An Introduction to Modern
OpenGL Programming

Ed Angel Dave Shreiner
angel@cs.unm.edu shreiner@siggraph.org

GGRAPHASIA2011
HONG KONG

SIGGRAPH Asia 2011
Hong Kong

Table of Contents

An Introduction to Modern OpenGL Programmingcccccvveeeieiiiiiiiieee e eccirree e e 1
FAY ==Y oo £ T OO OO PO TP PP OO TR PPRPPTRTN 2
Y oY B E @ o T=T o1 C I USRS 3
COUISE GrOUND-TUIES ..eueiieiiie et ciee ettt e ettt e st e e ate e s beeestaeessteeesnaeesnbeeenseeesnseesnneennseens 4
The Evolution of the OpenGL Pipelineccoooiiiiiiiiiiiii e 5
[N ThE BEZINNING ... weeeeieeiiie e et e e et e e e et e e e e ebt e e e s sbaeeeeenbaeeesanbaeeesansaeaeans 6
The Start of the Programmable Pipelingooouviiiiiiiiiiecceeeee e 7
AN EVOIULIONAIY Changeuvviiiiei ittt ettt e e e e et e e e e e e e e e saaaaa e e e e e e e e annreaeeeas 8
The Exclusively Programmable Pipelingoovvciiiiiiiiiiieciiee e 9
More Programmabilityoccueeiiiiiii e e e aaaea e 10
More Evolution —Context Profilesc.eeeiiiiiieiiiiis e 11
Y [TSI aF- o 11 V- PP 12
The Latest PIPEIINE ..ottt e et e e e s e e e s aaa e e e s naraeeeennneaeas 13
OpenGL Application Development ..o e e 14
A Simplified Pipeling MOE|ooiiiiiiiiecece et 15
OpenGL Programming in @ NUEShEllc..ooiiiiiiie e 16
Application Framework REQUIFEMENTSeiiiiiiieieciiiiee et e eeaaee e 17
Simplifying Working With OPenGLcoiiiiiiiiiiiiee e e s s saaeee e 18
Geometric Objects aNd OPENGLoeiiiiiiiic e e e e e e ebre e e e bae e e e eareeas 19
Representing GEOMELIiC ODJECES ..iiiiiviiiiiiiiee et 20
Generating a Cube Face from VErtiCeSuiiiiiiiiei et 21
Generating the CUbe fromM FACESooiiiiiiii e 22
STOrING VErteX ALIIDULES ...vviiiiiiiiee et e ett e e e etre e e e s eata e e e eenraeeeeaes 23
VBOS IN COUE .nitiiie ettt ettt e ettt e e e et e e s et e e s eabaeeessabeeeesaasbeeesanseaeessnsaneesanseeessnnes 24
Connecting Vertex Shaders with Geometric Dataccccceeeiiiiieiiiiee e 25
LV o) AN 1V o Yo [P PPPPRRN 26
Drawing GEOMELriC PrimitiVESuuuueeiieiiiiiii e eaaenannnanes 27
OULPUL from CUDE PrOZramuuiii ittt e et e e et e e e e sata e e e esnbaeeeesbreeeeeanes 28
Shaders and GLSLccuiiiiiiiii et e e et e e e st e e e e bae e e e sbae e e e enbaeaeenres 29
G I PR STS 30
GLSL Data Ty PES oo e e e e e e e e e e e e e e 31
O EIATONS e 32
CompPoneNnts anNd SWIZZIINEG ...cocveiieiiiie e e e e et e e e ree e e e e e e 33
(O LU 11 71T PP PR 34
(101 A @o T | o | PRI 35
The Simplest Fragment SNAdENooiciiiii i e eeaaee s 36
Getting Your Shaders into OPENGLcoiiiciiiii ittt e et e e eees 37
A SIMPIET WAY .ttt e e et e e e eta e e e e e ba e e e e eabbeeeeentaeeeeabaeeeearaeeeaane 38
Associating Shader Variables and Dataccccocveeiiiiiiie e 39
Determining Locations After LINKINGcoocviiiieciiiee et et 40
Initializing Uniform Variable Valuescooiiiiiiiiiiecccie e 41

Finishing the CUDE Programcooiii ittt sttt e s bae e 42

Cube Program GLUT Callbacksccccuviiiiiiiiie ettt 43

Vertex Shader EXaMPIES ...uvvii it e e e e e s e e e e e s e aaae e e e e e e e ennnraaees 44
(O T[T = I AN T=1 Lo T4V 45
Transformations —Simplifying Mathematicscccoeviiiiiiiiii e, 46
Camera Analogy and Transformationsccccceeiiiiie e e e 47
R DI N T o1 o ' =14 o o -SSR 48
SPeCifYinNg WhHat YOU Can SEEuuiiiiiiiiiee ettt ettt e e st e e e sntaee e ssntaeeesnnbaeeesnes 49
Specifying What You Can See (CONt'd) ..oocveiiiiiiiie et e 50
Specifying What You Can See (CONt'd) ..ooccueiiiiiiiie et 61
Viewing TransformMatioNnsoociiiii i e s s stae e s ssaraeeesnes 62
Creating the LOOKAL IMIAtriXc..ceiiiiiiei ittt eabae e e e earae e e e 63
LI 10151 =4 T o TSSOSO 64
R Y o= 11U PPRPPRRRN 65
ROTATION it e e st e e e e e s e e e e e e e s annnee 66
ROTAION (CONTA) .uriiieiiiiie ettt e et e e et e e et a e e e e bae e e e e ataeeeeaasseeeeansseeaean 67
Vertex Shader for Rotation of CUDEcccviviciii et 68
Vertex Shader for Rotation of CUDEcocuiiiiiiiiiiic e 69
Vertex Shader for Rotation of CUDEoouiiiciiiceccee s 60
Sending Angles from APPLICAtION ...cocveiiiiiieie e 61
VErteX SNAUEISoeiiiiiiiee e e et e e e st e e e st e e e et e e e e nbae e e e abaeeeenrees 62
SHAAEr EXAMPIES ..ottt et e et e e et e e e e ata e e e eeataeeesantaeeesantaeeeeanraeeeanes 63
Vertex Shader TransformMationsoouee ettt e s e e 64
Model-View and Projection IMAtriCESuuiviuiieeiiiiiieesiieeeseee st e e sree e e bae e s 65
Model-View and Projection Matrices (CONt'd) ..ccueeeeeiiieieeiieee e 66
SeNdiNG tO VErTeX SNAUEIiiiiiiiie ettt rate e e et e e e e eataeeeeans 67
) g F= T 1= o Yo [PPSR 68
ROTAtING @ CUDE .. e e e et e e e st e e e e s aa e e e e s aaaeeesreeaean 69
ApPPIYING the ROTAION ..eiiiiiiiiic ettt eeate e e e s sate e e e serreeeenes 70
Vertex Shader for Rotation of CUDEoccueiiiiiicie e 71
Vertex Shader for Rotation of CUDEcoouiiiiiiiiiii e 72
Vertex Shader for Rotation of CUDEcoociiiiiiiiiii e 73
Displaying @ Height FIeldooiiieiiieceee e et e e 74
TiMe Varying VerteX SNA0EIccuviii ittt e e e e e e saaeee s 75
V1S o T DI 1] - 1V PSRRI 76
Vo o] a1V =TSR 77
MOrpPhing TWO TrHANEIES ..cciceiiiie ittt e e st e e e sba e e e e saeeessnaeeas 78
MOrphing VErteX SNAGENooi it e et e e e r e e e e arae e e enraeeas 79
Fragment SRATErSooo o e e e e e et e e e e e e e e e e e e naraeeean 80
o= a1 Y T =T PRI 81
Per Fragment LIZNTINGcoiiiciiii ettt e et e e et e e e e ara e e e e eaaaeaean 82
Cartoon Fragment Shader RESUILccuiiiiiiiiiic e e 83
QI UL =T Y/ - T o o] 1V 84
Texture Mapping and the OpenGL PipeliNgcccuviiiiiiiiie it 85
TEXEUIE EXAMIPIE .eiiiiiiiiiie ettt e e e e e st e e e e st b e e e e snbaeeeeansbaeesansaaeeeansseeaenn 86

APPIYING TEXLUIES | et e e e e e e s e e e e e e s s tr e e e e e e s esnnsaneaeeeeeeeesannsrneeeas 87

APPIYING TEXLUIES 1] <.ttt e et e e e e et e e e e et be e e esnbaeeeesbaeeeeasaeeesnes 88

TEXEUIE OBJECLS .uvviiiieeiiiiiiiiieeee ettt e e e e e et ee e e e e e e e e stabta e e e e e e e ssssnsstareeeeeeeeasnsnannaeeeesesnnenns 89
Texture ObJECES (CONT'AL) wiiiiiiiii et e et e e et e e e e ar e e e e e atbeeeeeasaeeaean 90
SPECITYING @ TEXEUINE IMAGE w.eiiiieiiie ettt e et e e e sbbe e e e sbaeeeesbaaeeeanns 91
VT o] o LY== T =) 4 U= N 92
ApPPIYING TEXTUIE 10 CUDE ..uviiiiiiiee ettt e e e e e tre e e e e are e e e snraeeeeans 93
Creating @ TEXTUIE IMAGE .oii ittt et e e e e e e s st e e e e e e s e aanbeaeeeas 94
L U=l O] o =Tt AU 95
LT oD Y - o 1= OSSPSR 96
e o = a1 Y o =T LT PR UPR 97
Cube With Color and TEXEUIEeiiuieiiiieiiie ettt s e st e sibe e e sateesbeeesaeeas 98
[MQAEE PrOCESSING .vvvvvriiieieiiiiiiiuiiiiiieneuereueneeereeerereeararea———————————————asnnn 99
Color Cube With EAge DELECLOI .uvviiiieieiiieeee ettt e e e e e e e aaraeeeeeas 100
(GIT] TNV, =T o 1 PR 101
Cube Map Fragment SNAdEruviiiii i e e et e e e e e e e anrraae s 102
REFIECHION IMIAP .ttt e ettt e e e et e e e e e bt e e e e sbbeeeeebteeeeesbeeeeesaanaeans 103
Reflection Map VerteX SHAdErcoooiiiiiiiiiee et e e aaaee s 104
Reflection Map Fragment SHAderoviiiiiiii ettt et e 105
Reflection MapPed tEAPOTeii i e e e et e e e e e e e araeeesenaeeeeas 106
BUMP IMTAPPINE ittt e sttt e e e s sttt e e e e e s s bbb e e eeeessssabbbeeeeeessannsnnenes 107
BUMP MaP EXGMIPIE oottt e et e s et e e e e aa e e e enata e e e eenaaeeeaan 108
=41 413V RS 109
LISNEING PriNCIPIES .uveieiiiiee ittt e et e e e st e e e s sbae e e s enbaeeeesabeeeessteeeens 110
Y/ oYe 3 T=To I ad a oY o =41 1V, oY |1 PR 111
The Modified PhoNg IMOEIccuviiiiieieece e e et saaea s 112
How OpenGL Simulates LINSeiiiiiiiieeciiee et e e s neaeee s 113
SUMFACE NOIMMALS .eiiiiiieiiie ettt sttt et e st e s bt e e st e e sbeeesabeesbaeesabeesnseas 114
MAterial PrOPEITIES ..oouveiee ettt e et e e e et e e e s saba e e e s ataeeeesnbaeeeesnsaeeeans 115
Adding LIhtiNg 10 CUDEvviiiiiii e e e e e e e e e e e s e aaeeas 116
Adding LIghting t0 CUDE ..ooeeiiiiiee ettt e e ste e e e s enraeeeenes 117
Adding LIghting t0 CUDE ..ooeeiiiieieee e et e e e s erraeeeeaes 118
OPENGLES aNA WEDBGL ..ot et e e e ate e e e e are e e e e arae e e ennreas 119
Derivatives Of OPENGLciii it e st e e s sbe e e e s aa e e e enssaeeeennnaeeens 120
OPENGLES o, 121
LT =Y o PRSPPI 122
Creating an HTIMILS CAnVascuiiiiiiiiiiiiiiiiiieee e e ettt e e e e s st e e e e e s s s st ae e e e e e s e ssaneneaes 123
INitializing @ WEDGL CONEEXL ..eiiiuiiiieciieee ettt e et e e e e e et e e e e aaa e e e sennaeaean 124
Specifying Shaders in WEDGLooociiiiiiec ettt e e bae e e e 125
Initializing Shaders in WEDGLcoiiiiiiiiiiie et e s es 126
Loading VBOS iN WEDGL ...ccuviiiieiiiee ettt ettt e e v e et e s eata e e et e e e esnaaeeeesnareeeas 127
Initializing Textures (using an iMage) in WebGLccocvviiiiiiiiciiieeeccee e 128
CONTIGUIETEXEUIE() .evrieeeeieiiie ettt ettt e e ettt e e ettt e e e et e e e e tbae e e e abbeeeeeabreeeeennreeeeesraeesnnes 129
ANTMATION et e e e e s b e e e s e s e e e e e e e s 130
Framebuffer Objects and GPGPUcc.ooiiiiiiiiiiie et e e e e saae e 131

Discrete Processing in OPENGLc.ovvviiiiiiiiiiiiiiiiiiieieieiereeeeeaererereeeee————————————————————————oo—o—o——. 132

Accessing the Frame BUFFercc.uiii oo aaee e 133

Going between CPU and GPU ...ttt e e e et e e e e e e e e eaennae s 134
Frame BUTfer OBJECLSeiiiiiiie ettt e e e et e e et e e e esabee e e e anaeeaens 135
RENAEE 10 TEXEUIE ..eeiitieiiie ettt ettt ettt ettt et st e s it e s bt e e sabeesabaeesabeesbteesaneenane 136
R =] o S 137
EMPLY TEXEUNE ODJECT ..vvviiiiiiie ettt ettt e e e ar e e e s ar e e e e enbaeeeennaeeas 138
Frame BUffer OBJECEuvviiiiiiie et e et e e st e e e ennareeens 139
2T o) e T =1 2 1 o o SRS 140
Program ObjJECt 1 SNAUEISooiiiiiiee ettt e e e e e e st e e et e e e e earaee s 141
Program ObBjJECt 2 SNAUEISuiiiiiiiiie ettt e s st e e e e e e s e e s annraee s 142
FIrst RENAETr (10 TEXTUIE) oooiiiiieieiee e ettt ettt e e ee et e e e e e e e eeeatabereeeeeeeeeaaabeseeeeeenns 143
YL AU oY =TT o T I 20T o Vo =Y OSSP 144
DY I (o g Y=Tole Yo Yo I 2{T o o 1T PSR 145
Render @ QUad WIth TEXTUME ...ccciiiiiiiiiiieiiee ettt sire e s st esbe e e sabeesbaee e 146
DYNAMIC 3D EXAMIPIE ittt e e e e et re e e e e e e e et r e e e e e e e e natraraeeeeeennnenes 147
GPGPU 148
BUTfEr PING-PONZING .ooiiiiiei ittt et e et e e e et e e e e ebte e e e ebteeeesstaeessseeaeans 149
TesSellation SRAUEISooiiiiiii et sb e e s e e s sbae e e e e 150
TESSEIIAtION OVEIVIEW .iiueiiiiiiieciee ettt ettt ettt e e st e e s ae e st e e ateesnbeeesaaeesnteeenaeesnnes 151
TesSellation Data FIOW ...ccciciiiii ittt et e et e e s saae e e e nsaaeaeas 152
TeSSellation DAta FIOW ..cc.ueiiiiieiieciee ettt sttt eate e s e e saaeesnteesnaeesnns 153
Example Tessellation Control SNAAErcocuiiieiiiiii e 154
Non-Shader-Based Tessellation CONtroloivviiiiiiiiiiie e 155
Tessellation Primitive GENEratioNceiiiiiiriieiiie ettt st e s e e sneeeenees 156
Example Quad TeSSEIationccueii oo e e aae e 157
Example Triangle Tessellationc..euvviiieiiiieeee et e e e e e e e e e e e annes 158
Example 1S0line TeSSellationcc..eiiiiiiiiiiiiie e 159
Example Tessellation Evaluation Shaderoccuviiiiiiiii i 160
Controlling Tessellation SPACINGceieiiiiciiiiiiiee e e e e e e e anereee s 161
Primitive Vertex Winding and POint MOdEcccuiiiiiiiiiiicieie ettt 162
LCT=TeTy 4 1= V] o T L= PSP 163
Geometry Shader OVEIVIEWcoociiii ittt e e e et e e e atae e e e eatee e e eaaas 164
Example GEOMELIY SNAUENoiiiiiiee e e e s naa e e e nnaaeee s 165
Example GEOMELIY SNAAENcooeeiiii et e e et e e earae e e e eaaaeee s 166
Which Shader: Geometry or Tessellationcc.eeovciiiiiiiiiii e 167
Which Shader: Geometry or Tessellationccuieiiciiieiiiiiie e 168
L0 3 - NS PRTSRSP 169
RESOUICES .ttt e e e e et e e e e e s e bbbt e e e e e e e e e nbn et e e e e e eaannneees 170
RESOUICES ettt ssnnnsnnnnes 171

B =101 TR 172

An Introduction to Modern OpenGL Programming

6 SIGGRAPHASIA

>

An Introduction to Modern OpenGL
Programming

Ed Angel
University of New Mexico

Dave Shreiner
ARM

Sponsored by ACM SIGGRAPH

< Y9 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Agenda =

Evolution of the OpenGL Pipeline
A Prototype Application in OpenGL
Vertex Shaders

Fragment Shaders

Frame Buffer Objects

Tessellation Shading

Geometry Shading

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
What Is OpenGL? =

* OpenGL is a computer graphics rendering API

— With it, you can generate high-quality color images by
rendering with geometric and image primitives

— It forms the basis of many interactive applications that
include 3D graphics
— By using OpenGL, the graphics part of your application
can be
* operating system independent
* window system independent

.

Q ‘d www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

OpenGL is a library of function calls for doing computer graphics. With it,
you can create interactive applications that render high-quality color
images composed of 3D geometric objects and images.

Additionally, the OpenGL API is window and operating system
independent. That means that the part of your application that draws can
be platform independent. However, in order for OpenGL to be able to
render, it needs a window to draw into. Generally, this is controlled by the
windowing system on whatever platform you are working on.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Course Ground-rules =

We’ll concentrate on the latest versions of OpenGL

They enforce a new way to program with OpenGL
— Allows more efficient use of GPU resources

If you’re familiar with “classic” graphics pipelines,
modern OpenGL doesn’t support
— Fixed-function graphics operations

* lighting

* transformations

All applications must use shaders for their graphics
processing

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

While OpenGL has been around for close to 20 years, a lot of changes have
occurred in that time. This course concentrates on the latest versions of OpenGL
— specifically OpenGL 4.1. In these modern versions of OpenGL (which we
defined as versions starting with version 3.1), OpenGL applications are shader
based. In fact most of this course will discuss shaders and the operations they
support.

If you’re familiar with previous versions of OpenGL, or other rasterization-based
graphics pipelines that may have included fixed-function processing, we won'’t be
covering those techniques. Instead, we’'ll concentrate on showing how we can
implement those techniques on a modern, shader-based graphics pipeline.

In this modern world of OpenGL, all applications will need to provide shaders,
and as such, providing some perspective on how the pipeline evolved and its
phases will be illustrative. We’'ll discuss this next.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

The Evolution of the OpenGL Pipeline

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
In the Beginning ... =

* OpenGL 1.0 was released on July 1%, 1994

* |ts pipeline was entirely fixed-function
— the only operations available were fixed by the implementation

Vertex
Transform and
Lighting

Primitive Fragment

Setup and Coloring and Blending
Uﬂns
Texture
Store

* The pipelin ed, but remained fixed-function through
OpenGL versions 1.1 through 2.0 (Sept. 2004)

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

The initial version of OpenGL was announced in July of 1994. That version of OpenGL
implemented what’ s called a fixed-function pipeline, which means that all of the
operations that OpenGL supported were fully-defined, and an application could only
modify their operation by changing a set of input values (like colors or positions). The
other point of a fixed-function pipeline is that the order of operations was always the
same — that is, you can’ t reorder the sequence operations occur.

This pipeline was the basis of many versions of OpenGL and expanded in many ways,
and is still available for use. However, modern GPUs and their features have diverged
from this pipeline, and support of these previous versions of OpenGL are for supporting
current applications. If you’ re developing a new application, we strongly recommend
using the techniques that we’ Il discuss. Those techniques can be more flexible, and will
likely preform better than using one of these early versions of OpenGL.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

The Start of the | # et uast
Programmable Pipeline
* OpenGL 2.0 (officially) added programmable shaders

— vertex shading augmented the fixed-function transform and
lighting stage
— fragment shading augmented the fragment coloring stage

* However, the fixed-function pipeline was still available

Vertex
Transform and
Lighting

Primitive Fragment
Setup and Coloring and Blending
Rasterization Texturing

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

While many features and improvements were added into the fixed-function OpenGL
pipeline, designs of GPUs were exposing more features than could be added into
OpenGL. To allow applications to gain access to these new GPU features, OpenGL
version 2.0 officially added programmable shaders into the graphics pipeline. This
version of the pipeline allowed an application to create small programs, called shaders,
that were responsible for implementing the features required by the application. In the
2.0 version of the pipeline, two programmable stages were made available:

evertex shading enabled the application full control over manipulation of the 3D
geometry provided by the application

efragment shading provided the application capabilities for shading pixels (the terms
classically used for determining a pixel’s color).

OpenGL 2.0 also fully supported OpenGL 1.X’s pipeline, allowing the application to use
both version of the pipeline: fixed-function, and programmable.

Note: some OpenGL implementations also include a debug context which provides enhanced debugging information about. Debug
contexts are currently an extension to OpenGL, and not a required type of context.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGR/ ASIA
An Evolutionary Change (k

* OpenGL 3.0 introduced the deprecation model
— the method used to remove features from OpenGL

* The pipeline remained the same until OpenGL 3.1
(released March 24th, 2009)

* Introduced a change in how OpenGL contexts are used

Includes all features (including those marked deprecated)

Full ; : ;
available in the current version of OpenGL

Includes all non-deprecated features (i.e., creates a context that

Eerward tompatble would be similar to the next version of OpenGL)

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

Until OpenGL 3.0, features have only been added (but never removed) from OpenGL,
providing a lot of application backwards compatibility (up to the use of extensions).
OpenGL version 3.0 introduced the mechanisms for removing features from OpenGL,
called the deprecation model. It defines how the OpenGL design committee (the
OpenGL Architecture Review Board (ARB) of the Khronos Group) will advertise of which
and how functionality is removed from OpenGL.

You might ask: why remove features from OpenGL? Over the 15 years to OpenGL 3.0,
GPU features and capabilities expanded and some of the methods used in older versions
of OpenGL were not as efficient as modern methods. While removing them could break
support for older applications, it also simplified and optimized the GPUs allowing better
performance.

Within an OpenGL application, OpenGL uses an opaque data structure called a context,
which OpenGL uses to store shaders and other data. Contexts come in two flavors:

efull contexts expose all the features of the current version of OpenGL, including
features that are marked deprecated.

eforward-compatible contexts enable only the features that will be available in the next
version of OpenGL (i.e., deprecated features pretend to be removed), which can help
developers make sure their applications work with future version of OpenGL.

Forward-compatible contexts are available in OpenGL versions from 3.1 onwards.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

. @ SIGGRAPHASIA
The Exclusively <

Programmable Pipeline
* OpenGL 3.1 removed the fixed-function pipeline

— programs were required to use only shaders

Vertex
Shader
Primitive
Setup and
Rasterization

Fragment

ST Blending

- Additionally, almost all data is GPU-resident

— all vertex data sent using buffer objects

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

OpenGL version 3.1 was the first version to remove deprecated features, and break
backwards compatibility with previous versions of OpenGL. The features removed from
included the old-style fixed-function pipeline, among other lesser features.

One major refinement introduced in 3.1 was requiring all data to be placed in GPU-
resident buffer objects, which help reduce the impacts of various computer system
architecture limitations related to GPUs.

While many features were removed from OpenGL 3.1, the OpenGL ARB realized that to
make it easy for application developers to transition their products, they introduced an
OpenGL extensions, GL_ARB_compatibility, that allowed access to the removed
features.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

More Programmability

* OpenGL 3.2 (released August 379, 2009) added an
additional shading stage — geometry shaders

Blending

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

Until OpenGL 3.2, the number of shader stages in the OpenGL pipeline remained the
same, with only vertex and fragment shaders being supported. OpenGL version 3.2
added a new shader stage called geometry shading which allows the modification (and
generation) of geometry within the OpenGL pipeline. We briefly discuss geometry
shaders later in the presentation.

SIGGRAPH Asia 2011

10

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

More Evolution -
Context Profiles

* OpenGL 3.2 also introduced context profiles

— profiles control which features are exposed
* it’ s like GL_ARB_compatibility, only notinsane ©
— currently two types of profiles: core and compatible

core All features of the current release
Full
compatible All features ever in OpenGL

core All non-deprecated features

Forward Compatible
compatible Not supported

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

In order to make it easier for developers to choose the set of features they want to use
in their application, OpenGL 3.2 also introduced profiles which allow further selection of
OpenGL contexts.

The core profile is the modern, trimmed-down version of OpenGL that includes the
latest features. You can request a core profile for a Full or Forward-compatible profile.
Conversely, you could request a compatible profile, which includes all functionality
(supported by the OpenGL driver on your system) in all versions of OpenGL up to, and
including, the version you’ ve requested.

SIGGRAPH Asia 2011

11

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
More Shading (

* OpenGL 4.1 (released July 25t, 2010) included
additional shading stages — tessellation-control
and tessellation-evaluation shaders

Vertex

Fragment

Shader ’
L A4 Primitive
SetuP aqd SHoder Blending
Rasterization
Tessellation | Tessellation
Geometry

Control Evaluation
Shader |I Shader Shade]

-

Sponsored by ACM SIGGRAPH v (5 www.SIGGRAPH.org/ASIA2011

The OpenGL 4.X pipeline added another pair of shaders (which work in tandem, so we
consider it a single stage) for supporting dynamic tessellation in the GPU. Tessellation
control and tessellation evaluation shaders were added to OpenGL version 4.0.

The current version of OpenGL is 4.1, which includes some additional features over the
4.0 pipeline, but no new shading stages.

SIGGRAPH Asia 2011

12

An Introduction to Modern OpenGL Programming

3 SIGGRA
aellatestElpellne <

* OpenGL 4.2 (released August 8t", 2011) increased
the computational capabilities of OpenGL

— integer atomic operations
— random-access read-modify-write to images

* No new programmable stages, however

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

At the 2011 SIGGRAPH conference, the OpenGL working group of the Khronos Group
announced OpenGL version 4.2. While this release did not add any new stages to the
pipeline, it did greatly enhance the computational aspects of the GLSL shaders. In
particular, the major updates in this release included adding integer-typed atomic
operations form shaders, and random-access read-modify-write operations to images,
among other features. The ability to write to images after execution of a shader (which
is different than rendering to a texture, which we’ll discuss later) allows for what are
commonly called “side effects from shaders” where the execution of a shader changes
the downstream data of other shaders.

SIGGRAPH Asia 2011

13

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

OpenGL Application Development

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

14

An Introduction to Modern OpenGL Programming

A Simplified Pipeline Model

Vertices Vertices Fragments

Vertex Fragment
Shader Shader

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

To begin, let us introduce a simplified model of the OpenGL pipeline. Generally
speaking, data flows from your application through the GPU to generate an image in the
frame buffer. Your application will provide vertices, which are collections of data that
are composed to form geometric objects, to the OpenGL pipeline. The vertex processing
stage uses a vertex shader to process each vertex, doing any computations necessary to
determine where in the frame buffer each piece of geometry should go. The other
shading stages we mentioned — tessellation and geometry shading — are also used for
vertex processing, but we’re trying to keep this simple at the moment.

After all the vertices for a piece of geometry are processed, the rasterizer determines
which pixels in the frame buffer are affected by the geometry, and for each pixel, the
fragment processing stage is employed, where the fragment shader runs to determine
the final color of the pixel.

In your OpenGL applications, you’ll usually need to do the following tasks:

especify the vertices for your geometry

e|load vertex and fragment shaders (and other shaders, if you’re using them as well)
eissue your geometry to engage the OpenGL pipeline for processing

Of course, OpenGL is capable of many other operations as well, many of which are
outside of the scope of this introductory course. We have included references at the
end of the notes for your further research and development.

SIGGRAPH Asia 2011 15

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
OpenGL Programming in a NutShell

* Modern OpenGL programs essentially do the
following steps:
1. Create shader programs
Create buffer objects and load data into them

2
3. “Connect” data locations with shader variables
4

Render

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

You'll find that a few techniques for programming with modern OpenGL goes a long way.
In fact, most programs — in terms of OpenGL activity — are very repetitive. Differences
usually occur in how objects are rendered, and that’s mostly handled in your shaders.

There four steps you’ll use for rendering a geometric object are as follows:

1.First, you'll load and create OpenGL shader programs from shader source programs
you create

2.Next, you will need to load the data for your objects into OpenGL's memory. You do
this by creating buffer objects and loading data into them.

3.Continuing, OpenGL needs to be told how to interpret the data in your buffer objects
and associate that data with variables that you’ll use in your shaders. We call this shader
plumbing.

4.Finally, with your data initialized and shaders set up, you’ll render your objects

We'll expand on those steps more through the course, but you’ll find that most
applications will merely iterate through those steps.

SIGGRAPH Asia 2011 16

An Introduction to Modern OpenGL Programming

) SIGGRAPHASIA
Application Framework Reqdirements

OpenGL applications need a place to render into

— usually an on-screen window

Need to communicate with native windowing system
Each windowing system interface is different

We use GLUT (more specifically, freeglut)

— simple, open-source library that works everywhere
— handles all windowing operations:

* opening windows

* input processing

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

While OpenGL will take care of filling the pixels in your application’s output window or
image, it has no mechanisms for creating that rendering surface. Instead, OpenGL relies
on the native windowing system of your operating system to create a window, and make
it available for OpenGL to render into. For each windowing system (like Microsoft
Windows, or the X Window System on Linux [and other Unixes]), there’s a binding library
that lets mediates between OpenGL and the native windowing system.

Since each windowing system has different semantics for creating windows and binding
OpenGL to them, discussing each one is outside of the scope of this course. Instead, we
use an open-source library named Freeglut that abstracts each windowing system’s
specifics into a simple library. Freeglut is a derivative of an older implementation called
GLUT, and we’ll use those names interchangeably. GLUT will help us in creating
windows, dealing with user input and input devices, and other window-system activities.

You can find out more about Freeglut at its website:
http://freeglut.sourceforge.net

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

> SIGGRAPHASIA
Simplifying Working with OpeAGL

* Operating systems deal with library functions
differently

— compiler linkage and runtime libraries may expose different
functions

* Additionally, OpenGL has many versions and profiles
which expose different sets of functions

— managing function access is cumbersome, and window-
system dependent

* We use another open-source library, GLEW, to hide
those details

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Just like window systems, operating systems have different ways of working with
libraries. In some cases, the library you link your application exposes different functions
than the library you execute your program with. Microsoft Windows is a notable
example where you compile your application witha .1ib library, but use a .d11 at
runtime for finding function definitions. As such, your application would generally need
to use operating-system specific methods to access functions. In general, this is
troublesome and a lot of work. Fortunately, another open-source library comes to our
aid, GLEW, the OpenGL Extension Wrangler library. It removes all the complexity of
accessing OpenGL functions, and working with OpenGL extensions. We use GLEW in our
examples to simplify the code. You can find details about GLEW at its website:
http://glew.sourceforge.net

SIGGRAPH Asia 2011

18

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Geometric Objects and OpenGL

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

19

An Introduction to Modern OpenGL Programming

p [[ele]zY:
Representing Geometric Objects

Geometric objects are represented using vertices

A vertex is a collection of generic attributes
— positional coordinates
— colors
— texture coordinates
— any other data associated with
that point in space
Vertex data must be stored in vertex buffer objects (VBOs)

VBOs must be stored in vertex array objects (VAOs)

o

Sponsored by ACM SIGGRAPH O () www.SIGGRAPH.org/ASIA2011

In OpenGL, as in other graphics libraries, objects in the scene are composed of
geometric primitives, which themselves are described by vertices. A vertex in modern
OpenGL is a collection of data values associated with a location in space. Those data
values might include colors, reflection information for lighting, or additional coordinates
for use in texture mapping.

Vertices must be organized in OpenGL server-side objects called vertex buffer objects
(also known asVBOs), which need to contain all of the vertex information for all of the
primitives that you want to draw at one time. VBOs can store vertex information in
almost any format (i.e., an array-of-structures (AoS) each containing a single vertex’s
information, or a structure-of-arrays (SoA) where all of the same “type” of data for a
vertex is stored in a contiguous array, and the structure stores arrays for each attribute
that a vertex can have). The data within a VBO needs to be contiguous in memory, but
doesn’t need to be tightly packed (i.e., data elements may be separated by any number
of bytes, as long as the number of bytes between attributes is consistent).

VBOs are further required to be stored in vertex array objects (known as VAOs). Since it
may be the case that numerous VBOs are associated with a single object, VAOs simplify
the management of the collection of VBOs.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
Generating a Cube Face from Vertices

// quad() generates two triangles for each face and assigns colors to the vertices
int Index = @; // global variable indexing into VBO arrays

void

quad(int a, int b, int c, int d)

{
colors[Index]
colors[Index]
colors[Index]
colors[Index]
colors[Index]
colors[Index]

vertex_colors[a]; points[Index]
vertex_colors[b]; points[Index]
vertex_colors[c]; points[Index]
vertex_colors[a]; points[Index]
vertex_colors[c]; points[Index]
vertex_colors[d]; points[Index]

vertex_positions[a]; Index++;
vertex_positions[b]; Index++;
vertex_positions[c]; Index++;
vertex_positions[a]; Index++;
vertex_positions[c]; Index++;
vertex_positions[d]; Index++;

o nnun

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

As our cube is constructed from square cube faces, we create a small function, quad (),
which takes the indices into the original vertex color and position arrays, and copies the
data into the VBO staging arrays. If you were to use this method (and we’ll see better
ways in a moment), you would need to remember to reset the Index value between
setting up your VBO arrays.

SIGGRAPH Asia 2011

21

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Generating the Cube from Fac@s

// generate 12 triangles: 36 vertices and colors

void
colorcube()
{

quad(1,
quad(2
quad(3
quad(6
quad(4
quad(5

3

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Here we complete the generation of our cube’s VBO data by specifying the six faces
using index values into our original vertex_positions and vertex_ colors arrays.
It’s worth noting that the order that we choose our vertex indices is important, as it will
affect something called backface culling later.

WEe’'ll see later that instead of creating the cube by copying lots of data, we can use our
original vertex data along with just the indices we passed into quad() here to
accomplish the same effect. That technique is very common, and something you’ll use a
lot. We chose this to introduce the technique in this manner to simplify the OpenGL
concepts for loading VBO data.

SIGGRAPH Asia 2011

22

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Storing Vertex Attributes

* Vertex data must be stored in a VBO, and associated
with a VAO

* The code-flow is similar to configuring a VAO
generate VBO names by calling glGenBuffers()

bind a specific VBO for initialization by calling
glBindBuffer(GL_ARRAY_BUFFER, ..)

load data into VBO using
glBufferData(GL_ARRAY_BUFFER, ..)

bind VAO for use in rendering glBindVertexArray()

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

While we’ve talked a lot about VBOs, we haven’t detailed how one goes about creating
them. Vertex buffer objects, like all (memory) objects in OpenGL (as compared to
geometric objects) are created in the same way, using the same set of functions. In fact,
you’ll see that the pattern of calls we make here are similar to other sequences of calls
for doing other OpenGL operations.

In the case of vertex buffer objects, you’ll do the following sequence of function calls:
1.Generate a buffer’s name by calling glGenBuffers()

2.Next, you’ll make that buffer the “current” buffer, which means it’s the selected buffer
for reading or writing data values by calling glBindBuffer (), with a type of
GL_ARRAY_BUFFER. There are different types of buffer objects, with an array buffer
being the one used for storing geometric data.

3.To initialize a buffer, you’ll call glBufferData(), which will copy data from your
application into the GPU’s memory. You would do the same operation if you also
wanted to update data in the buffer

4.Finally, when it comes time to render using the data in the buffer, you’ll once again call
glBindVertexArray() to make it and its VBOs current again. In fact, if you have
multiple objects, each with their own VAO, you'll likely call glBindVertexArray()
once per frame for each object.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

> SIGGRA ASIA
VBOs in Code QE

// Create and initialize a buffer object
GLuint buffer;

glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);

glBufferData(GL_ARRAY_ BUFFER,
sizeof(points) + sizeof(colors),
NULL, GL_STATIC_DRAW);

glBuffersubData(GL_ARRAY_ BUFFER, 0,
sizeof(points), points);

glBufferSubData(GL_ARRAY BUFFER, sizeof(points),
sizeof(colors), colors);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The above sequence of calls illustrates generating, binding, and initializing a VBO with
data. In this example, we use a technique permitting data to be loaded into two steps,
which we need as our data values are in two separate arrays. It’s noteworthy to look at
the glBufferData() call; in this call, we basically have OpenGL allocate an array sized
to our needs (the combined size of our point and color arrays), but don’t transfer any
data with the call, which is specified with the NULL value. This is akin to calling
malloc() to create a buffer of uninitialized data. We later load that array with our
calls to glBufferSubData(), which allows us to replace a subsection of our array.
This technique is also useful if you need to update data inside of a VBO at some point in
the execution of your application.

SIGGRAPH Asia 2011

24

An Introduction to Modern OpenGL Programming

Connecting Vertex Shaders WfifhS!SSFAFHASIA
Geometric Data

* Application vertex data enters the OpenGL
pipeline through the vertex shader

* Need to connect vertex data to shader variables
— requires knowing the attribute location

e Attribute location can either be queried by calling
glGetVertexAttribLocation()

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The final step in preparing you data for processing by OpenGL (i.e., sending it
down for rendering) is to specify which vertex attributes you’d like issued to the
graphics pipeline. While this might seem superfluous, it allows you to specify
multiple collections of data, and choose which ones you’d like to use at any given
time.

Each of the attributes that we enable must be associated with an “in” variable of
the currently bound vertex shader. You retrieve vertex attribute locations was
retrieved from the compiled shader by calling glGetAttribLocation(). We
discuss this call in the shader section.

SIGGRAPH Asia 2011

25

An Introduction to Modern OpenGL Programming

¢ S|GGR/
Vertex Array Code =

// set up vertex arrays (after shaders are loaded)

GLuint vPosition =
glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(vPosition);
glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET(Q));

GLuint vColor = glGetAttribLocation(program, "vColor");

glEnableVertexAttribArray(vColor);

glVertexAttribPointer(vColor, 4, GL_FLOAT, GL_FALSE, 9,
BUFFER_OFFSET(sizeof(points)));

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

To complete the “plumbing” of associating our vertex data with variables in our shader
programs, you need to tell OpenGL where in our buffer object to find the vertex data,
and which shader variable to pass the data to when we draw. The above code snippet
shows that process for our two data sources. In our shaders (which we’ll discuss in a
moment), we have two variables: vPosition, and vColor, which we will associate
with the data values in our VBOs that we copied form our vertex_positions and
vertex_colors arrays.

The calls to glGetAttribLocation() will return a compiler-generated index which
we need to use to complete the connection from our data to the shader inputs. We also
need to “turn the valve” on our data by enabling its attribute array by calling
glEnableVertexAttribArray () with the selected attribute location.

This is the most flexible approach to this process, but depending on your OpenGL
version, you may be able to use the 1layout construct, which allows you to specify the
attribute location, as compared to having to retrieve it after compiling and linking your
shaders. We’'ll discuss that in our shader section later in the course.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Drawing Geometric Primitives

* For contiguous groups of vertices
glDrawArrays(GL_TRIANGLES, O, NumVertices);

e Usually invoked in display callback

* |nitiates vertex shader

Sponsared by AGM SIGGRAPH. () ‘d www.SIGGRAPH.org/ASIA201 1

In order to initiate the rendering of primitives, you need to issue a drawing
routine. While there are many routines for this in OpenGL, we’ll discuss the most
fundamental ones. The simplest routine is glDrawArrays (), to which you
specify what type of graphics primitive you want to draw (e.g., here we’re rending
a triangle strip), which vertex in the enabled vertex attribute arrays to start with,
and how many vertices to send.

This is the simplest way of rendering geometry in OpenGL Version 3.1. You
merely need to store you vertex data in sequence, and then glDrawArrays()
takes care of the rest. However, in some cases, this won’t be the most memory
efficient method of doing things. Many geometric objects share vertices between
geometric primitives, and with this method, you need to replicate the data once
for each vertex. We’'ll see a more flexible, in terms of memory storage and
access in the next slides.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

Output from Cube Program

* Because we haven’t yet discussed
transformations, cube will show
only front face

* Later we will learn how to position
a camera to produce rotated view

* Note how the rasterizer interpolates
the vertex shader colors to produce
fragment colors

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

28

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Shaders and GLSL

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

29

An Introduction to Modern OpenGL Programming

> SIGGRAPHASIA
GLSL (

e C-like language for writing OpenGL shaders
— Additional data types for matrices and vectors
— C++-like constructors
— Overloaded operators

* Each shader is a separate program with a main()

* Rich set of functions

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

30

An Introduction to Modern OpenGL Programming

GLSL Data Types

Scalar types: float, int, bool

Vector types: vec2, vec3, vecd
ivec2, ivec3, ivec4
bvec2, bvec3, bvecd

Matrix types: mat2, mat3, mat4

Texture sampling: samplerlD, sampler2D,
sampler3D, samplerCube

C++ Style Constructors:
vec3 a = vec3(1.0, 2.9, 3.0);

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

As with any programming language, GLSL has types for variables. However, it
includes vector-, and matrix-based types to simplify the operations that occur
often in computer graphics.

In addition to numerical types, other types like texture samplers are used to
enable other OpenGL operations. We’ll discuss texture samplers in the texture
mapping section.

SIGGRAPH Asia 2011

31

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Operators =

 Standard C/C++ arithmetic and logic operators

* Operators overloaded for matrix and vector
operations

mat4 m;
vec4 a, b, c;

) a*m;
C m*a;

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

The vector and matrix classes of GLSL are first-class types, with arithmetic and logical
operations well defined. This helps simplify your code, and prevent errors.

Both a*m and m*a are valid but yield different results. In matrix terms a*misa 1 x4
times a 4 x 4 yielding a 1 x 4 whereas m*ais 4 x 4 times a 4 x 1 yieldinga 4 x 1 but in
GLSL both operations yield a vec4.

SIGGRAPH Asia 2011

32

An Introduction to Modern OpenGL Programming

Components and Swizzling

* For vectors can use [], xyzw, rgba or strq
For
vec3 v;

v[1l], v.y, v.g, v.t allrefertothesame
element

Swizzling:
vec3 a, b;
a.xy = b.yx;

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

For GLSL's vector types, you’ll find that often you may also want to access components
within the vector, as well as operate on all of the vector’s components at the same time.
To support that, vectors and matrices (which are really a vector of vectors), support
normal “C” vector accessing using the square-bracket notation (e.g., “[i]”), with zero-
based indexing. Additionally, vectors (but not matrices) support swizzling, which
provides a very powerful method for accessing and manipulating vector components.

Swizzles allow components within a vector to be accessed by name. For example, the
first element in a vector — element 0 — can also be referenced by the names “x”, “s”, and
“r”. Why all the names — to clarify their usage. If you’re working with a color, for
example, it may be clearer in the code to use “r” to represent the red channel, as
compared to “x”, which make more sense as the x-positional coordinate

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Qualifiers

* in, out, inout
— Copy vertex attributes and other variable to/ from
shaders
in vec2 tex_coord;
out vec4 color;

* Uniform: variable from application
uniform float time;

uniform vec4 rotation;

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

In addition to types, GLSL has numerous qualifiers to describe a variable usage. The
most common of those are:

¢in qualifiers that indicate the shader variable will receive data flowing into the shader,
either from the application, or the previous shader stage.

eout qualifier which tag a variable as data output where data will flow to the next
shader stage, or to the framebuffer

euniform qualifiers for accessing data that doesn’t change across a draw operation

SIGGRAPH Asia 2011

34

An Introduction to Modern OpenGL Programming

6 SIGGRAPHASIA

Flow Control

if
if else
expression ? true-expression : false-expression

while, do while

for

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

Like the “C” language, GLSL supports all of the logical flow control statements you’re
used to.

SIGGRAPH Asia 2011

35

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

.

The Simplest
Fragment Shader

in vec4 color;

void main()

{
}

gl FragColor = color;

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Here's the associated fragment shader that we use in our cube example. While
this shader is as simple as they come — merely setting the fragment’s color to the
input color passed in, there’s been a lot of processing to this point. In particular,
every fragment that’s shaded was generated by the rasterizer, which is a built-in,
non-programmable (i.e., you don’t write a shader to control its operation). What'’s
magical about this process is that if the colors across the geometric primitive (for
multi-vertex primitives: lines and triangles) is not the same, the rasterizer will
interpolate those colors across the primitive, passing each iterated value into our
color variable.

SIGGRAPH Asia 2011

36

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

=

Getting Your Shaders
into OpenGL _

Create
Program

glCreateProgram()
* Shaders need to be e
: . reate
compiled and linked to Shader
form an executable shader FTS

prog ram Source

glCreateShader()

glShaderSource()

* OpenGL provides the Compile

Shader glCompileShader()

compiler and linker
* A program must contain AUBCRSAAEEE.)1 chshader()

to Program
— vertex and fragment

ELES Link Program glLinkProgram()
— other shaders are optional

Use Program glUseProgram()

-

Spomared by AGM SGGRAPH. () € www.SIGGRAPH.org/ASIA201 1

Shaders need to be compiled in order to be used in your program. As compared to C
programs, the compiler and linker are implemented in the OpenGL driver, and accessible
through function calls from within your program. The diagram illustrates the steps
required to compile and link each type of shader into your shader program. A program
can contain either a vertex shader (which replaces the fixed-function vertex processing),
a fragment shader (which replaces the fragment coloring stages), or both. If a shader
isn’t present for a particular stage, the fixed-function part of the pipeline is used in its
place.

Just a with regular programs, a syntax error from the compilation stage, or a missing
symbol from the linker stage could prevent the successful generation of an executable
program. There are routines for verifying the results of the compilation and link stages of
the compilation process, but are not shown here. Instead, we’ve provided a routine that
makes this process much simpler, as demonstrated on the next slide.

SIGGRAPH Asia 2011

37

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
A Simpler Way (

* We've created a routine for this course to make it
easier to load your shaders

— available at course website

GLuint InitShaders(const char* vFile, const char*
fFile);

e InitShaders takes two filenames
— VvFile for the vertex shader
— fFile for the fragment shader

* Fails if shaders don’t compile, or program doesn’t
link

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

To simplify our lives, we created a routine that simplifies loading, compiling, and linking
shaders: InitShaders(). It implements the shader compilation and linking process
shown on the previous slide. It also does full error checking, and will terminate your
program if there’s an error at some stage in the process (production applications might
choose a less terminal solution to the problem, but it’s useful in the classroom).

InitShaders() accepts two parameters, each a filename to be loaded as source for
the vertex and fragment shader stages, respectively.

The value returned from InitShaders() will be a valid GLSL program id that you can
pass into glUseProgram().

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

C SIGGRAPHASIA

Associating Shader Variables‘and DEF:]

* Need to associate a shader variable with an OpenGL data
source
— vertex shader attributes - app vertex attributes
— shader uniforms = app provided uniform values
* OpenGL relates shader variables to indices for the app to set

* Two methods for determining variable/index association
— specify association before program linkage
— query association after program linkage

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

OpenGL shaders, depending on which stage their associated with, process different
types of data. Some data for a shader changes for each shader invocation. For example,
each time a vertex shader executes, it’s presented with new data for a single vertex;
likewise for fragment, and the other shader stages in the pipeline. The number of
executions of a particular shader rely on how much data was associated with the draw
call that started the pipeline — if you call gIDrawArrays() specifiying 100 vertices, your
vertex shader will be called 100 times, each time with a different vertex.

Other data that a shader may use in processing may be constant across a draw call, or
even all the drawing calls for a frame. GLSL calls those uniform varialbes, since their
value is uniform across the execution of all shaders for a single draw call.

Each of the shader’s input data variables (ins and uniforms) needs to be connected to a
data source in the application. We'’ve already seen glGetAttribLocation() for retrieving
information for connecting vertex data in a VBO to shader variable. You will also use the
same process for uniform variables, as we’ll describe shortly.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

-

Determining Locations After Linking

e Assumes you already know the variables” name

GLint idx =
glGetAttribLocation(program, “name”) ;

GLint idx =
glGetUniformLocation(program, “name”) ;

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Once you know the names of variables in a shader — whether they’re attributes or
uniforms — you can determine their location using one of the glGet*Location()
calls.

If you don’t know the variables in a shader (if, for instance, you're writing a library
that accepts shaders), you can find out all of the shader variables by using the
glGetActiveAttrib() function.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

y SIGGRAPHASIA
Initializing Uniform Variable Values

e Uniform Variables
glUniform4f(index, x, y, z, w);

GLboolean transpose = GL_TRUE;

// Since we’re C programmers

GLfloat mat[3][4][4] = { .. };
glUniformMatrix4fv(index, 3, transpose,
mat);

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

You’ve already seen how one associates values with attributes by calling
glVertexAttribPointer(). To specify a uniform’s value, we use one of the
glUniform*() functions. For setting a vector type, you’ll use one of the
glUniform*() variants, and for matrices you’ll use a glUniformMatrix *() form.

SIGGRAPH Asia 2011

41

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Finishing the Cube Program <

int main(int argc, char **argv)

{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT DOUBLE | GLUT DEPTH);
glutInitWindowSize(512, 512);
glutCreateWindow("Color Cube");
glewInit();
init();
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 9;

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

You’ll find that many OpenGL programs look very similar, particularly simple examples as
we’re showing in class. Above we demonstrate the basic initialization code for our
examples. In our main() routine, you can see our use of the Freeglut and GLEW libraries.

SIGGRAPH Asia 2011

42

An Introduction to Modern OpenGL Programming

Cube Program @ SIGGRA
GLUT Callbacks

-

void keyboard(unsigned char key, void display(void)
int x, int y) {

{ glClear(GL_COLOR_BUFFER_BIT |

SHLEch (ke NI GL_DEPTH_BUFFER_BIT);
case ©33:

' glDrawArrays(GL_TRIANGLES, @,
case 'q': :
e NumVertices);
case 'Q':
exit(EXIT_SUCCESS); glutSwapBuffers();
break; }

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Here are two of our GLUT callbacks:

e display() which controls the drawing of our objects. While this is an extremely simple
display() function, you’ll find that almost all functions will have this form:

1. clear the “window”
2. render
3. swap the buffers

¢ keyboard() which provides some simple keyboard-based user input.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
Vertex Shader Examples

* A vertex shader is initiated by each vertex output
by glDrawArrays()

e A vertex shader must output a position in clip
coordinates to the rasterizer
* Basic uses of vertex shaders
— Transformations
— Lighting
— Moving vertex positions

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

We begin delving into shader specifics by first taking a look at vertex shaders. As you’ve
probably arrived at, vertex shaders are used to process vertices, and have the required
responsibility of specifying the vertex’s position in clip coordinates. This process usually
involves numerous vertex transformations, which we’ll discuss next. Additionally, a
vertex shader may be responsible for determine additional information about a vertex
for use by the rasterizer, including specifying colors.

To begin our discussion of vertex transformations, we’ll first describe the synthetic
camera model.

SIGGRAPH Asia 2011

44

An Introduction to Modern OpenGL Programming

C SIGGRAPHASIA

Camera Analogy

* 3D s just like taking a photograph (lots of
photographs!)

camera

e www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH vy (

This model has become know as the synthetic camera model.

Note that both the objects to be viewed and the camera are three-
dimensional while the resulting image is two dimensional.

SIGGRAPH Asia 2011

45

An Introduction to Modern OpenGL Programming

. (SIGGR/ ASIA
Transformations — 5

Simplifying Mathematics
* Transformations take us from one “space” to
another

— All of our transforms are 4 X 4 matrices

o

Modeling Modeling
Transform Transform

S

. T Perspective s -
Vertex Model-View Projection | Division Viewport 2D Window

Data Transform Transform Transform Coordinates
‘ (w) |

.

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA201 1

The processing required for converting a vertex from 3D space into a 2D window
coordinate is done by the transform stage of the graphics pipeline. The
operations in that stage are illustrated above. The purple boxes represent a
matrix multiplication operation. In graphics, all of our matrices are 4 X 4 matrices
(they’re homogenous, hence the reason for homogenous coordinates).

When we want to draw an geometric object, like a chair for instance, we first
determine all of the vertices that we want to associate with the chair. Next, we
determine how those vertices should be grouped to form geometric primitives,
and the order we’re going to send them to the graphics subsystem. This process
is called modeling. Quite often, we’ll model an object in its own little 3D
coordinate system. When we want to add that object into the scene we're
developing, we need to determine its world coordinates. We do this by specifying
a modeling transformation, which tells the system how to move from one
coordinate system to another.

Modeling transformations, in combination with viewing transforms, which dictate
where the viewing frustum is in world coordinates, are the first transformation that
a vertex goes through. Next, the projection transform is applied which maps the
vertex into another space called clip coordinates, which is where clipping occurs.
After clipping, we divide by the w value of the vertex, which is modified by
projection. This division operation is what allows the farther-objects-being-
smaller activity. The transformed, clipped coordinates are then mapped into the
window.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

C‘_ SIGGRAPHASIA
Camera Analogy and Transformations

Projection transformations
— adjust the lens of the camera

Viewing transformations
— tripod—define position and orientation of the viewing volume in the
world
Modeling transformations
— moving the model

Viewport transformations
— enlarge or reduce the physical photograph

www.SIGGRAPH.org/ASIA201 1

T
Sponsored by ACM SIGGRAPH Q ()

Note that human vision and a camera lens have cone-shaped viewing
volumes. OpenGL (and almost all computer graphics APIs) describe a
pyramid-shaped viewing volume. Therefore, the computer will “see”
differently from the natural viewpoints, especially along the edges of
viewing volumes. This is particularly pronounced for wide-angle “fish-eye”

camera lenses.

SIGGRAPH Asia 2011

47

An Introduction to Modern OpenGL Programming

(SIGGRA ASIA
3D Transformations -

* A vertex is transformed by — matrices are always post-

4 X 4 matrices mubples

— all affine operations are — product of matrix and

matrix multiplications el

— all matrices are stored
column-major in OpenGL

* this is opposite of what “C”
programmers expect

e

Sponsored by ACM SIGGRAPH Q ' | www.SIGGRAPH.org/ASIA2011

By using 4 x4 matrices, OpenGL can represent all geometric
transformations using one matrix format. Perspective projections and
translations require the 4t row and column. Otherwise, these operations
would require an vector-addition operation, in addition to the matrix
multiplication.

While OpenGL specifies matrices in column-major order, this is often
confusing for “C” programmers who are used to row-major ordering for
two-dimensional arrays. OpenGL provides routines for loading both
column- and row-major matrices. However, for standard OpenGL
transformations, there are functions that automatically generate the
matrices for you, so you don’t generally need to be concerned about this
until you start doing more advanced operations.

For operations other than perspective projection, the fourth row is always
(0, 0, 0, 1) which leaves the w-coordinate unchanged.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Specifying What You Can See (NG KoTa

* Set up a viewing frustum to specify how much of
the world we can see

* Done in two steps
— specify the size of the frustum (projection transform)
— specify its location in space (model-view transform)

* Anything outside of the viewing frustum is clipped

— primitive is either modified or discarded (if entirely
outside frustum)

.

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA201 1

Another essential part of the graphics processing is setting up how much of the
world we can see. We construct a viewing frustum, which defines the chunk of 3-
space that we can see. There are two types of views: a perspective view, which
you’re familiar with as it's how your eye works, is used to generate frames that
match your view of reality—things farther from your appear smaller. This is the
type oflview used for video games, simulations, and most graphics applications in
general.

The other view, orthographic, is used principally for engineering and design
situations, where relative lengths and angles need to be preserved.

For a perspective, we locate the eye at the apex of the frustum pyramid. We can
see any objects which are between the two planes perpendicular to eye (they’re
called the near and far clipping planes, respectively). Any vertices between near
and far, and inside the four planes that connect them will be rendered.
Otherwise, those vertices are clipped out and discarded. In some cases a
primitive will be entirely outside of the view, and the system will discard it for that
frame. Other primitives might intersect the frustum, which we clip such that the
part of them that’s outside is discarded and we create new vertices for the
modified primitive.

While the system can easily determine which primitive are inside the frustum, it's
wasteful of system bandwidth to have lots of primitives discarded in this manner.
We utilize a technique named culling to determine exactly which primitives need
to be sent to the graphics processor, and send only those primitives to maximize
its efficiency.

SIGGRAPH Asia 2011 49

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Specifying What You Can See (cont’d)

* OpenGL projection model uses eye coordinates
— the “eye” is located at the origin
— looking down the -z axis
* Projection matrices use a six-plane model:
— near (image) plane and far (infinite) plane
* both are distances from the eye (positive values)
— enclosing planes
* top & bottom, left & right

Sponsared by AGM SIGGRAPH. () ‘d www.SIGGRAPH.org/ASIA201 1

In OpenGL, the default viewing frusta are always configured in the same manner,
which defines the orientation of our clip coordinates. Specifically, clip coordinates
are defined with the “eye” located at the origin, looking down the —z axis. From
there, we define two distances: our near and far clip distances, which specify the
location of our near and far clipping planes. The viewing volume is then
completely by specifying the positions of the enclosing planes that are parallel to
the view direction .

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

(SIGGR! ASIA

Specifying What You Can See Tcont’d)

Orthographic View Perspective View

= D O 4 2 o 2 D
R N L -
= =2 f+n - —(f+n) ﬂ
O 0 f—n f-n O O f-n f-n
0 0 0 1 0 0 -1 0
soonsorsaty somsicammen (%) £) www.SIGGRAPH.org/ASIA2011

The images above show the two types of projection transformations that are commonly
used in computer graphics. The orthographic view preserves angles, and simulates
having the viewer at an infinite distance from the scene. This mode is commonly used in
used in engineering and design where it’s important to preserve the sizes and angles of
objects in relation to each other. Alternatively, the perspective view mimics the
operation of the eye with objects seeming to shrink in size the farther from the viewer
they are.

The each projection, the matrix that you would need to specify is provided. In those
matrices, the six values for the positions of the left, right, bottom, top, near and far
clipping planes are specified by the first letter of the plane’s name. The only limitations
on the values is for perspective projections, where the near and far values must be
positive and non-zero, with near greater than far.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Viewing Transformations

* Position the camera/eye in the scene
— place the tripod down; aim camera
* To “fly through” a scene

— change viewing transformation and
redraw scene

LookAt(eye,, eye,, eye,,
look,, look,, look,,
up,, Uupy, up,)
— up vector determines unique orientation
— careful of degenerate positions

sponsesay scmsiccmnr (=) () www.SIGGRAPH.org/ASIA201 1

LookAt () generates a viewing matrix based on several points.

LookAt () provides natrual semantics for modeling flight application, but
care must be taken to avoid degenerate numerical situations, where the
generated viewing matrix is undefined.

An alternative is to specify a sequence of rotations and translations that
are concatenated with an initial identity matrix.

Note: that the name modelview matrix is appropriate since moving objects
in the model front of the camera is equivalent to moving the camera to
view a set of objects.

SIGGRAPH Asia 2011

52

An Introduction to Modern OpenGL Programming

Creating the LookAt Matrix

o

Sponsored by ACM SIGGRAPH O () www.SIGGRAPH.org/ASIA2011

Using the values passed into the LookAt() call, the above matrix generates the
corresponding viewing matrix.

SIGGRAPH Asia 2011

53

An Introduction to Modern OpenGL Programming

Translation ASIA

* Move the origin to a new
location

T(tx 9 ty) tz) =

Sporsersa oy Acm sicomarH (=) @ www.SIGGRAPH.org/ASIA201 1

Here we show the construction of a translation matrix. Translations really move
coordinate systems, and not individual objects.

SIGGRAPH Asia 2011

54

An Introduction to Modern OpenGL Programming

Scale

* Stretch, mirror or decimate
a coordinate direction

Sponsarsaiy Ao S0 () 29 www.SIGGRAPH.org/ASIA201 1

Here we show the construction of a scale matrix, which is used to change the
shape of space, but not move it (or more precisely, the origin). The above
illustration has a translation to show how space was modified, but a simple scale
matrix will not include such a translation.

SIGGRAPH Asia 2011

55

An Introduction to Modern OpenGL Programming

Rotation (SIGGI ASIA

* Rotate coordinate system about an axis in space

Note, there’s a translation applied here
to make things easier to see

Spomeaaty o siccn (%)) www.SIGGRAPH.org/ASIA201 1

Here we show the effects of a rotation matrix on space. Once again, a
translation has been applied in the image to make it easier to see the rotation’s
affect.

SIGGRAPH Asia 2011

56

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
Rotation (cont’d)

=1'ti +cos(0)(I —u'u) +sin(0)S

0
R.(0)= M 2

0 9 o 1

Sponsored by ACM SIGGRAPH O (3 www.SIGGRAPH.org/ASIA2011

The formula for generating a rotation matrix is a bit more complex that for scales
and translations. Naming the axis of rotation v, we begin by normalizing v and
storing the result in the vector u. From there, we create a 3 x 3 matrix M, which
is composed of the sum of three terms.

1.The outer product of the vector u with its transpose u’

2.The difference of the identity matrix, 7, with «’s outer product, scaled the by the
cosine of the input angle 6

3.Finally, we scale the matrix S which is composed of the elements of the rotation
matrix.

The complete rotation matrix is formed by composing M as the upper 3 x 3
matrix in R.

SIGGRAPH Asia 2011

57

An Introduction to Modern OpenGL Programming

5 SIGGRA ASIA
Vertex Shader for Rotation of Cube

in vec4 vPosition;
in vec4 vColor;

out vec4 color;
uniform vec3 theta;

void main()

{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians(theta);

vec3 c = cos(angles);

vec3 s = sin(angles);

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

Here’s an example vertex shader for rotating our cube. We generate the matrices in the
shader (as compared to in the application), based on the input angle theta. It’s useful
to note that we can vectorize numerous computations. For example, we can generate a

vectors of sines and cosines for the input angle, which we’ll use in further computations.

SIGGRAPH Asia 2011

58

An Introduction to Modern OpenGL Programming

> SIGGRAPHASIA
Vertex Shader for Rotation of Cube

// Remember: these matrices are column-major

mat4 rx = matd4(1.

0, 0.9,
9,
(%]
(%]

0.
0.
0.0,

mat4(c.y,
.0,

Y
.0,

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

Completing our shader, we compose two of three rotation matrices (one around each
axis). In generating our matrices, we use one of the many matrix constructor functions
(in this case, specifying the 16 individual elements). It’s important to note in this case,
that our matrices are column-major, so we need to take care in the placement of the
values in the constructor.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Vertex Shader for Rotation of Cube

mat4 rz = mat4(c.z, : : .0,
S.Z; . . .0,
9.0, o. . .9,
0.0, . X .0);

color = vColor;
gl Position = rz * ry * * vPosition;

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

We complete our shader here by generating the last rotation matrix, and) and then use
the composition of those matrices to transform the input vertex position. We also pass-
thru the color values by assigning the input color to an output variable.

SIGGRAPH Asia 2011

60

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Sending Angles from Application

// compute angles using mouse and idle callbacks
GLuint theta; // theta uniform location
vec3 Theta; // Axis angles

void display(void)
{
glClear(GL_COLOR_BUFFER BIT | GL_DEPTH_BUFFER_BIT);

glUniform3fv(theta, 1, Theta);
glDrawArrays(GL_TRIANGLES, ©, NumVertices);

glutSwapBuffers();

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Finally, we merely need to supply the angle values into our shader through our uniform
plumbing. In this case, we track each of the axes rotation angle, and store them in a
vec3 that matches the angle declaration in the shader. We also keep track of the
uniform’s location so we can easily update its value.

SIGGRAPH Asia 2011

61

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Vertex Shaders

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

62

An Introduction to Modern OpenGL Programming

Shader Examples

* Vertex Shaders

— Moving vertices
* Transformations
* Height Fields
* Morphing

— Per vertex lighting
* Phong model
 Cartoon shading

o
-

Sponsored by ACM SIGGRAPH v ()

@ SIGGRAPHASIA

www.SIGGRAPH.org/ASIA2011

We’ll now analyze a few case studies from different applications.

SIGGRAPH Asia 2011

63

An Introduction to Modern OpenGL Programming

6 SIGGRA ASIA
Vertex Shader Transformations

* A vertex shader is initiated by each vertex output
by glDrawArrays()

* A vertex shader must output a position in clip
coordinates to the rasterizer

* |In our cube example, we “rigged” the vertex
positions in the application so we didn’t need to
transform them to clip coordinates

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

We begin delving into shader specifics by first taking a look at vertex shaders. As you’ve
probably arrived at, vertex shaders are used to process vertices, and have the required
responsibility of specifying the vertex’s position in clip coordinates. This process usually
involves numerous vertex transformations, which we’ll discuss next. Additionally, a
vertex shader may be responsible for determine additional information about a vertex
for use by the rasterizer, including specifying colors.

To begin our discussion of vertex transformations, we’ll first describe the synthetic
camera model.

SIGGRAPH Asia 2011

64

An Introduction to Modern OpenGL Programming

Model-View and o il e
Projection Matrices

Recall that model-view projection matrices are

standard way to move from object coordinates to
clip coordinates

Modeling Modeling
Transform Transform

abje_g’r Cogpd'si.

e

Model-View Projection
Transform Transform

|

World Coords. Eye Coords. Clip Coords.

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

This model goes back to the fixed function pipeline which supported both a model-view
transformation and a projection transformation. As we saw with our first example none
of these coordinate systems are necessary as long as values that make sense in clip
coordinates are output by the vertex shader. Nevertheless, these coordinates are very

useful for building applications and most OpenGL application programmers continue to
use them for modeling and viewing.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

.

Model-View and

Projection Matrices (cont’d)
* We can obtain the model-view and projection

matrices by

— Functions such as LookAt, Ortho, Frustum, Perspective
— Build from rotation, translation and scaling matrices
e Can compute in application as a uniform
— Send to vertex shader
— Apply in application to vertex positions

e Compute and apply in vertex shader

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The functions LookAt, Ortho, Frustum and Perspective are similar to the fixed function
pipeline functions but each produces a mat4 type in the application, e.g.

mat4 myModelView = Ortho(left, right, botttom, top, near, far)

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Sending to Vertex Shader

mat 4 aModelView = LookAt(eye, at , up);
mat 4 aProjection = Ortho(left, right, bottom, top, zNear, zFar);

// get locations from shaders

int matrix_loc = glGetUniformLocation(program, “vModelView");
int projection_loc = glGetUniformLocation(program, “vProjection");

//send to shader

glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, aModelView);
glUniformMatrix4fv(projection_loc, 1, GL_TRUE, aProjection);

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

o, n

Simple convention is to use an “a” as the first letter of an application variable, a “v” as
the first letter if name of a vertex shader variable and an “f” as the first letter of the
name of a fragment shader variable.

Second parameter in glUniformMatrix is number of matrices being sent. Third parameter
indicates we want the matrix transposed to take care of the difference between row
major and column major representations.

SIGGRAPH Asia 2011

67

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
Shader Code (

in vec4 vPosition;

uniform mat4 vModelView;

uniform mat4 vProjection;

out ePosition; // add if we also want position in eye coordinates
void main()

{

// / if we need position in eye coordinates, add following line
ePosition = vModelView*vPosition;
gl_Position = vProjection*vModelView*vPosition;

}

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

Gl_Position is now in clip coordinates.

Often we need the position in camera coordinates for lighting and other calculations.

We'll see examples later.

SIGGRAPH Asia 2011

68

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Rotating a Cube 2

Add rotation to cube example

Use mouse to select axis about which to rotate

Idle function updates the angle about the chosen
axis

Rotation matrix

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

The angles theta_x, theta_y and theta_z are known as the Euler angles. They are one of
many ways to specify a rotation in three dimensions.

SIGGRAPH Asia 2011

69

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Applying the Rotation

Option 1: Send a new rotation matrix to vertex
shader each refresh

Option 2: Send angles to vertex shader each

refresh and have vertex shader compute rotation
matrix

Apply rotation in addition to model-view and
projection transformations in shader

Idle and mouse functions are the same in either
option

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

70

An Introduction to Modern OpenGL Programming

5 SIGGRA ASIA
Vertex Shader for Rotation of Cube

in vec4 vPosition;
in vec4 vColor;

out vecd color;
uniform vec3 theta;

void main()

{

// Compute the sines and cosines of theta for
// each of the three axes in one computation.
vec3 angles = radians(theta);

vec3 c = cos(angles);

vec3 s = sin(angles);

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

Here’s an example vertex shader for rotating our cube. We generate the matrices in the
shader (as compared to in the application), based on the input angle theta. It’s useful
to note that we can vectorize numerous computations. For example, we can generate a

vectors of sines and cosines for the input angle, which we’ll use in further computations.

SIGGRAPH Asia 2011

71

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Vertex Shader for Rotation of Cube

// Remember: these matrices are column-major

mat4 rx = mat4(1.0, 0.0, 0.0,

)

C. X
S ‘ 0.0, 1.

)

);

0 0.
.0, v SaX, 9.
0 0.
0 1

0
%
0
%)

.y, 0. . 26,
A2l ke . .0,
AN (%]
.0, (%]

J

);

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

Completing our shader, we compose two of three rotation matrices (one around each
axis). In generating our matrices, we use one of the many matrix constructor functions
(in this case, specifying the 16 individual elements). It’s important to note in this case,
that our matrices are column-major, so we need to take care in the placement of the
values in the constructor.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Vertex Shader for Rotation of Cube

mat4 rz = mat4(c.z,
S.Z, : . :
0.0, : . .0,
0.0, : : 00

color = vColor;
gl _Position = rz * ry * * vPosition;

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

We complete our shader here by generating the last rotation matrix, and) and then use
the composition of those matrices to transform the input vertex position. We also pass-
thru the color values by assigning the input color to an output variable.

Note here that we have again assumed input positions are in clip coordinates. We could
easily add the model-view and projection matrices so that that last line of the shader
would become:

gl Position = ProjectionMatrix*ModelViewMatrix*rz * ry * rx *
vPosition;

SIGGRAPH Asia 2011

73

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Displaying a Height Field

* Form a quadrilateral mesh
for(i=0;i<N;i++) for(j=0;j<N;j++) data[i][j]l=Ff(i, j, time);

vertex[Index++] = vec3((float)i/N, data[i][j], (float)j/N);

vertex[Index++] vec3((float)i/N, data[i][j], (float)(j+1)/N);

vertex[Index++] = vec3((float)(i+1)/N, data[i][j],
(float)(j+1)/N);

vertex[Index++] = vec3((float)(i+1)/N, data[i][]],
(float)(3)/N);

 Display each quad using
for(i=0;i<NumVertices ;i+=4)
glDrawArrays(GL_LINE_LOOP, 4*i, 4);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

We'd first like to render a wire-frame version of our mesh, which we’ll draw a
individual line loops.

To begin, we build our data set by sampling the function ffor a particular time
across the domain of points. From there, we build our array of points to render.
Once we have our data and have loaded into our VBOs we render it by drawing
the individual wireframe quadrilaterals.

There are many ways to render a wireframe surface like this — give some thought
of other methods.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

>, SIGGRAPHASIA
Time Varying Vertex Shader =

in vec4 vPosition;

uniform float time; /* in milliseconds */
uniform mat4 ModelViewMatrix, ProjectionMatrix;

void main()

{

vec4d v = vPosition;
v.y = 0.1*sin(0.001*time + 5.0*vPosition.x)*
sin(@.001*time + 5.0*vPosition.z);

gl _Position = ModelViewMatrix*ProjectionMatrix * v;

Sponsared by AGM SIGGRAPH. () ‘d www.SIGGRAPH.org/ASIA201 1

Time provided by application using elapsed time function from GLUT and is
scaled to adjust the speed of the display. The scale factor 5.0 determines
frequency of the variations in the surface height. The third constant 0,1
determines the height of the surface variation.

SIGGRAPH Asia 2011

75

An Introduction to Modern OpenGL Programming

@ SIGGR/
Mesh Display i

Sponsored by ACM SIGGRAPH \‘:/ ()

www.SIGGRAPH.org/ASIA2011

Here’s a rendering of the mesh we just generated.

SIGGRAPH Asia 2011

76

An Introduction to Modern OpenGL Programming

Morphing -

* Smoothly change one object into another
* Suppose we have two sets of vertices

— Equal number of vertices in each
— Vertex positions match up

* Send both to GPU

* Use time parameter to control blending of vertex
positions

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

Because vertex attributes are determined by the application, we can send multiple sets
of vertex positions, colors and other attributes.

SIGGRAPH Asia 2011

77

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA
Morphing Two Triangles

point2 vertices_one[3] = {vec2(-1.0, -1.0), vec2(0.0,1.0), vec2(1.0, -1.0)};
point2 vertices_two[3] = {vec2(1.0, -1.0), vec2(0.0,-1.0), vec2(1.0, 1.0)};

glBufferData(GL_ARRAY_BUFFER, sizeof(vertices_one) +
sizeof(vertices_two), NULL, GL_STATIC_DRAW };
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices_one), vertices_one);

glBufferSubData(GL_ARRAY_BUFFER, sizeof(vertices_one),
sizeof(vertices_two), vertices_two);

static void draw(void) {
glClear(GL_COLOR_BUFFER_BIT);
glUniform1f(timeParam, glutGet(GLUT_ELAPSED_TIME));
glDrawArrays(GL_LINE_LOOQP, 0, 3);
glutSwapBuffers();

}

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

First we allocate an empty VBO large enough to hold both sets of vertices. Then we load
the data for each set of vertices. The display callback, draw(), is called by the idle
callback. Each time it is called we updated the time and draw a single triangle whose
vertex positions computed in the vertex shader.

To simplify the example, the vertex positions are in clip coordinates so we don’t need
the model-view and projection matrices.

SIGGRAPH Asia 2011

78

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Morphing Vertex Shader &

in vec4 verticesl;
in vec4d vertices2;
uniform float time;

void main()

{
float s = 0.5*%(1.0+sin(0.001*time));
gl_Position = mix(verticesl, vertices2, s);

}

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

The built-in mix function computers s+vertex1 + (1.0 — s)*vertex2. Note s varies between

0.0 and 1,0. As in the previous example, the scale factor 0.001 controls how fast the
triangles morph.

SIGGRAPH Asia 2011

79

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Fragment Shaders

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

80

An Introduction to Modern OpenGL Programming

Fragment Shaders o Bl sl

-

* Ashader that’s executed for each “potential” pixel

— fragments still need to pass several tests before making
it to the framebuffer

e There are lots of effects we can do in fragment
shaders
— Per-fragment lighting
— Bump Mapping
— Environment (Reflection) Maps
— Image Processing

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The final shading stage that OpenGL supports is fragment shading which allows an
application per-pixel-location control over the color that may be written to that location.
Fragments, which are on their way to the framebuffer, but still need to do some pass
some additional processing to become pixels. However, the computational power
available in shading fragments is a great asset to generating images. In a fragment
shader, you can compute lighting values — similar to what we just discussed in vertex
shading — per fragment, which gives much better results, or add bump mapping, which
provides the illusion of greater surface detail. Likewise, we’ll apply texture maps, which
allow us to increase the detail for our models without increasing the geometric
complexity.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Per Fragment Lighting

* Compute lighting using same model as for per
vertex lighting but for each fragment

* Normals and other attributes are sent to vertex
shader and output to rasterizer

* Rasterizer interpolates and provides inputs for
fragment shader

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

As an example of what we can do in a fragment shader, consider using our lighting
model, but for every pixel, as compared to at the vertex level. Doing fragment lighting
provides much better visual result, but using almost identical shader code (except you
need to move it from your vertex shader into your fragment shader). The only trick
required is that we need to have the rasterizer provide us updated normal values for

each fragment. However, that’s just like iterating a color, so there’s almost nothing to it.

Details will be discussed in the next section.

SIGGRAPH Asia 2011

82

An Introduction to Modern OpenGL Programming

C SIGGRAPHASIA

Cartoon Fragment Shader Result

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

Here we show an example of simple fragment shading that yields a result similar
to the shading you might find in an animated cartoon. Note the smoothness of the
shading.

SIGGRAPH Asia 2011

83

An Introduction to Modern OpenGL Programming

6 SIGGRAPHASIA

Texture Mapping

geometry

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

Textures are images that can be thought of as continuous and be one, two,
three, or four dimensional. By convention, the coordinates of the image are s, t, r
and g. Thus for the two dimensional image above, a point in the image is given
by its (s, t) values with (0, 0) in the lower-left corner and (1, 1) in the top-right
corner.

A texture map for a two-dimensional geometric object in (x, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Texture Mapping and the & SIS¢H
OpenGL Pipeline

* Images and geometry flow through separate
pipelines that join at the fragment shader

— “complex” textures do not affect geometric complexity

Vertices Geometry Pipeline

Fragment
Shader

Pixel Pipeline

Sponsored by ACM SIGGRAPH O (3 www. SIGGRAPH.org/ASIA2011

The advantage of texture mapping is that visual detail is in the image, not in the
geometry. Thus, the complexity of an image does not affect the geometric

pipeline (transformations, clipping) in OpenGL. Texture is added during
rasterization where the geometric and pixel pipelines meet.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Texture Example i

* The texture (below) is a
256 X 256 image that has been
mapped to a rectangular
polygon which is viewed in
perspective

Sponsored by ACM SIGGRAPH

© Y9 www.SIGGRAPH.org/ASIA2011

Above we show a simple example of mapping the OpenGL logo (stored as a
texture) onto a rectangular polygon. Textures can be any size (up to an
implementation maximum size), and aspect ratio.

A major point to realize is that an image file is different than a texture. OpenGL
has no capabilities for reading or writing image files — that’s something left to
external libraries. The only data that OpenGL requires from an image file is the
image’s width, height, number of color components, and the pixel data.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

(SIGGRA
Applying Textures | &

Three basic steps to applying a texture

specify the texture

* read or generate image

* assign to texture

* enable texturing

assign texture coordinates to vertices

specify texture parameters
* wrapping, filtering

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

In the simplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to a texture it is
copied from processor memory to texture memory where pixels are formatted
differently.

Texture coordinates are actually part of the state as are other vertex attributes
such as color and normals. As with colors, OpenGL interpolates texture inside
geometric objects.

Because textures are really discrete and of limited extent, texture mapping is
subject to aliasing errors that can be controlled through filtering.

Texture memory is a limited resource and having only a single active texture can
lead to inefficient code.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Applying Textures Il e

— create (bind) a texture object
— set texture filter

— set texture function

— set texture wrap mode

— enable texturing

— supply texture coordinates for vertex
* coordinates can also be generated in shaders

— Apply texture through sampler in fragment shader

Sponsored by AGM SIGGRAPH ..\""’/- (5 www.SIGGRAPH.org/ASIA2011

The general steps to enable texturing are listed above. Some steps are optional,
and due to the number of combinations, complete coverage of the topic is
outside the scope of this course.

Here we use the texture object approach. Using texture objects may enable your
OpenGL implementation to make some optimizations behind the scenes.

As with any other OpenGL state, texture mapping requires that glEnable ()
be called. The tokens for texturing are:

GL_TEXTURE 1D -one dimensional texturing
GL TEXTURE 2D -two dimensional texturing
GL TEXTURE 3D -three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for applying
contours to objects (like altitude contours to mountains). 3D texturing is useful
for volume rendering.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Texture Objects =

* Have OpenGL store your images
— one image per texture object

— may be shared by several graphics contexts
* Generate texture names
glGenTextures(n, *texIds);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The first step in creating texture objects is to have OpenGL reserve some indices
for your objects. glGenTextures () will request n texture ids and return
those values back to you in texIds.

To begin defining a texture object, you call g1BindTexture () with the id of
the object you want to create. The targetis one of GL. TEXTURE {123}D().
All texturing calls become part of the object until the next g1BindTexture ()
is called.

To have OpenGL use a particular texture object, call glBindTexture () with
the target and id of the object you want to be active.

To delete texture objects, use glDeleteTextures (n, *texIds),
where texIds is an array of texture object identifiers to be deleted.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Texture Objects (cont'd.) =

* Create texture objects with texture data and state
glBindTexture(target, id);

* Bind textures before using

glBindTexture(target, id);

Sponsored by ACM SIGGRAPH Q (3 www.SIGGRAPH.org/ASIA2011

After creating a texture object, you’ll need to bind to it to initialize or use the
texture stored in the object. This operation is very similar to what you’ve seen

when working with VAOs and VBOs.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Specifying a Texture Image

» Specify a texture image from an array of
texels in CPU memory
glTexImage2D(target, Level, components,
w, h, border, format, type, *texels);
* Texel colors are processed by pixel pipeline

— pixel scales, biases and lookups can be
done

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Specifying the texels for a texture is done using the g1 TexImage{123}D ()
call. This will transfer the texels in CPU memory to OpenGL, where they will be
processed and converted into an internal format.

The level parameter is used for defining how OpenGL should use this image
when mapping texels to pixels. Generally, you'll set the level to 0, unless you are
using a texturing technique called mipmapping, which we will discuss in the next
section.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Mapping a Texture -

e Based on parametric texture coordinates
e coordinates needs to be specified at each vertex

(s, 1) = (0.2, 0.8)

P - (0.4,0.2)
b _““”“_"—--’”:;"'-'—“::_n__‘_
B

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. Valid texture coordinates are between 0 and 1, for
each texture dimension, and usually manifest in shaders as vertex attributes.
We'll see how to deal with texture coordinates outside the range [0, 1] in a
moment.

Texture coordinates can be assigned in the application as another vertex
attribute and sent to the GPU as part of a VBO.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Applying Texture to Cube

// add texture coordinate attribute to quad
function

quad(int a, int b, int c, int d)

{
quad_colors[Index] = vertex colors[a];
points[Index] = vertex positions[a];
tex_coords[Index] = vec2(0.0, 0.0);
Index++;
.. // rest of vertices

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Similar to our first cube example, if we want to texture our cube, we need to provide
texture coordinates for use in our shaders. Following our previous example, we merely
add an additional vertex attribute that contains our texture coordinates. We do this for

each of our vertices. We will also need to update VBOs and shaders to take this new
attribute into account.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Creating a Texture Image i

// Create a checkerboard pattern
for (int i = 0; i < 64; i++)
for (int j = 0; j < 64; j++) {
GLubyte c;

© Y9 www.SIGGRAPH.org/ASIA2011

The code snippet above demonstrates procedurally generating a 64 X 64 checkerboard
texture map. Checkerboard images are good for examining the difference in aliasing
artifacts for different texture parameters.

SIGGRAPH Asia 2011

94

An Introduction to Modern OpenGL Programming

Texture Object

GLuint textures[1];
glGenTextures(1, textures);

glActiveTexture(GL_TEXTURE®);
glBindTexture(GL_TEXTURE_2D, textures[0]);
glTexImage2D(GL_TEXTURE 2D, @, GL_RGB, TextureSize,
TextureSize, GL RGB, GL_UNSIGNED BYTE,
image);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_REPEAT);
glTexParameterf(GL_TEXTURE_ 2D,
GL_TEXTURE_MAG_FILTER, GL_NEAREST
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MIN FILTER, GL_NEAREST

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

The above OpenGL commands completely specify a texture object. The code creates a
texture id by calling glGenTextures(). It then selects the active texture as well as binds
the texture object using glBindTexture() to open the object for use, and loading in the
texture by calling glTexlmage2D(). After that, numerous sampler characteristics are set,
including the texture wrap modes, and texel filtering.

SIGGRAPH Asia 2011

95

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Vertex Shader -

in vec4 vPosition;
in vec4 vColor;
in vec2 vTexCoord;

out vec4 color;
out vec2 texCoord;

void main()

color = vColor;
texCoord vTexCoord;
gl Position = vPosition;

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

In order to apply textures to our geometry, we need to modify both the vertex shader
and the pixel shader. Above, we add some simple logic to pass-thru the texture
coordinates from an attribute into data for the rasterizer.

SIGGRAPH Asia 2011

96

An Introduction to Modern OpenGL Programming

Fragment Shader

in vec4 color;
in vec2 texCoord;

uniform sampler2D texture;

void main()

{

gl FragColor = color *
texture(texture, texCoord);

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

Continuing to update our shaders, we add some simple code to modify our fragment
shader to include sampling a texture. How the texture is sampled (e.g., coordinate wrap
modes, texel filtering, etc.) is configured in the application using the glTexParameter*()
call.

Just like vertex attributes were associated with data in the application, so too with
textures. In particular, you access a texture defined in your application using a texture
sampler in your shader. The type of the sampler needs to match the type of the
associated texture. For example, you would use a sampler2D to work with a two-
dimensional texture created with glTexImage2D(GL_TEXTURE_2D, ...);

Within the shader, you use the texture() function to retrieve data values from the
texture associated with your sampler. To the texture() function, you pass the sampler as
well as the texture coordinates where you want to pull the data from.

Note: the overloaded texture() method was added into GLSL version 3.30. Prior to that
release, there were special texture functions for each type of texture sampler (e.g.,
there was a texture2D() call for use with the sampler2D).

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Cube with Color and Texture “

in vec4 color;
in vec2 texCoord;

uniform sampler2D texture;

void main()

{
gl _FragColor = color *
texture2D(texture, texCoord);

-
Sponsored by ACM SIGGRAPH Q ()

www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

98

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Image Processing -

e Same textures are available to all instances of the
fragment shader

* Hence we can use texels at multiple points around
a given texture coordinate
— texture2D(texture, vec2(texCoord.x+dx, texCoord.y+dy)

* Allows for image operations using the texture
image
— Smoothing
— Edge detection

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

99

An Introduction to Modern OpenGL Programming

Color Cube with Edge Detectof®

in vec4 color;
in vec2 texCoord;

uniform sampler2D texture;

void main()
{
float d = 0.01;
gl _FragColor = color * abs(
(texture2D(texture, vec2(texCoord.x+d, texCoord.y))
+texture2D(texture, vec2(texCoord.x, texCoord.y+d))
-texture2D(texture, vec2(texCoord.x-d, texCoord.y))
-texture2D(texture, vec2(texCoord.x, texCoord.y-d))));

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 100

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Cube Maps =

* OpenGL supports a cube for the texture image
— Six two-dimensional texture images

— In application we create a texture cube object
« glBindTexture(GL_TEXTURE_CUBE_MAP, tex);
« glTeximage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,

* Same for other five sides of cube

Sponsored by ACM SIGGRAPH

< Y9 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

101

An Introduction to Modern OpenGL Programming

Cube Map Fragment Shader

e Sample a texture cube with a vec3

* Texture color obtained from intersection of
vector with cube

in vec3 tex_vec
uniform samplerCube texMap;

void main() {
gl_FragColor = texture Cube(texMap, tex_vec);

}

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The largest magnitude component of tex_vec determines which of the six textures to
use. For example, if tex_vec = (1, 2, 3), the vector intersects the positive z texture map.
We divide by the largest component (3) to get the required texture coordinates (1/3,
2/3) for the positive z texture image.

SIGGRAPH Asia 2011 102

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Reflection Map N

* Specify a cube map in application

e Use reflect function in vertex shader to
compute view direction

* Apply texture in fragment shader

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 103

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

Reflection Map Vertex Shader <

uniform mat4 ProjectionMatrix, ModelViewMatrix;
uniform mat3 NormalMatrix;

in vec4 vPosition;

in vec3 Normal;

out vec3 R;

void main() {
gl Position = ModelViewMatrix*ProjectionMatrix
* vPosition;
vec3 N = normalize(NormalMatrix*Normal);
vec4 eyePos = ModelViewMatrix*vPosition;
R = reflect(eyePos.xyz, N);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

We want to compute the reflection vector in eye coordinates. Hence, we need the
eye position of the vertex which we obtain by using only the model-view matrix. If
the normal vector is given as an attribute in object coordinates, it must also be
transformed to eye coordinates The required matrix is called the normal matrix
and is the upper left 3 x 3 submatrix of the inverse transpose of the model-view
matrix.

SIGGRAPH Asia 2011 104

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Reflection Map Fragment Shader

in vec3 R;
uniform samplerCube texMap;

void main()
{

vecd texColor = textureCube(texMap, R);

gl FragColor = texColor;

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

The rasterizer interpolates both the texture coordinates and reflection vector to
get the respective values for the fragment shader.

Recall that all the texture definitions and parameters are in the application
program.

SIGGRAPH Asia 2011 105

An Introduction to Modern OpenGL Programming

SIGGR ASIA

Reflection mapped teapot

Sporsarnaby som scamaen (=)) www.SIGGRAPH.org/ASIA201 1

Reflection maps are often used to create a surface that appears highly reflective
like a mirror. We can accomplish this by using a a cube map of an environment
by taking six pictures (front, back, left, right, top, bottom) from a camera at the
center of the environment. We can also construct such images by six renderings
of the same objects with the camera rotated to get the required views.

SIGGRAPH Asia 2011 106

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Bump Mapping N

e Vary normal in fragment shader so that lighting
changes for each fragment

* Application: specify texture maps that describe
surface variations

* Vertex Shader: calculate vertex lighting vectors
and transform to texture space

* Fragment Shader: calculate normals from texture
map and shade each fragment

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Details are a little complex
Need lighting model
Usually do computations in a local frame that changes for each fragment

SIGGRAPH Asia 2011 107

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Bump Map Example =

Sporsarsaby som sicaruent (=)) www.SIGGRAPH.org/ASIA201 1

Single rectangle with moving light source.

Bump map is derived from a texture map with which is a step function.

SIGGRAPH Asia 2011 108

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Lighting

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 109

An Introduction to Modern OpenGL Programming

Lighting Principles =

* Lighting simulates how objects reflect light
— material composition of object
— light’s color and position
— global lighting parameters

* Lighting functions deprecated in 3.1

* Can implementin
— Application (per vertex)
— Vertex or fragment shaders

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Lighting is an important technique in computer graphics. Without lighting,
objects tend to look like they are made out of plastic.

OpenGL divides lighting into three parts: material properties, light properties and
global lighting parameters.

Lighting is available in both RGBA mode and color index mode. RGBA is more
flexible and less restrictive than color index mode lighting.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Modified Phong Model -

* Computes a color or shade for each vertex using a lighting
model (the modified Phong model) that takes into account

— Diffuse reflections
— Specular reflections

— Ambient light
— Emision

* Vertex shades are interpolated across polygons by the
rasterizer

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

OpenGL can use the shade at one vertex to shade an entire polygon (constant shading)
or interpolated the shades at the vertices across the polygon (smooth shading), the
default.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

The Modified Phong Model

* The model is a balance between simple computation and
physical realism

* The model uses
— Light positions and intensities
— Surface orientation (normals)

— Material properties (reflectivity)
— Viewer location

* Computed for each source and each color component

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The orientation of a surface is specified by the normal at each point. For a flat polygon
the normal is constant over the polygon. Because normals are specified by the
application program and can be changed between the specification of vertices, when we
shade a polygon it can appear to be curved.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

SIGGRAPHASIA

How OpenGL Simulates Lights‘:f

* Phong lighting model
— Computed at vertices
* Lighting contributors
— Surface material properties
— Light properties
— Lighting model properties

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

OpenGL lighting is based on the Phong lighting model. At each vertex in the
primitive, a color is computed using that primitives material properties along
with the light settings.

The color for the vertex is computed by adding four computed colors for the final
vertex color. The four contributors to the vertex color are:

e Ambient is color of the object from all the undirected light in a scene.

e Diffuse is the base color of the object under current lighting. There
must be a light shining on the object to get a diffuse contribution.

e Specular is the contribution of the shiny highlights on the object.

e Emission is the contribution added in if the object emits light (i.e.,
glows)

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

C SIGGRAPHASIA

Surface Normals

* Normals define how a surface reflects light
— Application usually provides normals as a vertex atttribute

— Current normal is used to compute vertex’s color
— Use unit normals for proper lighting
* scaling affects a normal’s length

Sponsared by AGM SIGGRAPH. () ‘d www.SIGGRAPH.org/ASIA201 1

The lighting normal tells OpenGL how the object reflects light around a vertex. If
you imagine that there is a small mirror at the vertex, the lighting normal
describes how the mirror is oriented, and consequently how light is reflected.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

Diffuse Base object color

Specular Highlight color

Ambient Low-light color
Emission Glow color

Surface

Shininess
smoothness

Sponsored by ACM SIGGRAPH C/ (5 www.SIGGRAPH.org/ASIA2011

Material properties describe the color and surface properties of a material (dull,
shiny, etc). The properties described above are components of the Phong
lighting model, a simple model that yields reasonable results with little
computation. Each of the material components would be passed into a vertex
shader, for example, to be used in the lighting computation along with the
vertex’s position and lighting normal.

SIGGRAPH Asia 2011

An Introduction to Modern OpenGL Programming

@ SIGGRA
Adding Lighting to Cube =

// vertex shader

in vec4 vPosition;
in vec3 vNormal;
out vec4 color;

uniform vec4 AmbientProduct, DiffuseProduct,
SpecularProduct;

uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec4 LightPosition;

uniform float Shininess;

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Here we declare numerous variables that we’ll use in computing a color using a simple
lighting model. All of the uniform values are passed in from the application and describe
the material and light properties being rendered.

SIGGRAPH Asia 2011 116

An Introduction to Modern OpenGL Programming

@ S\GGRAPHASIA
Adding Lighting to Cube =

void main()

{
// Transform vertex position into eye coordinates
vec3 pos = (ModelView * vPosition).xyz;

vec3 L = normalize(LightPosition.xyz - pos);
vec3 E normalize(-pos);
vec3 H normalize(L + E);

// Transform vertex normal into eye coordinates
vec3 N = normalize(ModelView * vec4(vNormal,
0.0)).xyz;

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

In the initial parts of our shader, we generate numerous vector quantities to be used in
our lighting computation.

* pos represents the vertex’s position in eye coordinates
e | represents the vector from the vertex to the light

e E represents the “eye” vector, which is the vector from the vertex’s eye-space position
to the origin

¢ H is the “half vector” which is the normalized vector half-way between the light and
eye vectors

e N is the transformed vertex normal

Note that all of these quantities are vec3’s, since we’re dealing with vectors, as
compared to homogenous coordinates. When we need to convert form a homogenous
coordinate to a vector, we use a vector swizzle to extract the components we need.

SIGGRAPH Asia 2011 117

An Introduction to Modern OpenGL Programming

@ SIGGRA
Adding Lighting to Cube =

// Compute terms in the illumination equation
vecd4d ambient = AmbientProduct;
float Kd = max(dot(L, N), 0.0);
vec4 diffuse = Kd*DiffuseProduct;
float Ks = pow(max(dot(N, H), ©.0), Shininess);
vecd specular = Ks * SpecularProduct;
if(dot(L, N) < ©.0)
specular = vec4(0.0, 0.0, 0.0, 1.0)

gl Position = Projection * ModelView * vPosition;

color = ambient + diffuse + specular;
color.a = 1.9;

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Here we complete our lighting computation. The Phong model, which this shader is
based on, uses various material properties as we described before. Likewise, each light
can contribute to those same properties. The combination of the material and light
properties are represented as our “product” variables in this shader. The products are
merely the component-wise products of the light and objects same material propreties.
These values are computed in the application and passed into the shader.

In the Phong model, each material product is attenuated by the magnitude of the
various vector products. Starting with the most influential component of lighting, the
diffuse color, we use the dot product of the lighting normal and light vector, clamping
the value if the dot product is negative (which physically means the light’s behind the
object). We continue by computing the specular component, which is computed as the
dot product of the normal and the half-vector raised to the shininess value. Finally, if
the light is behind the object, we correct the specular contribution.

Finally, we compose the final vertex color as the sum of the computed ambient, diffuse,
and specular colors, and update the transformed vertex position.

SIGGRAPH Asia 2011 118

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

OpenGL ES and WebGL

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 119

An Introduction to Modern OpenGL Programming

(SIGGR ASIA

Derivatives of OpenGL

* OpenGL has spawned several other APIs

i Name

OpenGLES 1.1 OpenGLl's Embedded System, a smaller-size, subset of
OpenGL ES 2.0 features of core OpenGL.

JavaScript-based interface to OpenGL ES 2.0 for running GL

ene. content within a web browser

Vertex Vertex

Data Shader — | —
Primitive FraAment
Setup and 8 — Blending

h
Rasterization Sy
Cam— S—

Pixel Texture

Data Store

Sporsarnaby som scamaen (=)) www.SIGGRAPH.org/ASIA201 1

Several additional APIs have been created that are derivatives of OpenGL.

OpenGL ES, the OpenGL Embedded System is a version of OpenGL that was specifically
designed for embedded devices (mobile phones, set-top boxes, tablets, etc.). It comes
in two version:

OpenGL ES 2.0 is the current version that is supported on most devices today. It’s also
available on some “desktop” systems.

WebGL provides OpenGL ES 2.0 functionality from within an HTML5 Canvas element
inside of a web browser using JavaScript.

SIGGRAPH Asia 2011 120

An Introduction to Modern OpenGL Programming

> SIGGRAPHASIA
OpenGL ES (

e Two versions currently available:

— ES 1.1 —fixed-function version

— ES 2.0 — vertex- and fragment-programmable version
* Minor differences form desktop version

— Uses EGL (mostly) for creating a context

— suppor'ts a 16-bit fixed-point ST
numeric format Precision
— fragment shaders variables highp ookl

can have different precision mediump 16-bit
lowp 8-bit

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

OpenGL ES, the embedded system version of desktop OpenGL, currently supports two
versions of the API:

*OpenGL ES 1.1 —a fixed-function subset of OpenGL (based on OpenGL version 1.3).

*OpenGL ES 2.0 — a programmable interface to OpenGL (based on OpenGL version 2.1),
not containing any fixed-function processing (similar to OpenGL version 3.1).

Most operating systems that support OpenGL ES (Android, Linux, Symbian, QNX) use EGL
as the binding library between the API and the OS’s windowing system. The notable
exception to EGL use is Apple’s iOS™, which uses functionality similar to what’s found in
Mac OS X (i.e., Cocoa).

The most notable differences between OpenGL ES and desktop OpenGL are that ES
originally had support for 16-bit fixed-point numeric values, as well as precision
qualifiers for fragment shader variables. (At the time of OpenGL ES 1.1’s release, most
graphics hardware in mobile and embedded devices didn’t support 32-bit floating-point
operations in the graphics hardware).

With OpenGL version 4.1, a new extension GL_ARB_ES_compatibility allows OpenGL ES
content to run on an OpenGL implementation (however, you’d still need to update the
windowing code to work with your desktop operating system).

SIGGRAPH Asia 2011

121

An Introduction to Modern OpenGL Programming

WebGL

* WebGL enables hardware- Browsers

. . Mozilla Firefi
accelerated 3D rendering in —————
Apple Safari

a web browser Opera

* Uses HTML5’s canvas element Google Chrome
to create a rendering surface

* “Application” is coded in JavaScript

— 3D rendering is done through a WebGL context

— all other processing is done using JavaScript
* input processing, image loading, etc.

o

Sponsored by ACM SIGGRAPH O () www.SIGGRAPH.org/ASIA2011

WebGL introduces hardware-accelerated 3D rendering through Web browsers that
support HTML5 and WebGL through an interface based on OpenGL ES 2.0. If either
technology isn’t present, the WebGL content will be unable to run.

HTMLS introduced the canvas element, which is a 2D rendering surface which WebGL
will use for rendering 3D, and which creates the required WebGL context which contains
all of the WebGL state and provides the function-call interface for WebGL rendering.
WebGL applications are written in a combination of HTML5 (for web page layout and
creating the canvas element), and JavaScript. In addition to WebGL, an additional
technology — typed arrays for JavaScript — allows for the efficient storage of OpenGL
types in OpenGL-style buffer objects.

SIGGRAPH Asia 2011 122

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Creating an
HTML5 Canvas

<html>
<style type="“text/css”>
canvas { background: blue; }
</style>
<body>

<canvas id=“gl-canvas”
width="640" height="“486">

Oops .. your browser doesn’t
support canvas elements!

</canvas>
</body>
</html>

-

Sponsored by ACM SIGGRAPH O Ve www. SIGGRAPH.org/ASIA2011

For WebGlL, creating a “window” for rendering is very simple — all it takes is adding an
HTMLS5 canvas tag into your web page. The example above shows creating a canvas of
size 640 X 480, and with a name of “gl-canvas”. None of those options are required, but
they’re convenient, particularly the id field. We’ll use it to simplify finding our canvas
so we can configure it for use with WebGL.

The text between the canvas tags is what the browser will emit if it doesn’t support
canvases.

In this example, the background color of the canvas area is controlled by a CSS element.
Once we have WebGL up and running, we’ll use that for setting all the state, including
the canvas’ background color.

SIGGRAPH Asia 2011

123

An Introduction to Modern OpenGL Programming

Initializing a (e Rl
WebGL Context

<html>

<script type="text/javascript" src="webgl-utils.js"></script>
<script type="text/javascript">

var gl;

function init() {
var canvas = document.getElementById("gl-canvas");

gl = WebGLUtils.setupWebGL(canvas);
if (!'gl) { alert("WebGL isn't available"); }

gl.viewport(@, @, canvas.width, canvas.height);
gl.clearColor(1.0, 0.0, 0.0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);

}

</script>

<body onload="init();">

Sponsored by ACM SIGGRAPH O (3 www.SIGGRAPH.org/ASIA2011

In order to be able to render with WebGL into a canvas, we’ll need to create a WebGL
context. This is no different than what you’d do in an “C”-based OpenGL program
(except when you use GLUT, where creating the context is done by the library).

We first need to find our canvas element, which we locate using standard HTML DOM
methods (getElementById()). We then use a helper function —
WebGLUtils.setupWebGL () (provided in a JavaScript module, webgl-utils.js, from the
WebGL group) — which determines if your browser supports WebGL and creates and
returns a context.

Once we have a context, we’re ready to draw. In this case, we just clear the window to
red. OpenGL ES, and by virtue WebGL, only present double-buffered windows. As
compared to desktop OpenGL, WebGL automatically will swap your buffers (like
glutSwapBuffers()) once you're done rendering.

SIGGRAPH Asia 2011 124

An Introduction to Modern OpenGL Programming

Specifying Shaders
in WebGL

. WEbGL shaders use the <scr‘ipt"id="ver‘tex—shader“"‘
type="x-shader/x-vertex">

OpenGL ES Shading attribute vec4 vPos;
|anguage attribute vec2 vTexCoord;

* Shaders are just HTML
scripts, with unique types

varying vec2 texCoord;

void
main()

texCoord = vTexCoord;
Vertex x-shader/x-vertex

gl Position = vPos;
Fragment x-shader/x-fragment s
</script>

o

Sponsored by ACM SIGGRAPH O () www.SIGGRAPH.org/ASIA2011

As with all modern OpenGL versions, shaders are essential to configuring the rendering
pipeline. WebGL, or more specifically, HTML, makes working with shaders simple. You
merely need to either include (or import using the src attribute) with a script tag.
Once again, providing an id attribute will allow us to simplify working with shaders.

SIGGRAPH Asia 2011 125

An Introduction to Modern OpenGL Programming

Initializing Shaders g SIGGRA
in WebGL

* Compiling shaders is similar to Open

var program = InitShaders(gl, "vertex-shader", "fragment-shader");

* In fact, we’ll use InitShaders()

— minor modifications required
* skip all file loading

— document loading takes care of this for us

— WebGL value returns are work slightly different

* We made InitShaders. js ascript you can just
include in your code

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

The compilation process for shaders in WebGL is virtually identical to that of OpenGL,
except that it’s done in a JavaScript environment. To simplify this operation for the class,
we ported our InitShaders() routine for use in WebGL. Overall, the code is very similar to
the desktop OpenGL version. We’ve made this code available, and included it in the
Appendix.

SIGGRAPH Asia 2011 126

An Introduction to Modern OpenGL Programming

|‘!:: SIGGRA
Loading VBOs in WebGL =

var vertices = {};

A” Vertex data mUSt be In vertices.data = new Float32Array(
VBOs [-0.5, -0.5, .. 1);

HOWeVer’ WebGL (nor ,‘"‘_.‘"’ Load data into VBO

vertices.bufferld = gl.createBuffer();
OpenGL ES) does not have g1.bindsuffer(gl.ARRAY_BUFFER,
vertices.bufferld);
\/I\C)S gl.bufferData(gl.ARRAY_BUFFER,
vertices.data, gl.STATIC_DRAW);
— allows each VBO to be self-
Contained // Bind attribute to VBO
var vPos = gl.getAttribLocation(

— bind directly to an attribute program, "vPos");
gl.vertexAttribPointer(vPos, 2,
gl.FLOAT, false, @, 0);

gl.enableVertexAttribArray(vPos);

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

As we’ve seen before, vertex data must reside in vertex buffer objects in desktop
OpenGL, and that policy is enforced in WebGL as well (which is a difference from
OpenGL ES, which still supports reading vertex data from client-side vertex arrays). The
major difference in dealing with VBOs in WebGL is its use of Typed Arrays an extension
to JavaScript that’s provided with WebGL that allows for specific data packing in arrays,
as required by OpenGL and WebGL. In the above example. you see that we use a
Float32Array construct, which creates a special WebGL data buffer which is
compatible with the VBO functions (e.g., bufferData()).

One major difference between desktop OpenGL and WebGL is how VBOs are bound to
vertex attributes. In WebGL, you can place the data for each attribute in its own VBO, as
compared to loading all vertex data into a single VBO (usually using
glBufferSubData()). The major point to keep in mind using this feature is that when
you bind a vertex attribute pointer to a buffer, the currently bound VBO (as specified by
bindBuffer() in WebGL) is associated with the vertex attribute index.

SIGGRAPH Asia 2011 127

An Introduction to Modern OpenGL Programming

Initializing Textures g SIGGRA
(using an image) in WebGL

 HTML images simplify working with textures
* WebGL only supports 2D and cubemap textures

e Since image loading
is asynchronous var image = new Image();

— need to wait until image.onload = function() {
image is loaded to configureTexture(image);

> render();
conﬁguretexture }
image.src = "SA2011 black.gif"

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Working with textures in WebGL is simplified by the support HTML provides for dealing
with image files. In JavaScript, we can easily load an image using the Image object. As
loading images is asynchronous, the image object provides a callback option to specify
operations to be executed once the image data is available. We'll use that functionality
to create our texture object, which we’ll discuss on the next slide. One other point to
keep in mind is that it’s possible that rendering will finish before the image (and the
texture based on it) is loaded. We deal with that situation by rendering our first frame
only after the image is loaded, which we do by calling our rendering function inside of
the image’s onload callback.

WebGL only supports 2D and cubemap textures which must be powers-of-two in each
dimension (although the values don’t need to be the same), predicated on OpenGL ES’s
support of only those types.

SIGGRAPH Asia 2011 128

An Introduction to Modern OpenGL Programming

configureTexture()

var texture;

function configureTexture(image) {
texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.pixelStorei(gl.UNPACK_FLIP_Y WEBGL, true);

gl.texImage2D(gl.TEXTURE_2D, ©®, gl.RGB, gl.RGB,
gl.UNSIGNED_BYTE, image);

gl.generateMipmap(gl.TEXTURE_2D);

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
gl.NEAREST _MIPMAP_LINEAR);

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
gl .NEAREST);

Sponsored by ACM SIGGRAPH \‘:‘/ (3 www.SIGGRAPH.org/ASIA2011

Here we present our routine for configuring a 2D texture based on a JavaScript image.
As compared to either desktop OpenGL, or OpenGL ES, WebGL overloads a few
functions allowing multiple interfaces to OpenGL operations. One case is
texImage2D(), which has one form that accepts a JavaScript image object, or others
versions which are like the more classic OpenGL versions.

One other notable difference is the use of a WebGL option to pixelStorei(), which
accommodates inverted images (which is how HTML stores images — with image origin
in the upper-left corner)

SIGGRAPH Asia 2011 129

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Animation

 WebGL automatically
swaps buffers after
rendering completes

* HTML has mechanisms
for repeatedly calling
a function

— window.requestAnimFrame()
— window.setInterval()

Sponsored by ACM SIGGRAPH -Cp [5 www. SIGGRAPH.org/ASIA2011

While there’s nothing particular to WebGL for supporting animation, you will need to
leverage HTML's window object to schedule calling of your rendering loop. The
requestAnimFrame () method will schedule the execution of a function at the next
“convenient” time, very similar to glutIdleFunc(). If you want a more periodic
approach to animation, then you can use the setInterval() method (as one
example) for having the browser to periodically call a function.

SIGGRAPH Asia 2011 130

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Framebuffer Objects and GPGPU

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 131

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

Discrete Processing in OpenGt

* Recent GPUs contain large amounts of memory
— Texture memory
— Frame Buffer
— Floating point

* Fragment shaders support discrete operations at
the pixel level

* Separate pixel pipeline

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

A typical GPU can support textures of 8192 x 8192 texels. In addition, new GPUs support
floating point buffers which make them attractive for numerical calculations that may
have no graphical basis.We are also interested in various multipass rendering strategies.
For example, if we compute the six faces of a cube map and then use the cube map for a
environment map, there are seven renderings required.

SIGGRAPH Asia 2011 132

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

Accessing the Frame Buffer

* Pre 3.1 OpenGL had functions that allowed access
to the frame buffer and other OpenGL buffers
— Draw Pixels
— Read Pixels
— Copy Pixels
— BitBIt
— Accumulation Buffer functions

* All deprecated

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

BItBIt (= Bit Block Transfer) allowed manipulation of rectangles of one-pit piixels called
bit maps. Operations involved logical operations between source and destination bits.

Draw, Read and Copy were arithmetic operations on rectangular blocks of pixles called
pixel maps. Loss of resolution was a problem since most CPUs supported only eight
bits/component pixels. Both Draw and Read involved CPU-GPU transfers of large blocks
of pixels. Copy was a frame buffer-frame buffer operation.

The accumulation buffer supported floating point operations needed for applications
such as digital filtering (image processiing) but was implemented in software on the GPU
so was very slow.

SIGGRAPH Asia 2011 133

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

Going between CPU and GPU

* We have already seen that we can write pixels as
texels to texture memory

Texture objects reduce transfers between CPU and
GPU

Transfer of pixel data back to CPU slow

Want to manipulate pixels without going back to
CPU

— Image processing
— GPGPU

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

In keeping with what we did with geometric processing, we want to put data on the GPU
only once and carry out all operations on the data through shaders.

SIGGRAPH Asia 2011 134

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Frame Buffer Objects N

* Frame Buffer Objects (FBOs) are buffers that are
created by the application
— Not under control of window system
— Cannot be displayed

— Can attach a render buffer to a FBO and can render off
screen into the attached buffer

— Attached buffer can then be detached and used for an
on screen render

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Although there is more code to set up a FBO, the idea is similar to how we set up VBOs,
VAOs and texture objects. We create an FBO, attach the buffers we need to it for an off-
screen rendering, and then render as before. When the render is done, we can detach
the attached buffers and use their contents for a second rendering to the framebuffer.

SIGGRAPH Asia 2011 135

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Render to Texture -

e Textures are shared by all instances of the
fragment shade

* If we render to a texture attachment we can
create a new texture image that can be used in
subsequent renderings

* Use a double buffering strategy for operations
such as convolution

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

We will only discuss render to texture (rather to some other kind of buffer).

SIGGRAPH Asia 2011 136

An Introduction to Modern OpenGL Programming

6 SIGGRAPHASIA

Steps -

Create an Empty Texture Object

Create a FBO

Attach render buffer for texture image

Bind FBO

Render scene

Detach render buffer

Bind texture

Render with new texture

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 137

An Introduction to Modern OpenGL Programming

Empty Texture Object =

glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB, 256, 256,
0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

In this example, we will create a 256 x 256 texture by rendering a single triangle.

The parameters for the texture object are fairly standard. The last parameter in
glTeximage makes this an empty texture.

SIGGRAPH Asia 2011 138

An Introduction to Modern OpenGL Programming

SIGGRA
Frame Buffer Object ¢) SISGR

Gluint renderbuffer;
glGenRenderbuffers(1, &renderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, renderbuffer);

// If scene is 3D, we can attach a depth buffer
//gIRenderbufferStorage(GL_RENDERBUFFER,
GL_DEPTH_COMPONENT24, 256, 256);

// Attach color buffer

glGenFramebuffers(1, &framebuffer);

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer);

glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D, texture, 0);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

In the first part of the code, we allocate and bind a FBO. Since we are rendering a 2D
scene, we don’t need to allocate storage on the GPU for a depth buffer. We then attach
a color buffer for the texture object we bound earlier.

SIGGRAPH Asia 2011 139

An Introduction to Modern OpenGL Programming

Rest of Initialization

e Same as previous examples
— Allocate VAO and VBO
— Fill VBO with data for render to texture

* Initialize two program objects with different
shaders

— First for render to texture
— Second for rendering with created texture

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

We are now set up for an off-screen rendering which looks like our previous renderings.
We need to allocate a vertex array object and vertex buffer object and then put the date
for the triangle in the VBO.

We need two sets of shaders; one for the render to texture and the second for rendering
to the frame buffer using our new texture. Use two program objects.

SIGGRAPH Asia 2011 140

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Program Object 1 Shaders =

pass through vertex shader:
in vec4 vPosition;
void main() {

gl_Position = vPosition;

}

fragment shader to get a red triangle:

void main() {
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Sponsored by ACM SIGGRAPH Q (3 www.SIGGRAPH.org/ASIA2011

Vertex positions are assumed to be in clip coordinates.

SIGGRAPH Asia 2011 141

An Introduction to Modern OpenGL Programming

Program Object 2 Shaders

// vertex shader // fragment shader

in vec4 vPosition; in vec2 texCoord;
in vec2 vTexCoord; uniform sampler2D texture;
out vec?2 texCoord;
void main() {
void main() { gl _FragColor = texture2D(
gl_Position = vPosition; texture, texCoord);
texCoord = vTexCoord;

}

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

Here too we assume vertex positions are given in clip coordinates to simplify example.

SIGGRAPH Asia 2011 142

An Introduction to Modern OpenGL Programming

First Render (to Texture)

glUseProgram(program1);

GLuint loc = glGetAttribLocation(program1, "vPosition");

glEnableVertexAttribArray(loc);

glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET(0));

glBindBuffer(GL_ARRAY BUFFER, buffer);
glBindFramebuffer(GL_DRAW _ FRAMEBUFFER, framebuffer);
glViewport(0, 0, 256, 256);

glClearColor(1.0, 1.0, 1.0, 1.0);

glClear(GL_COLOR_BUFFER_BIT);

glDrawArrays(GL_TRIANGLES, 0, 3);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

By binding the buffer we allocated, we render to the off screen buffer. Otherwise
rendering is as rendering to the frame buffer.

SIGGRAPH Asia 2011 143

An Introduction to Modern OpenGL Programming

Set Up Second Render -

glGenerateMipmap(GL_TEXTURE_2D);
glBindFramebuffer(GL_FRAMEBUFFER, 0);

glBufferData(GL_ARRAY_BUFFER, sizeof(quad)+sizeof(tex), NULL,
GL_STATIC_DRAW);

glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(quad), quad);

glBufferSubData(GL_ARRAY_BUFFER, sizeof(quad), sizeof(tex), tex);

glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTUREO);
glUseProgram(program2);

glDisableVertexAttribArray(loc);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

First we bind to the window system frame buffer. We then send the data for our quad.
We make the texture we created the active texture so it is available for the normal
rendering.

SIGGRAPH Asia 2011 144

An Introduction to Modern OpenGL Programming

Data for Second Render

GLuint quad_loc = glGetAttribLocation(program2, "vPosition");

glEnableVertexAttribArray(quad_loc);

glVertexAttribPointer(quad_loc, 2, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET(0));

GLuint vTexCoord = glGetAttribLocation(program2, "vTexCoord");

glEnableVertexAttribArray(vTexCoord);

glVertexAttribPointer(vTexCoord, 2, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET(sizeof(quad)));

glUniform1i(glGetUniformLocation(program2, "texture"), 0);
glBindTexture(GL_TEXTURE_2D, texture);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

Note that we are using the texture object we created earlier but now it has a texture
image to use.

SIGGRAPH Asia 2011 145

An Introduction to Modern OpenGL Programming

Render a Quad with Texture

glViewport(0, 0, 512, 512);
glClearColor(0.0, 0.0, 0.0, 1.0);

glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES, 0, 6);
glutSwapBuffers();

e

Spomared by AGM SGGRAPH. () € www.SIGGRAPH.org/ASIA201 1

The texture was created as a 256 x 256 image and the second rendering isto a 512 x 512
frame buffer using point sampling, we see some jaggedness in the resulting image.

SIGGRAPH Asia 2011 146

An Introduction to Modern OpenGL Programming

Dynamic 3D Example

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

The code for this example replaces the second rendering of a single quad from our
previous example with the code from our cube examples. The colors are determined by
blending the cube colors with the texture colors:

in vec4 color;

in vec2 texCoord;
uniform sampler2D texture;
void main()

{

gl _FragColor = 0.5*color + 0.5*texture2D(texture, texCoord);

SIGGRAPH Asia 2011 147

An Introduction to Modern OpenGL Programming

» SIGGRAPHASIA
GPGPU o

* General Purpose Computing on a GPU
Render a quadrilateral

Use fragment shader to compute texture values

Usually we are not interested in resulting image

Results are texel values

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 148

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Buffer Ping-ponging -

Iterative calculations can be accomplished using
multiple render buffers

Original data in texture buffer 1
Render to texture buffer 2
Swap buffers and rerender to texture

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 149

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Tessellation Shaders

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 150

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Tessellation Overview -

» Tessellation uses patch primitives generate geometry
— Specify GL_PATCHES to g1lDraw*()

* Patch processing is controlled by two shaders

— Tessellation Control Shaders
* process a set of input patch vertex attributes
» generate an output patch’s vertex attributes
* specify the tessellation factors

— Tessellation Evaluation Shaders
* process output patch’s vertex attributes

» specify the output patches final vertex positions based on generated
parametric primitives

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

151

An Introduction to Modern OpenGL Programming

Tessellation Data Flow

layout(vertices = n) out;
~— T
gl in[] Tessellation gl out[] gl in[] TessellaFlon
Control Evaluation

Shader Shader

Vertex
Shader

layout(prim, winding, spacing) in;

]
=
o
o
=
@
15
>

Tessellation
Primitive
Generator

Sponsored by ACM SIGGRAPH O (3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 152

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Tessellation Data Flow -

Since tessellation shaders work on collections of
vertices, arrays of vertex data are passed in and out

Built-in GLSLarray g1_in[] contains the input vertices

for each shader stage
. in gl PerVertex {
— gl in.length() returns vec4 gl_Position;

arrav leneth float gl _PointSize;
Y g vec4 gl ClipDistance[];

Built-in GLSLarray g1_out[] 1} slinll;
holds updated vertex information

Both are arrays of structures

o
-

Sponsored by ACM SIGGRAPH o), () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

153

An Introduction to Modern OpenGL Programming

Example Tessellation Control Shader

#version 480 core

layout (vertices = 4) out; Specify number of
vertices in the output
patch

uniform float Inner;
uniform float Outer;

void main()

{
gl _TessLevelInner[@] Inner; Set paramEters for

gl_TessLevellnner[1] = Inner; tessellation primitive

gl_TesslevelOuter[@] = Outer; generator
gl TesslLevelOuter[1] Outer;
gl_TesslLevelOuter[2] Outer;
gl_TessLevelOuter[3] Outer;

gl out[gl_InvocationID].gl_Position = Define vertex attributes
gl_in[gl_InvocationID].gl Position; for output patch

Sponsored by ACM SIGGRAPH O (3 www. SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 154

An Introduction to Modern OpenGL Programming

5 SIGGRA ASIA
Non-Shader-Based Tessellatiort Control

* Many tessellation control shaders may just “pass
through” data

— copy input data to output data

» assumes that input and output patch have the same number of
vertices

* OpenGL can to do this without a shader

1.Specify the number of vertices in the input patch
glPatchParameteri(GL_PATCH_VERTICES, NumVertices);
2.Specify inner- and outer-tessellation arrays

GLfloat outer[4], inner[2];
glPatchParameterfv(GL_PATCH_DEFAULT_OUTER_LEVEL, outer);
glPatchParameterfv(GL_PATCH_DEFAULT_INNER_LEVEL, inner);

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 155

An Introduction to Modern OpenGL Programming

> SIGGRAPHASIA
Tessellation Primitive Generation

* Tessellation generates geometric primitives by
tessellating a parameter space

* Three types of parameterization are available:

Parameter Space Tessellation Factors Used

Unit square : (u, v) gl TesslLevelInner:0..1

C u,v e [0,1] gl TesslLevelOuter:0..3

Barycentric : (u, v, w)
triangle u,v, w e [0,1]
u+v+w=1

gl_TesslLevelOuter:0..2
gl TesslLevelInner:0

Line: (u, v)
isolines u,ve [0,1] gl TesslLevelOuter:0..1
u varies across line, v is constant

-

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 156

An Introduction to Modern OpenGL Programming

Example Quad Tessellation

gl _TessLevelOuter[3]

gl_TesslLevelInner[@]
gl TesslLevelInner[1l]
gl TesslLevelOuter[@] gl TesslLevelInner[1]
gl TesslLevelOuter[1]
gl _TesslLevelOuter[2]

gl TesslLevelOuter[3]

gl TessLevelInner[@]

(using equal_spacing)

gl _TesslLevelOuter[Q]
[z]ua3npTaAa7ssal 18

gl TessLevelOuter[1]

Sponsored by ACM SIGGRAPH \‘:‘/ 4_3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 157

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Example Triangle Tessellation™

gl TesslLevelInner[@] =
gl TesslLevelOuter[Q]
gl TesslLevelOuter[1]
gl TesslLevelOuter[2]

(using equal_spacing)

~
D
~
&
F
Q
@
AY
2
&
<
A

Barycentric Coordinates

u+tv+w=1

gl TesslLevelOuter[1]

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 158

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Example Isoline Tessellation =

gl_TesslLevelOuter[@] = 7.0;
gl TesslLevelOuter[l] = 4.0;

(using equal_spacing)

gl TesslLevelOuter([@]

gl TesslLevelOuter[1]

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 159

An Introduction to Modern OpenGL Programming

#version 408 core
layout (quads, equal_spacing, ccw) in;
uniform mat4 MV, P;

float B(int i, float u)

{

const vecd4 bc = vecd(1, 3, 3, 1);

return bc[i] * pow(u, i) * pow(1.8 - u, 3 - i);

}

void main()
{
float u = gl_TessCoord.x, v = gl_TessCoord.y;

vecd pos = vecd(9.9);
for (int j = 3+)
for (int 1 = @; < 45 441)

pos += B(i, u) * B(j, v) * gl_in[4*j+i].gl_Position;
gl_Position = P * MV * pos;

}

Sponsored by ACM SIGGRAPH -Cp [‘
nNsol Y

> SIGGRAPHASIA
Example Tessellation Evaluation Shader

Specify which tessellation we want; how
control points are generated; and the

primitive vertex winding

Use the tessellation
coordinates for determing
the final vertex position

Compute the final vertex
position using the patches
vertices

www.SIGGRAPH.org/ASIA201 1

SIGGRAPH Asia 2011

160

An Introduction to Modern OpenGL Programming

@) SIGGRAPHASIA

Controlling Tessellation Spacifig

 Tessellation factors are floating-point values

* The various modes determine how an edge is
subdivided

— an edge can only be subdivided into
GL_MAX_TESS_GEN_LEVELS (currently, 64)

Spacing Mode Clamping Interval Characteristics
Range

equal_spacing [1, max] n identically sized intervals

fractional_even_spacing [2, max] (n-2) identically sized intervals
2 (usually smaller) end segments of

fractional_odd_spacing [1, max-1] decreasing size (based on the fractional
part of the spacing value)

Sponsored by ACM SIGGRAPH O (3 www. SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 161

An Introduction to Modern OpenGL Programming

5 SIGGRAPHASIA
Primitive Vertex Winding and Point Mode

* Generated primitives have a counter-clockwise
vertex ordering (ccw), by default

— specify cw for clockwise vertex winding

* Additionally, you can generate points instead of
triangles by specifying point_mode in the layout
directive

layout(triangles, cw, fractional_even_spacing, point_mode) in;

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 162

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA

Geometry Shaders

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 163

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Geometry Shader Overview =

* Final (optional) shading stage before primitives are
passed to the rasterizer

* Geometry shaders, if enabled, are last shader
stage before primitives are fed into the rasterizer

* Multiple primitives can be generated inside of a
geometry shader

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 164

An Introduction to Modern OpenGL Programming

@ S\GGRAPHASIA
Example Geometry Shader ™

#version 400 core
layout(triangles, invocations = 1) in;

. . Specify the input and output
layout(triangles, max_vertices = 3) out;

parameters for the Geometry

Shader
uniform float scale;

void main()

{

vecd v[3], center = vec4(0);

for ((int 1 =0; i < 3; ++1) {
v[i] = gl _in[i].gl_Position;
center += v[i];

Use values from the input
vertex array

}

center /=

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

SIGGRAPH Asia 2011 165

An Introduction to Modern OpenGL Programming

SIGGR!/ ASIA

y

Example Geometry Shader

for (int i =@; i < 3; ++i) {
gl Position = mix(v[i], center, scale);
EmitVertex();

}

Generate the output vertex’s
value, and have the shader
send it on

EndPrimitive();

Signal that we've completed a
primitive

Sponsored by ACM SIGGRAPH O (3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011

166

An Introduction to Modern OpenGL Programming

SIGGR; ASIA
Which Shader: Geometry or TéSsellation

_ Geometry Characteristics Tessellation Characteristics

Parameteric control —
tessellation level parameters
control number of primitives
generated

Explicit control — you specify
Primitive Generation both where vertices go, and
how they’re connected

Implicitly connected — all
primitives are connected; you
merely control vertex
placement

Very localized — you only see
Mesh Topology a local set of primitives, with
limited connectivity

Sponsored by ACM SIGGRAPH O (3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 167

An Introduction to Modern OpenGL Programming

SIGGR; ASIA
Which Shader: Geometry or TéSsellation

_ Geometry Characteristics Tessellation Characteristics

Arbitrary patch — OpenGL
Limited set of primitives — merely sees a list of vertices,
lines, triangles, triangle strips you establish the
relationships

Provoking Primitives

Simpler — as long as vertices
Problematic — you need to and tessellation levels are the
control vertex placement same along an edge, cracking
carefully is limited to computational
precision.

“Cracking” between
primitives

Sponsored by ACM SIGGRAPH O (3 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 168

An Introduction to Modern OpenGL Programming

Q&A

Thanks for Coming!

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

SIGGRAPH Asia 2011 169

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Resources e

* Numerous Books
— The OpenGL Programming Guide, 7th Edition

— Computer Graphics: A Top-down Approach using
OpenGL, 6th Edition

— The OpenGL Superbible, 5th Edition
— The OpenGL Shading Language Guide, 3rd Edition
— OpenGL and the X Window System

— OpenGL Programming for Mac OS X

Spomansd by A SCRAH (2) £) www.SIGGRAPH.org/ASIA201 1

SIGGRAPH Asia 2011

170

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Resources e

* The OpenGL Website: www.opengl.org
— API specifications
— Reference pages and developer resources
— PDF of the OpenGL Reference Card

— Discussion forums

* The Khronos Website: www.khronos.org

— Overview of all Khronos APIs
— Numerous presentations

Sponsored by ACM SIGGRAPH

< Y9 www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 171

An Introduction to Modern OpenGL Programming

@ SIGGRAPHASIA
Thanks! -

* Feel free to drop us any questions:

—angel@cs.unm.edu
— shreiner@siggraph.org

* Course notes and programs available at:

— http://www.daveshreiner.com/SIGGRAPH/sall/
— https://www.cs.unm.edu/~angel

o

Sponsored by ACM SIGGRAPH Q () www.SIGGRAPH.org/ASIA2011

SIGGRAPH Asia 2011 172

