Markov Networks

- Like Bayes Nets
- Graphical model that describes joint probability distribution using tables (AKA potentials)
- Nodes are random variables
- Labels are outcomes over the variables

Markov Networks

- Unlike Bayes Nets
- Undirected graph
- No requirement that tables need not be are conditional distributions
- Table distributed over complete subgraph

More on Potentials

- Values are typically nonnegative
- Values need not be probabilities
- Generally, one table associated with each clique

Calculating the Full Joint Probability Density

- Full Joint Probability Density is the normalized product of the event probabilities

Calculating the Normalization Constant Z

Using

$$
P(\vec{V})=\frac{1}{Z} \prod_{k} \phi_{k}(\vec{V})
$$

Get probability

$$
(3 \times 3=9)
$$

Hammersley-Clifford Theorem

If Distribution is strictly positive $(P(x)>0)$
And Graph encodes conditional independences
Then Distribution is product of potentials over cliques of graph

Inverse is also true.
("Markov network = Gibbs distribution")

Markov Nets versus Bayes Nets

- Disadvantages of Markov Nets

Computationally intensive to compute probability of any complete setting of variables with Markov Net (NP-hard), easy for Bayes Net Hard to learn Markov Net parameters in a straightforward way

Can't just use marginal frequencies from data as for Bayes nets
Gradient ascent requires inference (hard)

Markov Nets versus Bayes Nets

Advantages of Markov Nets
Easier to reason about conditional independence

Markov nets are neighbors
d-separation: conditional independence achieved iff all paths cut off by evidence
No need to select an arbitrary, potentially misleading direction for a dependency in cases where the direction is unclear

Markov Nets vs. Bayes Nets

Property	Markov Nets	Bayes Nets
Form	Prod. potentials	Prod. potentials
Potentials	Arbitrary	Cond. probabilities
Cycles	Allowed	Forbidden
Partition func.	Z $=$?	Z = 1
Indep. check	Graph separation	D-separation
Indep. props.	Some	Some
Inference	MCMC, BP, etc.	Convert to Markov

Constructing Markov Nets

Just as in Bayes Nets, the decision of which tables to represent is based on background knowledge
Although the model can be built from the data, it is often easier for people to leverage domain knowledge
Although the model is undirected, it can still be helpful to think of directionality when constructing the Markov Net

Scale Invariance

The change at the right will not effect the joint probability distribution.

Inference

Almost the same as in Bayes Nets (this is somewhat surprising considering all the other differences!)
Possible approaches:
Gibbs sampling
Variable elimination
Belief propagation

Inference in Markov Networks

- Goal: Compute marginals \& conditionals of

$$
P(X)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} f_{i}(X)\right) \quad Z=\sum_{X} \exp \left(\sum_{i} w_{i} f_{i}(X)\right)
$$

- Conditioning on Markov blanket of a proposition x is easy, because you only have to consider cliques (formulas) that involve x :

$$
P(x \mid M B(x))=\frac{\exp \left(\sum_{i} w_{i} f_{i}(x)\right)}{\exp \left(\sum_{i} w_{i} f_{i}(x=0)\right)+\exp \left(\sum_{i} w_{i} f_{i}(x=1)\right)}
$$

- Gibbs sampling exploits this

Markov Chain Monte Carlo

- General algorithm: Metropolis-Hastings
- Sample next state given current one according to transition probability
- Reject new state with some probability to maintain detailed balance
- Simplest (and most popular) algorithm: Gibbs sampling
- Sample one variable at a time given the rest

$$
P(x \mid M B(x))=\frac{\exp \left(\sum_{i} w_{i} f_{i}(x)\right)}{\exp \left(\sum_{i} w_{i} f_{i}(x=0)\right)+\exp \left(\sum_{i} w_{i} f_{i}(x=1)\right)}
$$

MCMC: Gibbs Sampling

state \leftarrow random truth assignment
for $i \leftarrow 1$ to num-samples do
for each variable x
sample x according to $\mathrm{P}(x \mid n e i g h b o r s(x))$ state \leftarrow state with new value of x
$\mathrm{P}(F) \leftarrow$ fraction of states in which F is true

Learning: Recall the Bayes Net approach

In Bayes Nets, we go through each variable one at a time, row by row in the CPT adjusting weights
One way to think of this approach is that we look at the prior setting and ask what the probability of this setting is based on what we see in the data, then adjust the CPT to be consistent with the data

Can we use this approach on Markov Nets?

No! Consider changing a single table value.
This changes the partition function, Z.
Thus, a local change to one table effects other tables; local changes have global effects!

Markov Net Learning

We want to get the derivative of the maximum likelihood function. We can then incrementally move each weight in direction of the gradient based on a learning parameter η
The above approach amounts to differencing the expectation of priors and observed occurrences, computed as on the next slide

Markov Net Learning, continued

Assume that the dataset is composed of M datapoints. Consider the task of computing the expectation of priors and observed occurrences for $A \wedge B$

Expectation of priors: $\mathrm{M} \cdot \operatorname{Pr}(\mathrm{A} \wedge \mathrm{B})$
Observed occurrences: Number of datapoints for which A and B hold
Using this approach, it can be shown that gradient ascent converges

Log Linear Models

Equivalent to Markov a \quad a
Nets (though they look very different)
Take the natural log of each parameter

Log Linear Models

This change allows us to write the probability density function as:

$$
\exp (X)=e^{x}
$$

Logical statements, either 1 or 0
Also known as indicator functions
For example,

$$
\begin{aligned}
& f_{1}=a \wedge b \\
& f_{2}=\neg a \wedge b
\end{aligned}
$$

Weight Learning

- Maximize likelihood or posterior probability
- Numerical optimization (gradient or $2^{\text {nd }}$ order)
- No local maxima

$$
\begin{aligned}
& \frac{\partial}{\partial w_{i}} \log P_{w}(x)=\frac{n_{i}(x)}{l}-E_{w}\left[n_{i}(x)\right] \\
& \text { of times feature } i \text { is true in datal }
\end{aligned}
$$

Expected no. times feature i is true according to model

- Requires inference at each step (slow!)

Analyzing

$$
\operatorname{Pr}(\vec{V})=\frac{1}{Z} \exp \sum_{i} w_{i} f_{i}(\vec{V})
$$

In this formulation, the w's are just weights and the f's are just features
As such, we can throw the graph out if we want we have everything we need in the $w_{i} s$ and $f_{i} s$
In this view, parameter learning is just weight learning

Statistical Relational Learning (SRL)

For the most part, up until now, we have assumed feature vectors as our data representation
In many cases, a database model is more likely Limitations of ILP

ILP that learned rules was somewhat robust to noise, but still used a closed world model
There is little that is unconditionally true in the real world
SRL addresses these limitations

Markov Logic

Allows one to make statements that are usually true

Example:
weight
∞ $\forall x$ smokes $(x) \rightarrow \operatorname{cancer}(x)$
$0 \quad \forall x \forall y$ friends $(x, y) \wedge \operatorname{smokes}(x) \rightarrow \operatorname{smokes}(y)$

Attach weights to each rule. The probability of a setting that violates a rule drops off exponentially with the weight of a rule

Markov Logic, continued

All variables, need not be universally quantified, but we assume so for here to ease notation
Rules are mapped into a Markov Network
Syntactically we are dealing with predicate calculus (in our example, constants are people) Semantically, we are dealing with a joint probability distribution over all facts (ground atomic formulas)
A world is a truth assignment: we have probabilities for each world based on weight

Translating Markov Logic to a Markov Net

Create ground instances through substitution
Create a node for each fact
Create an edge between nodes if both appear in a ground instance

Example translated to Markov Network

```
- Felcis:
smokes(Mary)
smokes(Joe)
friend(Joe, Mary)
```

- Rules:

Friend $(x, y) \wedge$ Smokes $(x) \rightarrow$ Smokes(y)

Computing weights

- Consider the effect of this rule, called \rangle for convenience:

weight

1.1

friends(Mary,Joe) ᄀfriends(Mary,Joe)	smokes(Mary)		ᄀsmokes(Mary)	
	smokes(Joe)	ᄀsmokes(Joe)	smokes(Joe)	ᄀsmokes(Joe)
	$e^{1.1}$	$\mathrm{e}^{1.1}$	$e^{1.1}$	$\mathrm{e}^{1.1}$
	1	$\mathrm{e}^{1.1}$	$\mathrm{e}^{1.1}$	$\mathrm{e}^{1.1}$
		This is the only Thus, it is give Given value exp	predicate that value 1, while (weight(()$)$)	es not satisfy he others are

Markov Networks

- Undirected graphical models

- Potential functions defined over cliques

$$
\begin{gathered}
P(x)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(x_{c}\right) \\
Z=\sum_{x} \prod_{c} \Phi_{c}\left(x_{c}\right)
\end{gathered}
$$

Smoking	Cancer	$\boldsymbol{\Phi (S , C)}$
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Markov Networks

- Undirected graphical models

- Log-linear model:

$$
\begin{array}{r}
P(x)=\frac{1}{Z} \exp \left(\sum_{i} w f_{i}(x)\right) \\
\text { Weight of Feature } i \quad \text { Feature } i
\end{array}
$$

$f_{1}($ Smoking, Cancer $)= \begin{cases}1 & \text { if } \neg \text { Smoking } v \text { Cancer } \\ 0 & \text { otherwise }\end{cases}$
$w_{1}=1.5$ $w_{1}=1.5$

Pseudo-Likelihood

$$
P L(x) \equiv \prod_{i} P\left(x_{i} \mid \operatorname{neighbors}\left(x_{i}\right)\right)
$$

- Likelihood of each variable given its neighbors in the data
- Does not require inference at each step
- Consistent estimator
- Widely used in vision, spatial statistics, etc.
- But PL parameters may not work well for long inference chains

Structure Learning

- Start with atomic features
- Greedily conjoin features to improve score
- Problem: Need to reestimate weights for each new candidate
- Approximation: Keep weights of previous features constant

