Knowledge Representation

March 6th, 2020

Exercises from AIMA book chapter 8

8.9a) Paris and Marseilles are both in France:
(i) In(Paris \wedge Marseilles, France)
(ii) In(Paris, France) $\wedge \operatorname{In}($ Marseilles, France $)$
(iii) In(Paris, France) \vee In(Marseilles, France)

Exercises from AIMA book chapter 8

8.9a) Paris and Marseilles are both in France:
(i) In(Paris \wedge Marseilles, France)
(ii) In(Paris, France) $\wedge \operatorname{In}($ Marseilles, France $)$
(iii) In(Paris, France) \vee In(Marseilles, France)

Exercises from AIMA book chapter 8

8.9b) There is a country that borders both Iraq and Pakistan:
(i) $\exists c \operatorname{Country}(c) \wedge \operatorname{Border}(c, \operatorname{Iraq}) \wedge \operatorname{Border}(c$, Pakistan $)$
(ii) $\exists c \operatorname{Country}(c) \rightarrow[\operatorname{Border}(c, \operatorname{Iraq}) \wedge \operatorname{Border}(c$, Pakistan $)]$
(iii) $[\exists c \operatorname{Country}(c)] \rightarrow[\operatorname{Border}(c, \operatorname{Iraq}) \wedge \operatorname{Border}(c$, Pakistan $)]$
(iv) $\exists c \operatorname{Border}($ Country $(c), \operatorname{Iraq} \wedge$ Pakistan)

Exercises from AIMA book chapter 8

8.9b) There is a country that borders both Iraq and Pakistan:
(i) $\exists c \operatorname{Country}(c) \wedge \operatorname{Border}(c, \operatorname{Iraq}) \wedge \operatorname{Border}(c$, Pakistan $)$
(ii) $\exists c \operatorname{Country}(c) \rightarrow[\operatorname{Border}(c, \operatorname{Iraq}) \wedge \operatorname{Border}(c$, Pakistan $)]$
(iii) $[\exists c \operatorname{Country}(c)] \rightarrow[\operatorname{Border}(c, \operatorname{Iraq}) \wedge \operatorname{Border}(c$, Pakistan $)]$
(iv) $\exists c \operatorname{Border}($ Country $(c), \operatorname{Iraq} \wedge$ Pakistan)

Exercises from AIMA book chapter 8

8.9c) All countries that border Ecuador are in South America:
(i) $\forall c \operatorname{Country}(c) \wedge \operatorname{Border}(c$, Ecuador $) \rightarrow \operatorname{In}(c$, SouthAmerica $)$
(ii) $\forall c \operatorname{Country}(c) \rightarrow[$ Border $(c$, Ecuador $) \rightarrow \operatorname{In}(c$, SouthAmerica $)]$
(iii) $\forall c[\operatorname{Country}(c) \rightarrow \operatorname{Border}(c$, Ecuador $)] \rightarrow \operatorname{In}(c$, SouthAmerica $)$
(iv) $\forall c \operatorname{Country}(c) \wedge \operatorname{Border}(c$, Ecuador $) \wedge \operatorname{In}(c$, SouthAmerica $)$

Exercises from AIMA book chapter 8

8.9c) All countries that border Ecuador are in South America:
(i) $\forall c \operatorname{Country}(c) \wedge \operatorname{Border}(c$, Ecuador $) \rightarrow \operatorname{In}(c$, SouthAmerica $)$
(ii) $\forall c \operatorname{Country}(c) \rightarrow[$ Border $(c$, Ecuador $) \rightarrow \operatorname{In}(c$, SouthAmerica $)]$
(iii) $\forall c[\operatorname{Country}(c) \rightarrow \operatorname{Border}(c$, Ecuador $)] \rightarrow \operatorname{In}(c$, SouthAmerica $)$
(iv) $\forall c \operatorname{Country}(c) \wedge \operatorname{Border}(c$, Ecuador $) \wedge \operatorname{In}(c$, SouthAmerica $)$

Exercises from AIMA book chapter 8

8.9d) No region in South America borders any region in Europe:
(i) $\neg[\exists c, d \operatorname{In}(c$, SouthAmerica $) \wedge \operatorname{In}(d$, Europe $) \wedge \operatorname{Borders}(c, d)]$
(ii) $\forall c, d[\operatorname{In}(c$, SouthAmerica $) \wedge \operatorname{In}(d$, Europe $)] \rightarrow \neg$ Borders (c, d)
(iii) $\neg \forall c$ In(c, SouthAmerica) $\rightarrow \exists d \operatorname{In}(d$, Europe) $\wedge \neg$ Borders (c, d)
(iv) $\forall c \operatorname{In}(c$, SouthAmerica $) \rightarrow \forall d \operatorname{In}(d$, Europe $) \rightarrow \neg \operatorname{Borders}(c, d)$

Exercises from AIMA book chapter 8

8.9d) No region in South America borders any region in Europe:
(i) $\neg[\exists c, d \operatorname{In}(c$, SouthAmerica $) \wedge \operatorname{In}(d$, Europe $) \wedge \operatorname{Borders}(c, d)]$
(ii) $\forall c, d[\operatorname{In}(c$, SouthAmerica $) \wedge \operatorname{In}(d$, Europe $)] \rightarrow \neg$ Borders (c, d)
(iii) $\neg \forall c \operatorname{In}(c$, SouthAmerica) $\rightarrow \exists d \operatorname{In}(d$, Europe) $\wedge \neg$ Borders (c, d)
(iv) $\forall c \operatorname{In}(c$, SouthAmerica $) \rightarrow \forall d$ In $(d$, Europe $) \rightarrow \neg \operatorname{Borders}(c, d)$

Exercises from AIMA book chapter 8

8.9e) No two adjacent countries have the same map color:
(i) $\forall x, y \neg \operatorname{Country}(x) \vee \neg \operatorname{Country}(y) \vee \neg \operatorname{Borders}(x, y) \vee \neg(\operatorname{MapColor}(x)=\operatorname{MapColor}(y))$
(ii) $\forall x, y(\operatorname{Country}(x) \wedge \operatorname{Country}(y) \wedge \operatorname{Borders}(x, y) \wedge \neg(x=y)) \rightarrow \neg(\operatorname{MapColor}(x)=$ MapColor(y))
(iii) $\forall x, y \operatorname{Country}(x) \wedge \operatorname{Country}(y) \wedge \operatorname{Borders}(x, y) \wedge \neg(\operatorname{MapColor}(x)=\operatorname{MapColor}(y))$
(iv) $\forall x, y$ (Country $(x) \wedge \operatorname{Country}(y) \wedge \operatorname{Borders}(x, y)) \rightarrow \operatorname{MapColor}(x \neq y)$

Exercises from AIMA book chapter 8

8.9e) No two adjacent countries have the same map color:
(i) $\forall x, y \neg \operatorname{Country}(x) \vee \neg \operatorname{Country}(y) \vee \neg \operatorname{Borders}(x, y) \vee \neg(\operatorname{MapColor}(x)=\operatorname{MapColor}(y))$
(ii) $\forall x, y$ (Country $(x) \wedge \operatorname{Country}(y) \wedge \operatorname{Borders}(x, y) \wedge \neg(x=y)) \rightarrow \neg($ MapColor$(x)=$ MapColor(y))
(iii) $\forall x, y \operatorname{Country}(x) \wedge \operatorname{Country}(y) \wedge \operatorname{Borders}(x, y) \wedge \neg(\operatorname{MapColor}(x)=\operatorname{MapColor}(y))$ (iv) $\forall x, y(C o u n t r y(x) \wedge \operatorname{Country}(y) \wedge \operatorname{Borders}(x, y)) \rightarrow \operatorname{MapColor}(x \neq y)$

Exercises from AIMA book chapter 8

8.10a) Emily is either a surgeon or a lawyer.

Exercises from AIMA book chapter 8

8.10a) Emily is either a surgeon or a lawyer.

Occupation(Emily, Surgeon) \vee Occupation(Emily, Lawyer)

Exercises from AIMA book chapter 8

8.10a) Joe is an actor, but he also holds another job.

Exercises from AIMA book chapter 8

8.10b) Joe is an actor, but he also holds another job.

Occupation $(J o e$, Actor $) \wedge \exists x x \neq$ Actor $\wedge \operatorname{Occupation(Joe,~} x)$

Exercises from AIMA book chapter 8

8.10c) All surgeons are doctors.

Exercises from AIMA book chapter 8

8.10c) All surgeons are doctors.
$\forall x \operatorname{Occupation}(x$, Surgeon $) \rightarrow$ Occupation $(x$, Doctor $)$

Exercises from AIMA book chapter 8

8.10d) Joe does not have a lawyer (i.e., is not a customer of any lawyer).

Exercises from AIMA book chapter 8

8.10d) Joe does not have a lawyer (i.e., is not a customer of any lawyer).
$\neg \exists x \operatorname{Occupation}(x$, Lawyer $) \wedge$ Customer $($ Joe,$x)$

Exercises from AIMA book chapter 8

8.10e) Emily has a boss who is a lawyer.

Exercises from AIMA book chapter 8

8.10e) Emily has a boss who is a lawyer.
$\exists x \operatorname{Boss}(x$, Emily $) \wedge$ Occupation $(x$, Lawyer $)$

Exercises from AIMA book chapter 8

8.10f) There exists a lawyer all of whose customers are doctors.

Exercises from AIMA book chapter 8

8.10f) There exists a lawyer all of whose customers are doctors.
$\exists x \operatorname{Occupation}(x$, Lawyer $) \wedge \forall x$ Customer $(x, y) \rightarrow$
Occupation(y, Doctor)

Exercises from AIMA book chapter 8

$8.10 \mathrm{~g})$ Every surgeon has a lawyer.

Exercises from AIMA book chapter 8

$8.10 \mathrm{~g})$ Every surgeon has a lawyer.
$\forall x$ Occupation $(x$, Surgeon $) \rightarrow$
$\exists y \operatorname{Occupation}(y$, Lawyer $) \wedge C u s t o m e r(y, x)$

Exercises from AIMA book chapter 8

8.19a) Joan has a daughter (possibly more than one, and possibly sons as well).

Exercises from AIMA book chapter 8

8.19a) Joan has a daughter (possibly more than one, and possibly sons as well).
$\exists x \operatorname{Female}(x) \wedge \operatorname{Paren}(J o a n, x)$

Exercises from AIMA book chapter 8

8.19b) Joan has exactly one daughter (but may have sons as well).

Exercises from AIMA book chapter 8

8.19b) Joan has exactly one daughter (but may have sons as well).
$\exists{ }^{1} x \operatorname{Female}(x) \wedge \operatorname{Paren}($ Joan,$x)$

Exercises from AIMA book chapter 8

8.19c) Joan has exactly one child, a daughter.

Exercises from AIMA book chapter 8

8.19c) Joan has exactly one child, a daughter.
$\exists x \operatorname{Parent}($ Joan,$x) \wedge \operatorname{Female}(x) \wedge[\forall y \operatorname{Parent}($ Joan,$y) \rightarrow y=x$

Exercises from AIMA book chapter 8

8.19d) Joan and Kevin have exactly one child together.

Exercises from AIMA book chapter 8

8.19d) Joan and Kevin have exactly one child together.
$\exists^{1} x \operatorname{Parent}(J o a n, x) \wedge \operatorname{Parent}($ Kevin,$x)$

Exercises from AIMA book chapter 8

8.19e) Joan has at least one child with Kevin, and no children with anyone else.

Exercises from AIMA book chapter 8

8.19e) Joan has at least one child with Kevin, and no children with anyone else.
$\exists x \operatorname{Parent}(J o a n, x) \wedge \operatorname{Parent}($ Kevin,$x) \wedge$
$\forall p, c[\operatorname{Parent}(\operatorname{Joan}, c) \wedge \operatorname{Parent}(p, c)] \rightarrow[p=\operatorname{Joan} \vee p=$ Kevin $]$

Exercises from AIMA book chapter 8

8.23a) No two people have the same social security number. $\neg \exists x, y, n \operatorname{Person}(x) \wedge \operatorname{Person}(y) \rightarrow[\operatorname{HasSS}(x, n) \wedge \operatorname{HasSS}(y, n)]$

