A frame is a collection of questions to be answered about a hypothetical situation: specify questions and methods.
 - ▶ What caused (agent)?
 - ▶ What is the purpose (intention)?
 - ▶ Whar are the consequences (effects)?
 - ▶ Who is affected (receptor)?
 - ► How is it performed (instruments/methods)?

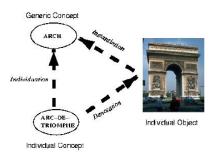
Exemplo

Object composed by relations.

Example


Differents aspects of a cube.

Frame for and aspect of a cube


An aspect of a cube using a frame representation

View-of-a-Cube			
Slot	Filler	Constraint	
Name	View_1		
region_of	A	parallelogram & visible	
region_of	В	parallelogram & visible	
region_of	С	parallelogram & invisible	
region_of	D	parallelogram & invisible	
region_of	E	parallelogram(E) & visible &	
		$ext{left-above(E,A) \& right-above(E,B)}$	

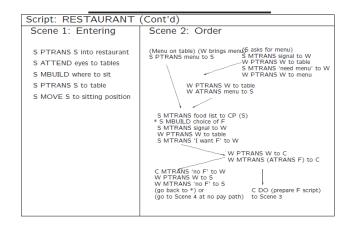
One more example

Important!

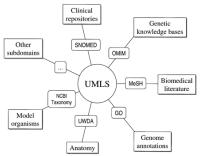
- distinguir:
 - ▶ concepts (representations) and objects (instances)
 - ► individual/specific concepts and general concepts

Associating procedures/methods to the representation

Pr	ocedimentos	
	rectangle	
	superclass:	polygon
	Coordinates:	(0cm,0cm)
	length:	5cm
	width:	2cm
	area:	procedure(z) length(z) * width(z)
	perimeter:	procedure(z) 2 * (length(z) + width(z))

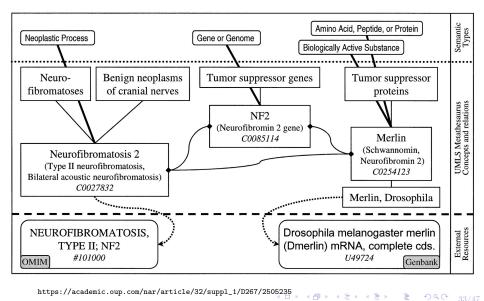

Scripts

- A script is a structured representation that describes a sequence of events in a given context.
 - Extends frames through an explicit representation of actions and changes of states.
 - ▶ Define primitives to describe the universe of speech:
 - PTRANS physical transfer of an object ("go")
 - ATRANS transfer of relations ("give")
 - MTRANS mental transfer ("tell")


Script Example

Script for a restaurant						
Script: RESTAURANT						
Track:	Coffee Shop	Entry cond.:	S hungry			
Props:	Tables		S has money			
	Menu					
	F=Food	Results:	S has less money			
	Check		O has more money			
	Money		S is not hungry			
Roles:	S=Customer					
	W=Waiter					
	C=Cook					
	M=Cashier					
	O=Owner					

Script for a restaurant (cont.)


Unified Medical Language System - UMLS

MetaTheasaurus

The major component of the UMLS is the Metathesaurus, a repository of inter related biomedical concepts. The two other knowledge sources in the UMLS are the Semantic Network, providing high level categories used to categorize every Metathesaurus concept, and lexical resources including the SPECIAL-IST lexicon and programs for generating the lexical variants of biomedical terms. (Nucleic Acids Research, Oxford Journals)

Unified Medical Language Systems – Example

XML

<?xml version="1.0" encoding="UTF-8"?>

```
<Patient id="122">
 3
      <General>
 4
         <Weight-kg>35</Weight-kg>
 5
         <Height-cm>128</Height-cm>
 6
         <Day>05</Day>
        <Month>02</Month>
        <Year>2004</Year>
 9
        <Sex>1</Sex>
10
         <AuscultationPosition>2</AuscultationPosition>
11
      </General>
12
      <SystemicPressure>
13
         <SystemicPressureMethod>1</SystemicPressureMethod>
14
         <SvstolicSvstemicPressure-mmHg>130</svstolicSvstemicPressure-mmHg>
15
         <DiastolicSystemicPressure-mmHg>90</DiastolicSystemicPressure-mmHg>
16
      </SystemicPressure>
17
      <PulmonaryPressure>
18
         <PulmonaryPressureMethod />
19
         <SystolicPulmonaryPressure-mmHg />
20
         <DiastolicPulmonaryPressure-mmHg />
21
         <CatheterismSimultaneousMeasurement />
22
         <EchocardiograSameConsultation />
23
      </PulmonaryPressure>
24
      <Murmur>
25
         <Cycle>2</Cycle>
26
      </Murmur>
27
      <S1>
28
         <S1Status>1</S1Status>
29
      </S1>
30
      <S2>
31
         <S2Status>1</S2Status>
32
         <TfAbnormal>0</TfAbnormal>
33
         <PulmonaryComponent>1</PulmonaryComponent>
```

procedural/imperative or declarative?

- How? Procedural/Imperative
- What? Declarative
- Calculating the sum of elements of an array:

Properties of "good" representations

- important objects and their relations are explicit
- express natural constraints
- represent objects and relations together
- omit irrelevant details
- transparent: easy to understand
- complete
- concise
- quick to store and retrieve
- "computable"

Properties of "good" representations

- lexical part determines which symbols can be used
- structural part describes how the symbols can be organized (constraints)
- procedural part specifies procedures that allow to create, modify and ask questions (query) the descriptions
- semantic part establishes a meaning to the description

Properties of "good" representations

For example, in the semantic networks:

- lexical: nodes, links, link labels
- structure: directed graph with labeled edges
- procedural: constructors, readers, writers, erasers (to create and modify the graph)
- semantic: meaning of nodes and edges depends on the domain and application

Propositional Rules

The first rule says "if there has been one previous Hib dose (Hib_prior = 1) and the Hib series is active and the Hib dose 1 was given at over 12 months of age and the Hib2_final parameter set is met (e.g., the minimum ages and wait-interval criteria are satisfied), then dose Hib 2 is due, and the parameters in the Hib2_final parameter set apply."

```
if: Hib.prior = 1 and not Hib_inactive and Hib1_age_in_months >= 12
    and Hib2 final parameters met
```

then: due.Hib2_final

if: Hib.prior = 1 and not Hib_inactive and Hib1_age_in_months < 12
 and Hib2_parameters_met</pre>

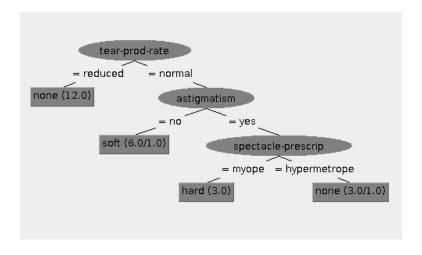
then: due.Hib2

if: Hib.prior = 1 and not Hib_inactive and Hib1_age_in_months >= 12
 and not Hib2_final_parameters_met

then: next.Hib2 final

if: Hib.prior = 1 and not Hib_inactive and Hib1_age_in_months < 12
and not Hib2_parameters_met</pre>

then: next.Hib2


source: Decision Support and Expert Systems in Public Health, in Public Health Informatics and

Information Systems, edited by Patrick W. O'Carrol

Decision Trees

- Simple and easy to implement.
- The input is an object described by its properties
- The output can be an answer "yes" or "no"
- Such trees represent boolean functions (but can be more general)

Decision Trees: Example

Logic

- Languages:
 - sintax: describe possible configurations of the language that constitute valid sentences.
 - **semantic**: determines the meaning of each sentence.
- example: x > y,
 - ightharpoonup sintax: if x is a number and y is a number, then x > y is a sentence over numbers.
 - ightharpoonup semantic: if x > y return true, otherwise return false.

Logic

 Relations represented as tuples: margin(massID,spiculated).

• Relations may depend on other relations:

IF margin(massID, spiculated) AND
 size(massID,5) THEN
 malignant(massID).

• Symbols: and, or, if-then

Logic

• Representations can be more complex:

IF lesion(x) AND connected(y,x) THEN lesion(y)

Examples of First-Order Rules

$$\begin{split} same_finding(F_1,F_2) \longleftarrow & MLOView(F_1) \land CCView(F_2) \land \\ & nipple_distance(F_1,D_1) \land nipple_distance(F_2,D_2) \land \\ & \left(abs(D_1-D_2) < \epsilon\right) \land \\ & side(F_1,left) \land side(F_2,left) \land \\ & quadrant(F_1,upper_outer) \land quadrant(F_2,upper_outer) \land \\ & massShape(F_1,oval) \land massShape(F_2,oval). \end{split}$$

$$\begin{aligned} previous_finding(F_1,F_2) &\longleftarrow mammo(P,F_1) \land mammo(P,F_2) \land \\ date(F_1,D_1) \land date(F_2,D_2) \land \\ (D_1 < D_2 \lor D_2 < D_1) \end{aligned}$$

This rule relates two findings F_1 and F_2 for the same patient P, separated in time (date of F_1 is before or after the date of F_2). It can be further used to simulate temporal reasoning in the context of other rules such as:

$$is_malignant(A) \leftarrow mass(A, present) \land previous_finding(A, B) \land \\ (massSize(A) < massSize(B)) \land calc(B, present) \land \\ previous_finding(A, C) \land calcFineLinear(C, yes)$$

source: Automated Diagnosis of Breast Cancer on Medical Images, in Foundations of Biomedical

Exercise # 1

Represent the following sentences using first-order logic:

- Example 1
 - ► All viral diseases are infectious diseases
 - ▶ covid-19 is an infectious disease
- Example 2
 - Whoever has acute hepatitis has hyperbilirubinemia
 - ▶ If someone has hyperbilirubinemia, this person also has jaundice
- Example 3
 - ▶ All viral diseases are infectious diseases
 - Myocardial infarction is not a viral disease

Exercise # 2

Represent the following sentences using first-order logic:

- a) architectural distortion, spiculated masses, and distributed microcalcifications are lesions.
- b) These lesions appear in the breast region.
- c) The breast is a region related with another region, the armpit.
- d) Lesions connected to other lesions are lesions.
- e) Lymphoma can appear in the armpit.
- f) Barbazul is parent of Silver.
- g) descendents and parents are inverse relations.
- h) All mammals have parents.