YapOr: an Or-Parallel Prolog System
based on Environment Copying

Ricardo Rocha Fernando Silva Vitor Santos Costa
{ricroc,fds,vsc} @ncc.up.pt

DCC-FC & LIACC
University of Porto
Portugal



YapOr: an Or-Parallel Prolog System based on Environment Copying

Summary

Introduction
Logic Programming and Or-Parallelism

The Environment Copying Model
Basic execution model and the Incremental Copying technique

Extending Yap Prolog to support YapOr
Memory organization, choice points and or-frames

Performance Evaluation
Execution times, speedups and overheads

Conclusions

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)



YapOr: an Or-Parallel Prolog System based on Environment Copying

L ogic Programming and Parallelism

Why parallel implementations

e Declarativeness of the language
e Execution model allows parallelism to be exploited implicitly

e Efficiency of sequential implementations

Main forms of implicit parallelism present in logic programs

e Or-Parallelism

a(X,Y) :- b(X), c(Y).
a(X,Y) - d(X)Y), e(Y).
— Independent a(X,Y) :-f(X,2), 9(Z,Y).
— Dependent

e And-Parallelism

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)



YapOr: an Or-Parallel Prolog System based on Environment Copying

Or-Parallelism

Main Problems

e Variable binding representation

e Scheduling
Successful Execution Models and Systems

e Binding Arrays / Aurora System

e Environment Copying / Muse System

Question?
The good results previously obtained with Aurora and Muse are repeatable with other
Prolog systems in modern parallel machines?

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99) 3



YapOr: an Or-Parallel Prolog System based on Environment Copying

The Environment Copying M odel

Basic Execution Model

e A parallel execution is performed by a set of workers, initially all but one are idle;

e \Whenever a worker executes a predicate with several execution alternatives it
creates a choice point;

e As soon the idle workers finds that there is available work in the system, they will
request for that work from the busy workers;

e The busy worker synchronizes its computation state with the idle one through the
sharing work operation;

e At some point, a worker will fully explore its branch and become idle again;

e Eventually the execution tree will be fully explored and all workers became idle.

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99) 4



YapOr: an Or-Parallel Prolog System based on Environment Copying

| ncremental Copying

Goal: Position the workers involved in the operation in the same computational state.

Problem: Copying stacks between workers poses a major overhead to the system.

Solution: Keep the parts that are consistent and only copy the differences.

P Local Space
Local Stack Heap Trail
Root
Shared Area
| -\
[~ Q
Private Area /& P Top Segments
[ - common variable modified in P. P

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)



YapOr: an Or-Parallel Prolog System based on Environment Copying

Memory Organization

Global

1

Code Area

Global Information

o Local Information
O
X

Locals © WAM Stacks
=
c Local Information
O

Locals X
o WAM Stacks
=

¢ Or-Frames

Global

Solutions Frames

Answers Frames

Frames Area

Question?
How to map the local memory in order to meet
the requirements of Incremental Copying?

e The starting worker asks for shared memo-
ry in the system’s initialization phase.

e The remaining workers are created and
Inherit the addressing space previously
mapped.

e Each new worker rotates the local spaces
In such a way that all workers will see their
own spaces at the same address.

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)



YapOr: an Or-Parallel Prolog System based on Environment Copying

Choice Points and Or-Frames

Problem: Synchronize access to shared choice points.

CP_TR TR
CP_ALT ALT
CP H H
CP B B }
CP_ENV ENV Sharin
CP CP CP J
CP_OR-FR -
CP_PUA PUA

Solutions

TR

— getwork

H

B

ALT

ENV

P, Q

CP

OR-FR

Free

PUA

e Store the alternative pointer in a shared structure.

next_alternative
workers bitmap

lock

e Use a pseudo-instruction to synchronize access to the untried alternatives.

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)



YapOr: an Or-Parallel Prolog System based on Environment Copying

YapOr Performance Evaluation

Number of Workers

Programs 1 2 4 6 7 8
puzzle 10.042 | 4.835(2.08) | 2.316(4.34) | 1.550(6.48) | 1.339(7.50) [1.172(8.57)
9-queens 4.085| 2.047(2.00) | 1.026(3.98) | 0.690(5.92) | 0.596(6.85) | 0.519(7.87)
ham 1.802 | 0.908(1.98) | 0.474(3.80) | 0.324(5.56) | 0.281(6.41) | 0.245(7.36)
5cubes 1.029 | 0.516(1.99) | 0.260(3.96) | 0.181(5.69) | 0.170(6.05) | 0.145(7.10)
8-queens?2 1.063 | 0.606(1.75) | 0.288(3.69) | 0.202(5.26) | 0.159(6.69) | 0.149(7.13)
8-queensl 0.450 | 0.225(2.00) | 0.118(3.81) | 0.080(5.63) | 0.072(6.25) | 0.067(6.72)
nsort 2.089 | 1.191(1.75) [ 0.609(3.43) | 0.411(5.08) | 0.354(5.90) | 0.315(6.63)
sm*10 0.527 | 0.274(1.92) | 0.158(3.34) | 0.128(4.12) | 0.118(4.47) | 0.115(4.58)
db5*10 0.167 | 0.099(1.69) | 0.065(2.57) | 0.068(2.46) | 0.060(2.78) | 0.061(2.74)
db4*10 0.133| 0.079(1.68) | 0.056(2.38) | 0.055(2.42) | 0.052(2.56) | 0.060(2.22)
YapOr X 21.387 | 10.780(1.98) | 5.370(3.98) | 3.689(5.80) | 3.201(6.68) | 2.848(7.51)
YapOr Average (1.88) (3.53) (4.86) (5.55) (6.09)

All evaluations performed on a Sun SparcCenter 2000 with 8 processors,
256 MBytes of main memory, two level cache and running SunOS 5.6.

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)




YapOr: an Or-Parallel Prolog System based on Environment Copying

M use Performance Evaluation

Number of Workers

Programs 1 2 4 6 7 8
puzzle 12.120 | 6.660(1.82) | 3.720(3.26) | 2.670(4.54) | 2.230(5.43) | 2.140(5.66)
9-queens 3.890 | 2.030(1.92) | 1.110(3.54) | 0.690(5.64) | 0.630(6.17) | 0.560(6.95)
ham 2.550 | 1.480(1.72)|0.820(3.11) | 0.520(4.90) | 0.520(4.90) | 0.460(5.54)
5cubes 1.130 | 0.560(2.02) | 0.280(4.04) | 0.180(6.28) | 0.160(7.06) | 0.150(7.53)
8-queens2 1.350 | 0.690(1.96) | 0.390(3.46) | 0.270(5.00) | 0.240(5.63) | 0.220(6.14)
8-queensl 0.550 | 0.290(1.90) | 0.160(3.44) | 0.120(4.58) | 0.110(5.00) | 0.100(5.50)
nsort 2.650 | 1.450(1.83)|0.810(3.27) | 0.550(4.82) | 0.510(5.20) | 0.450(5.89)
sm*10 0.670 | 0.360(1.86) | 0.220(3.05) | 0.170(3.94) | 0.160(4.19) | 0.150(4.47)
db5*10 0.190| 0.110(1.73) | 0.080(2.38) | 0.070(2.72) | 0.070(2.72) | 0.070(2.72)
db4*10 0.160 | 0.090(1.78) | 0.060(2.67) | 0.070(2.29) | 0.060(2.67) | 0.070(2.29)
Muse > 25.260 | 13.720(1.84) | 7.650(3.30) | 5.310(4.76) | 4.690(5.39) | 4.370(5.78)
Muse Average (1.85) (3.22) (4.47) (4.90) (5.27)

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)




YapOr: an Or-Parallel Prolog System based on Environment Copying

Par allel Execution Over heads

Number of Workers

Activity 1 2 4 6 7 8
puzzle

Prolog 100.00 | 99.95 | 99.56 | 99.20 | 99.02 | 98.68
Search 0.00| 0.02| 0.16| 0.32| 0.41| 0.60
Sharing 0.00| 0.02| 0.17| 0.32| 0.38| 0.50
Get-Work | 0.00| 0.01| 0.10| 0.17| 0.19| 0.23
Cut 0.00| 0.00| 0.00| 0.00| 0.00| 0.00
sm

Prolog 100.00 | 97.68 | 86.71 | 74.56 | 69.08 | 63.29
Search 0.00| 0.81| 5.02|11.50|13.85|16.87
Sharing 0.00| 0.86| 5.64|10.17|13.14 |15.76
Get-Work | 0.00| 0.61| 251| 3.52| 3.61| 3.88
Cut 0.00| 0.04| 0.13| 0.25| 0.32| 0.20

Oth Portuguese Conference on Acrtificial Intelligence (EP1A’99)

10



YapOr: an Or-Parallel Prolog System based on Environment Copying

Conclusions

Presentation

e \We presented YapOr, an or-parallel Prolog system based on environment copying.
e YapOr has good sequential and parallel performance on a large set of benchmarks.

e The good performance is explained by the fact that for most benchmarks YapOr
spends its time mainly executing reductions and not managing parallelism.

Current and Further Work

e \We are now working on adjusting YapOr to support parallel tabling execution.

e So far, we have extended Yap to execute sequential tabling and to support another
two or-parallel models: SBA and aCOW.

Download Yap Prolog: www.ncc.up.pt/ vsc/Yap

9th Portuguese Conference on Artificial Intelligence (EPIA’99) 11



