CG – T16 – (Simple) Physics for Computer Graphics

L:CC, MI:ERSI

Miguel Tavares Coimbra

Suggested reading

 D.M. Bourge, "Physics for Game Developers", 1st Ed., O'Reilly Media, 2001

Why do we need physics?

- How do objects move?
- How much energy do they have?
- How do they stop by themselves?
- How do they float?
- How do they fly?

And that only involves movement... (Heat? Electricity? Wind? Light? Sound?)

Motion

The basic law

Newton's second law

$$\vec{F} = m \cdot \vec{a}$$

- Force (N) equals mass (kg) times acceleration (ms⁻²)
- Means that accelerating an object requires an external force
- Also means that if we know this force, mass, and initial conditions we can predict object motion

Position and velocity

- If we know acceleration
- We can integrate it over time to obtain velocity
- And integrate it again to obtain position

We can predict motion!

$$\vec{v} = \int_t \vec{a} \cdot dt$$

$$\vec{v} = \overrightarrow{v_0} + \vec{a} \cdot t$$

$$\vec{x} = \int_t \vec{v} \cdot dt$$

$$\vec{x} = \overrightarrow{x_0} + \overrightarrow{v_0} \cdot t + \frac{1}{2} \vec{a} \cdot t^2$$

Vectors

- Note that position, acceleration and velocity are vectors
- Scalars are simpler...
- Use scalar versions of the equations for each dimension
 - -x, y, z
- Separability makes things much simpler!

Example

- Break down the vector equation into its components x and y
- Use them independently
 - Great for calculating gravity effects of projectiles

$$\vec{v} = \overrightarrow{v_0} + \vec{a} \cdot t$$

$$v_{0x} = |\overrightarrow{v_0}| \cdot \cos \alpha$$
 $v_{0y} = |\overrightarrow{v_0}| \cdot \sin \alpha$

$$v_x(t) = v_{0x} + a_x(t).t$$

 $v_y(t) = v_{0y} + a_y(t).t$

Projectile motion

 No force affects horizontal axis

$$a_x = 0$$

 Gravity affects vertical axis

$$a_v = g = -9.8 \text{ ms}^{-2}$$

So:

$$x(t) = x_0 + v_{0x}.t$$

$$y(t) = y_0 + v_{0y}.t - \frac{1}{2}9,8.t^2$$

Engines

- How do I simulate an engine propelling an object?
 - I can use force if I know mass
 - I can use acceleration directly
- More difficult than gravity
 - Direction of acceleration is usually associated with the direction of velocity
 - Direction and magnitude of acceleration may be influenced externally: brakes, steering wheel, etc.
- Can easily combine with gravity

Gravitational force

- Any two objects with mass attract each other
 - Newton's law of universal gravitation
- Direction of force
 - Line containing the centers of mass of the two objects
- How come earth's gravitational pull is constant then?
 - It is not...

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

 $G = 6.674 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Warp speed

- Near the speed of light
 - Mass increases with velocity
 - Mass deforms space
 - Things get messy
- What to do?
 - Go read Stephen Hawking
 - Cheat in your space combat simulation

Energy of moving objects

Kinetic energy

- Things in motion have energy
 - Defined as the work needed to accelerate a body of a given mass from rest to its stated velocity
 - Measured in joules
- Classic mechanics
 - Kinetic energy of a non-rotating rigid body:

$$E_k = \frac{1}{2} m v^2$$

Potential energy

- Things not moving also have 'potential' energy
 - Energy due to the position of the various objects of a system
- Most common potential energy
 - Gravity $E_p = m.g.h$
 - Higher objects have higher energy than lower objects with the same mass
 - Others: elastic, electric, magnetic

Conservation of energy

- Law of conservation of energy
 - The total amount of energy in an isolated system remains constant over time
- Isolated system
 - Physical system without any external exchange of matter or energy
- Great for approximating many real-world situations!

Back to our projectiles

- Projectile going up
 - Velocity decreasing –
 lower kinetic energy
 - Height increasing –
 higher potential energy
- Projectile going down
 - Vice-versa
- What about engines?
 - External energy source
 - Not an isolated system!

Object collision

- What happens when my projectile falls to the ground?
 - Law of conservation of energy
 - No external forces were applied
 - What happened to the kinetic energy?
- Ground must generate an opposing force that stops the projectile
 - Which could break or deform the ground...
- Energy is typically converted into heat
 - Explaining why even a small asteroid falling on earth can create a huge explosion...

Momentum

- What happens when two objects collide?
 - All collisions conserve momentum
 - Not all collisions conserve kinetic energy
- What is momentum?

$$p = m.v$$

- Product of mass and velocity of an object
- Conserved in a closed system
- The momentum of a system of particles is the sum of their momenta

$$p = p_1 + p_2 = m_1 v_1 + m_2 v_2$$

Elastic collisions

- Momentum is conserved
- Total kinetic energy is conserved
- Solvable system of equations

Inelastic collision

- Momentum is conserved
- Kinetic energy is not conserved
- Coefficient of restitution
 - Fractional value
 representing the ratio
 of speeds after and
 before an impact

Why do moving objects stop?

(without collisions or brakes...)

Reason #1 - Friction

- Force resisting the relative motion of solid surfaces in contact
 - Actually this is dry kinetic friction…
- Coulomb friction

$$F_f \leq \mu F_n$$

- Does not depend on velocity!
- Depends on the normal force between two surfaces

Free body diagram of just the block

Reason #2 - Drag

- Forces which act on a solid object in the direction of the relative fluid flow
 - Air resistance
 - Fluid resistance
- Depends on velocity and the object's cross-sectional area $F_D = \frac{1}{2} \rho \, v^2 \, C_D \, A$
- More complex than friction
- Use simple models (Stokes', Newton...)

Why do things float?

Buoyancy

- Archimedes' principle
 - A body immersed in a fluid suffers an upward force equal to the weight of the fluid the body displaces
- Objects float if they are less dense than the fluid they are in
 - Can you model such an object falling on a fluid?

How do explosions work?
How can I model turbulence?
How do things fly?
Why do cars get lighter as
they go faster?

- - -

Go read about physics!

Physics in space?

