
Hybrid tabu search for lot sizing problems

João Pedro Pedroso1 and Mikio Kubo2

1 DCC-FC and LIACC, Universidade do Porto
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

jpp@ncc.up.pt
2 Supply Chain Optimization Lab.

Tokyo University of Marine Science and Technology
2-1-6 Etsuujima Koutou-ku, Tokyo 135-8533, Japan

kubo@e.kaiyodai.ac.jp

Abstract. This paper presents a hybrid tabu search strategy for lot
sizing problems. This strategy allows the exploitation of the quality of
the well-known relax-and-fix heuristic, inside a tabu search framework
which enforces diversity.
The computational results show an advantage of this strategy when com-
pared to a version of the relax-and-fix heuristic and to time constrained
branch-and-bound.

1 Introduction

Lot sizing is a class of combinatorial optimization problems with applications in
production planning. In these problems there is a fixed number of periods, and
in each period production of items can occur in machines. A machine has to be
appropriately setup for being able to produce, and this setup implies, e.g., the
payment of a fixed cost, or the reduction of the machine working time by some
fixed amount.

The amount produced in a given period can be used to satisfy the demand of
that period, or remain in inventory. When production can also be used to satisfy
demand of preceding periods, the models are said to allow backlogging.

Lot sizing problems can be classified into small-bucket or big-bucket models.
On small bucket models, each machine can produce at most one item per period;
on big-bucket models, several items can be manufactured in each period.

Good surveys on lot sizing are provided in [3] and [6].

2 The lot sizing model

The problem that we deal with in this paper is a lot sizing problem belonging to
the big bucket class: more than one setup is allowed per period, as long as the
machine capacities are respected.

The costs that are to be taken into account are setup costs, variable produc-
tion costs, and inventory and backlog costs. Unitary values for each of them can
vary from period to period.

The decision variables in this lot sizing problem concern the manufacture or
not of a product in each period, as well as the amount to produce. The setup,
binary variable ypmt is 1 if product p is manufactured in machine m during
period t, and 0 otherwise. The continuous variable xpmt is the corresponding
manufactured amount.

Let T be the number of periods and T = {1, . . . , T}. Let P be the set of
products and M be the set of machines. Let furthermore Mp be the subset of
machines that are compatible with the production of p. The setup costs are then
determined by:

F =
∑

p∈P

∑

m∈Mp

∑

t∈T

fpmt ypmt, (1)

where fpmt is the cost of setting up machine m on period t for producing p.
Similarly, variable costs are

V =
∑

p∈P

∑

m∈Mp

∑

t∈T

vpmt xpmt, (2)

where vpmt is the variable cost of production of p on machine m, period t. If hpt

is the amount of product p that is kept in inventory at the end of period t, the
inventory costs can be determined by

I =
∑

p∈P

∑

t∈T

ipt hpt, (3)

where ipt is the unit inventory cost for product p on period t. Analogously, if gpt

is the amount of product p that failed to meet demand at the end of period t,
the backlog costs can be determined by

B =
∑

p∈P

∑

t∈T

bpt gpt, (4)

where bpt is the unit backlog cost for product p on period t. The lot sizing
objective can now be written as

minimise z = F + V + I + B. (5)

If the demand of a product p in period t is Dpt, the flow conservation con-
straints can be written as

hp,t−1 − gp,t−1 +
∑

m∈Mp

xpmt = Dpt + hpt − gpt ∀ p ∈ P, ∀ t ∈ T . (6)

The initial inventory and backlog for each product p should be assigned to hp0

and gp0, respectively (and possibly equivalent assignments might be made for
hpT and gpT).

There is a limit on the time that each machine is available on each period;
this implies that

∑

p∈P:m∈Mp

(

xpmt

γpm

+ τpmt ypmt

)

≤ Amt ∀ m ∈ M, ∀ t ∈ T . (7)

In this equation, γpm is the total capacity of production of product p on machine
m per time unit, τpmt is the setup time required if there is production of p on
machine m during period t, and Amt is the number of time units available for
production on machine m during period t.

Manufacturing of a given product can only occur on machines which have
been setup for that product:

xpmt ≤ γpm Amt ypmt ∀ p ∈ P, ∀ m ∈ Mp, ∀ t ∈ T . (8)

The problem can be summarized as the following mixed-integer program
(MIP):

minimise z = F + V + I + B

subject to : F =
∑

p∈P

∑

m∈M

∑

t∈T

fpmt ypmt

V =
∑

p∈P

∑

m∈M

∑

t∈T

vpmt xpmt

I =
∑

p∈P

∑

t∈T

ipt hpt

B =
∑

p∈P

∑

t∈T

bpt gpt

hp,t−1 − gp,t−1 +
∑

m∈Mp

xpmt = Dpt + hpt − gpt, ∀ p ∈ P, ∀ t ∈ T

∑

p∈P:m∈Mp

(

xpmt

γpm

+ τpmt ypmt

)

≤ Amt, ∀ m ∈ M, ∀ t ∈ T

xpmt ≤ γpm Amt ypmt ∀ p ∈ P, ∀ m ∈ Mp, ∀ t ∈ T

F, V, I, B ∈ IR+

hpt, gpt ∈ IR+, ∀ p ∈ P, ∀ t ∈ T
xpmt ∈ IR+, ypmt ∈ {0, 1}, ∀ p ∈ P,∀ m ∈ M, ∀ t ∈ T

(9)

3 Construction: relax-and-fix-one-product

For the construction of a solution to the problem defined by Problem 9, we
consider partial relaxations of the initial problem, in a variant of the classic
relax-and-fix [8, 9] heuristic.

In the basic form of the relax-and-fix heuristic, each period is treated in-
dependently. The strategy starts by relaxing all the variables except those of
period 1, thus keeping ypm1 integer and relaxing integrity for all other ypmt.
This MIP is solved, determining the heuristic values for variables ȳpm1 (i.e., the
binary variables of the first period). The approach then moves to the second
period. The variables of the first period are fixed at ypm1 = ȳpm1, the variables

ypm2 are integer, and all the other ypmt relaxed; this determines the heuristic
value for ypm2. These steps are repeated, until all the y variables are fixed, as
described in Algorithm 1.

Algorithm 1: Relax-and-fix heuristic.
RelaxAndFix()
(1) relax ypmt, ∀ p ∈ P, ∀ m ∈ M, ∀ t ∈ T , as continuous variables
(2) for t = 1 to T

(3) foreach p ∈ P
(4) foreach m ∈ Mp

(5) set ypmt as integer
(6) solve Problem 9, determining ȳpmt, ∀p ∈ P, ∀m ∈ Mp

(7) foreach p ∈ P
(8) foreach m ∈ Mp

(9) fix ypmt := ȳpmt

(10) return ȳ

This approach is reported to provide very good solutions for many lot sizing
problems. However, for large instances the exact MIP solution of even a single
period can be too time consuming. Therefore, we propose a variant were each
MIP determines only the variables of one period that concern a single product.
We call this approach relax-and-fix-one-product ; it is outlined in Algorithm 2
(were a random permutation of a set P is denoted by R(P)).

Algorithm 2: Relax-and-fix-one-product variant.
RelaxAndFixOneProduct()
(1) relax ypmt, ∀ p ∈ P, ∀ m ∈ M, ∀ t ∈ T , as continuous variables
(2) for t = 1 to T

(3) foreach p ∈ R(P)
(4) foreach m ∈ Mp

(5) set ypmt as integer
(6) solve Problem 9, determining ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

3.1 Solution reconstruction

As we will see in the next section, the relax-and-fix-one-product construction
mechanism can be interestingly used in a different context: that of completing a
solution that has been partially destructed. For this purpose, all that is required
is to check if incoming ȳpmt variables are initialized or not; if they are initialized,

they should be fixed in the MIP at their current value. Otherwise, they are
treated as in previous algorithm: their are made integer if they belong to the
period and product currently being dealt, and relaxed otherwise. These ideas
are described in Algorithm 3 (we denote a random permutation of a set P by
R(P)).

Algorithm 3: Relax-and-fix for solution reconstruction.
Reconstruct(ȳ)
(1) for t = 1 to T

(2) foreach p ∈ P
(3) foreach m ∈ Mp

(4) if ȳpmt is not initialized
(5) relax ypmt

(6) else

(7) fix ypmt := ȳpmt

(8) for t = 1 to T

(9) foreach p ∈ R(P)
(10) U := {}
(11) foreach m ∈ Mp

(12) if ȳpmt is not initialized
(13) set ypmt as integer
(14) U := U ∪ {(p, m, t)}
(15) solve Problem 9, determining ȳpmt, ∀(p, m, t) ∈ U
(16) foreach (p, m, t) ∈ U
(17) fix ypmt := ȳpmt

(18) return ȳ

4 A hybrid tabu search approach

In this section we present a hybrid metaheuristic approach devised for tackling
the lot sizing problem. The approach is a two-fold hybrid, were relax-and-fix-
one-product is used to initialize a solution, or complete partial solutions, and
tabu search [2] is responsible for creating diverse points for restarting relax-and-
fix. Before each restart, the current tabu search solution is partially destructed;
its reconstruction is made by means of the relax-and-fix-one-product procedure
presented in Algorithm 3.

4.1 Solution representation and evaluation

In what concerns tabu search, the subset of variables of the Problem 9 which is
necessary to store is the set of ypmt variables; all the continuous variables can
be determined in function of these. Thus, a tabu search solution will consist of
a matrix of the ȳpmt binary variables.

The evaluation of a solution can be made through the solution of the Prob-
lem 9, with all the binary variables fixed at the values ȳpmt. As all the binary
variables are fixed, this problem is a linear program (LP). The value of z at the
optimal solution of this LP will provide the evaluation of the quality of ȳpmt.
The values of all the other variables x, h and g corresponding to ȳpmt are also
determined through this LP solution.

4.2 Tabu search

The tabu search framework, presented in Algorithm 4, is based only on short
term memory. This procedure has a parameter, tlim, which is the limit of CPU
to be used in the search (as an alternative to the usual stopping criterion, based
on the number of iterations). The remaining arguments are a seed for initializing
the random number generator, and the name of the instance to be solved.

Algorithm 4: Hybrid tabu search.
TabuSearch(tlim, seed, instance)
(1) store instance information as global data T ,P,M, f, g, . . .

(2) initialize random number generator with seed

(3) ȳ := RelaxAndFixOneProduct()
(4) ȳ∗ := ȳ

(5) n := |T | × |P|
(6) Θ := ((−n, . . . ,−n), . . . , (−n, . . . ,−n))
(7) i := 1
(8) while CPUtime() < tlim

(9) ȳ := TabuMove(ȳ, ȳ∗, i, Θ)
(10) if ȳ is better than ȳ∗

(11) ȳ∗ := ȳ

(12) i := i + 1
(13) return ȳ∗

4.3 Neighborhood and candidate selection

In the course of a tabu search iteration, the neighborhood of the current solution
is searched as presented in Algorithm 5. The arguments of this algorithm are
the current solution ȳ, the best solution found ȳ∗, the current iteration i, and
the tabu matrix Θ.

Tabu information is kept in the matrix Θ, where Θpm holds the iteration
at which some variable ypmt has been updated. The tabu tenure is a random
value, drawn in each iteration between 1 and the number of integer variables and
stored in the variable d, on line 6 of Algorithm 5 (R[a, b] is the notation used for
a random integer with uniform distribution in [a, . . . , b]). If the current iteration
is i, a move involving product p and machine m will be tabu if i − Θpm ≤ d;

Algorithm 5: Move during each tabu search iteration.
TabuMove(ȳ, ȳ∗, i, Θ)
(1) ȳ′ := ȳ

(2) for t = 1 to T

(3) foreach p ∈ R(P)
(4) S := {m ∈ Mp : ȳpmt = 1}
(5) U := {m ∈ Mp : ȳpmt = 0}
(6) d := R[1, |P| × |M| × |T |]
(7) foreach m ∈ S
(8) fix ȳpmt := 0
(9) if ȳ is better than ȳ∗ or (i − Θpm > d and ȳ is better than ȳ′)
(10) return ȳ

(11) if i − Θpm > d and (ȳc is not initialized or ȳ is better than ȳc)
(12) ȳc := ȳ, m1 := (p, m, t)
(13) foreach m′ ∈ U
(14) fix ȳpm′t := 1
(15) if ȳ is better than ȳ∗ or (i − Θpm > d and ȳ is better than ȳ′)
(16) return ȳ

(17) if i−Θpm > d and (ȳc is not initialized or ȳ is better than ȳc)
(18) ȳc := ȳ, m1 := (p, m, t), m2 := (p, m′, t)
(19) restore ȳpm′t := 0
(20) restore ȳpmt := 1
(21) α := R

(22) un-initialize α% of the ȳc variables
(23) if ȳc is not initialized
(24) select a random index (p, m, t)
(25) ȳc := ȳ, ȳc

pmt := 1 − ȳpmt, Θpm := i

(26) else

(27) (p, m, t) := m1, Θpm := i

(28) if m2 is initialized
(29) (p, m, t) := m2, Θpm := i

(30) ȳ :=Reconstruct(ȳc)
(31) return ȳ

otherwise (i.e., if i−Θpm > d) it is not tabu. Making the tabu tenure a random
value simplifies the parameterization of the algorithm.

The neighborhood used consists of solutions where manufacturing a product
in a given period and machine is stopped, and its manufacture is attempted in
different machines, on the same period. Hence, for a given solution y we start by
checking, in a random order, what are the products which are being manufac-
tured in the first period. Let us suppose that a product p is being manufactured
in machine m, i.e., ypm1 = 1. The first neighbor is a solution where ypm1 = 0,
all the other elements being equal to their equivalent in y. Other neighbors have
ypm′1 = 1 for all the machines m′ 6= m where p was not being produced. After
checking the first period, we check sequentially the periods 2, . . . , T , as detailed
in lines 2 to 20 of Algorithm 5. This is, therefore, a composed neighborhood,

where one or two moves are allowed. On line 3, R(P) is the notation used for a
random permutation of the set of products P.

If a neighbor improving the best solution could be found, it is returned im-
mediately. A neighbor solution is immediately returned also if it is not tabu and
it improves the input solution (lines 9–10 and 15–16).

In the case that no improving move could be found in the whole neighbor-
hood, we force a diversification: the solution is partially destructed, as shown in
lines 21 and 22 (R is the notation used for a random real number with uniform
distribution in [0, 1]).

The best found move is then applied and made tabu (lines 27 to 29), and the
solution is reconstructed (line 30). Notice that this move is excluded from the
parts of the solution that are to be reconstructed.

Lines 23 to 25 prevent the case where the search is blocked, all moves being
tabu; in such a case, a random move is taken.

5 Computational results

The implementation of the hybrid tabu search is somewhat tricky, as it involves
the interaction with LP and MIP solvers; but for the MIP class of problems there
is no alternative. The programs were implemented in the Python language [7],
making use of an interface to the GLPK optimization library [4]. The program-
ming the code was written in just a few pages of code; it is available, together
with the mathematical programming model, in [5].

5.1 Practical benchmarks

The strategies described in this paper were tested on a series of benchmark
instances. These instances have a random component, but are derived from a
real-world problem, where there are 12 products involved and the number of
periods is 12. We have produced an instance based on this full-size problem, and
smaller instances by reducing the number of periods and randomly selecting a
subset of products. The machines made available on smaller instances are those
compatible with the selected products, and the demand is randomly drawn, the
average being the true estimated demand.

The characteristics of the selected instances are presented in table 1; these
instances are available for downloading in [5].

The results obtained both by the branch-and-bound solver available in the
GLPK kit and by the metaheuristics presented in this paper are presented in
table 2. In both the situations, the search was limited to a CPU time of one hour
in a computer running Linux 2.4.27-2-686, with an Intel Pentium 4 processor at
1.6 GHz.

Notice that as there is a random component on the relax-and-fix-one-product
heuristic, the solutions found can be different from run to run. However, due to
the structure of the costs on these instances, the solution is virtually always the
same.

Name Number of Number of Number of Number of Number of
periods products integers variables constraints

fri-02 2 2 20 56 45
fri-05 5 5 135 334 235
fri-07 7 7 210 536 369
fri-09 9 9 306 796 554
fri-12 12 12 492 1300 857

Table 1. Names and characteristics of the instances used for benchmarking.

Name Relax-and-fix (average) Hybrid tabu search sol. branch-and-
time (s) solution worst average best bound best sol.

fri-02 < 1 13.897 13.897 13.897 13.897 13.897∗

fri-05 1.4 49.904 48.878 48.878 48.878 48.878
fri-07 2.3 131.095 126.865 126.197 126.030 127.604
fri-09 4.6 213.405 209.201 208.303 207.640 235.125
fri-12 12.4 277.451 275.004 274.681 273.963 431.660

Table 2. Results obtained by the relax-and-fix-one-product heuristic, by the hybrid
tabu search, and by time-constrained branch-and-bound. Branch-and-bound and the
hybrid tabu search were limited to 3600 seconds of CPU time for each instance. (∗ fri-02

was solved by branch-and-bound to optimality in less that one second.)

5.2 Algorithm behavior

For providing a deeper insight on the behavior of the algorithm, we also present
graphics of the evolution of the current solution with respect to the number of
iterations, for a typical run. We have selected the instance fri-12, and analyzed
the evolution of the objective value of the current solution, z, as well as that of the
best solution, z∗. To illustrate the importance of the destruction/reconstruction
phase, we have plotted in figure 1 this evolution for the hybrid tabu search
algorithm, and also for pure tabu search, without that phase.

These graphics show the importance of the destruction/reconstruction phase,
as without it tabu search quickly moves from the initial (relax-and-fix-one-
product) solution into poor areas, and cannot easily reach good solutions again.
This is due to the fact that a large number of moves is required to change a good
solution into another good solution. Partial destroying the solution and recon-
structing it with the relax-and-fix-one-product heuristic can do the large number
of changes in the solution that is required to bring it to good places. This phase
is used whenever tabu search cannot find an neighbor improving the current
solution; if improving neighbors are found, the destruction/reconstruction cycle
is skipped.

On this run of the hybrid metaheuristic the number of iterations allowed in
the 3600 seconds CPU time was 178; on 164 of these the solution was destructed
and reconstructed with relax-and-fix-one-product. There were 10 improvements
on the best solution found; 1 was found stopping production in a machine on
the current solution, 7 were found starting production in a different machine,

 275

 276

 277

 278

 279

 280

 281

 0 20 40 60 80 100 120 140 160 180

ob
je

ct
iv

e
va

lu
e

number of iterations

Hybrid metaheuristic

current solution
best solution

 277

 278

 279

 280

 281

 282

 283

 284

 0 50 100 150 200 250 300 350 400

ob
je

ct
iv

e
va

lu
e

number of iterations

Pure tabu search

current solution
best solution

Fig. 1. Objective value as a function of the iteration number for the fri-12 instance.
The top graphic corresponds to the hybrid meta-heuristic; the bottom one corresponds
to pure tabu search, without the destruction/reconstruction steps. Both algorithms run
3600 seconds.

and 2 were found on reconstruction. Although these values vary widely from
run to run and with the instance, in general there can be observed (as in this
case) solution improvements on both the neighborhood search and the destruc-
tion/reconstruction phase.

5.3 Other benchmarks

Although the algorithm was designed for a specific application, as it encompasses
most of the relevant issues in big bucket lot sizing, it can be used with no
modification for other applications. We have selected some of the relevant (big-
bucket) benchmarks from the LOTSIZELIB [10], adapted them to allow backlog
(though at a very high penalty) and used hybrid tabu search to solve these
instances on the same computational setup used in section 5.1.

Notice that by allowing backlog, we are making these benchmarks more dif-
ficult than the original ones.

Name Relax-and-fix (average) Hybrid tabu search sol. branch-and- optimal
time (s) solution worst average best bound best sol. solution

pp08a <1 7638.0 7380 7374 7360 7350 7350
rgna <1 82.2 82.2 82.2 82.2 82.2 82.2
set1ch 13.4 56024.3 55243.5 55089.6 54950 60517.7 54537
tr6-15 1.3 40767.6 38357 38238 38054 39388 37721
tr6-30 5.1 67057.0 63422 63246.2 63132 63711 61746∗

tr12-30 69.1 143014.0 137371 136762.8 136299 1940337 130599∗

Table 3. Results obtained by the relax-and-fix heuristic, by the hybrid tabu search,
and by time-constrained branch-and-bound on LOTSIZELIB instances. Branch-and-
bound and the hybrid tabu search were limited to 3600 seconds of CPU time for each
instance. Optimal solutions are as reported in [1]. (∗ indicate best known solutions,
optimality is not proven on these cases.)

6 Conclusion

The main motivation for this work was the exploitation of the quality of the
well-known relax-and-fix heuristic for lot sizing problems, in a setup which en-
forced diversity. This setup was provided by a tabu search mechanism, which was
responsible for imposing some changes on the solution. After these changes were
made, a part of the solution (not involving the latest changes) was destructed,
and relax-and-fix was used to rebuild it.

The reason why this was required as a complement to tabu search is that
non-improving moves made by tabu search rapidly force the solution into rather
poor regions, because a large number of moves is required to change a good so-
lution into another good solution. These “moves” were done by the relax-and-fix
heuristic whenever tabu search could not find an neighbor improving the current

solution. When improving neighbors were found, the destruction/reconstruction
cycle were skipped.

The computational results obtained with hybrid tabu search on a series of
benchmarks show a clear advantage of this strategy, as compared to the simple
relax-and-fix-one-product heuristic and to time-limited branch-and-bound.

This work has raised several issues, which remain as topics for future re-
search. The first is the assessment of the quality of the hybrid algorithm using
a specialized branch-and-cut system, as the one provided in [1], for the solution
of MIPs, instead of branch-and-bound. Another open question concerns limiting
the CPU used on each MIP solution; as most of the CPU is used for proving
optimality (which is not required in this context), limiting it would probably
lead to significant improvements.

The tabu search framework was designed with only short term memory. This
provided solutions which are good enough for the practical application to which
the algorithm was designed, but if a deeper search is required it might be useful
to implement more sophisticated methods, including long term memory and
periodic restart from elite solutions.

References

1. G. Belvaux and Laurence A. Wolsey. Modelling issues and a specialized branch-
and-cut system bc-prod. Discussion Paper 9849, Center for Operations Research
and Econometrics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
1998.

2. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.

3. R. Kuik and M. Salomon. Batching decisions: Structure and models. European

Journal and Operational Research, 75:243–260, 1994.
4. Andrew Makhorin. GLPK – GNU Linear Programming Kit. Free Software Foun-

dation, http://www.gnu.org, 2005. Version 4.8.
5. João P. Pedroso. Hybrid tabu search for lot sizing problems: an implementa-

tion in the Python programming language. Internet repository, version 0.1, 2005.
http://www.ncc.up.pt/˜jpp/lsize.

6. Yves Pochet and Laurence A. Wolsey. Algorithms and reformulations for lot sizing
problems. In DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, volume 20, pages 245–293, 1995.
7. Guido van Rossum et al. Python Documentation. PythonLabs,

http://www.python.org, 2005. Release 2.3.5.
8. Mathieu Van Vyve and Yves Pochet. General heuristics for production planning

problems. INFORMS Journal on Computing, 16:316–32, 2004.
9. Laurence Wolsey. Integer Programming. John Wiley & Sons, 1998.

10. Laurence A. Wolsey. LOTSIZELIB. Internet repository, version 3.0, 1996.
http://www.core.ucl.ac.be/wolsey/lotsizel.htm.

