
YapOr: an Or-Parallel Prolog System
based on Environment Copying

Ricardo Rocha Fernando Silva Vı́tor Santos Costa

�

ricroc,fds,vsc

�

@ncc.up.pt

DCC-FC & LIACC
University of Porto

Portugal



YapOr: an Or-Parallel Prolog System based on Environment Copying

Summary

Introduction
Logic Programming and Or-Parallelism

The Environment Copying Model
Basic execution model and the Incremental Copying technique

Extending Yap Prolog to support YapOr
Memory organization, choice points and or-frames

Performance Evaluation
Execution times, speedups and overheads

Conclusions

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 1



YapOr: an Or-Parallel Prolog System based on Environment Copying

Logic Programming and Parallelism

Why parallel implementations

� Declarativeness of the language

� Execution model allows parallelism to be exploited implicitly

� Efficiency of sequential implementations

Main forms of implicit parallelism present in logic programs

� Or-Parallelism

� And-Parallelism

– Independent

– Dependent

a(X,Y) :- b(X), c(Y).
a(X,Y) :- d(X,Y), e(Y).
a(X,Y) :- f(X,Z), g(Z,Y).

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 2



YapOr: an Or-Parallel Prolog System based on Environment Copying

Or-Parallelism

Main Problems

� Variable binding representation

� Scheduling

Successful Execution Models and Systems

� Binding Arrays / Aurora System

� Environment Copying / Muse System

Question?
The good results previously obtained with Aurora and Muse are repeatable with other
Prolog systems in modern parallel machines?

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 3



YapOr: an Or-Parallel Prolog System based on Environment Copying

The Environment Copying Model

Basic Execution Model

� A parallel execution is performed by a set of workers, initially all but one are idle;

� Whenever a worker executes a predicate with several execution alternatives it
creates a choice point;

� As soon the idle workers finds that there is available work in the system, they will
request for that work from the busy workers;

� The busy worker synchronizes its computation state with the idle one through the
sharing work operation;

� At some point, a worker will fully explore its branch and become idle again;

� Eventually the execution tree will be fully explored and all workers became idle.

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 4



YapOr: an Or-Parallel Prolog System based on Environment Copying

Incremental Copying

Goal: Position the workers involved in the operation in the same computational state.

Problem: Copying stacks between workers poses a major overhead to the system.

Solution: Keep the parts that are consistent and only copy the differences.

Q

P

Local Stack TrailHeap

P Local Space

- Common variable modified in P.

Private Area

Shared Area

P Top Segments

Root

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 5



YapOr: an Or-Parallel Prolog System based on Environment Copying

Memory Organization

W
or

ke
r 

0

WAM Stacks

Local Information

WAM Stacks

Local Information

W
or

ke
r 

n

...

Global

Locals

Global

Or-Frames

Solutions Frames

Answers Frames

Frames Area

Locals

Code Area

Global Information
Question?
How to map the local memory in order to meet
the requirements of Incremental Copying?

� The starting worker asks for shared memo-
ry in the system’s initialization phase.

� The remaining workers are created and
inherit the addressing space previously
mapped.

� Each new worker rotates the local spaces
in such a way that all workers will see their
own spaces at the same address.

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 6



YapOr: an Or-Parallel Prolog System based on Environment Copying

Choice Points and Or-Frames

Problem: Synchronize access to shared choice points.

TR

H
B

CP
Free

P ; Q

ALT

lock

workers_bitmap

next_alternative

getwork
TR

ALT
H
B

CP
--

CP_ALT
CP_TR

PUAPUA
OR-FRCP_OR-FR

CP_PUA

CP_CP

CP_B
CP_H

CP_ENV ENV ENV
Sharing

Solutions

� Store the alternative pointer in a shared structure.

� Use a pseudo-instruction to synchronize access to the untried alternatives.

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 7



YapOr: an Or-Parallel Prolog System based on Environment Copying

YapOr Performance Evaluation

Number of Workers
Programs 1 2 4 6 7 8
puzzle 10.042 4.835(2.08) 2.316(4.34) 1.550(6.48) 1.339(7.50) 1.172(8.57)
9-queens 4.085 2.047(2.00) 1.026(3.98) 0.690(5.92) 0.596(6.85) 0.519(7.87)
ham 1.802 0.908(1.98) 0.474(3.80) 0.324(5.56) 0.281(6.41) 0.245(7.36)
5cubes 1.029 0.516(1.99) 0.260(3.96) 0.181(5.69) 0.170(6.05) 0.145(7.10)
8-queens2 1.063 0.606(1.75) 0.288(3.69) 0.202(5.26) 0.159(6.69) 0.149(7.13)
8-queens1 0.450 0.225(2.00) 0.118(3.81) 0.080(5.63) 0.072(6.25) 0.067(6.72)

nsort 2.089 1.191(1.75) 0.609(3.43) 0.411(5.08) 0.354(5.90) 0.315(6.63)
sm*10 0.527 0.274(1.92) 0.158(3.34) 0.128(4.12) 0.118(4.47) 0.115(4.58)

db5*10 0.167 0.099(1.69) 0.065(2.57) 0.068(2.46) 0.060(2.78) 0.061(2.74)
db4*10 0.133 0.079(1.68) 0.056(2.38) 0.055(2.42) 0.052(2.56) 0.060(2.22)

YapOr � 21.387 10.780(1.98) 5.370(3.98) 3.689(5.80) 3.201(6.68) 2.848(7.51)
YapOr Average (1.88) (3.53) (4.86) (5.55) (6.09)

All evaluations performed on a Sun SparcCenter 2000 with 8 processors,

256 MBytes of main memory, two level cache and running SunOS 5.6.

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 8



YapOr: an Or-Parallel Prolog System based on Environment Copying

Muse Performance Evaluation

Number of Workers
Programs 1 2 4 6 7 8
puzzle 12.120 6.660(1.82) 3.720(3.26) 2.670(4.54) 2.230(5.43) 2.140(5.66)
9-queens 3.890 2.030(1.92) 1.110(3.54) 0.690(5.64) 0.630(6.17) 0.560(6.95)
ham 2.550 1.480(1.72) 0.820(3.11) 0.520(4.90) 0.520(4.90) 0.460(5.54)
5cubes 1.130 0.560(2.02) 0.280(4.04) 0.180(6.28) 0.160(7.06) 0.150(7.53)
8-queens2 1.350 0.690(1.96) 0.390(3.46) 0.270(5.00) 0.240(5.63) 0.220(6.14)
8-queens1 0.550 0.290(1.90) 0.160(3.44) 0.120(4.58) 0.110(5.00) 0.100(5.50)

nsort 2.650 1.450(1.83) 0.810(3.27) 0.550(4.82) 0.510(5.20) 0.450(5.89)
sm*10 0.670 0.360(1.86) 0.220(3.05) 0.170(3.94) 0.160(4.19) 0.150(4.47)

db5*10 0.190 0.110(1.73) 0.080(2.38) 0.070(2.72) 0.070(2.72) 0.070(2.72)
db4*10 0.160 0.090(1.78) 0.060(2.67) 0.070(2.29) 0.060(2.67) 0.070(2.29)

Muse � 25.260 13.720(1.84) 7.650(3.30) 5.310(4.76) 4.690(5.39) 4.370(5.78)
Muse Average (1.85) (3.22) (4.47) (4.90) (5.27)

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 9



YapOr: an Or-Parallel Prolog System based on Environment Copying

Parallel Execution Overheads

Number of Workers
Activity 1 2 4 6 7 8
puzzle
Prolog 100.00 99.95 99.56 99.20 99.02 98.68
Search 0.00 0.02 0.16 0.32 0.41 0.60
Sharing 0.00 0.02 0.17 0.32 0.38 0.50
Get-Work 0.00 0.01 0.10 0.17 0.19 0.23
Cut 0.00 0.00 0.00 0.00 0.00 0.00

sm
Prolog 100.00 97.68 86.71 74.56 69.08 63.29
Search 0.00 0.81 5.02 11.50 13.85 16.87
Sharing 0.00 0.86 5.64 10.17 13.14 15.76
Get-Work 0.00 0.61 2.51 3.52 3.61 3.88
Cut 0.00 0.04 0.13 0.25 0.32 0.20

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 10



YapOr: an Or-Parallel Prolog System based on Environment Copying

Conclusions

Presentation

� We presented YapOr, an or-parallel Prolog system based on environment copying.

� YapOr has good sequential and parallel performance on a large set of benchmarks.

� The good performance is explained by the fact that for most benchmarks YapOr
spends its time mainly executing reductions and not managing parallelism.

Current and Further Work

� We are now working on adjusting YapOr to support parallel tabling execution.

� So far, we have extended Yap to execute sequential tabling and to support another
two or-parallel models: SBA and � COW.

Download Yap Prolog: www.ncc.up.pt/˜vsc/Yap

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 11


