
Concurrent Programming with TreadMarksTM

This documentation pertains to versions 0.9.8 and 0.10.1 of the TreadMarksTMsoftware package.
TreadMarksTMis a software distributed shared memory (DSM) system that enables shared-

memory concurrent programs to execute on a network of ordinary workstations. It runs over
Ethernet, FDDI, and ATM networks of

• DEC Alpha-based workstations under DEC Unix version 3.2C,

• HP PA RISC-based workstations under HP-UX 9.X,

• IBM RS/6000-based workstations, including the SP2, under AIX version 3.2.5 and 4.1.4,

• Intel x86-based PCs under FreeBSD 2.1 and Linux 1.2.13,

• MIPS R3000-based DECstation-5000s under Ultrix version 4.3,

• MIPS R8000-based SGI servers under IRIX 6.1, and

• Sun SPARC-based workstations under SunOS 4.1.3 U1 and Solaris 2.5.

This manual explains first how to write TreadMarksTMprograms, and then how to compile, link,
run and debug them.
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1 Concurrent Programming

1.1 von Neumann’s Curse

In the traditional, von Neumann computer model, events happen sequentially, one after the other. A
computer programmer describes the events that will achieve the goal of the program, and provides
an ordering for those events. Sometimes, a pair of events can happen in either order, or even
concurrently, but the von Neumann model requires an ordered sequence, so the programmer must
provide one.

For decades, the von Neumann model accurately described computers. They executed one
instruction at a time. More recently, though, the fastest processors have provided only the appear-
ance of a von Neumann machine. Technological limits have made it progressively more difficult
to get one computer processor to execute instructions, in sequence, at significantly faster rates.
Therefore, modern superscalar processors execute several instructions concurrently, but only when
it is obvious that doing so produces the same results as would strictly sequential execution of the in-
structions. These superscalar processors are ultimately limited by the fact that automatic detection
of fine-grained concurrency, where a handful of simple tasks can happen at once, is difficult.

The most powerful computers of today are composed of many processing units, working as one.
Now that fast microprocessors are reasonably cheap and abundant, it makes sense to build powerful,
multiprocessor computers by assembling many such microprocessors. To effectively use such mul-
tiple processor computers, programs have to offer many opportunities for concurrency. Automatic
detection of coarse-grained concurrency, in which complex, multistep procedures can be executed
at once, is practically impossible. The programmer must help, by avoiding sequential constraints
where they are not necessary, and by pointing out, explicitly, opportunities for concurrency where
they arise.

1.2 Practical concurrent programming

Although there are many theoretical models of concurrent programming, most make unrealistic
assumptions about hardware that render them essentially unimplementable. Two practical meth-
ods for concurrent programming have arisen, based on two different multiple processor computer
designs. In shared-memory multiprocessors, each processor can read, or write, any element in
a common memory. Each processor has a large cache to reduce the amount of traffic between
processors and common memory. In distributed-memory multiprocessors, each processor has its
own memory, and data in the memory of one processor is inaccessible to other processors. Where
processes must share data, they explicitly send and receive messages that contain data.

Two aspects, not present in sequential programming, complicate distributed-memory concurrent
programming. One is data movement. In the von Neumann model, every bit of data is always
accessible. In distributed-memory computing, data sought by one processor, but available only
on another, must be explicitly sent by the one that has it to the one that needs it, and explicitly
received by that one. In scientific applications, it is common for the data that one processor requires
from another to be scattered in nonconsecutive memory locations, requiring that it be gathered
into a contiguous region of memory before it is sent, and scattered back out into nonconsecutive
memory locations when it is received. Though some distributed memory programming systems offer
tools to simplify the packing and unpacking of data, the work of data management stil occupies a
considerable part of the effort involved in making a sequential program run concurrently.

The other aspect that distinguishes distributed-memory concurrent programming from sequen-
tial computing is synchronization. In the von Neumann model, where instructions are executed one
after another, synchronization is abundant. After an instruction is complete, the next instruction
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can rely upon the work of the previous instruction having been done. In concurrent programming,
each processor in a multiple processor computer executes its instructions sequentially, but instruc-
tions on different processors do not generally occur in a fixed order. With several instructions
in progress at once on different processors, and when the result of one computation is explicitly
required before another computation on another processor can begin, synchronization is required
to control the order of the computations. Where one processor is to use a value before a second
processor modifies it, synchronization is required again. Without synchronization, the value read by
the first processor might be the correct one, or it might be the one written by the second processor.
The possibility of computing two different results, depending on relative speeds of two different
processors, is called a data race. A program with a data race is not robust, and synchronization is
required to eliminate the data race.

Producing a correct program for a shared-memory multiprocessor requires the same concern
about synchronization as does distributed-memory multiprocessor programming, but no concern
about data movement. Since there is only one, common memory, there is no need to move data to
make it accessible to another processor. Because shared-memory programming requires only that
the programmer consider synchronization, shared-memory programming is considered easier than
distributed memory programming, and the changes required to transform a sequential program
into a concurrent one are less dramatic.

1.3 TreadMarksTM

For all their advantages, shared-memory multiprocessor computers have the disadvantage that they
must be carefully designed and assembled, and are therefore expensive and uncommon. Distributed-
memory multiprocessors can be assembled from ordinary computers on a high-speed network. Soft-
ware interfaces like PVM and MPI make it possible to send and receive messages along the net-
work, from one processor to another, and thus to consider a set of engineering workstations to be a
distributed-memory multiprocessor computer. For this reason, distributed-memory multiprocessing
has become popular, despite its complexity.

TreadMarksTMis software that allows shared-memory concurrent programming on a distributed-
memory multiprocessor computer, or on a network of workstations. When “shared” memory is
accessed on one processor, TreadMarksTMdetermines whether the data is present at that processor,
and if necessary transmits the data to that processor without programmer intervention. When
shared memory is modified on one processor, TreadMarksTMensures that other processors will be
notified of the change, so that they will not use obsolete data values. This notification is neither
immediate nor global; immediate notification would be required too often and global notification
would usually provide processors with information that was not relevant to the majority of them.
Instead, this notification takes place between two processors when they are synchronized. Pro-
grams free of data races produce the same results whether notification is immediate, or delayed
until synchronization, and the accumulation of many such notifications into a single message at
synchronization time greatly reduces the overhead of interprocessor communications.

2 Programming with TreadMarksTM

This section introduces TreadMarksTMwith an example of a simple C program, “app”, that stores
elements in a global array, prints it, and computes and prints the sum of its elements. The pro-
gram exhibits all of the synchronization primitives available in TreadMarksTM, and illustrates the
code that typically starts up a TreadMarksTMprogram. It can serve as a template for general
TreadMarksTMprograms. Explanations of the TreadMarksTMfunction calls in the program follow.

4



/* program app */

#include <stdio.h>

#include "Tmk.h"

struct shared {

int sum;

int turn;

int* array;

} *shared;

main(int argc, char **argv)

{

int start, end, i, p;

int arrayDim = 100;

/* Read array size from command line */ {

int c;

extern char* optarg;

while ((c = getopt(argc, argv, "d:")) != -1)

switch (c) {

case ’d’:

arrayDim = atoi(optarg);

break;

}

}

Tmk_startup(argc, argv);

if (Tmk_proc_id == 0) {

shared = (struct shared *) Tmk_malloc(sizeof(shared));

if (shared == NULL)

Tmk_exit(-1);

/* share common pointer with all procs */

Tmk_distribute(&shared, sizeof(shared));

shared->array = (int *) Tmk_malloc(arrayDim * sizeof(int));

if (shared->array == NULL)

Tmk_exit(-1);

shared->turn = 0;

shared->sum = 0;

}

Tmk_barrier(0);

/* Determine array range for each processor */ {

int id0 = Tmk_proc_id, id1 = Tmk_proc_id+1;

int perProc = arrayDim / Tmk_nprocs;

int leftOver = arrayDim % Tmk_nprocs;

start = id0 * perProc + id0 * leftOver / Tmk_nprocs;

end = id1 * perProc + id1 * leftOver / Tmk_nprocs;

}

for (i = start; i < end; i++)

shared->array[i] = i;
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Tmk_barrier(0);

/* Print array elements, in the natural output order */

for (p = 0; p < Tmk_nprocs; p++) {

if (shared->turn == Tmk_proc_id) {

for (i = start; i < end; i++)

printf("%d: %d\n", i, shared->array[i]);

shared->turn++;

}

Tmk_barrier(0);

}

/* Compute local sum, then add to global sum */ {

int mySum = 0;

for (i = start; i < end; i++)

mySum += shared->array[i];

Tmk_lock_acquire(0);

shared->sum += mySum;

Tmk_lock_release(0);

}

if (Tmk_proc_id == 0) {

Tmk_free(shared->array);

Tmk_free(shared);

printf("Sum is %d\n", shared->sum);

}

Tmk_exit(0);

}

2.1 Program startup and termination

Removing most of the details of what the program actually does leaves this shell:

#include "Tmk.h"

/* ... */

main(int argc, char **argv)

{

/* ... */

/* Read from command line */ {

int c;

extern char* optarg;

while ((c = getopt(argc, argv, /* ... */)) != -1)

switch (c) {

/* ... */

}

}

Tmk_startup(argc, argv);

/* ... */

Tmk_exit(0);

}
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The header file “Tmk.h” must be included in any file that calls the TreadMarksTMsoftware
library. It provides function prototypes for the various TreadMarksTMfunctions, and defines impor-
tant constants and global variables as well.

The invocation of the function Tmk_startup(argc, argv) begins the concurrent phase of the
computation. Before that statement, there is one process running the program. After that state-
ment, there are several. They begin with identical values in all local and global variables except
one, Tmk_proc_id, which holds a distinct nonnegative value less than the number of processes and
serves to identify each process.

The arguments to Tmk_startup are the arguments to main that represent the command line
arguments. The call to Tmk_startup should follow the decoding of other command line options,
since evaluating the arguments concurrently would serve little purpose. Tmk_startup looks for
command line arguments that follow a double-dash “--”, checking for several arguments that
affect how the concurrent program is executed.

After the program invocation

<application> [<app arguments>]... -- [<TreadMarks arguments>]...

TreadMarksTMlooks for the following command line arguments:

-f file name. Identifies the machine list file, which contains a list of machines one per line.
Defaults to .Tmkrc.

-h machine name. One or more instances of this argument define the machine list. If this
argument is not used, the machine list is defined by the contents of the machine list file.
The machine list identifies the machines that comprise the multiprocessor computer. The ith
machine listed runs with Tmk_proc_id == i-1.

-n number . Number of processors from the machine list that comprise the concurrent machine.
By default, it is the number of machines in the machine list. In the program, this quantity is
available in the global variable Tmk_nprocs. In no case may it exceed the value of the global
constant TMK_NPROCS.

-r Use rexec rather than rsh to start remote processes. Default: off.

-s Display run-time statistics before exiting. Default: off.

-x Open a separate X window attached to each of the remote processes. Anything a process
writes to stdout or stderr or reads from stdin is displayed to or read through its window.
Default off.

The invocation of the function Tmk_exit(int) terminates the execution of a single concurrent
execution. Program text following the call to Tmk_exit executes only on one processor. The
argument to Tmk_exit is zero to indicate successful termination and nonzero to indicate an error.
There is no particular assignment of nonzero values to kinds of errors; the programmer is responsible
for deciding how to associate errors and error codes.

2.2 Memory allocation and data distribution

This segment of the program, run as soon as the concurrent phase of the program begins, allocates
shared memory, and ensures that all processes can access it. Later, that shared memory is released.
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/* ... */

struct shared {

int sum;

int turn;

int* array;

} *shared;

main(int argc, char **argv)

{

/* ... */

if (Tmk_proc_id == 0) {

shared = (struct shared *) Tmk_malloc(sizeof(shared));

if (shared == NULL)

Tmk_exit(-1);

/* share common pointer with all procs */

Tmk_distribute(&shared, sizeof(shared));

shared->array = (int *) Tmk_malloc(arrayDim * sizeof(int));

if (shared->array == NULL)

Tmk_exit(-1);

shared->turn = 0;

shared->sum = 0;

}

/* ... */

if (Tmk_proc_id == 0) {

Tmk_free(shared->array);

Tmk_free(shared);

/* ... */

}

/* ... */

}

The function Tmk_malloc(unsigned), like the function malloc from the standard C library,
allocates memory dynamically. However, memory allocated with Tmk_malloc is automatically
shared, so that changes made to shared memory by one process are eventually visible to other
processes. The function Tmk_free(char*), like the function free, releases dynamically allocated
memory. A function not shown here, Tmk_sbrk(unsigned), can be used for lower level memory
management, and is similar to the standard C library function sbrk. The function Tmk_sbrk

is provided so that carefully tailored shared memory managers can be implemented; it is rarely
appropriate to use it in conjunction with Tmk_malloc.

The function Tmk_distribute(char* ptr, unsigned size) is used to explicitly share private
memory between processes. When invoked by a single process, it causes values in private memory on
that processor to be replicated in corresponding memory locations in all other processes. Usually,
the private memory is a global variable common to all the processes; automatic variables could
appear in different places on different machines, so the result of a distribution could be surprising.
Tmk_distribute is generally used to solve the bootstrapping problem; when one process allocates
shared memory, how do the other processes know where to find it? As in this example, a call to
Tmk_distribute is the most common way to share that information.

The global structure called shared is not a feature of TreadMarksTM, but it is a common idiom
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in TreadMarksTMprogramming. To avoid several explicit memory allocation calls, global shared
variables are packed into a single structure, and a global instance of that structure is allocated at
once. This idiom has the additional benefit that references to shared memory are easy to find in
the program, so potential data races are indicated by occurrences of the word “shared” where no
synchronization is apparent.

2.3 Synchronization

The part of the program that does the work has three parts, each with different synchronization
requirements.

/* ... */

main(int argc, char **argv)

{

/* ... */

Tmk_barrier(0);

/* Determine array range for each processor */ {

int id0 = Tmk_proc_id, id1 = Tmk_proc_id+1;

int perProc = arrayDim / Tmk_nprocs;

int leftOver = arrayDim % Tmk_nprocs;

start = id0 * perProc + id0 * leftOver / Tmk_nprocs;

end = id1 * perProc + id1 * leftOver / Tmk_nprocs;

}

for (i = start; i < end; i++)

shared->array[i] = i;

Tmk_barrier(0);

/* Print array elements, in the natural output order */

for (p = 0; p < Tmk_nprocs; p++) {

if (shared->turn == Tmk_proc_id) {

for (i = start; i < end; i++)

printf("%d: %d\n", i, shared->array[i]);

shared->turn++;

}

Tmk_barrier(0);

}

/* Compute local sum, then add to global sum */ {

/* ... */

Tmk_lock_acquire(0);

shared->sum += mySum;

Tmk_lock_release(0);

}

/* ... */

}

A barrier is a synchronization device that requires all processes to wait for the last of them
to “catch up”. The function Tmk_barrier(unsigned b) in TreadMarksTMcauses all processes to
pause until all of them have invoked Tmk_barrier with the same barrier b as argument. The
argument identifies the barrier; TreadMarksTMallows a fixed number of barriers in the program,
numbered from 0 to TMK_NBARRIERS-1. In a correct program, one barrier is sufficient; multiple
barriers exist to make the program clearer. In a program fragment like this,
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{/* block A */}

Tmk_barrier(0);

{/* block B */}

Tmk_barrier(0);

it is not clear whether or not the program could be running correctly with one process executing
block A as another concurrently executes block B. In this alternative program fragment,

{/* block A */}

Tmk_barrier(0);

{/* block B */}

Tmk_barrier(1);

it is clear that all processes execute block A concurrently, and then all execute block B concurrently.
If a programmer mistakenly directed control flow into block B in one process while the other
processes executed block A, the code that uses distinct barriers would produce deadlock, as no
process could pass beyond its next barrier. For one debugging the program, a deadlock that occurs
shortly after the program goes wrong provides a valuable clue that can help track the error down.
The same control flow error in a program that uses only one barrier produces less predictable
results.

After carefully dividing the array into pieces of approximately equal size, and concurrently
initializing the array, the program prints the contents of the array in order. To make the pieces
come out in order, the processes must coordinate to take turns printing, by using a barrier and
a shared variable turn. The value of turn seen by each processor for each value of variable p is
the same, because the barrier at the bottom of the loop synchronizes all processors after every
modification of turn.

The third phase of the code sums the elements of the array. First, each processor computes the
sum of elements of the subarray assigned to it. Then the local sums are gathered into the shared vari-
able sum with a lock used for synchronization. A lock is a synchronization device that enforces one-
process-at-a-time access. The function Tmk_lock_acquire(unsigned L) in TreadMarksTMcauses a
process to pause while another process owns lock L, and to take ownership of the lock and continue
when the lock becomes available. The lock is never owned by more than one process at a time, but
the lock may be owned by no processes. The process that gets the lock when several contend for it
is chosen arbitrarily. TreadMarksTMallows a fixed number of locks in the program, numbered from
0 to TMK_NLOCKS-1. The function Tmk_lock_release(unsigned L), when invoked in the process
that owns lock L, releases the lock so that another process may acquire it.

Locks are used to manage access to shared resources. In this case, the lock controls access to the
shared variable sum. Were two processors to modify sum at once, the results would be unpredictable.
Perhaps each would read the same value from sum, modify the value locally, and then write back
the modified values into sum. The one that wrote first would have its contribution to the global
sum obliterated by the second, producing an erroneous result.

A section of code that cannot be executed by more than process at a time is called a critical

section. Locks can be used to enforce critical sections, with one lock being used for each critical
section. More generally, locks can protect critical resources, like the variable sum; were sum examined
or modified at another point in the program the same lock would be used to protect it from
concurrent modification.

Locks and barriers are the only synchronization primitives provided by TreadMarksTM. They
are sufficient. Synchronization primitives offered in other concurrent programming systems, like
gates, monitors, and condition variables, can be readily imitated with just these two, plus shared
variables.
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TreadMarksTMprovides no other functions than the ones mentioned in this section. No others
are necessary to produce correct concurrent programs.

3 Understanding TreadMarksTMperformance

3.1 Consistency models

The TreadMarksTMinterface is built atop a set of message passing primitives, as are used in
distributed-memory concurrent programming and UNIXTM network programming. Although the
TreadMarksTMprogrammer need not concern himself with the details of this implementation to
produce correct concurrent programs, some understanding of the implementation is useful to the
programmer who wants to develop correct programs that run quickly. Since improving program
performance is the reason for using concurrent machines and programs in the first place, most
programmers should know about these implementation issues.

If a shared-memory concurrent computer were simulated by a single processor dividing time
between several processes, memory accesses would be sequentially consistent; that is, an access
would happen at some time as measured by a common system clock. Consider this code fragment:

if (Tmk_proc_id == 0)

shared->flag = 1;

else

while (shared->flag != 1)

{ /* do nothing */ }

Tmk_exit(0);

Assume that the initial value of the shared variable flag is zero. If the concurrent programming
model is sequentially consistent, every process will eventually reach the call to Tmk_exit. At some
time, processor 0 will set flag to 1. Other processors check flag at monotonically increasing times,
and each time is at least one unit greater than the previous one. Consequently, every process will
eventually finish.

The code fragment above does not provide for synchronization between accesses and modifica-
tions to flag, so it has a data race. This data race makes the program behavior nondeterministic,
because the number of times each processor but the first tests flag cannot be predicted. However,
with sequentially consistent concurrency, the program will terminate.

An implementation of TreadMarksTMthat provided sequential consistency would require that
every modification of data in shared memory be reported to all processes with local copies of that
data. Consequently, in the program “app” of section 2, every time an array element is initialized,
TreadMarksTMwould have to transmit information to all processes.

The performance of message passing procedures is measured in terms of two quantities: latency

and bandwidth. Latency is the time between the beginning of the transmission of a message and
the beginning of its reception. Bandwidth is the rate of data transmission once the data has begun
flowing. Typically, latency is large when compared to the time it takes to execute a computer
instruction; consequently, the time spent sending many small messages is much larger than the time
spent sending the same data in one large message. The implementation of sequential consistency
requires the sending of many small messages, so a high-performance implementation of sequentially
consistent concurrency is unlikely.

TreadMarksTMimplements a different kind of consistency, called release consistency. With re-
lease consistency, there is no common global clock. Temporal relationships between operations in
different processes are defined only when they are separated by a synchronization. The looping
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example above would not terminate under a release consistency model, because no synchronization
follows the modification of flag in the first process, nor precedes the examination of flag in the
other processes. The other processes would never see the new value of flag.

Release consistency allows the notification of changes to shared memory to be deferred until the
time of synchronization. If a barrier is used to synchronize all processes, then all processes become
aware of all recent changes to shared memory that affect their local copies, and these notifications
are joined with the messages that must be exchanged to achieve synchronization anyway. Therefore,
less time is spent communicating, because fewer messages means less time lost to latency. If a lock
is used to synchronize access to shared data, or to a critical code section, the process that releases
the lock notifies the process that acquires the lock of all known changes to shared memory. A
process knows about the changes that it is responsible for, and about the changes that it learned
about in previous synchronizations.

There are two chances to pass information from the lock releaser to the lock acquirer: when
the lock is released, and when it is acquired. Eager release consistency requires that the releaser
of the lock notify all processes of the change to shared memory, since at release time, the next
acquirer cannot be identified. The release consistency method used in TreadMarksTMis called lazy

release consistency. With lazy consistency, the acquirer of the lock learns of changes to shared
memory only when it receives the lock from the releaser, and no other processes are bothered with
the information. There are also two ways to notify a process of changes to shared memory. An
update strategy sends the modified data with the notification. An invalidate strategy, as used in
TreadMarksTM, sends only news of a change, but not the content of the change. When a process
actually attempts to access the modified data, the changes are retrieved; this avoids the retrieval of
information that might never be used. Although neither consistency method, and neither update
method, is always better than the other, experiments have shown that lazy consistency with an
invalidate strategy produces faster running programs than do other choices, in a majority of the
cases tested.

3.2 Granularity

At synchronization time, TreadMarksTMdoes not transmit messages specifying which shared bits
or bytes have changed; TreadMarksTMsends information about changes at the page level, where
a page is the least amount of data that a virtual memory system can store and retrieve in an
operation. TreadMarksTMworks with the virtual memory system of each computer to invalidate
modified copies of shared memory pages. When a shared memory access attempts to examine an
invalidated page, the consequence is a page fault, just as if the access were to a remote part of
private memory that had not been accessed and “paged in” for a long time. When the virtual
memory system encounters a page fault, it attempts to retrieve the missing page from swap space,
usually a fast disk storage device. In TreadMarksTM, when the page fault is the result of an
access to invalidated shared memory, the virtual memory system cannot resolve the reference, so
it signals that a segmentation fault has occurred. Only then is TreadMarksTMsoftware invoked,
to produce an up-to-date copy of the shared page. By using the virtual memory system in this
way, TreadMarksTMdoes not impose overhead on ordinary private memory accesses, or on ordinary
shared memory accesses. TreadMarksTMtakes over only when the virtual memory system asks it
to.

One consequence of this implementation decision is that memory accesses cost less when they
involve few pages. This is not a surprise; the same considerations arise in sequential programming
in a virtual memory system. Where a program is designed with memory hierarchy in mind, the
global variable Tmk_page_size gives the size of one page, in bytes.
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It would be most inconvenient if two processes could not concurrently modify data on the
same page. The program “app” of section 2, for example, would not be correct unless the size
of the shared array were a multiple of the product of the page size and the number of processes.
Fortunately, TreadMarksTMallows concurrent access of distinct computer words, whether they are
in the same page or not. A word is generally the unit of storage necessary to hold one integer or
floating point number, so the program of section 2 is correct. When TreadMarksTMis called upon
to update a shared memory page, it does so not by retrieving a copy of the page, but by retrieving
a list of changes that must be made to the page to bring it up to date. Often, the list of changes is
much smaller than would be a copy, and so message traffic is reduced. The changes are represented
by a run-length encoding, in which each range of consecutive modified words is sent, preceded by
its address and length.

A programmer, armed with this knowledge, can reduce memory traffic by making sure to modify
a few, large contiguous blocks, as opposed to many small blocks. If every other word in a page
were to be modified, the size of the change list would be larger than the size of a page. Since such
a pattern of data modification is rare in practice, the run-length encoding of differences reduces
communication in practice.

4 Compiling, Linking, and Running a TreadMarksTMProgram

4.1 Initialization Files

Two initialization files may be defined to improve the convenience and performance of using
TreadMarksTM. If you repeatedly run your TreadMarksTMprograms on the same set of hosts, you
can create a .Tmkrc file in your home directory. Each line of this file contains the network name
of exactly one computer. If you specify on the command line that N computers should be used for
a particular run, TreadMarksTMwill use the first N hosts named. The first line of the .Tmkrc file
must be the name of the machine from which you will start TreadMarksTM. The -f command line
option allows you to name another file to be used in place of .Tmkrc.

TreadMarksTMcan use one of two mechanisms to distribute work to remote hosts: rsh and
rexec. The main difference between them is in the mechanism used for authentication; rsh can be
used among “equivalent”, i.e. mutually trusting, machines, while rexec requires that you provide
an explicit username and password for each of the remote hosts. For more detailed discussion, see
the relevant Unix man pages and system documentation.

Normally, TreadMarksTMuses rsh. Rexec is used if you use the -r command line option or if
there is a file named .netrc in your home directory. There are two ways that you can provide the
required username/password pairs. If there is a .netrc file and it is readable only by you, then
the system will try to use it to look up the host, username, and password. If there is no .netrc

file, or if the protections are wrong, or if the host is not listed, the system will prompt you for a
username and password for that host.

For more information about the alternatives you can consult the Unix man pages. You may also
want to discuss the issues with your local system/network administrator.

If you create a .netrc file, it should contain an entry for each machine that you intend to use
with TreadMarksTM1. Entries should use fully qualified machine names and be of the form:

machine helma.cs.rice.edu login myuserid password mypassword

Note that helma by itself will not work; the machine name has to be fully qualified. Keep in mind
that if you change your password on one or more machines listed in the .netrc file, you will have

1For further information read “man 5 netrc”.
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to update those entries in the file. Remember to set the file protection bits so that you are the
only one with permission to read. The .Tmkrc file normally names a subset of the machines that
you included in your .netrc file.

Here is what a .netrc looks like for user joe with password joes-password, for access to the
machines aurora.cs.rice.edu, medea.cs.rice.edu, and helma.cs.rice.edu.

machine aurora.cs.rice.edu login joe password joes-password

machine medea.cs.rice.edu login joe password joes-password

machine helma.cs.rice.edu login joe password joes-password

The corresponding .Tmkrc looks as follows

aurora.cs.rice.edu

medea.cs.rice.edu

helma.cs.rice.edu

4.2 Compiling and Linking

TreadMarksTMis a run-time library. A program is compiled as usual, but in the linking phase you
include the TreadMarksTMlibrary. To link with the correct library for your platform, set the ARCH

flag in the Makefile.
While it is surely possible to do otherwise, it is convenient to do all compilation and linking

through the use of Makefiles. We usually keep applications in an apps directory, with directories
underneath for each application, and underneath those directories a directory for the source and a
directory for the compiled code for each architecture. Given that directory structure, the following
Makefiles can be used for the example program that we have used throughout this manual. The
first Makefile, called .common, would reside in the directory for the application; the second, called
Makefile, would reside in the directory underneath that one for the SPARC architecture. The
.common Makefile is shared by all of the architectures. The other architecture flags are alpha, mips,
and rs6k. We strongly suggest that the Makefiles in the directories for the sample applications be
used as a template. The contents of .common are:

TmkDIR = ../../..

TmkLIB = $(TmkDIR)/$(ARCH)

CPPFLAGS= -I$(TmkDIR)/include

OBJ = app.o

app: $(OBJ) $(TmkLIB)/libTmk.a

$(CC) $(CFLAGS) -o $@ $(OBJ) -L$(TmkLIB) -lTmk $(LDFLAGS)

app.o: ../src/app.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c ../src/app.c

clean:

rm -f *.o app

The contents of sparc/Makefile are:

14



ARCH = sparc

CC = gcc

CFLAGS = -g -O

LDFLAGS =

all: app

include ../.common

4.3 Running a Program

Both TreadMarksTMand the application program accept command-line arguments. The command-
line arguments for TreadMarksTMare separated from the application’s arguments by a double-dash
argument, where the possible arguments are listed in section 2. For instance, to run app with a
problem size of 500 on the four machines named machine1, machine2, machine3, and machine4,
use

app -d 500 -- -h machine1 -h machine2 -h machine3 -h machine4

To run the same program on 4 processors, without specifying their names,

app -d 500 -- -n 4

This command will run app on the first four machines specified in .Tmkrc. In either case, the
machine you’re typing the command on must be first in the command-line list or the .Tmkrc file.

5 Debugging a TreadMarksTMProgram

5.1 Using a Debugger

The following describes one method for debugging TreadMarksTMprograms. We will use gdb in
our examples, but any other debugger with the capability to attach to a running process could be
utilized.2 Conceptually there can be a debugger process running on each processor that controls
the behavior of the TreadMarksTMprocess on that processor only. Debugger commands such as
continue, break, list, etc. apply only to the debugger process within which they are issued. For
example, you can require processor 1 to stop every time it reaches line 718, while processor 0 flies
right through. The only interactions between the debugger processes occur at startup and at your
synchronization points (startup is really just a special kind of automatic synchronization). When
a debugged process is stuck at a synchronization point, you cannot force it to advance. The other
process(es) that it is waiting for must advance first.

To debug, make sure to compile and link all your code with the -g flag, just as for sequential C
code.

In the directory where you will be working, you should create a file called .gdbinit; note the
initial dot, just as in .netrc and .Tmkrc.3 That file contains commands that will be executed
whenever you start up the gdb. The one command required by TreadMarksTMto be in this file is

2Unfortunately, none of the debuggers available on Ultrix, including gdb, have this capability. This is a limitation

of Ultrix, and not gdb. For instance, gdb running on SunOS can attach to a running process.
3See the gdb documentation for more details on the .gdbinit file.
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handle 11 nostop noprint

This means that gdb should not stop at segmentation faults (the UNIX abbreviation for a
segmentation fault is SIGSEGV, which is the name of the signal that gets sent to your process when
a segmentation fault occurs; it has number 11). The reason for this is that unlike regular sequential
programs, a segmentation fault in a TreadMarksTMexecution is not necessarily catastrophic. When
you debug a sequential program, the debugger will stop when a segmentation fault occurs to allow
you to find the error; the above handle command tells the debugger not to stop. The reason you
shouldn’t stop at a segmentation fault is that TreadMarksTMuses the SIGSEGV signal to retrieve
shared memory which is not resident on the processor. Such retrievals are fairly frequent, and
you do not want to stop for every one. One difficulty is that if you get a bona fide segmentation
fault your execution will crash and you will not get a chance to catch it. Note that outside gdb, a
bona fide segmentation fault causes TreadMarksTMto crash and dump a core file (just like when a
sequential program has a segmentation fault); however, inside gdb, a bona fide segmentation fault
will not dump a usable core file.

Suppose you are running on the Ethernet and your program is called program.ether. Suppose
you are running on 2 processors (this procedure can be easily generalized to more processors).
Suppose the processors are called A and B, with A having the role as processor 0 and B as processor
1. Set up your screen so you have 3 windows, on 1 you should rlogin to processor A (if not already
there) and on 2 you should rlogin to processor B (if not already there). You will need one window
on each processor to debug and the second processor B window to get status information.

If you are using X you get output to appear properly in the debugger as follows. First make sure
that your execution path is in your .cshrc file (or whatever file that corresponds to for your shell).
Then, make sure that the program xterm is included in one these directories. In the windows where
you will be running the debugger, make sure that your DISPLAY environment variable is correctly
set to your display. If not, under csh use the command:

setenv DISPLAY <workstation name>:0.0

where workstation name is the name of the workstation on your desk, not the processor you will
be using in that window.

You only need to do this before your first debugging session, per login. On the console window
of your X session run the command:

xhost +<machine1> +<machine2> ...

including each of the machines that you intend to use. This command enables the specified machines
to open windows on your display. Again, this needs to be done only once per login session.

In the status window for processor B, you will obtain the Unix process id for the process on
that machine. For example, you can use the commands ps or top. top shows the processes that
are getting the most CPU time on processor B. When the TreadMarksTMprocess on processor B
starts up you will need to watch the top window carefully to get its process number. In the other
two windows make sure you are in the directory where program.ether resides. In each of those two
windows, execute the command:

gdb program.udp

This will start up a gdb session. In your processor A window you should start up the program by
executing in the debugger the command:

run -- -n 2 -x
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Alternatively you can specify the processors to use via “-h”. Note the extra x flag at the end.
This is used from within gdb only if you are debugging from within an X session. The x flag can
also be used outside gdb when running from an X session. It enables processors other than number
0 to print out values to the screen through their own X windows.

Now watch the window where you are running top carefully as the program.ether process starts
up on processor B. It will have a process id (pid) number between 1 and 30000. Suppose that
number is 12940. Then in your Processor B gdb window, execute the command:

attach 12940

This will cause that gdb process to take on your TreadMarksTMprocess and allow you to debug
it. Usually the process on processor B will stop at a TreadMarksTMsynchronization point just after
you attach. You need to tell it to continue execution by giving the command:

continue (or just c)

in your Processor B gdb window.
From here debugging works essentially as for sequential programs. You can set breakpoints,

look at values, set values, etc. Sometimes one of the two processors will appear not to be doing
anything. This usually means that it is either waiting at a synchronization point or waiting for
updated shared memory values.

5.2 Using printf

You can also report status and/or debugging information from each process using (f)printf or other
stdio functions. Ordinarily, stdin, stdout, and stderr for remote processes are redirected to
/dev/null. However, there are two ways to direct these streams to useful places: using the “-x”
command-line argument displays the stream in an X window and freopen’ing stdout or stderr

writes the stream to a log file. When using a log file, be careful that the processes write to physically
distinct files. There are two common ways to achieve this. If the files are stored in a shared (NFS)
file system, each file is freopen’ed with a unique name, e.g., by appending the Tmk proc id to a
file name. Alternatively, the log files are written to a private file system, e.g., the /tmp directory.
The freopen should be performed immediately after Tmk startup returns.

6 Troubleshooting Guide

• Data granularity - TreadMarksTMdetects modifications to shared memory at a four-byte
granularity. This means that if you share memory at the character or short level, you may
not get correct results. A simple way to avoid problems is to be sure that you don’t declare
any char or short variables in shared memory.

• read and write calls - Calling read and write with shared memory address is not guaran-
teed to work. However, stdio operations such as fread and fwrite will work. Both of read
and write check the protection level of the specified buffer address and return errors if the
required operation cannot be completed. TreadMarksTMuses changes in page protection to
implement the DSM protocols, and therefore pages in the shared memory address range are
often unreadable during the computation.

• Debugging - TreadMarksTMuses the SIGSEGV signal (signal 11) to detect accesses to shared
memory. If you use a debugger, therefore, you need to disable the debugger’s monitoring
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of that signal. In gdb, for instance, you should execute “handle 11 nostop noprint” before
running your program.

• Remote processes fail to start - there are a few common causes. (1) If you’re using
the “-x” parameter, make sure that your display environment variable is correctly set and
that the program xterm is on the path in your .cshrc. (Your .login file won’t be executed
when a remote process is started, so the path must be in your .cshrc.) (2) The remote
machine has insufficient swap space to run a TreadMarksTMprogram. Because of preallocation
of memory, the minimal TreadMarksTMprogram requires approximately 40 Mbytes to start.
The program pstat on Ultrix and SunOS reports the amount of available swap space. (3) Is
the first machine in your command-line list or .Tmkrc file the same as the one you’re starting
the program on. (n) Most other problems produce a reasonably descriptive error message,
e.g., when your .netrc file doesn’t contain the correct password.

• “<mmap>Tmk page initialize: can’t allocate the shared memory” - You don’t have enough
available swap space on this machine.
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