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OpenGL is a library of function calls for doing computer graphics. With it, 
you can create interactive applications that render high-quality color 
images composed of 3D geometric objects and images. 
Additionally, the OpenGL API is window and operating system 
independent. That means that the part of your application that draws can 
be platform independent. However, in order for OpenGL to be able to 
render, it needs a window to draw into. Generally,  this is controlled by the 
windowing system on whatever platform you are working on. 
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While OpenGL has been around for close to 20 years, a lot of changes have 
occurred in that time.  This course concentrates on the latest versions of OpenGL 
– specifically OpenGL 4.1.  In these modern versions of OpenGL (which we 
defined as versions starting with version 3.1), OpenGL applications are shader 
based.  In fact most of this course will discuss shaders and the operations they 
support. 
If you’re familiar with previous versions of OpenGL, or other rasterization-based 
graphics pipelines that may have included fixed-function processing, we won’t be 
covering those techniques.  Instead, we’ll concentrate on showing how we can 
implement those techniques on a modern, shader-based graphics pipeline. 
In this modern world of OpenGL, all applications will need to provide shaders, 
and as such, providing some perspective on how the pipeline evolved and its 
phases will be illustrative.  We’ll discuss this next. 
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The initial version of OpenGL was announced in July of 1994.  That version of OpenGL 
implemented what s called a fixed-function pipeline, which means that all of the 
operations that OpenGL supported were fully-defined, and an application could only 
modify their operation by changing a set of input values (like colors or positions).  The 
other point of a fixed-function pipeline is that the order of operations was always the 
same – that is, you can t reorder the sequence operations occur. 
This pipeline was the basis of many versions of OpenGL and expanded in many ways, 
and is still available for use.  However, modern GPUs and their features have diverged 
from this pipeline, and support of these previous versions of OpenGL are for supporting 
current applications.  If you re developing a new application, we strongly recommend 
using the techniques that we ll discuss.  Those techniques can be more flexible, and will 
likely preform better than using one of these early versions of OpenGL. 

6 SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



While many features and improvements were added into the fixed-function OpenGL 
pipeline, designs of GPUs were exposing more features than could be added into 
OpenGL.  To allow applications to gain access to these new GPU features, OpenGL 
version 2.0 officially added programmable shaders into the graphics pipeline.  This 
version of the pipeline allowed an application to create small programs, called shaders, 
that were responsible for implementing the features required by the application.  In the 
2.0 version of the pipeline, two programmable stages were made available: 
•vertex shading enabled the application full control over manipulation of the 3D 
geometry provided by the application 
•fragment shading provided the application capabilities for shading pixels (the terms 
classically used for determining a pixel’s color). 
OpenGL 2.0 also fully supported OpenGL 1.X’s pipeline, allowing the application to use 
both version of the pipeline: fixed-function, and programmable.  
 
 
 
 
Note: some OpenGL implementations also include a debug context which provides enhanced debugging information about.  Debug 
contexts are currently an extension to OpenGL, and not a required type of context. 
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Until OpenGL 3.0, features have only been added (but never removed) from OpenGL, 
providing a lot of application backwards compatibility (up to the use of extensions).  
OpenGL version 3.0 introduced the mechanisms for removing features from OpenGL, 
called the deprecation model.  It defines how the OpenGL design committee (the 
OpenGL Architecture Review Board (ARB) of the Khronos Group) will advertise of which 
and how functionality is removed from OpenGL. 
You might ask: why remove features from OpenGL?  Over the 15 years to OpenGL 3.0, 
GPU features and capabilities expanded and some of the methods used in older versions 
of OpenGL were not as efficient as modern methods.  While removing them could break 
support for older applications, it also simplified and optimized the GPUs allowing better 
performance. 
Within an OpenGL application, OpenGL uses an opaque data structure called a context, 
which OpenGL uses to store shaders and other data.  Contexts come in two flavors: 
•full contexts expose all the features of the current version of OpenGL, including 
features that are marked deprecated. 
•forward-compatible contexts enable only the features that will be available in the next 
version of OpenGL (i.e., deprecated features pretend to be removed), which can help 
developers make sure their applications work with future version of OpenGL. 
Forward-compatible contexts are available in OpenGL versions from 3.1 onwards. 

8 SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



OpenGL version 3.1 was the first version to remove deprecated features, and break 
backwards compatibility with previous versions of OpenGL.  The features removed from 
included the old-style fixed-function pipeline, among other lesser features. 
One major refinement introduced in 3.1 was requiring all data to be placed in GPU-
resident buffer objects, which help reduce the impacts of various computer system 
architecture limitations related to GPUs. 
While many features were removed from OpenGL 3.1, the OpenGL ARB realized that to 
make it easy for application developers to transition their products, they introduced an 
OpenGL extensions, GL_ARB_compatibility, that allowed access to the removed 
features. 
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Until OpenGL 3.2, the number of shader stages in the OpenGL pipeline remained the 
same, with only vertex and fragment shaders being supported.  OpenGL version 3.2 
added a new shader stage called geometry shading which allows the modification (and 
generation) of geometry within the OpenGL pipeline.  We briefly discuss geometry 
shaders later in the presentation. 
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In order to make it easier for developers to choose the set of features they want to use 
in their application, OpenGL 3.2 also introduced profiles which allow further selection of 
OpenGL contexts. 
The core profile is the modern, trimmed-down version of OpenGL that includes the 
latest features.  You can request a core profile for a Full or Forward-compatible profile.  
Conversely, you could request a compatible profile, which includes all functionality 
(supported by the OpenGL driver on your system) in all versions of OpenGL up to, and 
including, the version you ve requested. 
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The OpenGL 4.X pipeline added another pair of shaders (which work in tandem, so we 
consider it a single stage) for supporting dynamic tessellation in the GPU.  Tessellation 
control and tessellation evaluation shaders were added to OpenGL version 4.0. 
The current version of OpenGL is 4.1, which includes some additional features over the 
4.0 pipeline, but no new shading stages. 
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At the 2011 SIGGRAPH conference, the OpenGL working group of the Khronos Group 
announced OpenGL version 4.2.  While this release did not add any new stages to the 
pipeline, it did greatly enhance the computational aspects of the GLSL shaders.  In 
particular, the major updates in this release included adding integer-typed atomic 
operations form shaders, and random-access read-modify-write  operations to images, 
among other features.  The ability to write to images after execution of a shader (which 
is different than rendering to a texture, which we’ll discuss later) allows for what are 
commonly called “side effects from shaders” where the execution of a shader changes 
the downstream data of other shaders. 
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To begin, let us introduce a simplified model of the OpenGL pipeline.  Generally 
speaking, data flows from your application through the GPU to generate an image in the 
frame buffer.  Your application will provide vertices, which are collections of data that 
are composed to form geometric objects, to the OpenGL pipeline.  The vertex processing 
stage uses a vertex shader to process each vertex, doing any computations necessary to 
determine where in the frame buffer each piece of geometry should go.  The other 
shading stages we mentioned – tessellation and geometry shading – are also used for 
vertex processing, but we’re trying to keep this simple at the moment. 
After all the vertices for a piece of geometry are processed, the rasterizer determines 
which pixels in the frame buffer are affected by the geometry, and for each pixel, the 
fragment processing stage is employed, where the fragment shader runs to determine 
the final color of the pixel. 
In your OpenGL applications, you’ll usually need to do the following tasks: 
•specify the vertices for your geometry 
•load vertex and fragment shaders (and other shaders, if you’re using them as well) 
•issue your geometry to engage the OpenGL pipeline for processing 
Of course, OpenGL is capable of many other operations as well, many of which are 
outside of the scope of this introductory course.  We have included references at the 
end of the notes for your further research and development. 
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You’ll find that a few techniques for programming with modern OpenGL goes a long way.  
In fact, most programs – in terms of OpenGL activity – are very repetitive.  Differences 
usually occur in how objects are rendered, and that’s mostly handled in your shaders. 
There four steps you’ll use for rendering a geometric object are as follows: 
1.First, you’ll load and create OpenGL shader programs from shader source programs 
you create 
2.Next, you will need to load the data for your objects into OpenGL’s memory.  You do 
this by creating buffer objects and loading data into them. 
3.Continuing, OpenGL needs to be told how to interpret the data in your buffer objects 
and associate that data with variables that you’ll use in your shaders.  We call this shader 
plumbing. 
4.Finally, with your data initialized and shaders set up, you’ll render your objects 

 
We’ll expand on those steps more through the course, but you’ll find that most 
applications will merely iterate through those steps. 
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While OpenGL will take care of filling the pixels in your application’s output window or 
image, it has no mechanisms for creating that rendering surface.  Instead, OpenGL relies 
on the native windowing system of your operating system to create a window, and make 
it available for OpenGL to render into.  For each windowing system (like Microsoft 
Windows, or the X Window System on Linux [and other Unixes]), there’s a binding library 
that lets mediates between OpenGL and the native windowing system.   
Since each windowing system has different semantics for creating windows and binding 
OpenGL to them, discussing each one is outside of the scope of this course.  Instead, we 
use an open-source library named Freeglut that abstracts each windowing system’s 
specifics into a simple library.  Freeglut is a derivative of an older implementation called 
GLUT, and we’ll use those names interchangeably.  GLUT will help us in creating 
windows, dealing with user input and input devices, and other window-system activities. 
You can find out more about Freeglut at its website: 
http://freeglut.sourceforge.net 
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Just like window systems, operating systems have different ways of working with 
libraries.  In some cases, the library you link your application exposes different functions 
than the library you execute your program with.  Microsoft Windows is a notable 
example where you compile your application with a .lib library, but use a .dll at 
runtime for finding function definitions. As such, your application would generally need 
to use operating-system specific methods to access functions.  In general, this is 
troublesome and a lot of work.  Fortunately, another open-source library comes to our 
aid, GLEW, the OpenGL Extension Wrangler library.  It removes all the complexity of 
accessing OpenGL functions, and working with OpenGL extensions.  We use GLEW in our 
examples to simplify the code.  You can find details about GLEW at its website: 
http://glew.sourceforge.net 
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In OpenGL, as in other graphics libraries, objects in the scene are composed of 
geometric primitives, which themselves are described by vertices.  A vertex in modern 
OpenGL is a collection of data values associated with a location in space.  Those data 
values might include colors, reflection information for lighting, or additional coordinates 
for use in texture mapping. 
Vertices must be organized in OpenGL server-side objects called vertex buffer objects 
(also known asVBOs), which need to contain all of the vertex information for all of the 
primitives that you want to draw at one time.  VBOs can store vertex information in 
almost any format (i.e., an array-of-structures (AoS) each containing a single vertex’s 
information, or a structure-of-arrays (SoA) where all of the same “type” of data for a 
vertex is stored in a contiguous array, and the structure stores arrays for each attribute 
that a vertex can have).  The data within a VBO needs to be contiguous in memory, but 
doesn’t need to be tightly packed (i.e., data elements may be separated by any number 
of bytes, as long as the number of bytes between attributes is consistent). 
VBOs are further required to be stored in vertex array objects (known as VAOs).  Since it 
may be the case that numerous VBOs are associated with a single object, VAOs simplify 
the management of the collection of VBOs. 
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As our cube is constructed from square cube faces, we create a small function, quad(), 
which takes the indices into the original vertex color and position arrays, and copies the 
data into the VBO staging arrays.  If you were to use this method (and we’ll see better 
ways in a moment), you would need to remember to reset the Index value between 
setting up your VBO arrays. 
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Here we complete the generation of our cube’s VBO data by specifying the six faces 
using index values into our original vertex_positions and vertex_colors arrays.  
It’s worth noting that the order that we choose our vertex indices is important, as it will 
affect something called backface culling later. 
We’ll see later that instead of creating the cube by copying lots of data, we can use our 
original vertex data along with just the indices we passed into quad() here to 
accomplish the same effect.  That technique is very common, and something you’ll use a 
lot.  We chose this to introduce the technique in this manner to simplify the OpenGL 
concepts for loading VBO data. 
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While we’ve talked a lot about VBOs, we haven’t detailed how one goes about creating 
them.  Vertex buffer objects, like all (memory) objects in OpenGL (as compared to 
geometric objects) are created in the same way, using the same set of functions.  In fact, 
you’ll see that the pattern of calls we make here are similar to other sequences of calls 
for doing other OpenGL operations. 
In the case of vertex buffer objects, you’ll do the following sequence of function calls: 
1.Generate a buffer’s name by calling glGenBuffers() 
2.Next, you’ll make that buffer the “current” buffer, which means it’s the selected buffer 
for reading or writing data values by calling glBindBuffer(), with a type of 
GL_ARRAY_BUFFER.  There are different types of buffer objects, with an array buffer 
being the one used for storing geometric data. 
3.To initialize a buffer, you’ll call glBufferData(), which will copy data from your 
application into the GPU’s memory.  You would do the same operation if you also 
wanted to update data in the buffer 
4.Finally, when it comes time to render using the data in the buffer, you’ll once again call 
glBindVertexArray() to make it and its VBOs current again.  In fact, if you have 
multiple objects, each with their own VAO, you’ll likely call glBindVertexArray() 
once per frame for each object. 
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The above sequence of calls illustrates generating, binding, and initializing a VBO with 
data.  In this example, we use a technique permitting data to be loaded into two steps, 
which we need as our data values are in two separate arrays.  It’s noteworthy to look at 
the glBufferData() call; in this call, we basically have OpenGL allocate an array sized 
to our needs (the combined size of our point and color arrays), but don’t transfer any 
data with the call, which is specified with the NULL value.  This is akin to calling 
malloc() to create a buffer of uninitialized data.  We later load that array with our 
calls to glBufferSubData(), which allows us to replace a subsection of our array.  
This technique is also useful if you need to update data inside of a VBO at some point in 
the execution of your application. 
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The final step in preparing you data for processing by OpenGL (i.e., sending it 
down for rendering) is to specify which vertex attributes you’d like issued to the 
graphics pipeline.  While this might seem superfluous, it allows you to specify 
multiple collections of data, and choose which ones you’d like to use at any given 
time. 
Each of the attributes that we enable must be associated with an “in” variable of 
the currently bound vertex shader.  You retrieve vertex attribute locations was 
retrieved from the compiled shader by calling glGetAttribLocation().  We 
discuss this call in the shader section. 
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To complete the “plumbing” of associating our vertex data with variables in our shader 
programs, you need to tell OpenGL where in our buffer object to find the vertex data, 
and which shader variable to pass the data to when we draw. The above code snippet 
shows that process for our two data sources.  In our shaders (which we’ll discuss in a 
moment), we have two variables: vPosition, and vColor, which we will associate 
with the data values in our VBOs that we copied form our vertex_positions and 
vertex_colors arrays. 
The calls to glGetAttribLocation() will return a compiler-generated index which 
we need to use to complete the connection from our data to the shader inputs.  We also 
need to “turn the valve” on our data by enabling its attribute array by calling 
glEnableVertexAttribArray() with the selected attribute location. 
This is the most flexible approach to this process, but depending on your OpenGL 
version, you may be able to use the layout construct, which allows you to specify the 
attribute location, as compared to having to retrieve it after compiling and linking your 
shaders.  We’ll discuss that in our shader section later in the course. 
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In order to initiate the rendering of primitives, you need to issue a drawing 
routine.  While there are many routines for this in OpenGL, we’ll discuss the most 
fundamental ones.  The simplest routine is glDrawArrays(), to which you 
specify what type of graphics primitive you want to draw (e.g., here we’re rending 
a triangle strip), which vertex in the enabled vertex attribute arrays to start with, 
and how many vertices to send. 
This is the simplest way of rendering geometry in OpenGL Version 3.1.  You 
merely need to store you vertex data in sequence, and then glDrawArrays() 
takes care of the rest.  However, in some cases, this won’t be the most memory 
efficient method of doing things.  Many geometric objects share vertices between 
geometric primitives, and with this method, you need to replicate the data once 
for each vertex.  We’ll see a more flexible, in terms of memory storage and 
access in the next slides. 
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As with any programming language, GLSL has types for variables.  However, it 
includes vector-, and matrix-based types to simplify the operations that occur 
often in computer graphics. 
In addition to numerical types, other types like texture samplers are used to 
enable other OpenGL operations.  We’ll discuss texture samplers in the texture 
mapping section. 
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The vector and matrix classes of GLSL are first-class types, with arithmetic and logical 
operations well defined.  This helps simplify your code, and prevent errors. 
 
Both a*m and m*a are valid but yield different results. In matrix terms a*m is a 1 x 4 
times a 4 x 4 yielding a 1 x 4 whereas m*a is 4 x 4 times a 4 x 1 yielding a 4 x 1 but in 
GLSL both operations yield a vec4. 
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For GLSL’s vector types, you’ll find that often you may also want to access components 
within the vector, as well as operate on all of the vector’s components at the same time.  
To support that, vectors and matrices (which are really a vector of vectors), support 
normal “C” vector accessing using the square-bracket notation (e.g., “[i]”), with zero-
based indexing.  Additionally, vectors (but not matrices) support swizzling, which 
provides a very powerful method for accessing and manipulating vector components. 
Swizzles allow components within a vector to be accessed by name.  For example, the 
first element in a vector – element 0 – can also be referenced by the names “x”, “s”, and 
“r”.  Why all the names – to clarify their usage.  If you’re working with a color, for 
example, it may be clearer in the code to use “r” to represent the red channel, as 
compared to “x”, which make more sense as the x-positional coordinate 
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In addition to types, GLSL has numerous qualifiers to describe a variable usage.  The 
most common of those are: 
•in qualifiers that indicate the shader variable will receive data flowing into the shader, 
either from the application, or the previous shader stage. 
•out qualifier which tag a variable as data output where data will flow to the next 
shader stage, or to the framebuffer 
•uniform qualifiers for accessing data that doesn’t change across a draw operation 
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Like the “C” language, GLSL supports all of the logical flow control statements you’re 
used to. 
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Here’s the associated fragment shader that we use in our cube example.  While 
this shader is as simple as they come – merely setting the fragment’s color to the 
input color passed in, there’s been a lot of processing to this point.  In particular, 
every fragment that’s shaded was generated by the rasterizer, which is a built-in, 
non-programmable (i.e., you don’t write a shader to control its operation).  What’s 
magical about this process is that if the colors across the geometric primitive (for 
multi-vertex primitives: lines and triangles) is not the same, the rasterizer will 
interpolate those colors across the primitive, passing each iterated value into our 
color variable. 
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Shaders need to be compiled in order to be used in your program. As compared to C 
programs, the compiler and linker are implemented in the OpenGL driver, and accessible 
through function calls from within your program. The diagram illustrates the steps 
required to compile and link each type of shader into your shader program. A program 
can contain either a vertex shader (which replaces the fixed-function vertex processing), 
a fragment shader (which replaces the fragment coloring stages), or both. If a shader 
isn’t present for a particular stage, the fixed-function part of the pipeline is used in its 
place. 
Just a with regular programs, a syntax error from the compilation stage, or a missing 
symbol from the linker stage could prevent the successful generation of an executable 
program. There are routines for verifying the results of the compilation and link stages of 
the compilation process, but are not shown here. Instead, we’ve provided a routine that 
makes this process much simpler, as demonstrated on the next slide. 
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To simplify our lives, we created a routine that simplifies loading, compiling, and linking 
shaders: InitShaders().  It implements the shader compilation and linking process 
shown on the previous slide. It also does full error checking, and will terminate your 
program if there’s an error at some stage in the process (production applications might 
choose a less terminal solution to the problem, but it’s useful in the classroom). 
InitShaders() accepts two parameters, each a filename to be loaded as source for 
the vertex and fragment shader stages, respectively. 
The value returned from InitShaders() will be a valid GLSL program id that you can 
pass into glUseProgram(). 
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OpenGL shaders, depending on which stage their associated with, process different 
types of data.  Some data for a shader changes for each shader invocation.  For example, 
each time a vertex shader executes, it’s presented with new data for a single vertex; 
likewise for fragment, and the other shader stages in the pipeline.  The number of 
executions of a particular shader rely on how much data was associated with the draw 
call that started the pipeline – if you call glDrawArrays() specifiying 100 vertices, your 
vertex shader will be called 100 times, each time with a different vertex. 
Other data that a shader may use in processing may be constant across a draw call, or 
even all the drawing calls for a frame.  GLSL calls those uniform varialbes, since their 
value is uniform across the execution of all shaders for a single draw call. 
Each of the shader’s input data variables (ins and uniforms) needs to be connected to a 
data source in the application.  We’ve already seen glGetAttribLocation() for retrieving 
information for connecting vertex data in a VBO to shader variable.  You will also use the 
same process for uniform variables, as we’ll describe shortly. 
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Once you know the names of variables in a shader – whether they’re attributes or 
uniforms – you can determine their location using one of the glGet*Location() 
calls. 
If you don’t know the variables in a shader (if, for instance, you’re writing a library 
that accepts shaders), you can find out all of the shader variables by using the 
glGetActiveAttrib() function. 
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You’ve already seen how one associates values with attributes by calling 
glVertexAttribPointer().  To specify a uniform’s value, we use one of the 
glUniform*() functions.  For setting a vector type, you’ll use one of the 
glUniform*() variants, and for matrices you’ll use a glUniformMatrix *() form. 
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You’ll find that many OpenGL programs look very similar, particularly simple examples as 
we’re showing in class.  Above we demonstrate the basic initialization code for our 
examples.  In our main() routine, you can see our use of the Freeglut and GLEW libraries. 
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Here are two of our GLUT callbacks: 
• display() which controls the drawing of our objects.  While this is an extremely simple 
display() function, you’ll find that almost all functions will have this form: 

1. clear the “window” 
2. render 
3. swap the buffers 

• keyboard() which provides some simple keyboard-based user input. 
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We begin delving into shader specifics by first taking a look at vertex shaders.  As you’ve 
probably arrived at, vertex shaders are used to process vertices, and have the required 
responsibility of specifying the vertex’s position in clip coordinates.  This process usually 
involves numerous vertex transformations, which we’ll discuss next.  Additionally, a 
vertex shader may be responsible for determine additional information about a vertex 
for use by the rasterizer, including specifying colors. 
To begin our discussion of vertex transformations, we’ll first describe the synthetic 
camera model. 
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This model has become know as the synthetic camera model. 
Note that both the objects to be viewed and the camera are three-
dimensional while the resulting image is two dimensional. 
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The processing required for converting a vertex from 3D space into a 2D window 
coordinate is done by the transform stage of the graphics pipeline.  The 
operations in that stage are illustrated above.  The purple boxes represent a 
matrix multiplication operation.  In graphics, all of our matrices are 4 4 matrices 
(they’re homogenous, hence the reason for homogenous coordinates). 
When we want to draw an geometric object, like a chair for instance, we first 
determine all of the vertices that we want to associate with the chair.  Next, we 
determine how those vertices should be grouped to form geometric primitives, 
and the order we’re going to send them to the graphics subsystem.  This process 
is called modeling.  Quite often, we’ll model an object in its own little 3D 
coordinate system.  When we want to add that object into the scene we’re 
developing, we need to determine its world coordinates.  We do this by specifying 
a modeling transformation, which tells the system how to move from one 
coordinate system to another.  
Modeling transformations, in combination with viewing transforms, which dictate 
where the viewing frustum is in world coordinates, are the first transformation that 
a vertex goes through.  Next, the projection transform is applied which maps the 
vertex into another space called clip coordinates, which is where clipping occurs.  
After clipping, we divide by the w value of the vertex, which is modified by 
projection.  This division operation is what allows the farther-objects-being-
smaller activity.  The transformed, clipped coordinates are then mapped into the 
window. 
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Note that human vision and a camera lens have cone-shaped viewing 
volumes. OpenGL (and almost all computer graphics APIs) describe a 
pyramid-shaped viewing volume. Therefore, the computer will “see” 
differently from the natural viewpoints, especially along the edges of 
viewing volumes. This is particularly pronounced for wide-angle “fish-eye” 
camera lenses. 
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By using 4 4 matrices, OpenGL can represent all geometric 
transformations using one matrix format.  Perspective projections and 
translations require the 4th row and column.  Otherwise, these operations 
would require an vector-addition operation, in addition to the matrix 
multiplication. 
While OpenGL specifies matrices in column-major order, this is often 
confusing for “C” programmers who are used to row-major ordering for 
two-dimensional arrays.  OpenGL provides routines for loading both 
column- and row-major matrices.  However, for standard OpenGL 
transformations, there are functions that automatically generate the 
matrices for you, so you don’t generally need to be concerned about this 
until you start doing more advanced operations. 
For operations other than perspective projection, the fourth row is always  
(0, 0, 0, 1) which leaves the w-coordinate unchanged. 
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Another essential part of the graphics processing is setting up how much of the 
world we can see.  We construct a viewing frustum, which defines the chunk of 3-
space that we can see.  There are two types of views: a perspective view, which 
you’re familiar with as it’s how your eye works, is used to generate frames that 
match your view of reality–things farther from your appear smaller.  This is the 
type of view used for video games, simulations, and most graphics applications in 
general. 
The other view, orthographic, is used principally for engineering and design 
situations, where relative lengths and angles need to be preserved. 
For a perspective, we locate the eye at the apex of the frustum pyramid.  We can 
see any objects which are between the two planes perpendicular to eye (they’re 
called the near and far clipping planes, respectively).  Any vertices between near 
and far, and inside the four planes that connect them will be rendered.  
Otherwise, those vertices are clipped out and discarded.  In some cases a 
primitive will be entirely outside of the view, and the system will discard it for that 
frame.  Other primitives might intersect the frustum, which we clip such that the 
part of them that’s outside is discarded and we create new vertices for the 
modified primitive. 
While the system can easily determine which primitive are inside the frustum, it’s 
wasteful of system bandwidth to have lots of primitives discarded in this manner.  
We utilize a technique named culling to determine exactly which primitives need 
to be sent to the graphics processor, and send only those primitives to maximize 
its efficiency. 
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In OpenGL, the default viewing frusta are always configured in the same manner, 
which defines the orientation of our clip coordinates.  Specifically, clip coordinates 
are defined with the “eye” located at the origin, looking down the –z axis.  From 
there, we define two distances: our near and far clip distances, which specify the 
location of our near and far clipping planes.  The viewing volume is then 
completely by specifying the positions of the enclosing planes that are parallel to 
the view direction . 
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The images above show the two types of projection transformations that are commonly 
used in computer graphics.  The orthographic view preserves angles, and simulates 
having the viewer at an infinite distance from the scene.  This mode is commonly used in 
used in engineering and design where it’s important to preserve the sizes and angles of 
objects in relation to each other.  Alternatively, the perspective view mimics the 
operation of the eye with objects seeming to shrink in size the farther from the viewer 
they are. 
The each projection, the matrix that you would need to specify is provided.  In those 
matrices, the six values for the positions of the left, right, bottom, top, near and far 
clipping planes are specified by the first letter of the plane’s name.  The only limitations 
on the values is for perspective projections, where the near and far values must be 
positive and non-zero, with near greater than far. 
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LookAt() generates a viewing matrix based on several points. 
LookAt() provides natrual semantics for modeling flight application, but 
care must be taken to avoid degenerate numerical situations, where the 
generated viewing matrix is undefined. 
An alternative is to specify a sequence of rotations and translations that 
are concatenated with an initial identity matrix. 
Note: that the name modelview matrix is appropriate since moving objects 
in the model front of the camera is equivalent to moving the camera to 
view a set of objects. 
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Using the values passed into the LookAt() call, the above matrix generates the 
corresponding viewing matrix. 
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Here we show the construction of a translation matrix.  Translations really move 
coordinate systems, and not individual objects.   
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Here we show the construction of a scale matrix, which is used to change the 
shape of space, but not move it (or more precisely, the origin).  The above 
illustration has a translation to show how space was modified, but a simple scale 
matrix will not include such a translation. 
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Here we show the effects of a rotation matrix on space.  Once again, a 
translation has been applied in the image to make it easier to see the rotation’s 
affect. 
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The formula for generating a rotation matrix is a bit more complex that for scales 
and translations.  Naming the axis of rotation v, we begin by normalizing v and 
storing the result in the vector u.  From there, we create a 3  3 matrix M, which 
is composed of the sum of three terms. 
1.The outer product of the vector u with its transpose ut 

2.The difference of the identity matrix, I, with u’s outer product, scaled the by the 
cosine of the input angle θ 
3.Finally, we scale the matrix S which is composed of the elements of the rotation 
matrix. 
The complete rotation matrix is formed by composing M as the upper 3  3 
matrix in R. 
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Here’s an example vertex shader for rotating our cube.  We generate the matrices in the 
shader (as compared to in the application), based on the input angle theta.  It’s useful 
to note that we can vectorize numerous computations.  For example, we can generate a 
vectors of sines and cosines for the input angle, which we’ll use in further computations. 
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Completing our shader, we compose two of three rotation matrices (one around each 
axis). In generating our matrices, we use one of the many matrix constructor functions 
(in this case, specifying the 16 individual elements).  It’s important to note in this case, 
that our matrices are column-major, so we need to take care in the placement of the 
values in the constructor.  
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We complete our shader here by generating the last rotation matrix, and ) and then use 
the composition of those matrices to transform the input vertex position.   We also pass-
thru the color values by assigning the input color to an output variable. 
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Finally, we merely need to supply the angle values into our shader through our uniform 
plumbing.  In this case, we track each of the axes rotation angle, and store them in a 
vec3 that matches the angle declaration in the shader.  We also keep track of the 
uniform’s location so we can easily update its value. 
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We’ll now analyze a few case studies from different applications. 
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We begin delving into shader specifics by first taking a look at vertex shaders.  As you’ve 
probably arrived at, vertex shaders are used to process vertices, and have the required 
responsibility of specifying the vertex’s position in clip coordinates.  This process usually 
involves numerous vertex transformations, which we’ll discuss next.  Additionally, a 
vertex shader may be responsible for determine additional information about a vertex 
for use by the rasterizer, including specifying colors. 
To begin our discussion of vertex transformations, we’ll first describe the synthetic 
camera model. 
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This model goes back to the fixed function pipeline which supported both a model-view 
transformation and a projection transformation. As we saw with our first example none 
of these coordinate systems are necessary as long as values that make sense in clip 
coordinates are output by the vertex shader. Nevertheless, these coordinates are very 
useful for building applications and most OpenGL application programmers continue to 
use them for modeling and viewing. 
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The functions LookAt, Ortho, Frustum and Perspective are similar to the fixed function 
pipeline functions but each produces a mat4 type in the application, e.g. 
 
mat4 myModelView = Ortho(left, right, botttom, top, near, far) 
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Simple convention is to use an “a” as the first letter of an application variable, a “v” as 
the first letter if name of a vertex shader variable and an “f” as the first letter of the 
name of a fragment shader variable. 
 
Second parameter in glUniformMatrix is number of matrices being sent. Third parameter 
indicates we want the matrix transposed to take care of the difference between row 
major and column major representations. 
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Gl_Position is now in clip coordinates. 
 
Often we need the position in camera coordinates for lighting and other calculations. 
We’ll see examples later. 
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The angles theta_x, theta_y and theta_z are known as the Euler angles. They are one of 
many ways to specify a rotation in three dimensions. 
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Here’s an example vertex shader for rotating our cube.  We generate the matrices in the 
shader (as compared to in the application), based on the input angle theta.  It’s useful 
to note that we can vectorize numerous computations.  For example, we can generate a 
vectors of sines and cosines for the input angle, which we’ll use in further computations. 
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Completing our shader, we compose two of three rotation matrices (one around each 
axis). In generating our matrices, we use one of the many matrix constructor functions 
(in this case, specifying the 16 individual elements).  It’s important to note in this case, 
that our matrices are column-major, so we need to take care in the placement of the 
values in the constructor.  
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We complete our shader here by generating the last rotation matrix, and ) and then use 
the composition of those matrices to transform the input vertex position.   We also pass-
thru the color values by assigning the input color to an output variable. 
 
Note here that we have again assumed input positions are in clip coordinates. We could 
easily add the model-view and projection matrices so that that last line of the shader 
would become: 
 
gl_Position = ProjectionMatrix*ModelViewMatrix*rz * ry * rx * 
vPosition; 
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We’d first like to render a wire-frame version of our mesh, which we’ll draw a 
individual line loops. 
To begin, we build our data set by sampling the function f for a particular time 
across the domain of points.  From there, we build our array of points to render.  
Once we have our data and have loaded into our VBOs we render it by drawing 
the individual wireframe quadrilaterals. 
There are many ways to render a wireframe surface like this – give some thought 
of other methods. 
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Time provided by application using elapsed time function from GLUT and is 
scaled to adjust the speed of the display. The scale factor 5.0 determines 
frequency of the variations in the surface height. The third constant 0,1 
determines the height of the surface variation. 
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Here’s a rendering of the mesh we just generated. 
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Because vertex attributes are determined by the application, we can send multiple sets 
of vertex positions, colors and other attributes. 
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First we allocate an empty  VBO large enough to hold both sets of vertices. Then we load 
the data for each set of vertices. The display callback, draw(), is called by the idle 
callback. Each time it is called we updated the time and draw a single triangle whose 
vertex positions computed in the vertex shader. 
 
To simplify the example, the vertex positions are in clip coordinates so we don’t need 
the model-view and projection matrices. 
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The built-in mix function computers s+vertex1 + (1.0 – s)*vertex2. Note s varies between 
0.0 and 1,0. As in the previous example, the scale factor 0.001 controls how fast the 
triangles morph. 
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The final shading stage that OpenGL supports is fragment shading which allows an 
application per-pixel-location control over the color that may be written to that location.  
Fragments, which are on their way to the framebuffer, but still need to do some pass 
some additional processing to become pixels.  However, the computational power 
available in shading fragments is a great asset to generating images.  In a fragment 
shader, you can compute lighting values – similar to what we just discussed in vertex 
shading – per fragment, which gives much better results, or add bump mapping, which 
provides the illusion of greater surface detail.  Likewise, we’ll apply texture maps, which 
allow us to increase the detail for our models without increasing the geometric 
complexity. 
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As an example of what we can do in a fragment shader, consider using our lighting 
model, but for every pixel, as compared to at the vertex level.  Doing fragment lighting  
provides much better visual result, but using almost identical shader code (except you 
need to move it from your vertex shader into your fragment shader).  The only trick 
required is that we need to have the rasterizer provide us updated normal values for 
each fragment.  However, that’s just like iterating a color, so there’s almost nothing to it. 
Details will be discussed in the next section. 
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Here we show an example of simple fragment shading that yields a result similar 
to the shading you might find in an animated cartoon. Note the smoothness of the 
shading. 
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Textures are images that can be thought of as continuous and be one, two, 
three, or four dimensional. By convention, the coordinates of the image are s, t, r 
and q. Thus for the two dimensional image above, a point in the image is given 
by its (s, t) values with (0, 0) in the lower-left corner and (1, 1) in the top-right 
corner. 
A texture map for a two-dimensional geometric object in (x, y, z) world 
coordinates maps a point in (s, t) space to a corresponding point on the screen. 

SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



The advantage of texture mapping is that visual detail is in the image, not in the 
geometry. Thus, the complexity of an image does not affect the geometric 
pipeline (transformations, clipping) in OpenGL. Texture is added during 
rasterization where the geometric and pixel pipelines meet. 
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Above we show a simple example of mapping the OpenGL logo (stored as a 
texture) onto a rectangular polygon.  Textures can be any size (up to an 
implementation maximum size), and aspect ratio. 
A major point to realize is that an image file is different than a texture.  OpenGL 
has no capabilities for reading or writing image files – that’s something left to 
external libraries.  The only data that OpenGL requires from an image file is the 
image’s width, height, number of color components, and the pixel data. 

SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



In the simplest approach, we must perform these three steps. 
Textures reside in texture memory. When we assign an image to a texture it is 
copied from processor memory to texture memory where pixels are formatted 
differently.  
Texture coordinates are actually part of the state as are other vertex attributes 
such as color and normals. As with colors, OpenGL interpolates texture inside 
geometric objects. 
Because textures are really discrete and of limited extent, texture mapping is 
subject to aliasing errors that can be controlled through filtering. 
Texture memory is a limited resource and having only  a single active texture can 
lead to inefficient code. 
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The general steps to enable texturing are listed above.  Some steps are optional, 
and due to the number of combinations, complete coverage of the topic is 
outside the scope of this course. 
Here we use the texture object approach.  Using texture objects may enable your 
OpenGL implementation to make some optimizations behind the scenes. 
As with any other OpenGL state, texture mapping requires that glEnable() 
be called.  The tokens for texturing are: 
 GL_TEXTURE_1D - one dimensional texturing 
 GL_TEXTURE_2D - two dimensional texturing 
 GL_TEXTURE_3D - three dimensional texturing 

2D texturing is the most commonly used.  1D texturing is useful for applying 
contours to objects ( like altitude contours to mountains ).  3D texturing is useful 
for volume rendering. 
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The first step in creating texture objects is to have OpenGL reserve some indices 
for your objects.  glGenTextures() will request n texture ids and return 
those values back to you in texIds. 
To begin defining a texture object, you call glBindTexture() with the id of 
the object you want to create.  The target is one of GL_TEXTURE_{123}D().  
All texturing calls become part of the object until the next glBindTexture() 
is called. 
To have OpenGL use a particular texture object, call glBindTexture() with 
the target and id of the object you want to be active. 
To delete texture objects, use glDeleteTextures( n, *texIds ), 
where texIds is an array of texture object identifiers to be deleted.  
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After creating a texture object, you’ll need to bind to it to initialize or use the 
texture stored in the object.  This operation is very similar to what you’ve seen 
when working with VAOs and VBOs. 
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Specifying the texels for a texture is done using the glTexImage{123}D() 
call.  This will transfer the texels in CPU memory to OpenGL, where they will be 
processed and converted into an internal format. 
The level parameter is used for defining how OpenGL should use this image 
when mapping texels to pixels.  Generally, you’ll set the level to 0, unless you are 
using a texturing technique called mipmapping, which we will discuss in the next 
section.    
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When you want to map a texture onto a geometric primitive, you need to 
provide texture coordinates. Valid texture coordinates are between 0 and 1, for 
each texture dimension,  and usually manifest in shaders as vertex attributes.  
We’ll see how to deal with texture coordinates outside the range [0, 1] in a 
moment. 
 
Texture coordinates can be assigned in the application as another vertex 
attribute and sent to the GPU as part of a VBO.  
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Similar to our first cube example, if we want to texture our cube, we need to provide 
texture coordinates for use in our shaders.  Following our previous example, we merely 
add an additional vertex attribute that contains our texture coordinates.  We do this for 
each of our vertices.  We will also need to update VBOs and shaders to take this new 
attribute into account. 

93 SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



The code snippet above demonstrates procedurally generating a 64  64 checkerboard 
texture map. Checkerboard images are good for examining the difference in aliasing 
artifacts for different texture parameters. 
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The above OpenGL commands completely specify a texture object.  The code creates a 
texture id by calling glGenTextures().  It then selects the active texture as well as binds 
the texture object using glBindTexture() to open the object for use, and loading in the 
texture by calling glTexImage2D().  After that, numerous sampler characteristics are set, 
including the texture wrap modes, and texel filtering. 
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In order to apply textures to our geometry, we need to modify both the vertex shader 
and the pixel shader.  Above, we add some simple logic to pass-thru the texture 
coordinates from an attribute into data for the rasterizer. 
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Continuing to update our shaders, we add some simple code to modify our fragment 
shader to include sampling a texture.  How the texture is sampled (e.g., coordinate wrap 
modes, texel filtering, etc.) is configured in the application using the glTexParameter*() 
call. 
 
Just like vertex attributes were associated with data in the application, so too with 
textures.  In particular, you access a texture defined in your application using a texture 
sampler in your shader.  The type of the sampler needs to match the type of the 
associated texture.  For example, you would use a sampler2D to work with a two-
dimensional texture created with glTexImage2D( GL_TEXTURE_2D, … ); 
Within the shader, you use the texture() function to retrieve data values from the 
texture associated with your sampler.  To the texture() function, you pass the sampler as 
well as the texture coordinates where you want to pull the data from. 
Note: the overloaded texture() method was added into GLSL version 3.30.  Prior to that 
release, there were special texture functions for each type of texture sampler (e.g., 
there was a texture2D() call for use with the sampler2D). 
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The largest magnitude component of tex_vec determines which of the six textures to 
use. For example, if tex_vec = (1, 2, 3), the vector intersects the positive z texture map. 
We divide by the largest component (3) to get the required texture coordinates (1/3, 
2/3) for the positive z texture image. 
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We want to compute the reflection vector in eye coordinates. Hence, we need the 
eye position of the vertex which we obtain by using only the model-view matrix. If 
the normal vector is given as an attribute in object coordinates, it must also be 
transformed to eye coordinates The required matrix is called the normal matrix 
and is the upper left 3 x 3 submatrix of the inverse transpose of the model-view 
matrix.  
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The rasterizer interpolates both the texture coordinates and reflection vector to 
get the respective values for the fragment shader. 
 
Recall that all the texture definitions and parameters are in the application 
program. 
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Reflection maps are often used to create a surface that appears highly reflective 
like a mirror. We can accomplish this by using a a cube map of an environment 
by taking six pictures (front, back, left, right, top, bottom) from a camera at the 
center of the environment. We can also construct such images by six renderings 
of the same objects with the camera rotated to get the required views. 
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Details are a little complex 
   Need lighting model 
   Usually do computations in a local frame that changes for each fragment 
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Single rectangle with moving light source. 
 
Bump map is derived from a texture map with which is a step function. 
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Lighting is an important technique in computer graphics. Without lighting, 
objects tend to look like they are made out of plastic. 
OpenGL divides lighting into three parts: material properties, light properties and 
global lighting parameters. 
Lighting is available in both RGBA mode and color index mode. RGBA is more 
flexible and less restrictive than color index mode lighting. 
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OpenGL can use the shade at one vertex to shade an entire polygon (constant shading) 
or interpolated the shades at the vertices across the polygon (smooth shading), the 
default.  
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The orientation of a surface is specified by the normal at each point. For a flat polygon 
the normal is constant over the polygon. Because normals are specified by the 
application program and can be changed between the specification of vertices, when we 
shade a polygon it can appear to be curved. 
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OpenGL lighting is based on the Phong lighting model. At each vertex in the 
primitive, a color is computed using that primitives material properties along 
with the light settings. 
The color for the vertex is computed by adding four computed colors for the final 
vertex color. The four contributors to the vertex color are: 

• Ambient is color of the object from all the undirected light in a scene. 
• Diffuse is the base color of the object under current lighting. There 
must be a light shining on the object to get a diffuse contribution. 
• Specular is the contribution of the shiny highlights on the object. 
• Emission is the contribution added in if the object emits light (i.e., 
glows) 
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The lighting normal tells OpenGL how the object reflects light around a vertex. If 
you imagine that there is a small mirror at the vertex, the lighting normal 
describes how the mirror is oriented, and consequently how light is reflected. 
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Material properties describe the color and surface properties of a material (dull, 
shiny, etc).  The properties described above are components of the Phong 
lighting model, a simple model that yields reasonable results with little 
computation.  Each of the material components would be passed into a vertex 
shader, for example, to be used in the lighting computation along with the 
vertex’s position and lighting normal. 
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Here we declare numerous variables that we’ll use in computing a color using a simple 
lighting model.  All of the uniform values are passed in from the application and describe 
the material and light properties being rendered. 
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In the initial parts of our shader, we generate numerous vector quantities to be used in 
our lighting computation. 
• pos represents the vertex’s position in eye coordinates 
• L represents the vector from the vertex to the light 
• E represents the “eye” vector, which is the vector from the vertex’s eye-space position 
to the origin 
• H is the “half vector” which is the normalized vector half-way between the light and 
eye vectors 
• N is the transformed vertex normal 
Note that all of these quantities are vec3’s, since we’re dealing with vectors, as 
compared to homogenous coordinates.  When we need to convert form a homogenous 
coordinate to a vector, we use a vector swizzle to extract the components we need. 
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Here we complete our lighting computation.  The Phong model, which this shader is 
based on, uses various material properties as we described before.  Likewise, each light 
can contribute to those same properties.  The combination of the material and light 
properties are represented as our “product” variables in this shader.  The products are 
merely the component-wise products of the light and objects same material propreties.  
These values are computed in the application and passed into the shader. 
In the Phong model, each material product is attenuated by the magnitude of the 
various vector products.  Starting with the most influential component of lighting, the 
diffuse color, we use the dot product of the lighting normal and light vector, clamping 
the value if the dot product is negative (which physically means the light’s behind the 
object).  We continue by computing the specular component, which is computed as the 
dot product of the normal and the half-vector raised to the shininess value.  Finally, if 
the light is behind the object, we correct the specular contribution. 
Finally, we compose the final vertex color as the sum of the computed ambient, diffuse, 
and specular colors, and update the transformed vertex position. 
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Several additional APIs have been created that are derivatives of OpenGL. 
OpenGL ES, the OpenGL Embedded System is a version of OpenGL that was specifically 
designed for embedded devices (mobile phones, set-top boxes, tablets, etc.).  It comes 
in two version: 
OpenGL ES 2.0 is the current version that is supported on most devices today.  It’s also 
available on some “desktop” systems. 
WebGL provides OpenGL ES 2.0 functionality from within an HTML5 Canvas element 
inside of a web browser using JavaScript.  
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OpenGL ES, the embedded system version of desktop OpenGL, currently supports two 
versions of the API: 
•OpenGL ES 1.1 –a fixed-function subset of OpenGL (based on OpenGL version 1.3). 
•OpenGL ES 2.0 – a programmable interface to OpenGL (based on OpenGL version 2.1), 
not containing any fixed-function processing (similar to OpenGL version 3.1). 
Most operating systems that support OpenGL ES (Android, Linux, Symbian, QNX) use EGL 
as the binding library between the API and the OS’s windowing system.  The notable 
exception to EGL use is Apple’s iOS™, which uses functionality similar to what’s found in 
Mac OS X (i.e., Cocoa). 
The most notable differences between OpenGL ES and desktop OpenGL are that ES 
originally had support for 16-bit fixed-point numeric values, as well as precision 
qualifiers for fragment shader variables.  (At the time of OpenGL ES 1.1’s release, most 
graphics hardware in mobile and embedded devices didn’t support 32-bit floating-point 
operations in the graphics hardware). 
With OpenGL version 4.1, a new extension GL_ARB_ES_compatibility allows OpenGL ES 
content to run on an OpenGL implementation (however, you’d still need to update the 
windowing code to work with your desktop operating system). 
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WebGL introduces hardware-accelerated 3D rendering through Web browsers that 
support HTML5 and WebGL through an interface based on OpenGL ES 2.0.  If either 
technology isn’t present, the WebGL content will be unable to run. 
HTML5 introduced the canvas element, which is a 2D rendering surface which WebGL 
will use for rendering 3D, and which creates the required WebGL context which contains 
all of the WebGL state and provides the function-call interface for WebGL rendering.  
WebGL applications are written in a combination of HTML5 (for web page layout and 
creating the canvas element), and JavaScript.  In addition to WebGL, an additional 
technology – typed arrays for JavaScript – allows for the efficient storage of OpenGL 
types in OpenGL-style buffer objects. 
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For WebGL, creating a “window” for rendering is very simple – all it takes is adding an 
HTML5 canvas tag into your web page.  The example above shows creating a canvas of 
size 640 480, and with a name of “gl-canvas”.  None of those options are required, but 
they’re convenient, particularly the id field.  We’ll use it to simplify finding our canvas 
so we can configure it for use with WebGL. 
The text between the canvas tags is what the browser will emit if it doesn’t support 
canvases. 
In this example, the background color of the canvas area is controlled by a CSS element.  
Once we have WebGL up and running, we’ll use that for setting all the state, including 
the canvas’ background color. 
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In order to be able to render with WebGL into a canvas, we’ll need to create a WebGL 
context.  This is no different than what you’d do in an “C”-based OpenGL program 
(except when you use GLUT, where creating the context is done by the library). 
We first need to find our canvas element, which we locate using standard HTML DOM 
methods (getElementById()).  We then use a helper function – 
WebGLUtils.setupWebGL() (provided in a JavaScript module, webgl-utils.js, from the 
WebGL group) – which determines if your browser supports WebGL and creates and 
returns a context. 
Once we have a context, we’re ready to draw.  In this case, we just clear the window to 
red.  OpenGL ES, and by virtue WebGL, only present double-buffered windows.  As 
compared to desktop OpenGL, WebGL automatically will swap your buffers (like 
glutSwapBuffers()) once you’re done rendering. 
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As with all modern OpenGL versions, shaders are essential to configuring the rendering 
pipeline.  WebGL, or more specifically, HTML, makes working with shaders simple.  You 
merely need to either include (or import using the src attribute) with a script tag.  
Once again, providing an id attribute will allow us to simplify working with shaders. 
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The compilation process for shaders in WebGL is virtually identical to that of OpenGL, 
except that it’s done in a JavaScript environment.  To simplify this operation for the class, 
we ported our InitShaders() routine for use in WebGL.  Overall, the code is very similar to 
the desktop OpenGL version.  We’ve made this code available, and included it in the 
Appendix. 
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As we’ve seen before, vertex data must reside in vertex buffer objects in desktop 
OpenGL, and that policy is enforced in WebGL as well (which is a difference from 
OpenGL ES, which still supports reading vertex data from client-side vertex arrays).  The 
major difference in dealing with VBOs in WebGL is its use of Typed Arrays an extension 
to JavaScript that’s provided with WebGL that allows for specific data packing in arrays, 
as required by OpenGL and WebGL.  In the above example. you see that we use a 
Float32Array construct, which creates a special WebGL data buffer which is 
compatible with the VBO functions (e.g., bufferData()). 
One major difference between desktop OpenGL and WebGL is how VBOs are bound to 
vertex attributes.  In WebGL, you can place the data for each attribute in its own VBO, as 
compared to loading all vertex data into a single VBO (usually using 
glBufferSubData()).  The major point to keep in mind using this feature is that when 
you bind a vertex attribute pointer to a buffer, the currently bound VBO (as specified by 
bindBuffer() in WebGL) is associated with the vertex attribute index. 
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Working with textures in WebGL is simplified by the support HTML provides for dealing 
with image files.  In JavaScript, we can easily load an image using the Image object.  As 
loading images is asynchronous, the image object provides a callback option to specify 
operations to be executed once the image data is available.  We’ll use that functionality 
to create our texture object, which we’ll discuss on the next slide.  One other point to 
keep in mind is that it’s possible that rendering will finish before the image (and the 
texture based on it) is loaded.  We deal with that situation by rendering our first frame 
only after the image is loaded, which we do by calling our rendering function inside of 
the image’s onload callback. 
WebGL only supports 2D and cubemap textures which must be powers-of-two in each 
dimension (although the values don’t need to be the same), predicated on OpenGL ES’s 
support of only those types. 
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Here we present our routine for configuring a 2D texture based on a JavaScript image.  
As compared to either desktop OpenGL, or OpenGL ES, WebGL overloads a few 
functions allowing multiple interfaces to OpenGL operations.  One case is 
texImage2D(), which has one form that accepts a JavaScript image object, or others 
versions which are like the more classic OpenGL versions. 
One other notable difference is the use of a WebGL option to pixelStorei(), which 
accommodates inverted images (which is how HTML stores images – with image origin 
in the upper-left corner) 
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While there’s nothing particular to WebGL for supporting animation, you will need to 
leverage HTML’s window object to schedule calling of your rendering loop.  The 
requestAnimFrame() method will schedule the execution of a function at the next 
“convenient” time, very similar to glutIdleFunc().  If you want a more periodic 
approach to animation, then you can use the setInterval() method (as one 
example) for having the browser to periodically call a function. 
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A typical GPU can support textures of 8192 x 8192 texels. In addition, new GPUs support 
floating point buffers which make them attractive for numerical calculations that may 
have no graphical basis.We are also interested in various multipass rendering strategies. 
For example, if we compute the six faces of a cube map and then use the cube map for a 
environment map, there are seven renderings required. 
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BltBlt (= Bit Block Transfer) allowed manipulation of rectangles of one-pit piixels called 
bit maps. Operations involved logical operations between source and destination bits. 
 
Draw, Read and Copy were arithmetic operations on rectangular blocks of pixles called 
pixel maps. Loss of resolution was a problem since most CPUs supported only eight 
bits/component pixels. Both Draw and Read involved CPU-GPU transfers of large blocks 
of pixels. Copy was a frame buffer-frame buffer operation. 
 
The accumulation buffer supported floating point operations needed for applications 
such as digital filtering (image processiing) but was implemented in software on the GPU 
so was very slow. 

133 SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



In keeping with what we did with geometric processing, we want to put data on the GPU 
only once and carry out all operations on the data through shaders. 
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Although there is more code to set up a FBO, the idea is similar to how we set up VBOs, 
VAOs and texture objects. We create an FBO, attach the buffers we need to it for an off-
screen rendering, and then render as before. When the render is done, we can detach 
the attached buffers and use their contents for a second rendering to the framebuffer. 
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We will only discuss render to texture (rather to some other kind of buffer). 
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In this example, we will create a 256 x 256 texture by rendering a single triangle. 
 
The parameters for the texture object are fairly standard. The last parameter in 
glTexImage makes this an empty texture. 
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In the first part of the code, we allocate and bind a FBO. Since we are rendering a 2D 
scene, we don’t need to allocate storage on the GPU for a depth buffer. We then attach 
a color buffer for the texture object we bound earlier.  

139 SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



We are now set up for an off-screen rendering which looks like our previous renderings. 
We need to allocate a vertex array object and vertex buffer object and then put the date 
for the triangle in the VBO. 
 
We need two sets of shaders; one for the render to texture and the second for rendering 
to the frame buffer using our new texture. Use two program objects. 
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Vertex positions are assumed to be in clip coordinates. 
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Here too we assume vertex positions are given in clip coordinates to simplify example. 
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By binding the buffer we allocated, we render to the off screen buffer. Otherwise 
rendering is as rendering to the frame buffer. 
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First we bind to the window system frame buffer. We then send the data for our quad. 
We make the texture we created the active texture so it is available for the normal 
rendering. 
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Note that we are using the texture object we created earlier but now it has a texture 
image to use. 

145 SIGGRAPH Asia 2011 

An Introduction to Modern OpenGL Programming 



The texture was created as a 256 x 256 image and the second rendering is to a 512 x 512 
frame buffer using point sampling, we see some jaggedness in the resulting image. 
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The code for this example replaces the second rendering of a single quad from our 
previous example with the code from our cube examples. The colors are determined by 
blending the cube colors with the texture colors: 
 
in vec4 color; 
in vec2 texCoord; 
 
uniform sampler2D texture; 
 
void main()  
{  
    gl_FragColor = 0.5*color + 0.5*texture2D( texture, texCoord ); 
}  
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