
Tabu Search for Mixed Integer
Programming

João Pedro Pedroso

Technical Report Series: DCC-2004-02

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre 823, 4150-180 Porto, Portugal

Tel: +351-226.078.830 – Fax: +351-226.003.654

http://www.dcc.fc.up.pt/Pubs/treports.html



Tabu Search for

Mixed Integer Programming

João Pedro Pedroso

DCC-FC & LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150-180 Porto, Portugal

Email: jpp@ncc.up.pt

March 2004

Abstract

This paper introduces tabu search for the solution of general linear integer problems.
Search is done on integer variables; if there are continuous variables, their corresponding
value is determined through the solution of a linear program, which is also used to
evaluate the integer solution.

The complete tabu search procedure includes an intensification and diversification
procedure, whose effects are analysed on a set of benchmark problems.

Key-words: Tabu search, Linear Integer Programming, Mixed Integer

Programming

1 Introduction

In this work we focus on a tabu search for the problem of optimizing a linear function
subject to a set of linear constraints, in the presence of integer and, possibly, continuous
variables. If the subset of continuous variables is empty, the problem is called pure integer

(IP). In the more general case, where there are also continuous variables, the problem is
usually called mixed integer (MIP).

The mathematical programming formulation of a mixed integer linear program is

z = min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ Z
n
+, y ∈ R

p
+} (1)

where Z
n
+ is the set of nonnegative, integral n-dimensional vectors and R

p
+ is the set

of nonnegative, real p-dimensional vectors. A and G are m × n and m × p matrices,
respectively, where m is the number of constraints. The integer variables are x, and the
continuous variables are y. We assume that there are additional bound restrictions on
the integer variables: li ≤ xi ≤ ui, for i = 1, . . . , n.

The strategy proposed consists of fixing the integer variables x by tabu search, and
obtaining the corresponding objective z and continuous variables y by solving a linear
programming (LP) problem (this idea has been introduced in [12, 13, 11]). We are
therefore using tabu search to fix only integer variables, as the continuous ones can be
unambiguously determined in function of them.

In the process of evaluation of a solution, we first formulate an LP by fixing all the
variables of the MIP at the values determined by tabu search:

z = min
y

{cx + hy : Ax + Gy ≥ b, x = x̄, y ∈ R
p
+} (2)

1



We are now able to solve this (purely continuous) linear problem using the simplex
algorithm. If it is feasible, the evaluation given to x̄ is the objective value z; as the
solution is feasible, we set the sum of violations, ζ, to zero. If this problem is infeasible,
we set ζ equal the total constraint violations (obtained at the end of phase I of the
simplex algorithm). Notice that for IPs, after fixing the integer variables the remaining
problem has no free variables; some LP solvers might not provide the correct values of z

or ζ for the fixed variables.

We say that a solution structure i is better than another structure j if ζ i < ζj , or
ζi = ζj and zi < zj (for minimization problems).

The initial solution is obtained by rounding the integer variables around their optimal
values on LP relaxations. Tabu search starts operating on this solution by making
changes exclusively on the integer variables, after which the continuous variables are
recomputed through LP solutions.

Modifications of the solution are made using a simple neighborhood structure: incre-
menting or decrementing one unit to the value of an integer variable of the MIP. This
neighborhood for solution x is the set of solutions which differ from x on one element
xi, whose value is one unit above or below xi. Hence x′ is a neighbor solution of x if
x′

i = xi + 1, or x′

i = xi − 1, for one index i, and x′

j = xj for all indices j 6= i.

Moves are tabu if they involve a variable which has been changed recently. An
aspiration criterion allows tabu moves to be accepted if they lead to the best solution
found so far. This is the basic tabu search, based only on short term memory, as described
in [6].

As suggested in [7], we complement this simple tabu search with intensification and
diversification. Intensification allows non-tabu variables to be fixed by branch-and-bound
(B&B). Diversification creates new solutions based on LP relaxations, but keeping a part
of the current solution unchanged.

We have tested the tabu search with a subset of benchmark problems that are
available, in the MPS format, in the MIPLIB [1, 10]. Results obtained by tabu search are
compared to the solution of B&B. We have used a publicly available implementation of
this algorithm, the GLPK software package. This was used also as the LP simplex solver
on tabu search, as well as the B&B solver on the intensification phase, thus allowing a
direct comparison to GLPK in terms of CPU time required for the solution.

Various libraries provide canned subroutines for tabu search, and some of these
can be adapted to integer programming applications. However, such libraries operate
primarily as sets of building blocks that are not organized to take particular advantage of
considerations relevant to the general MIP setting. A partial exception is the tabu search
component of the COIN-OR open source library (see [2]). However, this component is
acknowledged to be rudimentary and does not attempt to encompass many important
elements of tabu search.

2 A simple tabu search

In this section we introduce a simple tabu search, based only on short term memory
(Algorithm 1). This procedure has one parameter: the number of iterations, N , which
is used as the stopping criterion. The other arguments are a seed for initializing the
random number generator, and the name of the MPS benchmark file.

The part of the MIP solution that is determined by tabu search is the subset of
integer variables x in Equation 1. The data structure representing a solution is therefore
an n-dimensional vector of integers, x̄ = (x̄1 . . . x̄n).

2



Algorithm 1: Simple tabu search.
SimpleTabu(N , seed, MPSfile)
(1) read global data A, G, b, c, and h from MPSfile

(2) initialize random number generator with seed

(3) x̄ := Construct()
(4) x̄∗ := x̄

(5) t := (−n, . . . ,−n)
(6) for i = 1 to N

(7) x̄ := TabuMove(x̄, x̄∗, i, t)
(8) if x̄ is better than x̄∗

(9) x̄∗ := x̄

(10) return x̄∗

2.1 Construction

Construction is based on the solution of the LP relaxation with a set of variables F fixed,
as stated in equation 3 (empty F leads to the LP relaxation of the initial problem).

min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ R
n
+, y ∈ R

p
+, xi = x̄i ∀ i ∈ F} (3)

The solution of this problem is denoted by xLP = (xLP
1 , . . . , xLP

n ); these values are
rounded up or down with some probabilities and fixed, as shown in Algorithm 2, were
we denote by r a continuous random variable with uniform distribution within [0, 1].

Algorithm 2: Semi-greedy solution construction.
Construct()
(1) F := {}
(2) C := {1, . . . , n}
(3) for j = 1 to n

(4) solve Equation 3
(5) randomly select index i from C
(6) if r < xLP

i − bxLP
i c

(7) x̄i := dxLP
i e

(8) else

(9) x̄i := bxLP
i c

(10) F := F ∪ {i}
(11) C := C\{i}
(12) return x̄

This semi-greedy construction is inspired in an algorithm provided in [8]. It consists
of rounding each variable i to an integer next to its value on the LP relaxation, xLP

i .
For all the indices i ∈ {1, . . . , n}, the variable x̄i is equal to the value xLP

i rounded down
with probability

P (x̄i = bxLP
i c) = dxLP

i e − xLP
i ,

or rounded up with probability 1 − P (x̄i = bxLP
i c) (lines 6 to 9 of the Algorithm 2).

2.2 Candidate selection

At each tabu search iteration, the neighborhood of the current solution is searched and
a neighbor solution is selected, as presented in Algorithm 3. The arguments of this

3



algorithm are the current solution x̄, the best solution found x̄∗, the current iteration
i, and the tabu vector t. Tabu information is kept in vector t; tc holds the iteration at
which variable c has been updated.

Algorithm 3: Search of a candidate at each tabu search iteration.
TabuMove(x̄, x̄∗, k, t)
(1) if k − ti > n ∀ i

(2) c := R[1, n]
(3) x̄c := R[lc, uc]
(4) tc := k

(5) return x̄

(6) v := x̄

(7) for i = 1 to n

(8) s := x̄

(9) d := R[1, n]
(10) foreach δ ∈ {−1, +1}
(11) si := x̄i + δ

(12) if si ∈ [li, ui] and s better than v

(13) if k − ti > d or s better than x̄∗

(14) v := s

(15) c := i

(16) x̄ := v

(17) tc := k

(18) return x̄

Lines 1 to 5 prevent the case where the search is blocked, all moves being potentially
tabu. In this case a random move is taken: an index is selected randomly, and a value
for that variable is drawn within its bounds, with uniform distribution. (We denote by
R[1, n] a random integer with uniform distribution within 1, . . . , n.)

The neighborhood is searched by adding a value δ = ∓1 to each of the variables
1, . . . , n, as long as they are kept within their bounds. We have tested two search
possibilities: breadth first and depth first. With breadth first all the neighbor solutions
are checked, and the best is returned (lines 7 to 15). With depth first, as soon as a non-
tabu solution better than the current solution is found, it is returned. Results obtained
for these two strategies are rather similar, but there seems to be a slight advantage to
breadth-first, which is the strategy that adopted is this paper. More sophisticated ways
of managing choice rules by means of candidate list strategies are an important topic
in tabu search (see, e.g., [4]), and may offer improvements, but we elected to keep this
aspect of the method at a simple level.

The tabu tenure (the number of iterations during which an changed variable remains
tabu) is generally a parameter of tabu search. In order keep simplify the parameteri-
zation, we decided to consider it a random value between 1 and the number of integer
variables, n. Such value, d, is drawn independently for each variable (line 9); this might
additionally lead to different search paths when escaping the same local optimum, in
case this situation arises.

2.3 Results

The set of benchmark problems and the statistical measures used to report solutions are
presented in appendix C.

4



Results obtained by this simple tabu search, presented in table 1 are encouraging, as
good solutions were found to problems which could not be easily solved by B&B (please
see next section for B&B results). Still, for many problems the optimal solution was not
found. This simple tabu search is many times trapped in regions from which it cannot
easily escape, wasting large amounts of time. As we will see in the next section, this can
be dramatically improved with intensification and diversification procedures.

problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ζ optimum runs (E[tf ] (s)) runs (E[tf ] (s)) runs (E[tf ] (s))
bell3a 878430.32 0 0 100 0.23 75 50.32 75 50.32
bell5 9011612.98 0 0.50 30 212.01 5 1688.15 0 À1764.32
egout 568.1007 0 0 100 0.47 100 7.56 100 7.56
enigma 0 0.0278 n/a 0 À1638.69 5 1559.63 0 À1638.69
flugpl 1201500 0 0 30 19.54 15 42.85 15 42.85
gt2 23518 0 11.11 100 0.67 5 4506.53 0 À4659.14
lseu 1218 0 8.75 45 95.75 5 1441.24 0 À1512.53
mod008 307 0 0 100 0.17 5 10751.22 5 10751.22
modglob 20757757.11 0 0.08 100 0.18 5 26546.63 0 À27873.20
noswot -41 0 4.65 95 13.06 20 928.09 0 À4667.98
p0033 3347 0 8.35 20 55.55 15 78.70 0 À272.96
pk1 17 0 54.54 100 0.03 5 2009.57 0 À2046.81
pp08a 7350 0 0 100 0.11 25 1439.24 25 1439.24
pp08aCUT 7350 0 0 100 0.15 20 3090.42 20 3090.42
rgn 82.1999 0 0 100 0.03 100 6.13 100 6.13
stein27 18 0 0 100 0.01 100 0.05 100 0.05
stein45 30 0 0 100 0.06 80 66.39 80 66.39
vpm1 20 0 0 100 0.52 5 12149.37 5 12149.37

Table 1: Simple tabu search: best solution found, percent distance above optimum; expected
CPU time required for reaching feasibility, the best solution, and optimality. (Results based
on 20 observations of the algorithm running for 5000 iterations.)

3 Intensification and diversification

We now introduce intensification and diversification procedures to complement the simple
tabu search presented in the previous section. These are essential to the performance of
the algorithm; in many situations they can save a large amount of computational time,
both by speeding up the search in case of being far from a local optima, or by moving the
tabu search to different regions when it is trapped somewhere it cannot easily escape.

3.1 Intensification

The complete intensification strategy is presented in Algorithm 4. It consists of fixing
all the variables which are tabu (those belonging to set F , determined in line 1 of
Algorithm 4), releasing all the non-tabu variables, and solving the remaining MIP on
these:

min
x,y

{cx + hy : Ax + Gy ≥ b, x ∈ Z
n
+, y ∈ R

p
+, xk = x̄k ∀ k ∈ F} (4)

The rationale behind this procedure is the following: most of the difficult MIP became
easy to solve (or at least much easier than the original problem) if a set of important
variables are fixed (a fuller development of this type of strategy can be found in [5], and
a related discussion appears in [3]). What we are doing here is to say that important
variables at a given point of the search are those which are tabu (i.e., those which have
been updated recently).

For some strongly constrained instances, the problem 4 might have no feasible LP
relaxation. In this case, we randomly remove variables from the set F , until the LP
relaxation becomes feasible (lines 2 to 4). On the other end, the MIP problem of

5



Algorithm 4: Intensification.
Intensify(x, t, i)
(1) F := {k : i − tk > n}
(2) while Equation 3 is not feasible
(3) randomly select index k from F
(4) F := F\{k}
(5) solve Equation 4 (allow search for n seconds, max.)
(6) if no integer solution was found
(7) return x

(8) let x′ be the solution of Equation 4
(9) return x′

Equation 4 might still be very difficult to solve; in order to avoid wasting too much
time on its solution, we limit the time spent on it. This limit could be parameterized;
but, in order to keep the discussion of results free of parameters, we decided to allow an
amount of time equal to the number of integer variables, n, in seconds. (Actually, this is
a rather poor choice: in our machine, in most of the cases either a good solution is found
in about one second, or it is not found in n seconds; but let us keep it as proposed for
the sake of simplicity. Notice also that a way of improving this parameterization would
be to use a dynamic strategy, allowing more time to intensification when it appears to
be rewarding, as is current practice in tabu search.)

3.2 Diversification

The diversification procedure is similar to construction, but it keeps a part of the
current solution structure unchanged. This procedure, presented in Algorithm 5 starts
by drawing a random integer l, between 1 and the number of integer variables n. It will
then randomly select l variables to remove (lines 4 to 7), and fix them (in a random
order), by means of the rounding technique described in section 2.1 (lines 8 to 16).

With this procedure, on average 50% of the current solution structure will be kept
after diversification; additionally, the reconstructed part will still have the high quality
provided by the rounding procedure.

3.3 The complete tabu search

Diversification and intensification have to be carefully combined in order to do a good
team work inside tabu search. The main procedure, presented in Algorithm 6, starts
with a construction (as in the case of simple tabu). This initiates the first “diversification
stream”. A simple, short term memory tabu search starts with this solution (lines 15,
16), and pursues until, at a certain point of the search on this stream, there will be
an intensification (lines 9, 10). After doing at least one intensification, and having no
improvements for a certain number of tabu search iterations, there will be a diversification
(lines 11 to 14); this starts the next diversification stream.

In order to do this search in a “parameter-free” fashion, we propose the following: do
an intensification after n (the number of integer variables) iterations with no improvement
on the best solution found on the current diversification stream. An intensification starts
with the best solution found on the current diversification stream, not with the current
solution. After n + 1 non-improving tabu search iterations (hence after doing at least
one intensification), do a diversification. On Algorithm 6, the number of iterations with
no improvement on the current stream’s best solution is computed as variable q, in lines
14 and 17 to 23.

6



Algorithm 5: Diversification: partial solution destruction and reconstruction.
Diversify(x)
(1) F := {1, . . . , n}
(2) C := {}
(3) l = R[1, n]
(4) for k = 1 to l

(5) randomly select index k from F
(6) F := F\{k}
(7) C := C ∪ {k}
(8) for k = 1 to l

(9) solve Equation 3
(10) randomly select index k from C
(11) if r < xLP

k − bxLP
k c

(12) xk := dxLP
k e

(13) else

(14) xk := bxLP
k c

(15) F := F ∪ {k}
(16) C := C\{k}
(17) return x̄

3.4 Results

We present results obtained by the complete tabu search algorithm, in table 2. Compar-
ing these with the results of simple tabu the importance of intensification and diversifi-
cation becomes clear; the solution quality is considerably improved, and the CPU time
required to solving the problems is much reduced.

The results obtained utilizing the B&B implementation of GLPK on the series of
benchmark problems selected are provided in the Table 3. The maximum CPU time
allowed is 24 hours; in case this limit was exceeded, the best solution found within the
limit is reported. GLPK uses a heuristic by Driebeck and Tomlin to choose a variable for
branching, and the best projection heuristic for backtracking (see [9] for further details).

The analysis of tables 2 and 3 shows that for most of the benchmark instances, tabu
search requires substantially less CPU for obtaining the optimal solution than B&B
(though the times reported for B&B are for the complete solution of the problem, not
only finding the optimal solution). Two of the problems for which B&B could not find
an optimal solution in 24 hours of CPU time (gt2 and modglob) were solved by tabu
search in a reasonable amount of time.

We also present the results obtained utilizing the commercial solver Xpress-MP

Optimizer, Release 13.02, again limiting the CPU time to 24 hours maximum. Although
there are some exceptions, this solver is generally much faster than our implementation
of tabu search, but, as the code is not open, we do not know why. A part of the
differences could be explained by the quality of the LP solver. Another part could be
due to the use of branch-and-cut. Finally, some differences could be due to preprocessing;
in our opinion, this is probably the improvement on tabu search that could bring more
important rewards.

4 Conclusion

The literature in meta-heuristics reports many tabu search applications to specific prob-
lems. In this paper we present a version to solve general integer linear problems. In

7



problem best best %above %feas Feasibility %best Best sol. %opt Optimality
name z ζ optim. runs (E[tf ](s)) runs (E[tf ](s)) runs (E[tf ](s))
bell3a 878430.32 0 0 100 0.24 100 4.38 100 4.38
bell5 8966406.49 0 0 100 8.60 100 38.24 100 38.24
egout 568.1007 0 0 100 0.47 100 6.76 100 6.76
enigma 0 0 0 35 187.51 20 376.66 20 376.66
flugpl 1201500 0 0 100 1.52 100 1.55 100 1.55
gt2 21166 0 0 100 0.65 15 2216.95 15 2216.95
lseu 1120 0 0 100 1.47 10 770.45 10 770.45
mod008 307 0 0 100 0.17 40 1119.57 40 1119.57
modglob 20740508.1 0 0 100 0.16 100 1404.29 100 1404.29
noswot -41 0 4.65 100 8.38 95 239.96 0 À15653.99
p0033 3089 0 0 100 0.17 90 4.10 90 4.10
pk1 15 0 36.36 100 0.03 10 1111.96 0 À2357.09
pp08a 7350 0 0 100 0.11 45 4316.38 45 4316.38
pp08aCUT 7350 0 0 100 0.15 70 766.59 70 766.59
rgn 82.1999 0 0 100 0.03 100 0.73 100 0.73
stein27 18 0 0 100 0.02 100 0.05 100 0.05
stein45 30 0 0 100 0.06 80 66.65 80 66.65
vpm1 20 0 0 100 0.48 95 393.73 95 393.73

Table 2: Complete tabu search: best solution found, percent distance above optimum;
expected CPU time required for reaching feasibility, the best solution, and optimality.
(Results based on 20 observations of the algorithm running for 5000 iterations.)

problem name best z CPU time (s) remarks
bell3a 878430.32 134.7
bell5 8966406.49 143.3
egout 568.1007 3.6
enigma 0 14.1
flugpl 1201500 1.3
gt2 30161∗ 93822.3 stopped, >24h CPU time
lseu 1120 96.6
mod008 307 51.0
modglob 20815372.17∗ 93839.7 stopped, >24h CPU time
noswot -41∗ 137.9 stopped, numerical instability
p0033 3089 1.1
pk1 11 49713.9
pp08a 7350 93823.4 stopped, >24h CPU time
pp08aCUT 7350 93822.3 stopped, >24h CPU time
rgn 82.12 4.1
stein27 18 3.9
stein45 30 269.3
vpm1 20 10261.8

Table 3: Results obtained by branch-and-bound, using GLPK - version4.4 : solution found
and CPU time. (∗ indicates non-optimal solutions.)

8



Algorithm 6: A complete tabu search.
TabuSearch(N , seed, MPSfile)
(1) read global data A, G, b, c, and h from MPSfile

(2) initialize random number generator with seed

(3) x̄ := Construct()
(4) x̄∗ := x̄

(5) x̄′ := x̄

(6) q = 0
(7) t := (−n, . . . ,−n)
(8) for i = 1 to N

(9) if q = n

(10) x̄ := Intensify(x̄, t, i)
(11) else if q > n

(12) x̄ := Diversify(x̄)
(13) x̄′ := x̄

(14) q = 0
(15) else

(16) x̄ := TabuMove(x̄, x̄∗, i, t)
(17) if x̄ is better than x̄∗

(18) x̄∗ := x̄

(19) if x̄ is better than x̄′

(20) x̄′ := x̄

(21) q = 0
(22) else

(23) q := q + 1
(24) return x̄∗

this domain, the most commonly used algorithm is branch-and-bound. This algorithm
converges to the optimal solution, but might be unusable in practical situations due to
the large amounts of time or memory required for solving some problems.

The tabu search proposed in this paper provides a way for quickly solving to optimal-
ity most of the problems analyzed. In terms of time required for reaching the optimal (or
a good) solution, comparison with the branch-and-bound algorithm implemented in the
GLPK favors tabu search. Comparison with the commercial solver Xpress-MP Optimizer

in general is not favorable to tabu search, although there are some exceptions. Probably,
preprocessing is playing an important role in Xpress-MP ’s performance; actually, we
believe that preprocessing is the most promising research direction for improving tabu
search performance.

Our tabu search implementation, utilizing the GLPK routines, is publicly avail-
able [14]; the reader is kindly invited to use it. The implementation with GLPK is
very simple: tabu search routines are just a few hundreds of C programming lines, which
can be easily adapted to more specific situations.

The strategy proposed in this work makes it straightforward to apply tabu search to
any model that can be specified in mathematical programming, and thus opens a wide
range of applications for tabu search within a single framework. Tabu search can be
used to provide an initial solution for starting a branch-and-bound process; it can also
be used for improving an integer solution found by a branch-and-bound which had to be
interrupted due to computational time limitations.

We emphasize our implementation is not the only one possible. Three types of

9



problem name best z CPU time (s) remarks
bell3a 878430.32 87
bell5* 8988042.65∗ >24h stopped, >24h CPU time
egout 568.1007 0
enigma 0 0
flugpl 1201500 0
gt2 21166 0
lseu 1120 0
mod008 307 0
modglob 20740508.1 0
noswot* -41∗ >24h stopped, >24h CPU time
p0033 3089 0
pk1 11 937
pp08a 7350 31
pp08aCUT 7350 5
rgn 82.1999 0
stein27 18 1
stein45 30 142
vpm1 20 0

Table 4: Results obtained by the commercial Xpress-MP Optimizer, Release 13.02 : solution
found and CPU time reported by the solver. (∗ indicates non-optimal solutions.)

procedures for applying tabu search to MIP problems are discussed in [7], utilizing
strategies somewhat different than those proposed here. To our knowledge, none of these
alternatives has been implemented and tested. Additional considerations for applying
tabu search to mixed integer programming are discussed in [4], including tabu branching
procedures and associated ideas of branching on created variables that provide an op-
portunity to generate stronger branches than those traditionally employed. It is hoped
that the present work, which appears to mark the first effort to investigate tabu search
in the general MIP setting, will spur additional explorations of this topic.

A Benchmark problems

The instances of MIP and IP problems used as benchmarks are defined in the MIPLIB [1]
and are presented in Table 5. They were chosen to provide an assortment of MIP
structures, with instances coming from different applications.

Problem Application Number of variables Number of Optimal
name total integer binary constraints solution
bell3a fiber optic net. design 133 71 39 123 878430.32
bell5 fiber optic net. design 104 58 30 91 8966406.49
egout drainage syst. design 141 55 55 98 568.101
enigma unknown 100 100 100 21 0
flugpl airline model 18 11 0 18 1201500
gt2 truck routing 188 188 24 29 21166
lseu unknown 89 89 89 28 1120
mod008 machine load 319 319 319 6 307
modglob heating syst. design 422 98 98 291 20740508
noswot unknown 128 100 75 182 -43
p0033 unknown 33 33 33 16 3089
pk1 unknown 86 55 55 45 11
pp08a unknown 240 64 64 136 7350
pp08acut unknown 240 64 64 246 7350
rgn unknown 180 100 100 24 82.1999
stein27 unknown 27 27 27 118 18
stein45 unknown 45 45 45 331 30
vpm1 unknown 378 168 168 234 20

Table 5: Set of benchmark problems used: application, number of constraints, number of
variables and optimal solutions as reported in MIPLIB.

10



B Computational environment

The computer environment used on this experiment is the following: a Linux Debian
operating system running on a machine with an AMD Athlon processor at 1.0 GHz, with
512 Gb of RAM. Both tabu search and GLPK were implemented on the C programming
language.

C Statistics used

In order to assess the empirical efficiency of tabu search, we provide measures of the
expectation of the CPU time required for finding a feasible solution, the best solution
found, and the optimal solution, for each of the selected MIP problems.

Let t
f
k be the CPU time required for obtaining a feasible solution in iteration k, or

the total CPU time in that iteration if no feasible solution was found. Let to
k and tbk be

identical measures for reaching optimality, and the best solution found by tabu search,
respectively. The number of independent tabu search runs observed for each benchmark
is denoted by K. Then, the expected CPU time required for reaching feasibility, based
on these K iterations, is:

E[tf ] =

K∑

k=1

t
f
k

rf
,

while

E[tb] =

K∑

k=1

tbk
rb

is the expected CPU time for finding the best tabu search solution, and the expected
CPU time required for reaching optimality is

E[to] =

K∑

k=1

tok
ro

.

For rf = 0 and ro = 0, the sums provide respectively a lower bound on the expectations
of CPU time required for feasibility and optimality.

References

[1] Robert E. Bixby, Sebastiàn Ceria, Cassandra M. McZeal, and Martin W. P.
Savelsbergh. An updated mixed integer programming library. Technical report,
Rice University, 1998. TR98-03.

[2] COIN-OR. COmputational INfrastructure for Operations Research. Internet
repository, version 1.0, 2004. www.coin-or.org.

[3] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47,
2003.

[4] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

[5] Fred Glover. Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8(1):156–166, 1977.

[6] Fred Glover. Tabu search—part I. ORSA Journal on Computing, 1:190–206, 1989.

[7] Fred Glover. Tabu search—part II. ORSA Journal on Computing, 2:4–32, 1990.

[8] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout, chap-
ter 8, pages 427–446. Applicable Theory in Computer Science. John Wiley and
Sons, 1990.

11



[9] Andrew Makhorin. GLPK – GNU Linear Programming Kit. Free Software
Foundation, www.gnu.org, January 2004. version 4.4.

[10] Internet repository, version 3.0, 1996. www.caam.rice.edu/∼bixby/miplib.

[11] Teresa Neto and João P. Pedroso. Grasp for linear integer programming. In Jorge P.
Sousa and Mauricio G. C. Resende, editors, METAHEURISTICS: Computer

Decision-Making, Combinatorial Optimization Book Series, pages 545–574. Kluwer
Academic Publishers, 2003.

[12] João P. Pedroso. An evolutionary solver for linear integer programming. BSIS
Technical Report 98-7, Riken Brain Science Institute, Wako-shi, Saitama, Japan,
1998.

[13] João P. Pedroso. An evolutionary solver for pure integer linear programming.
International Transactions in Operational Research, 9(3):337–352, May 2002.

[14] João P. Pedroso. Tabu search for MIP: an implementation in the C programming
language. Internet repository, version 1.0, 2004. www.ncc.up.pt/∼jpp/mipts.

12


