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Supervised vs. Unsupervised
• Supervised learning

– We have access to a 
set of training data for 
which we know the 
correct class/answer

– Training 
data: 𝑥!, 𝑦! !"#

$

– 𝑥!: data (e.g., image)
– 𝑦!: label

• Examples
– Image classification
– Image segmentation
– Object detection
– Etc.
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Supervised vs. Unsupervised
• Unsupervised 

learning
– Discover hidden 

structures in the data
– Training data: 𝑥! !"#$

– 𝑥!: only data (e.g., 
image), no label!

• Examples
– Clustering
– Dimensionality 

reduction
– Generative models
– Etc.

Computer Vision - TP13 - Advanced Deep Learning Topics



Autoencoders

• Objective
– Find representative features of the data

• Unsupervised learning
– No data labels required

• Simple idea
– Learn a representation of the data and try to 

recover the original data from that!
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Autoencoders

• Representative features
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Autoencoders

• Reconstruction
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Autoencoders

• Training
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Autoencoders

• Use the learned features for other tasks!
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Autoencoders

• Use the learned features for other tasks!
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Avoid trivial solutions

• Undercomplete: dim(z) << dim(x)
– Forces to capture the most salient features
– Dimensionality reduction
– Capture meaningful factors of variation

• Regularized
– Encourage the model to have some 

properties
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Sparse Autoencoders

• Code sparsity

𝐿𝑂𝑆𝑆 = 𝑥 − '𝑥 !
! + 𝑧 "

– Helps learning good features for classification
– Forces a (Laplace) prior on latent 

representation
– Different from weight regularization! Why?
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Denoising Autoencoders

• Definition
– Encoder function: 𝑧 = 𝐸 𝑥
– Decoder function: '𝑥 = 𝐷 𝑧
– Noisy version of data: ,𝑥 = 𝑥 + 𝑛𝑜𝑖𝑠𝑒
– Denoising autoencoder:

𝐿𝑂𝑆𝑆#$% = 𝑥 − 𝐷(𝐸(,𝑥)) !
!

• Implicitly learns the structure of the data
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Denoising Autoencoders
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https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/



Autoencoder Applications

• Dimensionality reduction
• Denoising
• Information retrieval 

– Low-dimensional, binary code (semantic 
hashing)

• Generative models
– Variational autoencoders (VAEs)
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Variational Autoencoders

• Idea: we can use the autoencoder 
approach to generate data from a specific 
distribution

• Training: data sampled from such 
distribution

• Use autoencoder to generate the 
statistical description of the data
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Variational Autoencoders

• Generative model:
– Given a set of training data, learn their 

distribution in order to generate new data from 
a similar distribution

Computer Vision - TP13 - Advanced Deep Learning Topics



Variational Autoencoders

• Idea
– Encoder and decoder provide distributions

(their parameters), not data points!
• Assumptions
– Training	data	{𝑥&}&'"(

– 𝑝 𝑧 Gaussian distribution
– 𝑝 𝑥|𝑧 Gaussian distribution (Encoder) 
– 𝑝 𝑧|𝑥 approximated by a Gaussian 

distribution (Decoder)
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Variational Autoencoders

• Training
– Use a variational lower bound of the log-

likelihood log 𝑝(𝑥&)
• Generate data

– Sample z from a Gaussian prior
– Use decoder to get (Gaussian) 𝑝(𝑥|𝑧)
– Sample 𝑥|𝑧 from 𝑝(𝑥|𝑧)
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Semantic Segmentation
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• Separation of the 
image in different 
areas
– Objects
– Areas with similar 

visual or semantic 
characteristics

First classify each pixel, and only 
then form regions (much harder!!)



Deep Learning Semantic 
Segmentation

• Basic idea: use deep learning models to 
classify pixels with semantic labels
– Can we simply use CNN architectures 

previously presented for classification?

• More demanding task than image 
classification
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Fully Convolutional Networks

• Remove fully connected layers from 
existing CNN models (e.g., VGG16)
– Variable size input
– Output can have same size of input. (Why?)
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J. Long, E. Shelhamer, and T. Darrell, “Fully 
convolutional networks for semantic 

segmentation,” in IEEE Conference on Computer 
Vision and Pattern Recognition, 2015, pp. 3431–

3440. 



Fully Convolutional Networks

• Upsampling/Skip connections
– Project information to image domain
– Keep global information
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Fully Convolutional Networks

• Limitations:
– Too complex for real time segmentation
– Global information not efficiently managed
– Not easily generalizable to 3D data
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Encoder-Decoder Models

• Encoder-decoder architectures
– Similar to autoencoders architectures
– Leverage latent representation
– But require labels to train (supervised)
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Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D. Image segmentation using deep learning: A 
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021 Feb 17



U-Net

• 2D segmentation
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O. Ronneberger, P. Fischer, 
and T. Brox. "U-net: 

Convolutional networks for 
biomedical image 

segmentation." 
In International Conference 

on Medical image computing 
and computer-assisted 

intervention, pp. 234-241. 
Springer, Cham, 2015.



V-Net

• 3D segmentation
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F. Milletari, N. Navab, and S.-
A. Ahmadi, “V-Net: Fully 

convo- lutional neural 
networks for volumetric 
medical image segmen-
tation,” in International 

Conference on 3D Vision. 
IEEE, 2016, pp. 565–571. 



Encoder-Decoder Models

• Extensively used in as state-of-the-art for 
different fields
– “General” image segmentation
– Autonomous driving
– Medical and biomedical image segmentation

• Limitations
– Potential loss of fine-grained image 

information
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Training

• Pixel classification
– Pixel-level cross-entropy loss

𝐶𝐸)*++ = −
1
𝑁
G
%'"

(

𝑝% log 𝑞% + 1 − 𝑝% log(1 − 𝑞%)

• Problem
– Not very effective for highly imbalanced data
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Training

• Dice coefficient
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https://datascience.stackexchange.com/questions/75708/neural-network-probability-output-and-loss-function-example-dice-loss



Training

• Dice loss

𝐷𝐼𝐶𝐸)*++ = 1 −
2∑%'"( 𝑝%𝑞% + 𝜀

∑%'"( 𝑝% + ∑%'"( 𝑞% + 𝜀

• More robust against imbalanced data and 
directly related to “similarity” between the 
output segmentation map and true 
segmentation map
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Resources
• F.F. Li, J. Johnson, S. Young. Convolutional 

Neural Networks for Visual Recognition, Stanford 
University, 2017
– Lecture 13- ”Generative models”
– http://cs231n.stanford.edu/slides/2017/cs231n_2017_l

ecture13.pdf
• I. Goodfellow, Y. Bengio, and A. Courville. Deep 

learning. Cambridge: MIT press, 2016.
– Chapter 14 – “Autoencoders”
– Chapter 20 – “Deep Generative Models”
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