CG - T5 - Rasterization

L:CC, MI:ERSI
Miguel Tavares Coimbra
(course and slides designed by Verónica Costa Orvalho)

What is rasterization?

Basic steps for creating a 2D image out of a 3D world

- Create the 3D world
- Vertexes and triangles in a 3D space
- Project it to a 2D 'camera'
- Use perspective to transform coordinates into a 2D space
- Paint each pixel of the 2D image
- Rasterization, shading, texturing
- Will break this into smaller things later on
- Enjoy the super cool image you have created

pipeline

. collision detection animation global acceleration
. physics simulation
transformation . projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

Rasterization

rasterization:

filling with colors

Rasterization

How do we do this?

U.PORTO EC ${ }^{\text {cG12/13-T5 }}$

Primitives

- Only three!
- Points
- Line segments
- Triangles
- How do I rasterize them?
- Points are simple
- Lines?
- Triangles?

Rasterizing lines

- Lines are defined by two points
- Projected into my 2D screen from my 3D world
- Consider it a rectangle
- So that it occupies a non-zero area

Rasterizing lines

- Lines are defined by two points
- Projected into my 2D screen from my 3D world
- Consider it a rectangle
- So that it occupies a non-zero area

Point sampling

- Draw all the pixels whose centers fall within the rectangle
- It may draw undesired adjacent pixels...

Point sampling

- Draw all the pixels whose centers fall within the rectangle
- It may draw undesired adjacent pixels...

Point sampling in action

(c) 2008 Steve Marschner • \& U.PORTO

Bresenham lines (midpoint alg.)

- Idea:
- Define line width parallel to pixel grid
- What does this mean?
- Turn on the single nearest pixel in each column

Bresenham lines (midpoint alg.)

- Idea:
- Define line width parallel to pixel grid
- What does this mean?
- Turn on the single nearest pixel in each column

Algorithms for drawing lines

- Simple
- Evaluate line equation per column
- Line equation
$-y=b+m . x$

$$
\begin{aligned}
& \text { for } x=\operatorname{ceil}(x 0) \text { to floor }(x 1) \\
& y=b+m^{*} x \\
& \text { output }(x, \text { round }(y))
\end{aligned}
$$

Optimized line drawing

- Multiplying and rounding is slow
- We can add the vertical displacement to our previous vertical coordinate (d)
- Initially: $d=m(x+1)+b-y$
- Then: $\mathrm{d}+=\mathrm{m}$
- We call this DDA (digital differential analyzer)

```
x = ceil(x0)
y = round(m*x + b)
d=m* (x+l) +b-y
while x < floor(xl)
    if d>0.5
        y+= 1
        d -= 1
    x+= 1
    d+= m
    output(x, y)
```


Interpolation along lines

- We don't want to simply know which pixels are on the line
- Boolean
- Vertexes hold attributes
- Ex: Color
- We want these to vary smoothly along the line
- Linear interpolation

Linear interpolation

- Pixels are not exactly on the line
- Must project pixels on the line for the correct percentage
- We can use DDA!

Linear interpolation

- Pixels are not exactly on the line
- Must project pixels on the line for the correct percentage
- We can use DDA!

What about triangles?

Rasterizing triangles

- Pixel belongs to the triangle if its center is inside the triangle
- Need two things:
- Which pixels belong to the triangle?
- How do we interpolate values from 3 vertexes?

Using directed lines

- Point is inside the triangle if it is on the left of three directed lines
- They could be on the right too...
- How do we build a simple test for this?

Start by defining a directed line

$$
\mathbf{t}=\mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{0}}=\left(x_{1}-x_{0}, y_{1}-y_{0}\right)
$$

Easy to obtain its normal

Dot product gives us a simple test

This equation must be true for all point p on the line

Using our coordinate system

$$
\begin{aligned}
& A=y_{1}-y_{0} \\
& B=x_{0}-x_{1} \\
& C=y_{0} x_{1}-x_{0} y_{1}
\end{aligned}
$$

Line divides the plane in two

Normal n points to the right of the line Inside (negative values) to the left

Point inside triangle test

```
makeline( vert& v0, vert& v1, line& l )
{
        1.a = v1.y - v0.y;
        l.b = v0.x - v1.x;
        l.c = -(l.a * v0.x + 1.b * v0.y);
}
rasterize( vert v[3] )
{
    line 10, 11, 12;
    makeline(v[0],v[1],12);
    makeline(v[1],v[2],10);
    makeline(v[2],v[0],11);
    for( y=0; y<YRES; y++ ) {
        for( x=0; x<XRES; x++ ) {
            e0 = 10.a * x + 10.b * y + 10.c;
            e1 = 11.a * x + 11.b * y + 11.c;
            e2 = 12.a * x + 12.b * y + 12.c;
            if( e0<=0 && e1<=0 && e2<=0 )
                fragment(x,y);
            }
    }
}
```


Barycentric interpolation

Triangle

Summary

- Rasterization
- Which pixels belong to the primitive
- How do I interpolate vertex atributes?
- Lines
- Consider them rectangles
- Linear interpolation
- Triangles
- Use three directed lines
- Barycentric interpolation

