
Metaheuristics for the Asymmetric Hamiltonian
Path Problem

João Pedro PEDROSO

INESC - Porto and
DCC - Faculdade de Ciências, Universidade do Porto, Portugal

jpp@fc.up.pt

Abstract. One of the most important applications of the Asymmetric
Hamiltonian Path Problem is in scheduling. In this paper we describe a
variant of this problem, and develop both a mathematical programming
formulation and simple metaheuristics for solving it. The formulation
is based on a transformation of the input data, in such a way that a
standard mathematical programming model for the Asymmetric Trav-
elling Salesman Problem can be used on this slightly different problem.
Two standard metaheuristics for the asymmetric travelling salesman are
proposed and analysed on this variant: repeated random construction
followed by local search with the 3-Exchange neighbourhood, and iter-
ated local search based on the same neighbourhood and on a 4-Exchange
perturbation. The computational results obtained show the interest and
the complementary merits of using a mixed-integer programming solver
and an approximative method for the solution of this problem.

1 Introduction

We are dealing with the following problem: given an operation currently being
done in a machine, determine the order for the set of operations to be produced
next, such that the total production time is minimized. There are no precedence
constraints among the operations, but there are changeover times which depend
on the production sequence. Minimizing the total production time is equivalent
to minimizing the time spent in changeovers, as the other times are constant.

This problem is relevant in many practical situations. In paint production
the machine cleaning times are usually dependent on the sequence; for example,
producing white colour after grey requires a much more careful cleaning than the
other way around. The production of steel is also a situation where the sequence
of production is very important, having very strict rules and costs that depend
on the order. Yet another practical application is in food manufacturing, where
strong flavours can be produced after flavourless products at a small cost, but
very careful and lengthy cleaning is required in the inverse situation.

One possibility for modelling this problem is to consider a graph with a node
for each of the items that must be produced. There are two arcs between every
pair of nodes, one in each direction, representing the changeover time between
the corresponding products. A solution to the original problem corresponds to

determining a Hamiltonian path in this graph, i.e., a path going through all the
nodes in the graph. The path must start with a particular node (the item being
currently produced), but there is no concern about the ending node. Let us call
this the “Fixed-Start Asymmetric Hamiltonian Path” (FSAHP) problem.

Given the similarity of this problem with the Travelling Salesman Problem,
in particular with its asymmetric variants, we considered adapting the methods
that have been developed for that problem to the current situation. Throughout
this paper we will describe more formally the problem in mathematical program-
ming, explain in detail the metaheuristics that we implemented for solving it,
and present the results of applying it to a set of benchmark problems.

2 Problem description

We are given a graph G(V,A) where V is the set of nodes and A the set of
arcs. In the classical Asymmetric Travelling Salesman Problem (ATSP), nodes
correspond to cities to be visited and arcs to the distance between them. In
our case, each node represents a product to be manufactured, every arc (i, j)
has a cost D(i, j) corresponding to the (asymmetric) changeover time between
product i and j, and there is a special node v1, which must be the first node in
the path, and corresponds to the last previously manufactured product (or to
the city where the salesperson currently is, the classical problem).

With simple data preprocessing, standard ATSP formulations can be adapted
to the current problem, as shown below.

Property 1. Redefine the distance from any node to the first (fixed) node in
the path, v1, as zero (all other distances remaining unchanged). A minimum
Hamiltonian cycle determined with this data defines a path which is an optimal
solution to the FSAHP, with the same optimal objective value.

Proof. Let us call the optimal solution to the FSAHP (p1, . . . , pn); this is a path,
with p1 = v1, covering all the nodes. This path can be extended into a cycle, without
increasing the cost, by adding the arc (pn, v1).

Suppose there is a cycle (s1, . . . , sn, s1), with s1 = v1, with a smaller objective;

then, as the arc (sn, v1) has zero length, the path (s1, . . . , sn) would have to be shorter

than (p1, . . . , pn). But in this case (s1, . . . , sn) would be a better solution to the FSAHP

than (p1, . . . , pn), contradicting the assumption.

2.1 Formulation in mathematical programming

There are many formulations for the ATSP, and their study is an active field in
mathematical programming. For the purposes of this paper, we will restrict to
the most common one, due to [1]:

minimise

n∑
i=1

n∑
j=1

cijxij (1)

n∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

xij = 1, i = 1, . . . , n

(n− 1)xij + ui − uj ≤ n− 2, i, j = 2, . . . , n

xij ∈ {0, 1}, i, j = 1, . . . , n, ui ∈ R i = 1, . . . , n

The optimal cycle is the set of arcs (i, j) such that xij = 1. The solution to
the FSAHP is the n-node path starting with v1 in this cycle.

3 Basic heuristics and local search

The most straightforward way for solving the Fixed-Start Asymmetric Hamilto-
nian Path with heuristics and metaheuristics is to apply the transformation on
the data proposed in Section 2, and solve an Asymmetric Travelling Salesman.
Then, the solution to the original problem is obtained by selecting the n-node
path starting with v1 in the ATSP’s solution.

The characteristics of the path problem could be exploited for devising more
adapted neighbourhoods, but it turns out that the performance degrades in most
of the studied instances, possibly due to the losing symmetry properties.

3.1 Construction

Simple construction heuristics for the ATSP are based on equivalent heuristics
for the symmetric TSP (nicely described e.g. in [2]). As for the metaheuristics
described in this paper, the initial solution is constructed based on a random
permutation of {1, . . . , n}.

3.2 Improvement

The most common improvement methods for problems related to the TSP are
based on exchange heuristics: remove k edges, breaking the cycle tour into k
paths; then reconnect those paths into a different cycle [3, 4]. For the symmetric
TSP, the most commonly used neighbourhood is 2-Exchange: remove two non-
consecutive edges, and add two other edges, as shown in Figure 1.

As for the ATSP, there are no 2-Exchange moves that keep path orientation,
and hence they are not usually employed [5]. The most commonly used moves
are 3-Exchange, keeping path orientation, as shown in Figure 2.

For implementing local search based in this neighbourhood in an efficient
way, moves that are known not to lead to improvements should be avoided. For
this purpose, the list of the neighbours of a given vertex, sorted by distance, is
searched only up to a certain point.

Let us first recall what is commonly done with the (symmetric) TSP. Consider
a tour represented by p = (p1, p2, . . . , pn), and let us denote the last element of p
as either pn or p0. Each edge (pi−1, pi), for i = 1, . . . , n, is examined for improving
exchanges, through removing it and another edge (pj−1, pj), and adding two
different edges, in such a way that a new tour is formed (pj must be separated
from pi by at least two nodes). A new tour is constructed by adding edges
{pi−1, pj−1} and {pi, pj}.

Property 2. For a given i, improving moves cannot be missed if j is restricted to:

1. nodes connected to pi−1 such that their distance to pj−1 is smaller than
D(pi−1, pi);

2. nodes connected to pi such that their distance to pi is smaller than D(pi−1, pi).

Proof. Let pi−1, pi, pj−1, pj be represented by a, b, c, d, respectively, as in Figure 1. In

an improving move there must be D(a, c) + D(b, d) < D(a, b) + D(c, d), implying that

either D(a, d) < D(a, b) or D(c, b) < D(c, d), or both. Hence, in an improvement, at

least one of the added edges must be smaller than at least one of the removed edges.

The case of an added edge being smaller than {a, b} is examined by considering all edges

{a, c} such that D(a, c) < D(a, b), and all edges {b, d} such that D(b, d) < D(a, b). The

remaining potential improvement case corresponds to having the edge {c, d} larger

than either {a, c} or {b, d}; but this possibility is examined for i such that c = pi−1

and d = pi .

Let us now go back to the ATSP problem and the 3-Exchange neighbourhood.
Consider a tour represented by p = (p1, p2, . . . , pn). Each arc (pi−1, pi), for i =
1, . . . , n, is examined for improving exchanges, through removing it and other
two arcs (pj−1, pj) and (pk−1, pk). A new tour is constructed by adding arcs
(pi−1, pj), (pj−1, pk), and (pk−1, pi).

Property 3. For a given i, improving moves cannot be missed if j and k are
restricted as follows:

1. j is restricted to nodes outgoing from pi−1 such that their distance from pi−1
is smaller than D(pi−1, pi); furthermore, in this case k is restricted to nodes
outgoing from pj−1 such that distance D(pi−1, pj) + D(pj−1, pk) is smaller
than D(pi−1, pi) + D(pj−1, pj), and pk is not in the path from pi to pj−1.

2. k − 1 is restricted to nodes incoming into pi such that their distance to pi
is smaller than D(pi−1, pi); furthermore, in this case j is restricted to nodes
incoming into pk such that distance D(pk−1, pi)+D(pj−1, pk) is smaller than
D(pi−1, pi) + D(pk−1, pk), and pj is not in the path from pk to pi−1.

Proof. Let pi−1, pi, pj−1, pj , pk−1, pk be represented by a, b, c, d, e, f , respectively, as in
Figure 2. In an improving move there must be D(a, d) + D(c, f) + D(e, b) < D(a, b) +
D(c, d) +D(e, f), implying that at least one of the added arcs must be smaller than at
least one of the removed ones.

Let us consider an improving move for which either D(a, d) + D(c, f) > D(a, b) +

D(c, d), or D(a, d) > D(a, b). In the former case, there must be D(e, b) < D(e, f), and

a

c b

d

−→
a

c b

d

Fig. 1. Single 2-Exchange possibility for the (symmetric) TSP. Edges {a, b}, {c, d} are
removed, and replaced by {a, c}, {b, d}.

a

d e

b

cf

−→ a

d e

b

cf

Fig. 2. Single 3-Exchange possibility without path inversions for the ATSP. Arcs (a, b),
(c, d), (e, f) are replaced by (a, d), (e, b), (c, f).

h

a

b c

d

efg

−→

h

a

b c

d

efg

Fig. 3. A 4-Exchange (double bridge) movement without path inversions for the ATSP,
as implemented in iterated local search.

this is tackled in the main i cycle, for i : pi−1 = e. As for the latter case, there must be

D(c, f)+D(e, b) < D(c, d)+D(e, f); thus, either D(c, f) < D(c, d), or D(e, b) < D(e, f),

or both. But this situation is tackled for i : pi−1 = c or i : pi−1 = e, respectively.

3.3 Implementation

In our implementation, indices for the outer cycle (i) are searched in random
order. Indices j and k are search by increasing distance to nodes pi−1 and pi,
until reaching the limits defined by Property 3. Improvements are accepted in
an first-improve manner, i.e., an improving movement is immediately accepted.
The initial solution is a random permutation of {1, . . . , n}.

3.4 Improved heuristics

Random-start local search: in this metaheuristics, the following steps are
repeated until reaching a stopping criterion (in our implementation, exceeding
the limit CPU time):

1. create a random solution;
2. improve it until reaching a local optimum;
3. possibly, update the best solution found so far.

Iterated local search: for this metaheuristics, after reaching a local optimum
a deep modification on the solution structure is introduced; the solution thus
obtained is then improved until reaching another local optimum, and the whole
process is repeated until reaching the stopping criterion.

The deep modification made at each iteration is a 4-Exchange movement, as
depicted in Figure 3. This is usually called a “double bridge” movement. Our
implementation of iterated local search consists of obtaining a random starting
solution, and then repeating the following steps:

1. improve the solution until reaching a local optimum;
2. possibly, update the best solution found so far;
3. randomly select 4 arcs in the solution; exchange them with 4 different arcs,

in such a way that a tour (with no path inversions) is formed.

4 Results

The metaheuristics proposed in this paper were compared to a mixed-integer
programming (MIP) solver, through an experiment with a set of standard bench-
marks instances. These correspond a modification of the ATSP instances avail-
able in the TSPLIB [6]; the starting node v1 is the first city in the instance, and,
for tackling the path problem, the distances from any other node to v1 are rede-
fined as zero (as described in Section 2). The experiment was run in a computer
with a Quad-Core Intel Xeon, 2.66 GHz processor, running the Mac OS X op-
erating system version 10.6.3; only one CPU was allocated to this experiment.
The MIP solver used is GUROBI [7], one of the leading commercial solvers.
Metaheuristics were implemented in the Python programming language, version
2.6.1; this is considerably slower than the compiled, executable code of GUROBI.
Hence, results are not truly comparable; however, they still allow drawing many
interesting conclusions. In all the experiments, the CPU time for an observation
of a method solving an instance was limited to about 300 seconds; as for the
metaheuristics, the results correspond to the minimum, average, and maximum
of 10 independent observations. The results are presented in table 1.

The first interesting conclusion is that a state-of-the-art MIP solver can reach
the optimum for many of the benchmark instances (those for which the lower
bound obtained is identical to the upper bound); this is an enormous progress
with respect to some years ago. In these cases, both metaheuristics could also

find systematically the optimum, except for instances of the ftv series. For these
instances and atex5, the result of the MIP solver is better than the average
solution of each metaheuristics; for all the other instances, both metaheuristics
are better.

A very interesting result was obtained for instances rbg403 and rbg443;
indeed, even though no feasible solution was found by the MIP solver in the

Multi-start local search Iterated local search GUROBI
Instance minimum average maximum minimum average maximum LB UB
atex1 1564 1564 1564 1564 1564 1564 1564 1564
atex3 2342 2342 2342 2342 2342 2342 2342 2342
atex4 2681 2681 2681 2681 2681 2681 2681 2681
atex5 4659 4663.8 4669 4659 4670.8 4747 4595 4659
atex8 41531 41763 41960 41299 41598.8 41900 1027 ∞
big702 78933 79081.4 79316 78492 78847.4 79518 −∞ ∞
br17 27 27 27 27 27 27 27 27
code198 4541 4541 4541 4541 4541 4541 4541 4541
code253 106957 106957 106957 106957 107032 107333 105716 ∞
dc112 10916 10919.3 10922 10914 10916.7 10919 10860 10968
dc126 120725 120770 120827 120709 120754 120808 119702 126506
dc134 5543 5544.6 5547 5539 5540.8 5542 5529 ∞
dc176 8402 8406.3 8410 8400 8403.3 8409 8356 ∞
dc188 9977 9979.9 9986 9974 9979.8 9988 9911 ∞
dc563∗ 25880 25880 25880 25880 25880 25880 25687 ∞
dc849 37496 37501.7 37506 37488 37498.6 37504 −∞ ∞
dc895∗ 106963 106963 106963 106963 106963 106963 −∞ ∞
dc932∗ 478316 478316 478316 478316 478316 478316 −∞ ∞
ft53 6099 6099 6099 6099 6099 6099 6099 6099
ft70 37230 37231.2 37234 37230 37230.4 37234 37228 37230
ftv100 1743 1746.5 1747 1743 1744.7 1747 1743 1743
ftv110 1908 1910.6 1914 1908 1912.3 1917 1900 1908
ftv120 2074 2078.2 2081 2074 2074.5 2077 2074 2074
ftv130 2240 2250.2 2262 2240 2242.7 2250 2240 2240
ftv140 2358 2364.4 2375 2358 2360.1 2366 2356 2356
ftv150 2547 2554.5 2563 2547 2548.1 2550 2547 2547
ftv160 2600 2605.5 2616 2600 2603.1 2605 2600 2600
ftv170 2690 2701.7 2717 2689 2691.4 2694 2668 2713
ftv33 1223 1223 1223 1223 1223 1223 1223 1223
ftv35 1363 1363 1363 1363 1363 1363 1363 1363
ftv38 1438 1438 1438 1438 1438 1438 1438 1438
ftv44 1535 1535 1535 1535 1535 1535 1535 1535
ftv47 1689 1689 1689 1689 1689 1689 1689 1689
ftv55 1539 1539 1539 1539 1539 1539 1539 1539
ftv64 1726 1726 1726 1726 1726 1726 1726 1726
ftv70 1881 1881 1881 1881 1881 1881 1881 1881
ftv90 1538 1538 1538 1538 1538 1538 1538 1538
kro124p 35584 35584 35584 35584 35584 35584 35581 35584
p43 589 589 589 589 589 589 549 589
rbg323 1308 1308 1308 1308 1308 1308 1308 1308
rbg358 1143 1143 1143 1143 1143 1143 1143 1143
rbg403 2450 2450 2450 2450 2450 2450 2450 ∞
rbg443 2710 2710 2710 2710 2711.7 2719 2710 ∞
ry48p 13870 13870 13870 13870 13870 13870 13869 13870
td100.1 267047 267047 267047 267047 267047 267047 267047 267058
td1000.20 1241220 1241230 1241230 1241220 1241230 1241230 −∞ ∞
td316.10 688929 688929 688929 688929 688929 688929 688929 688929

Table 1. Results obtained using multi-start local search, iterated Local search, and
the lower and upper bounds obtained by the MIP solver GUROBI, for a CPU limit
of 300 seconds. (Instances dc563, dc895, dc932 were allowed only one descent, as it
takes more than 300 seconds.)

CPU time allowed, the best solution found by metaheuristics can be proven
optimal, as its objective value equals the MIP lower bound.

As for the comparison between the two metaheuristics proposed, iterated
local search is at least as good as multi-start local search for most instances,
being strictly better for many of them; the slight increase in complexity seems,
hence, to be worthy.

5 Conclusions

In this paper we describe a variant of the Asymmetric Hamiltonian Path Prob-
lem, with applications in scheduling. We present a mathematical programming
formulation, and simple approximative methods for solving it. The metaheuris-
tics are random-start local search and iterated local search; both of them pro-
vided very good results, with a slight advantage to the latter.

For easy problems a mixed-integer programming solver could find the opti-
mum in a relatively small time; for larger, more difficult problems, the approxi-
mative methods could find better solutions in the CPU time allowed.

Improvements on the metaheuristics are expected if “don’t look bits” are
used, in order to keep track of cities for which search could be skipped. Another
possible improvement concerns limiting the number of neighbours of each city
that are allowed to be explored for exchanges. Both of these modifications may
provide a considerable speedup, at the cost of, possibly, loosing local optimality.

Acknowledgments. This research was supported in part by FCT – Fundação
para a Ciência e a Tecnologia (Project **PTDC/GES/73801/2006) and by the
European project CIVITAS-ELAN, under Framework Programme 7.

Our special thanks to Prof. Nelma Moreira for proof reading this manuscript.

References

1. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM 7(4) (1960) 326–329

2. Johnson, D., McGeoch, L.: Local search in combinatorial optimization. In Aarts,
E., Lenstra, J.K., eds.: Local search in combinatorial optimization. John Wiley &
Sons, Inc., New York, NY, USA (1997)

3. Croes, G.A.: A method for solving traveling-salesman problems. Operations Re-
search 6 (1958) 791–812

4. Flood, M.M.: The traveling-salesman problem. Operations Research 4 (1956) 61–75
5. Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovitch, A.:

Experimental analysis of heuristics for the atsp. In Gutin, G., Punnen, A.P., eds.:
The Traveling Salesman Problem and Its Variations. Volume 12 of Combinatorial
Optimization. Kluwer Academic Publishers, Boston, USA (2002)

6. Bixby, B., Reinelt, G.: TSPLIB – A library of travelling salesman and
related problem instances. Internet repository (1995) http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/.

7. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual, Version 2.0,
http://www.gurobi.com. (2010)

