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Outline 

• Spatial filters 

• Frequency domain filtering 

• Edge detection 
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Topic: Spatial filters 

• Spatial filters 

• Frequency domain filtering 

• Edge detection 
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Images are Discrete and Finite 
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Spatial Mask 

• Simple way to 

process an image. 

• Mask defines the 

processing function. 

• Corresponds to a 

multiplication in 

frequency domain. Convolution – Mask 

‘slides’ over the image 

Mask Image 
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Example 

• Each mask position 

has weight w. 

• The result of the 

operation for each 

pixel is given by: 
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Definitions 

• Spatial filters 

– Use a mask (kernel) over an image region. 

– Work directly with pixels. 

– As opposed to: Frequency filters. 

• Advantages 
– Simple implementation: convolution with the 

kernel function. 

– Different masks offer a large variety of 
functionalities. 
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Averaging 

Let’s think 

about 

averaging 

pixel values 

For n=2, convolve pixel values with  1 2 1 

2D images:  
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The convolution kernel 
2n

8n

nlarge 

Repeated averaging  Gaussian smoothing 

Averaging 
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Gaussian Smoothing 
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• A Gaussian kernel gives less weight to pixels further 
from the center of the window 

 

 

 

 

• This kernel is an approximation of a Gaussian function: 

Gaussian Smoothing 

1 2 1 

2 4 2 

1 2 1 
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2

8.2 4

original 
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Mean Filtering 

• We are degrading the 

energy of the high spatial 

frequencies of an image 

(low-pass filtering). 

– Makes the image 

‘smoother’. 

– Used in noise reduction. 

• Can be implemented with 

spatial masks or in the 

frequency domain. 1 1 1 

1 1 1 

1 1 1 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 
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http://www.michaelbach.de/ot/cog_blureffects/index.html  

http://www.michaelbach.de/ot/cog_blureffects/index.html
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http://www.michaelbach.de/ot/cog_blureffects/index.html  

http://www.michaelbach.de/ot/cog_blureffects/index.html
http://www.michaelbach.de/ot/cog_blureffects/index.html
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Median Filter 

• Smoothing is averaging 

(a) Blurs edges  

(b) Sensitive to outliers 

(a) 

(b) 

– Sort            values around the pixel  

– Select middle value (median) 

 

 

 

– Non-linear (Cannot be implemented with convolution) 

•   Median filtering 

12 N

sort median 
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3x3 

5x5 

7x7 

Salt and pepper noise Gaussian noise 
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Border Problem 

What a computer sees 

1 2 1 

2 4 2 

1 2 1 

How do we apply 

our mask to this 

pixel? 
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Border Problem 

• Ignore 

– Output image will be smaller than original 

• Pad with constant values 

– Can introduce substantial 1st order derivative values 

• Pad with reflection 

– Can introduce substantial 2nd order derivative values 
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Topic: Frequency domain filtering 

• Spatial filters 

• Frequency domain filtering 

• Edge detection 
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Image Processing in the Fourier 

Domain 

Does not look anything like what we have seen 

Magnitude of the FT 
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Convolution in the Frequency Domain 

f(x,y) 

h(x,y) 

g(x,y) 

|F(sx,sy)| 

|H(sx,sy)| 

|G(sx,sy)| 
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Lets the low frequencies 

pass and eliminates the 

high frequencies. 

Generates image with overall 

 shading, but not much detail 

Low-pass Filtering 
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Lets through the high 

frequencies (the detail), 

but eliminates the low 

frequencies (the overall 

shape). It acts like an 
edge enhancer.  

High-pass Filtering 
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Boosting High Frequencies 
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The Ringing Effect 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm 

An ideal low-pass filter causes ‘rings’ 

in the spatial domain! 
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Topic: Edge detection 

• Spatial filters 

• Frequency domain filtering 

• Edge detection 
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Edge Detection 

• Convert a 
2D image 
into a set of 
curves 
– Extracts 

salient 
features of 
the scene 

– More 
compact 
than pixels 
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Origin of Edges 

• Edges are caused by a variety of factors 

depth discontinuity 

surface color discontinuity 

illumination discontinuity 

surface normal discontinuity 
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How can you tell that a pixel is 

on an edge? 
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Edge Types 

Step Edges 

Roof Edge Line Edges 
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Real Edges 

Noisy and Discrete! 

We want an Edge Operator that produces: 

– Edge Magnitude 

– Edge Orientation 

– High Detection Rate and Good Localization 
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Gradient 

• Gradient equation:  

 

• Represents direction of most rapid change in intensity 

• Gradient direction: 
 

• The edge strength is given 

by the gradient magnitude 
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Theory of Edge Detection 
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•  Partial derivatives (gradients): 
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•  Laplacian: 
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Discrete Edge Operators 

• How can we differentiate a discrete image? 

Finite difference approximations: 
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1, jiI 1,1  jiI
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The Sobel Operators 

• Better approximations of the gradients exist 

 

– The Sobel operators below are commonly used 

-1 0 1 

-2 0 2 

-1 0 1 

1 2 1 

0 0 0 

-1 -2 -1 
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Comparing Edge Operators 

-1 0 1 

-1 0 1 

-1 0 1 

1 1 1 

0 0 0 

-1 -1 1 

Gradient: 

Roberts (2 x 2): 

Sobel (3 x 3): 

Sobel (5 x 5): 
-1 -2 0 2 1 

-2 -3 0 3 2 

-3 -5 0 5 3 

-2 -3 0 3 2 

-1 -2 0 2 1 

1 2 3 2 1 

2 3 5 3 2 

0 0 0 0 0 

-2 -3 -5 -3 -2 

-1 -2 -3 -2 -1 

0 1 

-1 0 

1 0 

0 -1 

Good Localization 

Noise Sensitive 

Poor Detection 

Poor Localization 

Less Noise Sensitive 

Good Detection 
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Effects of Noise 

• Consider a single row or column of the image 

– Plotting intensity as a function of position gives a signal 

Where is 

the edge?? 
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Where is the edge?   

Solution:  Smooth First 

   Look for peaks in  
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Derivative Theorem of Convolution 

…saves us one operation. 
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Laplacian of Gaussian (LoG) 

Laplacian of Gaussian operator 

Where is the edge?   Zero-crossings of bottom graph ! 

  fh
x

fh
x


















2

2

2

2

Laplacian of Gaussian 



VC 12/13 - T7 - Spatial Filters 

2D Gaussian Edge Operators 

Laplacian of Gaussian 
Gaussian 

Derivative of Gaussian (DoG) 

Mexican Hat (Sombrero) 

•       is the Laplacian operator: 
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Canny Edge Operator 

• Smooth image I with 2D Gaussian: 
 

• Find local edge normal directions for each pixel 

 

 

• Compute edge magnitudes 
 

• Locate edges by finding zero-crossings along the edge normal 

directions (non-maximum suppression) 
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Non-maximum Suppression 

• Check if pixel is local maximum along gradient direction 

– requires checking interpolated pixels p and r 
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magnitude of the gradient 
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After non-maximum suppression 
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Canny Edge Operator 

Canny with  Canny with  original  

• The choice of     depends on desired behavior 

– large       detects large scale edges 

– small      detects fine features 
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Difference of Gaussians (DoG) 

• Laplacian of Gaussian can be approximated by the 

    difference between two different Gaussians 
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DoG Edge Detection 

1(a) 2(b) (b)-(a) 
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Unsharp Masking 
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Resources 

• Gonzalez & Woods – Chapter 4 


