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Abstract. One important advantage of logic programming is that it al-
lows the implicit exploitation of parallelism. Towards this goal, we sug-
gest that or-parallelism can be efficiently exploited in tabling systems
and propose two alternative approaches, Or-Parallelism within Tabling
(OPT) and Tabling within Or-Parallelism (TOP).

We concentrate on the fundamental concepts of an environment copying
based model to implement the OPT approach and introduce the data
structures and algorithms necessary to extend the YapOr Or-Parallel
system, in order to obtain a parallel tabling system.
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1 Introduction

Prolog is an extremely popular and powerful logic programming language. Pro-
log execution is based on SLD resolution for Horn clauses. This strategy allows
efficient implementation, but suffers from fundamental limitations, such as in
dealing with infinite loops and redundant subcomputations. SLG resolution [3]
is a tabling based method of resolution that overcomes some limitations of tradi-
tional Prolog. The method evaluates programs by storing newly found answers
of current subgoals in a table. The method then uses this table to verify for
repeated subgoals. Whenever such a repeated subgoal is found, the subgoal’s
answers are recalled from the table instead of being resolved against the pro-
gram clauses. SLG resolution can thus reduce the search space for logic programs
and in fact it has been proven that it can avoid looping and thus terminate for
all programs that construct bounded depth terms. The XSB-Prolog system [11]
was the first Prolog system to implement SLG resolution.

One important advantage of logic programming is that it allows the implicit
exploitation of parallelism. This is true for SLD-based systems, and should also
apply for SLG-based systems. A first proposal on how to exploit implicit paral-
lelism in tabling systems was Freire’s table-parallelism [6]. In this model, each
tabled subgoal is associated with a new computational thread, a generator thread,
that will produce and add the answers into the table. Threads that call a tabled
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subgoal will asynchronously consume answers as they are added to the table.
This model is limitative in that it restricts exploitation of parallelism to just
one implicit form of parallelism present in logic programs. Ideally, we would
like to exploit maximum parallelism and take maximum advantage of current
technology for parallel and tabling systems.

We observe that tabling is still about exploiting alternatives to find solutions
for goals, and that or-parallel systems have precisely been designed to achieve
this goal efficiently. We therefore propose two computational models, the OPT
and TOP models, that combine or-parallelism and tabling by considering all
open alternatives to subgoals as being amenable to parallel exploitation, be they
from tabled or non-tabled subgoals. The OPT approach considers that tabling
is the base component of the system, this is, each worker can be considered
like a full sequential tabling engine. The or-parallel component of the system
is only triggered when a worker runs out of alternatives to exploit. The TOP
model unifies or-parallel suspension and suspension due to tabling. A suspended
subgoal can wake up for several reasons, such as new alternatives having been
found for the subgoal, the subgoal becoming leftmost, or just for lack of non
speculative work in the search tree. The TOP approach considers that each
worker can be considered like a sequential WAM engine, hence only managing a
logical branch of the search tree, and not several branches.

In this paper we compare both models and focus on the design and imple-
mentation of the OPT model for combining or-parallelism and tabling. We chose
the OPT model mainly because we believe it gives the highest degree of orthog-
onality between or-parallelism and tabling, thus simplifying initial implementa-
tion issues. The implementation framework is based on YapOr [9], an or-parallel
system that extends Yap’s sequential execution model to exploit implicit or-
parallelism in Prolog programs. YapOr is based on the environment copy model,
as first implemented in Muse [1]. We describe the main issues that arise in sup-
porting tabling and its parallelization through copying. The implementation of
tabling is largely based on the XSB engine, the SLG-WAM, however substantial
differences exist in particular on the algorithms for restoring a computation, de-
termining the leader node and completion operation. All these and the extended
data structures already take into account the support of combined tabling and
or-parallelism.

In summary, we briefly introduce the implementation of tabling. Next, we dis-
cuss the fundamental issues in supporting or-parallelism for SLG resolution and
propose two alternative approaches. Then, we present the new data structures
and algorithms required to extend YapOr to support tabling and to allow for
a combined exploitation of or-parallelism and tabling. This corresponds to the
implementation work already done and terminate by outlining some conclusions.

2 Tabling Concepts and the SLG-WAM

The SLG evaluation process can be modeled by a SLG-forest [10]. Whenever a
tabled subgoal S is called for the first time, a new tree with root S is added to the



SLG-forest. Simultaneously, an entry for S is allocated in the table space. This
entry will collect all the answers generated for S. Repeated calls to variants of S
are resolved by consuming the answers already stored in the table. Meanwhile,
as new answers are generated to S, they are inserted into the table and returned
to all variant subgoals. Within this model, the nodes in the search tree are clas-
sified as either generator nodes, that is, first calls to tabled subgoals, consumer
nodes, that consumer answers from the table space, and interior nodes, that are
evaluated by the standard SLD resolution.

Space for a tree can be reclaimed when its root subgoal has been completely
evaluated. A subgoal is said to be completely evaluated when all possible reso-
lutions for it have been made, that is, when no more answers can be generated
and the variant subgoals have consumed all the available answers. Note that a
number of root subgoals may be mutually dependent, forming a strongly con-
nected component (or SCC), and therefore can only be completed together. The
completion operation is thus performed by the leader of the SCC, that is, by the
oldest root subgoal in the SCC, when all possible resolutions have been made
for all root subgoals in the SCC. Hence, in order to efficiently evaluate programs
one needs an efficient and dynamic detection scheme to determine when both
the subgoals in an SCC and the SCC itself have been completely evaluated.

For definite programs, tabling based evaluation has four main types of opera-
tions: (i) Tabled Subgoal Call, creates a generator node; (ii) New Answer, verifies
whether a newly generated answer is already in the table, and if not, inserts it;
(iii) Answer Return, consumes an answer from the table; and Completion deter-
mines whether an SCC is completely evaluated, and if not, schedules a possible
resolution to continue the execution.

The implementation of tabling in XSB was attained by extending the WAM
into the SLG-WAM, with minimal overhead. In short, the SLG-WAM introduces
special instructions to deal with the operations above and two new memory areas:
a table space, used to save the answers for tabled subgoals; and a completion
stack, used to detect when a set of subgoals is completely evaluated.

Further, whenever a consumer node gets to a point in which it has consumed
all available answers, but the correspondent tabled subgoal has not yet completed
and new answers may still be generated, it must suspend its computation. In
the SLG-WAM the suspension mechanism is implemented through a new set
of registers, the freeze registers, which freeze the WAM stacks at the suspension
point and prevent all data belonging to the suspended branch from being erased.
A suspended consumer is resumed by restoring the registers saved in the corre-
sponding node and by using an extension of the standard trail, the forward trail,
to restore the bindings of the suspended branch. The resume operation is imple-
mented by setting the failure_continuation field of the consumer nodes to a
special answer return instruction. This instruction is responsible for resuming
the computation, guaranteeing that all answers are given once and just once to
every variant subgoal. Through failure and backtracking to a consumer node,
the answer_return instruction gets executed and resuming takes place.



It is upon the leader of an SCC to detect its completion. This operation is
executed dynamically and must be efficiently implemented in order to minimize
overheads. To achieves this, the SLG-WAM sets the failure_continuation field
of a generator node to a special completion instruction whenever it resolves the
last applicable program clause for the correspondent subgoal. The completion
instruction thus ensures the total and correct evaluation of the subgoal search
space. This instruction is executed through backtracking. In the default XSB
scheduling strategy (batched scheduling [7]), it resumes the consumer node cor-
responding to the deeper variant subgoal with unconsumed answers. The com-
putation will consume all the newly found answers, backtrack to other consumer
nodes (higher up in the chain of consumer nodes) with unconsumed answers, and
fail to the generator node, until no more answers are left to consume. At this
point, if that node is the leader of its SCC, a fixpoint is reached, all dependent
subgoals are completed, and the subgoal can be marked completed. Otherwise,
the computation will fail back to the previous node and the fixpoint check will
later be executed in an upper generator node.

3 Parallel Execution of Tabled Programs

Ideally, we would like to exploit maximum parallelism and take maximum advan-
tage of current technology for tabling systems. We propose that all alternatives
to subgoals should be amenable to parallel exploitation, be they from normal
or tabled subgoals, and that or-parallel frameworks can be used as the basis to
do so. This gives an unified approach with two major advantages. First, it does
not restrict parallelism to tabled subgoals and, second, it can draw from the
very successful body of work in implementing or-parallel systems. We believe
that this approach can result in efficient models for the exploitation of paral-
lelism in tabling-based systems. We envisage two different models to combine
or-parallelism and tabling:

Or-Parallelism within Tabling (OPT) In this approach, parallelism is exploited
between independent tabling engines, that share alternatives. Tabling is the base
component of the system, this is, each worker can be considered a full sequential
tabling engine and should spend most of its computation time exploiting the
search tree involved in such an evaluation. It thus can allocate all three types of
nodes, fully implement suspension of tabled subgoals, and resume subcomputa-
tions to consume newly found answers. Or-parallelism is triggered when a worker
runs out of alternatives to exploit. In the OPT approach, unexploited alterna-
tives should be made available for parallel execution, regardless of whether they
originate from a generator, consumer or interior node. Therefore, parallelism can
and should stem from both tabled and non-tabled subgoals.

From the viewpoint of or-parallelism, the OPT approach generalizes War-
ren’s multi-sequential engine framework for the exploitation of or-parallelism.
Or-parallelism now stems from having several engines that implement SLG-
resolution, instead of implementing Prolog’s SLD-resolution.



Fig. 1 gives an example of this approach for the following small program and
the query 7- a(X). We assume two workers, W1 and W2.

:— table a/1l. b(1).
a(X) :- a(X). bX) :- ...
a(X) :- b(X). bX) :- ...

Consider that worker W1 executes the query goal. It first inserts an entry for
the tabled subgoal a(X) into the table and creates a generator node for it. The
execution of the first alternative leads to a recursive call for a/1, thus the worker
creates a consumer node for a/1 and backtracks. The next alternative finds a
non-tabled subgoal b/1 for which an interior node is created. The first alternative
for b/1 succeeds and an answer for a(X) is therefore found (a(1)). The worker
inserts the newly found answer in the table and then starts exploiting the next
alternative of b/1.

l:l Generator Node
<> Consumer Node
O Interior Node
——  Private Branch @ @ @ @
7 /7
x=1,/ x=1 7
- Completed Branch /! /!
/ /
% %
——  Shared Branch
w1 w1 w2
Q New Answer
One Worker (W1) Two workers (W1 and W2)

Fig. 1. Sharing work in a SLG tree.

At this point, worker W2 moves in to share work. Consider that worker W1
decides to share work up to its last private node (that is, the interior node for
b/1). The two workers will share three nodes: the generator node for a/1, the
consumer node for a/1 and the interior node for b/1. Worker W2 takes the next
unexploited alternative of b/1 and from now on, both workers can quickly find
further answers for a(X) and any of them can restart the shared consumer node.

Tabling Unified with Or-Parallelism (TOP) We have seen that in tabling based
systems subgoals need to suspend on other subgoals obtaining the full set of
answers. Or-parallel systems also need to suspend, either while waiting for left-
mostness in the case of side-effects, or to avoid speculative execution. The
need for suspending introduces an important similarity between tabling and or-
parallelism. The TOP approach unifies or-parallel suspensions and suspensions
due to tabling. When exploiting parallelism between branches in the search tree,
some branches may be suspended, say, because they are speculative or not left-
most nodes, or because they are consumer nodes waiting for more solutions,
while others are available for parallel execution.



Fig. 2 shows parallel execution for the previous program under this approach.
The left figure shows that as soon as W1 suspends on consumer node for a/1, it
makes the current branch of the search tree public and backtracks to the upper
node. The consumer node for a/1 can only be resumed after answers to a(X) are
found. In the left figure an answer for subgoal a (X) was found. So, worker W2 can
choose whether to resume the consumer node with the newly found answer or to
ask worker W1 to share his private nodes. In this case we represent the situation
where worker W2 resumes the consumer node.

Generator Node

Consumer Node

Interior Node

Private Branch @

Completed Branch

Shared Branch
w1

New Answer

D1 1ool

One Worker (W1) Two workers (W1 and W2)

Fig. 2. Unifying suspension in parallelized tabling execution.

Comparing the Two Models The TOP model is a very attractive model, as it
provides a clean and systematic unification of tabling and or-parallel suspensions.
Workers have a clearly defined position, because a worker always occupies the
tip of a single branch in the search tree. Everything else is shared work. It also
has practical advantages, such as the fact that in this approach we can guarantee
a suspended branch will only appear once, instead of possibly several times for
several workers.

On the other hand, as suspended nodes are always shared in or-parallel sys-
tems, the unified suspension may result in having a larger public part of the
tree which may increase overheads. Besides, to support all forms of suspension
with minimal overhead, the unified suspension mechanism must be implemented
efficiently. Moreover, support for the tabling component in the TOP approach re-
quires a slightly different tabling engine than SLG-WAM. The recently proposed
CAT model [4] seems to fulfill best the requirements of the TOP approach, since
it assumes a linear stack for the current branch and uses an auxiliary area to save
the suspended nodes. Therefore, in order to implement the TOP approach using
CAT, we should adopt, for the or-parallel component, an environment copying
model (such as used in Muse) as it fits best with the kind of operations CAT
introduces.

In this regard, the OPT approach offers some interesting advantages. It en-
ables different combinations for or-parallelism and tabling, giving implementors
the highest degree of freedom. For instance, one can use the SLG-WAM for



tabling, and environment copying [1] or binding arrays [5] for or-parallelism.
Moreover, the OPT approach reduces to a minimum the overlap between or-
parallelism and tabling, as we only have a tabling system extended with an
or-parallel component. In TOP, we have a standard Prolog system extended
with a tabling/or-parallel component.

In this work, we focus on the design and implementation of the OPT ap-
proach, adopting the SLG-WAM for tabling and environment copying for or-
parallelism. Our choice seems the most natural as we believe the OPT approach
gives the highest degree of orthogonality between or-parallelism and tabling.
The hierarchy of or-parallelism within tabling results in a property that one can
take advantage of to structure, and thus simplify, scheduler design and initial
implementation issues.

Overview of the Model In our model, a set of workers, will execute a tabled pro-
gram by traversing its search tree, whose nodes are entry points for parallelism.
Each worker physically owns a copy of the environment (that is, the stacks)
and shares a large area related to tabling and scheduling. During execution, the
search tree is implicitly divided in public and private regions. Workers in the
private region execute nearly as in sequential tabling. A worker with excess of
work (that is, with private nodes with unexploited alternatives or unconsumed
answers) when prompted for work by other workers, shares some of their private
nodes. When a worker shares work with another worker, the incremental copy
technique is used to set the environment for the requesting worker. Whenever a
worker backtracks to a public node it synchronizes to perform the usual actions
that are executed in sequential tabling. For the generator and interior nodes it
takes the next alternative, and for the consumer nodes it takes the next uncon-
sumed answer. If there are no alternatives or no unconsumed answers left, then
the worker executes the public completion' operation.

4 Extending YapOr to Support Tabling

We next discuss the main data structures to extend YapOr to support parallel
tabling. In the initial design, we will only consider table predicates without any
kind of negative calls.

Data Areas The data areas necessary to implement the complete or-parallel
tabling system are shown in the memory layout depicted in Fig. 3. The mem-
ory is divided into a global shared area and into a number of logically private
areas, each owned by a single worker in the system. The private areas contains
the standard WAM stacks, as required for each worker. The global shared area
includes four main sub-areas, that we describe next.

The or-frame space is required by the or-parallel component in order to
synchronize access to shared nodes [1] and to store scheduling information. The
table space is required by the tabling component. It contains the table structure

1" A public completion operation is a completion operation executed in a shared node.
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Fig. 3. Memory layout for the proposed OPT approach.

and has to be stored in shared memory for fast access to tabled subgoals by all
the workers.

The dependency frames space is a novel data structure, designed to support
or-parallel tabling. Dependency frames extend consumer nodes by holding sup-
plementary information about a suspension point. They must be implemented
in shared memory in order to permit synchronization among workers in the
management of the suspension points, and in order to avoid unnecessary copy-
ing of information when a consumer node is shared between workers. This data
structure is discussed in more detail below.

The saved stacks space preserves stacks of suspended branches. This space is
required by a purely or-parallel implementation to save worker’s suspension on
builtins that require to be leftmost, or voluntarily abandon speculative work in
favor of work that is not likely to be pruned [2]. In both cases, workers suspend
their current work by copying their stacks into the saved stacks space, and start
searching for other work. When we execute tabling in parallel, workers that
share nodes can have dependencies between them. Thus, sometimes it may be
necessary to delay the execution of a public completion operation until no more
dependencies exist. On the other hand, in order to allow the parallel exploitation
of other alternatives, as required by the environment copy model, it is necessary
to maintain the stacks coherent with those of the workers that share the same
nodes. These two objectives can be achieved by saving in the saved stacks space
the parts of the stacks that correspond to the branches in the range of the public
completion operation.

Table Space The design and implementation of the data structures and algo-
rithms to efficiently access the table space is one of the critical issues in the
design of a tabling system. Next, we provide a brief description of our imple-
mentation. It uses tries as the basis for tables as proposed in [8]. Tries provide
complete discrimination for terms and permit a lookup and possible insertion to
be performed in a single pass through a term. Tries are also easily parallelizable.

The table space can be accessed in different ways during the course of an
evaluation: to look up if a subgoal is in the table, and if not insert it; to verify
whether a newly found answer is already in the table, and if not insert it; to pick
up answers from the table to consumer nodes; and finally to mark subgoals as
completed during a completion operation.



Fig. 4 presents the table data structures for a particular predicate t/2 after
the execution of some tabled_subgoal_call and new_answer instructions.

code for table entry
2 for /2
tabled_subgoal_call t(X,a) .
ﬁéN_aqsmer {(X.8) -> X = hi) subgoal trie nodes

tabled_subgoal_call t(Y,Z)
n"éwiansmer t(Y,2)->Y=b;Z=c varl
rié;vvienswer t(Y,Z)->Y =b; Z =d|

new_answer t(Y,2) ->Y =g Z=f

subgoal frame subgoal frame
e for call for call
e t(var Ovar 1) t(var 0,8)

: :
P

answer trie nodes

Fig. 4. Using tries to organize the table space.

The subgoal frames delimit the subgoal and answer trie nodes space. They are
used to easily access the answers found for a particular subgoal and to efficiently
check if new answers have been found for a particular consumer node, through
its last_answer pointer. The subgoal frames are also used by the completion
operation to mark a subgoal as completed.

Each invocation of the tabled_subgoal _call instruction leads to either find-
ing a path through the subgoal trie nodes, always starting from the table entry,
until reaching a matching subgoal frame, or to creating the correspondent path
of subgoal trie nodes, otherwise. Each invocation of the new_answer instruction
corresponds to the definition of a path through the answer trie nodes, starting
from the corresponding subgoal frame. In the example, the subgoal trie node
with value var_0 and the answer trie nodes with value b belong to several paths.
This design property merges the paths that have the same first arguments. Note
also that each trie node can only hold atoms, variables, or functors. Thus we
need two nodes to represent the answer h(i), one for the functor h/1 and the
other for the argument i.

Accessing and updating the table space must be carefully controlled in a
parallel system. We want to maximize parallelism, whilst minimizing overheads.
Read/write locks are the ideal data structure for this purpose. One can have a
single lock for the table, thus only enabling a single writer for the whole table,
one lock per table entry allowing one writer per procedure, one lock per path



allowing one writer per call, or one lock per every trie node to attain most
parallelism. Experimental evaluation is required to find the best solution.

Dependency Frames The dependency frame is the key data structure required to
control suspension, resumption and completion of subcomputations. This data
structure serves to: save information about the suspension point; connect con-
sumer nodes with the table space, to search for and to pick up new answers;
and form a dependency graph between consumer nodes, to efficiently check for
leader nodes and perform completion.

Fig. 5 shows an example of an evaluation involving dependency frames. The
sub-figure to the left presents the dependencies between the predicates involved.

fail_cont = table_retry_me sibgod frame |~
enerator node
or first t(X) call dn=1 for call
t(var 0)

sg_fr_ptr

fail_cont = completion subgodl frame
jenerator node
or first v(Y) call dn=2 for call
v(var 0)

sg_fr_ptr

i - previous_dep_fr
y fail_cont answer_return Teader dfn=2 J
consumer node
for second v(Y) call g =3 Slbgoal_fragze
tabled_subgoal _call t(X) dep fr pir \J consumer_node

last_answer
tebied subgoal_call (Y) : freeze registers
tabied_subgoal_call v(Y)
tabl-édis,lbgoalicall t(X) fail_cont = answer_return _
consumer node previous dep fr | <—+—{ top_dep fr |
for second t(X) call [ Gin=4 / leader_din=1
dep_fr_ptr subgoa_frame |——
= consumer_node
v last_answer | ---------> -

freeze registers

Fig. 5. Table data structures dependencies.

The first instance of tabled _subgoal_call searches the table space for the
corresponding subgoal t (X) . Supposing this is the first call to the subgoal, it must
allocate a subgoal frame and create a generator choice point. In our scheme, a
generator choice point is simply a standard choice point plus a new sg_fr ptr
field, pointing to the newly allocated subgoal frame. The pointer is used to add
new solutions and to check for completion. In order to mark the precedence
between choice points in the left-to-right, top-down search, we introduce an
extra field, dfn (depth first number), in all choice points. This field is not strictly
necessary in the implementation because we can achieve the same goal by using
the addresses of the choice points, however it simplifies the description of the
model.

Following the example, an analogous situation occurs with the first call to
subgoal v(Y). The repeated call to subgoal v(Y) allocates a dependency frame
and creates a consumer choice point. A consumer choice point is a standard



choice point plus an extra dep_fr ptr field, pointing to the newly allocated
dependency frame.

A dependency frame contains six fields. The previous_dep_fr field points to
the previous allocated dependency frame. The last dependency frame is pointed
by the global variable top_dep_fr. The leader_dfn field stores the dfn of the
bottommost leader node (details are presented next). The subgoal _frame field is
a pointer to the correspondent subgoal frame. The consumer node field is a back
pointer to the consumer node. The last_answer field is a pointer to the last con-
sumed answer, and is used in conjunction with the subgoal frame field to check
if new answers have been found for the subgoal call. The freeze registers
fields stores the current top positions of each of the stacks. When a completion
instruction is executed with success, we consult the freeze registers of the
resulting top dependency frame to restore the top positions of each stack and
release space. Note that in the SLG-WAM these registers are kept at the nodes
were completion may take place, that is the generator nodes. In our case, this
solution is not adequate as we may execute completion in any node.

Finally, the second call to t (X) implies an analogous situation to the previous
one. A dependency frame and a consumer choice point are allocated and the
top_dep_fr is updated.

5 The Flow of Control

A tabling evaluation can be seen as a sequence of suspension and resumptions
of subcomputations. A computation suspends every time a consumer node has
consumed all available answers and resumes when new solutions are found.

Restoring a Computation Every time a consumer node is allocated, its failure
continuation pointer is made to point to an answer_return instruction. The
instruction is executed through failure to the node, and guarantees that every
answer is consumed once and just once. Before resuming a computation, it is
necessary to restore the WAM registers and the variable bindings at the suspen-
sion point. The WAM register values are saved in the consumer node and the
variable bindings are saved in the forward trail. The forward trail is an extension
of the standard WAM trail that includes variable bindings in trail operations.
The SLG-WAM uses a forward trail with three fields per each frame. They
record the address of the trailed variable (as the standard WAM trail), the value
to which the variable was bound and a pointer to the parent trail frame which
permits to chain correctly the variables through the current branch, hence jump-
ing across the frozen segments (see [10] for more details). In our approach we
only use the first two fields to implement the forward trail, thus spending less
space in the trail stack. As Yap already uses the trail to store information beyond
the normal variable trailing (to control dynamic predicates and multi-assignment
variables), we extend this information to also control the chain between the dif-
ferent frozen segments. In terms of computational complexity the two approaches
are equivalent. The main advantage of our scheme is that Yap already tests the



trail frames to check if they are of a special type, and so we do not introduce fur-
ther overheads in the system. It would be the case if we had chosen to implement
the SLG-WAM approach.

Leader Nodes In sequential tabling, only generator nodes can be leader nodes,
hence only they perform completion. In our design any node can be a leader. We
must therefore check for leader nodes whenever we backtrack to a private gen-
erator node or to any shared node. If the node is leader we perform completion,
otherwise we simply fail and backtrack. We designed our algorithms to quickly
determine whether a node is a leader.

find_bottommost_leader_node () {
leader_dfn = direct_dependency_dfn();
aux_dep_fr = top_dep_fr;
while (aux_dep_fr != NULL &&
leader_dfn < DependencyFrame_consumer_dfn(aux_dep_fr)) {
if (leader_dfn >= DependencyFrame_leader_dfn(aux_dep_fr))
return DependencyFrame_leader_dfn(aux_dep_fr);
aux_dep_fr = DependencyFrame_previous_dep_fr(aux_dep_fr);

return leader_dfn;

Fig. 6. Pseudo-code for find bottommost_leader_node().

Fig. 6 presents the pseudo-code to initialize the leader_dfn field when we al-
locate a new dependency frame. The direct_dependency dfn() function returns
the dfn of the depth-most node that contains in one of the branches below it, the
generator node of the variant subgoal call. In sequential tabling, as we have all
nodes, the depth-most node that contains the generator node for a particular sub-
goal call, is the generator node itself. Hence, the dfn returned is the value of the
dfn field within the generator node. Fig. 7 illustrates the dependencies between
the several depth first numbers involved in the find_bottommost_leader_node ()
algorithm, in the case of a parallel evaluation. In order for a worker to test if a
certain node, of its own branch, is leader or not, it has to check if the dfn field
of the node is equal to the leader _dfn field found in the top_dep_fr register. In
Fig. 7, workers 1 and 2 have leader nodes at generator node a and interior node
b respectively.

Public Completion The correctness and efficiency of the completion algorithm
appears to be one of the most important points in the implementation of a
combined tabling/or-parallel system. Next we present a design for our OPT-
based implementation.

If a leader node is shared and contains consumer nodes below it, this means
that it depends on branches explored by other workers. Thus, even after a worker
having backtracked to a leader node, it may not execute the completion operation
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Fig. 7. Depth first number dependencies.

immediately. The reason for this is that the other workers can still influence the
leader branch. As a result, it becomes necessary to suspend? the leader branch,
and therefore, allow the current worker to continue execution. This suspension
mechanism includes, saving the correspondent part of the stacks to the save
stacks space (putting the respective reference in the leader node) and readjust-
ing the freeze registers. The save stacks space resides in a shared area to allow
any other worker to complete a suspended branch. This scheme also enables
the current worker to proceed its execution. If the worker would not suspend
the leader branch, hence not saving the stacks in the shared space, then a fu-
ture sharing work operation would damage the stack areas related to the leader
branch and therefore would make the completion operation unworkable. An al-
ternative would be for the worker responsible for the leader branch to wait until
no one else could influence it and only then complete the branch. Obviously, this
is not an efficient strategy and besides it may carry us into a deadlock situation.

Fig. 8 shows the pseudo-code for the public_completion() operation. This
operation is executed when a worker backtracks to a shared interior/generator
node with no more alternatives left, or to a shared consumer node without
unconsumed answers. The last worker leaving a node is responsible for checking
and collecting all the suspension branches that have unconsumed answers. To
resume a suspension branch a worker needs to copy the saved stacks to the
correct position in its own stacks. Thus, for a worker to resume immediately a
suspension branch, it has first to suspend its current branch and only later restart
it. This has the disadvantage that the worker has to make two suspensions and
resumptions instead of just one. Hence, we adopted the strategy of resuming the
collected branches only when the worker finds itself in a leader node position.
Here, a worker either completes the correspondent branch or suspends it. In both

2 The notion of suspension in this context is obviously different from the one presented
for tabling.



public_completion (node N) {
if (last worker in node N)
for all suspension branches SB stored in node N
if (exists unconsumed answers for any consumer node in SB)
collect (SB) /* to be resumed later */
if (N is a leader node)
if (exists unconsumed answers for any consumer node below node N)
backtrack_through_new_answers() /* as in SLG-WAM */
if (suspension branches collected)
suspend_current_branch ()
resume (a suspension branch)
else if (not last worker in node N)
suspend_current_branch()
else if (hidden workers in node N)
suspend_current_branch()
else
complete_all()
else /* not leader */
if (consumer nodes below node N)
increment hidden workers in node N
backtrack

Fig. 8. Pseudo-code for public_completion().

situations, the stacks do not contain frozen segments below the leader node and
therefore we do not have to pay extra overheads to resume a collected branch.

Whenever a node finds that it is a leader, it starts to check if there are no
consumer nodes with unconsumed answers below. If there is such a node, it re-
sumes the computation to the deeper consumer node with unconsumed answers.
To check if there is a node with unconsumed answers, we can follow the depen-
dency frames chain corresponding to the consumer nodes below, and check for
one such that the last_answer pointer is different from the one stored on the
subgoal frame pointed by the subgoal frame field.

When a worker backtracks from a node and that node stays preserved in
its stacks, the worker has to increment the hidden workers counter of the node.
This counter indicates the number of workers that are executing in upper nodes
and still contain the node. These workers can influence the node, if a resume
operation takes place and it includes the node.

In this public completion algorithm, a worker only completes a leader node
when there is nothing that can influence its branches. This only happens, when
there are no suspended branches collected and there are no workers in the node,
be they physically present or hidden. Completing a node includes marking the
tabled subgoals involved as completed, releasing memory space and readjusting
the freeze registers.

The public completion scheme proposed has two major advantages. One is
that there is no communication or explicit synchronization between workers,
therefore it reduces significantly possible overheads. The second advantage is
that the leader nodes are the only points where we suspend branches. This is
very important, since it reduces the number of check points we have to make



in order to ensure that all answers are consumed in a suspended branch, to
just one. This check point is executed by the last worker that leaves a node.
Besides, in upper nodes we do not need to care about the uncollected suspended
branches stored in the bottom nodes because we know that no upper branches
can influence them.

6 Conclusions

In this paper we presented two approaches to combine or-parallelism and tabling,
and focused on the design of data structures and algorithms to implement the
OPT approach. These new structures and algorithms were built from within the
environment copying based system, YapOr, in order to obtain a parallel tabling
system. Currently, we have sequential tabling and or-parallelism functioning sep-
arately within the same system. However, we already have in the system all the
data structures necessary to combine their execution and conforming with the
description given in this paper. We are now working on adjusting the system for
parallel execution of tabling. This will require changes to the current scheduler
in order to efficiently and correctly execute tabled logic programs in parallel.
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