
Cryptography
Week #10:

Elliptic Curve and Discrete Lattice Cryptography

Rogério Reis, rogerio.reis@fc.up.pt
DCC FCUP

November, 24th 2022

Elliptic Curve Cryptography (ECC)

The introduction of elliptic curve cryptography (ECC) in 1985 revolutionized the way
we do public-key cryptography. ECC is more powerful and efficient than alternatives
like RSA and classical Diffie– Hellman (ECC with a 256-bit key is stronger than RSA
with a 4096-bit key), but it’s also more complex.

Although first introduced in 1985, ECC wasn’t adopted by standardization bodies until
the early 2000s, and it wasn’t seen in major toolkits until much later: OpenSSL added
ECC in 2005, and the OpenSSH secure connectivity tool waited until 2011. But
modern systems have few reasons not to use ECC.

What are Elliptic Curves?

Definition (Elliptic Curve)

An elliptic curve is the set of solutions to an equation of the form

Y 2 = X 3 + AX + B .

Equations of this type are called Weierstrass equations.

Addition of two points in a EC
Let P and Q be two points on an elliptic curve E . We start by drawing the line L
through P and Q. This line L intersects E at three points, namely P , Q, and one
other point R . We take that point R and reflect it across the x-axis (i.e., we multiply
its Y -coordinate by -1) to get a new point R ′. We write

P ⊕ Q = R ′.

An example (1)
Let E be the elliptic curve

E : Y 2 = X 3 − 15X + 18.

The points P = (7, 16) and Q = (1, 2) are on the curve E . The line L connecting
them is given by the equation

L : Y =
3

7
X − 1

3
.

Using this equation in E we get

󰀕
7

3
X − 1

3

󰀖2

= X 3 − 15X + 18

40

9
X 2 − 14

9
+

1

9
= X 3 − 15X + 18

0 = X 3 − 49

9
X 2 − 121

9
X +

161

9
.

We need to find the roots of this cubic polynomial. In general, finding the roots of a
cubic is difficult. However, in this case we already know two of the roots, namely
X = 7 and X = 1, since we know that P and Q are in the intersection E ∩ L. It is then
easy to find the other factor,

X 3 − 49

9
X 2 − 121

9
X +

161

9
= (X − 7)(X − 1)

󰀕
X +

23

9

󰀖
.

Computing the corresponding value of Y we get R =
󰀃
−23

9 ,
170
27

󰀄
. And thus

P ⊕ Q =

󰀕
−23

9
,−170

27

󰀖
.

What if P = Q?
Imagine what happens to the line L connecting P and Q if the point Q slides along the
curve and gets closer and closer to P . In the limit, as Q approaches P , the line L
becomes the tangent line to E at P .

Example (2)
Using the previous example let us compute P ⊕ P .

2Y
dY

dX
= 3X 3 − 15, so

dY

dX
=

3X 2 − 15

2Y
.

Using the coordinates of P = (7, 16) gives slope λ = 33 , so the tangent line to E at P
is given by the equation

L : Y =
33

8
X − 103

8
.

󰀕
33

8
X − 103

8

󰀖2

= X 3 − 15X + 8

X 3 − 1089

64
X 2 +

2919

32
X − 9457

64
= 0

(X − 7)2
󰀕
X − 193

64

󰀖
= 0.

Thus, 2P = P ⊕ P =
󰀃
193
64 ,

223
512

󰀄
.

What about (a, b)⊕ (a,−b)?

Simply add a point to every Elliptic Curve: P ⊕ P ′ = O.

Theorem
Let E be an elliptic curve. The addition law on E has the following properties:

i) P +O = O + P = P (∀P)
ii) P + (−P) = O (∀P)
iii) (P + Q) + R = P + (Q + R) (∀P ,Q,R)

iv) P + Q = Q + P (∀P ,Q)

Thus and Elliptic Curve is an Abelian group.

Elliptic Curve Addition Algorithm

Let
E : Y 2 = X 3 + AX + B

be an elliptic curve and let P1 and P2 be points on E .

1 If P1 = O, then P1 + P2 = P2.

2 Otherwise, if P2 = O, then P1 + P2 = P1.

3 Otherwise, let P1 = (x1, y1) and P2 = (x2, y2).

4 If x1 = x2 and y1 = −y2, then P1 + P2 = O.

5 Otherwise,

λ =

󰀫
y2−y1
x2−x1

if P1 ∕= P2,
3x21+A
2y1

if P1 = P2.

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

P1 + P2 = (x3, y3).

Multiplication (by an integer)

To compute kP efficiently the naive technique of adding P by applying the addition
law k–1 times is far from optimal. For example, if k is large (of the order of, say, 2256)
as it occurs in elliptic curve–based crypto schemes, then computing k–1 additions is
downright infeasible.
But there’s a trick: you can gain an exponential speed-up by adapting the technique
discussed in “Fast Exponentiation Algorithm” to compute xe (mod n). For example,
to compute 8P in three additions instead of seven using the naive method, you would
first compute P2 = P + P ,then P4 = P2 + P2, and finally P4 + P4 = 8P .

Elliptic curves over finite fields

In order to apply the theory of elliptic curves to cryptography, we need to look at
elliptic curves whose points have coordinates in a finite field Fp. We simply define an
elliptic curve over Fp to be an equation of the form

E : Y 3 = X 2 + AX + B with A,B ∈ Zp and 4A3 + 27B2 ∕= 0

and
E (Fp) = {〈x , y〉 ∈ Fp | y2 = x3 + Ax + B} ∪ {O}.

Example (3)

Consider the elliptic curve

E : Y 2 = X 3 + 3X + 8 over the field F13.

We can find the points of E (F13) by substituting in all possible values
X = 0, 1, 2, . . . , 12 and checking for which X values the quantity X 3 + 3X + 8 is a
square modulo 13. For example, putting X = 0 gives 8, and 8 is not a square modulo
13. Next we try X = 1, which gives 1 + 3 + 8 = 12. It turns out that 12 is a square
modulo 13; in fact, it has two square roots,

52 ≡ 12 (mod 13) and 82 ≡ 12 (mod 13).

This gives two points 〈1, 5〉 and 〈1, 8〉 in E (Fp).

Continuing in this fashion, we end up with a complete list,

E (F13) = {O, 〈1, 5〉, 〈1, 8〉, 〈2, 3〉, 〈2, 10〉, 〈9, 6〉, 〈9, 7〉, 〈12, 2〉, 〈12, 11〉} .

Thus E (F13) consists of nine points.

How many points can we expect in a EC?

Theorem (Hasse)

Let E be an elliptic curve over Fp. Then

|E (Fp)| = p + 1− tp with tp satisfying |tp| ≤ 2
√
p.

The ECDLP Problem

We defined before DLP : that of finding the number y given some base number g ,
where x = g y (mod p) for some large prime number p.

Cryptography with elliptic curves has a similar problem: the problem of finding the
number k given a base point P where the point Q = kP . This is called the elliptic
curve discrete logarithm problem, or ECDLP.

One important difference between ECDLP and the classical DLP is that ECDLP allows
you to work with smaller numbers and still enjoy a similar level of security.

One way of solving ECDLP is to find a collision between two outputs, c1P + d1Q and
c2P + d2Q. The points P and Q in these equations are such that Q = kP for some
unknown k , and c1, d1, c2, and d2 are the numbers you will need in order to find k .
A collision occurs when two different inputs produce the same output. Therefore, in
order to solve ECDLP, we need to find points where the following is true:
c1P + d1Q = c2P + d2Q.
In order to find these points, we replace Q with the value kP , and we have the
following:

c1P + d1kP = (c1 + d1k)P = (c2 + d2k)P = c2P + d2kP .

Thus c1 + d1k = c2 + d2k modulo the number of the points in the curve, which is not
a secret.

Thus

d2k − d1k = c1 − c2

k(d2 − d1) = c1 − c2

k =
c1 − c2
d2 − d1

In practice, elliptic curves extend over numbers of at least 256 bits, which makes
attacking elliptic curve cryptography by finding a collision impractical because doing so
takes up to 2128 operations (the cost of finding a collision over 256-bit numbers.

Diffie–Hellman Key Agreement over Elliptic Curves

The elliptic curve version of DH is identical to that of classical DH but with different
notations. In the case of ECC, for some fixed point G , Alice picks a secret random
number dA, computes PA = dAG (the point G multiplied by dA), and sends PA to
Bob. Bob picks a secret random dB , computes the point PB = dBG , and sends it to
Alice. Then both compute the same shared secret, dAPB = dBPA = dAdBG . This
method is called elliptic curve Diffie–Hellman, or ECDH.

Signing with Elliptic Curves

The standard algorithm used for signing with ECC is ECDSA, which stands for elliptic
curve digital signature algorithm. This algorithm has replaced RSA signatures and
classical DSA signatures in many applications. It is, for example, the only signature
algorithm used in Bitcoin and is supported by many TLS and SSH implementations.

As with all signature schemes, ECDSA consists of a signature generation algorithm
that the signer uses to create a signature using their private key and a verification
algorithm that a verifier uses to check a signature’s correctness given the signer’s
public key. The signer holds a number, d , as a private key, and verifiers hold the public
key, P = dG . Both know in advance what elliptic curve to use, its order (n, the
number of points in the curve), as well as the coordinates of a base point, G .

ECDSA Signature Generation

In order to sign a message, the signer first hashes the message with a cryptographic
hash function such as SHA-256 or BLAKE2 to generate a hash value, h, that is
interpreted as a number between 0 and n − 1. Next, the signer picks a random
number, k , between 1 and n–1 and computes kG , a point with the coordinates 〈x , y〉.
The signer now sets r = x (mod n) and computes s = (h + rd)/k (mod n), and then
uses these values as the signature 〈r , s〉. The length of the signature will depend on
the coordinate lengths being used. For example, when you’re working with a curve
where coordinates are 256-bit numbers, r and s would both be 256 bits long, yielding a
512-bit-long signature.

ECDSA Signature Verification
In order to verify an ECDSA signature 〈r , s〉 and a message’s hash, h, the verifier first
computes w = 1/s, the inverse of s in the signature, which is equal to k/(h + rd)
(mod n), since s is defined as s = (h + rd)/k . Next, the verifier multiplies w with h to
find u according to the following formula:

wh = hk(h + rd) = u.

Then multiplies w with r to find v :

wr = rk(h + rd) = v .

Having u and v , the verifier computes the point Q:

Q = uG + vP

where P is the signer’s public key, which is equal to dG , and the verifier only accepts
the signature if the x coordinate of Q is equal to the value r from the signature.

This process works because, as a last step, we compute the point Q by substituting the
public key P with its actual value dG :

uG + vdG = (u + vd)G .

When we replace u and v with their actual values, we obtain the following:

u + vd = hk(h + rd) + drk/(h + rd)

= (hk + drk)/(h + rd)

= k(h + dr)/(h + rd) = k .

This tells us that (u + vd) is equal to the value k , chosen during signature generation,
and that uG + vdG is equal to the point kG .

ECDSA vs RSA Signatures

When comparing RSA and ECC’s signature algorithms, recall that in RSA signatures,
the signer uses their private key d to compute a signature as y = xd (mod n), where x
is the data to be signed and y is the signature. Verification uses the public key e to
confirm that y e (mod n) equals x — a process that’s clearly simpler than that of
ECDSA.
RSA’s verification process is often faster than ECC’s signature generation because it
uses a small public key e. But ECC has two major advantages over RSA:

• shorter signatures

• signing speed.

Encrypting with Elliptic Curves

Although elliptic curves are more commonly used for signing, you can still encrypt with
them. But you’ll rarely see people do so in practice due to restrictions in the size of the
plaintext that can be encrypted: you can fit only about 100 bits of plaintext, as
compared to almost 4000 in RSA with the same security level.

One simple way to encrypt with elliptic curves is to use the integrated encryption
scheme (IES), a hybrid asymmetric–symmetric key encryption algorithm based on the
Diffie–Hellman key exchange. Essentially, IES encrypts a message by generating a
Diffie–Hellman key pair, combining the private key with the recipient’s own public key,
deriving a symmetric key from the shared secret obtained, and then using an
authenticated cipher to encrypt the message.

When used with elliptic curves, IES relies on ECDLP’s hardness and is called
elliptic-curve integrated encryption scheme (ECIES). Given a recipient’s public key, P ,
ECIES encrypts a message, M, as follows:

1 Pick a random number, d , and compute the point Q = dG , where the base point
G is a fixed parameter. Here, 〈d ,Q〉 acts as an ephemeral key pair, used only for
encrypting M.

2 Compute an ECDH shared secret by computing S = dP .

3 Use a key derivation scheme (KDF) to derive a symmetric key, K , from S .

4 Encrypt M using K and a symmetric authenticated cipher, obtaining a ciphertext,
C , and an authentication tag, T .

The ECIES ciphertext then consists of the ephemeral public key Q followed by C and
T . Decryption is straightforward: the recipient computes S by multiplying R with their
private exponent to obtain S , and then derives the key K and decrypts C and verifies
T .

Choosing a Curve

When making your selection of the curve, be sure to choose coefficients a and b in the
curve’s equation y2 = x3 + ax + b carefully; otherwise, you may end up with an
insecure curve.

• The order of the group should not be a product of small numbers; otherwise
solving ECDLP becomes much easier.

• Adding points P + Q requires a specific addition formula when Q = P.
Unfortunately, treating this case differently from the general one may leak critical
information if an attacker is able to distinguish doublings from additions between
distinct points. Some curves are secure because they use a single formula for all
point addition. (When a curve does not require a specific formula for doublings,
we say that it admits a unified addition law.)

• If the creators of a curve don’t explain the origin of a and b, they may be
suspected of foul play because you can’t know whether they may have chosen
weaker values that enable some yet-unknown attack on the cryptosystem.

How Things Can Go Wrong

Elliptic curves have their downsides due to their complexity and large attack surface.
Their use of more parameters than classical Diffie–Hellman brings with it a greater
attack surface with more opportunities for mistakes and abuse, and possible software
bugs that might affect their implementation. Elliptic curve software may also be
vulnerable to side-channel attacks due to the large numbers used in their arithmetic. If
the speed of calculations depends on inputs, attackers may be able to obtain
information about the formulas being used to encrypt.

ECDSA with Bad Randomness

ECDSA signing is randomised, as it involves a secret random number k when setting
s = (h + rd)/k (mod n). However, if the same k is reused to sign a second message,
an attacker could combine the resulting two values, s1 = (h1 + rd)/k and
s2 = (h2 + rd)/k , to get s1− s2 = (h1− h2)/k and then k = (h1− h2)/(s1− s2).
When k is known, the private key d is easily recovered by computing the following:

(ks1− h1)/r = ((h1 + rd)− h1)/r = rd/r = d .

Breaking ECDH Using Another Curve

Say that Alice and Bob are running ECDH and have agreed on a curve and a base
point, G . Bob sends his public key dBG to Alice. Alice, instead of sending a public key
dAG on the agreed upon curve, sends a point on a different curve, either intentionally
or accidentally. Unfortunately, this new curve is weak and allows Alice to choose a
point P for which solving ECDLP is easy. She chooses a point of low order, for which
there is a relatively small k such that kP = O.
Now Bob, believing that he has a legitimate public key, computes what he thinks is the
shared secret dBP , hashes it, and uses the resulting key to encrypt data sent to Alice.
The problem is that when Bob computes dBP , he is unknowingly computing on the
weaker curve. As a result, because P was chosen to belong to a small subgroup within
the larger group of points, the result dBP will also belong to that small subgroup,
allowing an attacker to determine the shared secret dBP efficiently if they know the
order of P .

One way to prevent this is to make sure that points P and Q belong to the right curve
by ensuring that their coordinates satisfy the curve’s equation. Doing so would prevent
this attack by making sure that you’re only able to work on the secure curve.

...and now for something completely
different!

Discrete Lattices Cryptography

Definition (Discrete Lattice)

Let v1, . . . , vn ∈ Rm be a set of linearly independent vectors. The lattice L generated
by v1, . . . , vn is the set of linear combinations of v1, . . . , vn with coefficients in Z,

L = {a1v1 + a2v2 + · · ·+ anvn | a1, a2, . . . , an ∈ Z}.

Proposition

Any two bases for a lattice L are related by a matrix having integer coefficients and
determinant equal to ±1.

Definition (Integral Lattice)

An integral (or integer) lattice is a lattice all of whose vectors have integer coordinates.
Equivalently, an integral lattice is an additive subgroup of Zm for some m ≥ 1.

Definition (Fundamental Domain)

Let L be a lattice of dimension n and let v1, v2, . . . , vn be a basis for L. The
fundamental domain (or fundamental parallelepiped) for L corresponding to this basis
is the set

F(v1, . . . , vn) = {t1v1 + t2v2 + · · ·+ tnvn | 0 ≤ ti < 1}

Proposition (Hadamard’s Inequality)

Let L be a lattice, take any basis v1, . . . , vn for L, and let F be a fundamental domain
for L. Then

det L = Vol(F) ≤ ||v1|| ||v2|| · · · ||vn||.

The shortest vector problem and the closest vector
problem

The Shortest Vector Problem (SVP): Find a nonzero vector v ∈ L that minimizes the
Euclidean norm ||v ||.

The Closest Vector Problem (CVP): Given a vector w ∈ Rm that is not in L, find a
vector v ∈ L that minimizes ||w − v ||.

Approximate Shortest Vector Problem (apprSVP): Let ψ(n) be a function of n. In a
lattice L (dimension n), find a nonzero vector that is no more than ψ(n)
times longer than a shortest nonzero vector. In other words, if vs is a
shortest nonzero vector in L, find a nonzero vector v ∈ L satisfying

||v || ≤ ψ(n)||vs ||.

Approximate Closest Vector Problem (apprCVP): This is the same as apprSVP, but
now we are looking for a vector that is an approximate solution to CVP,
instead of an approximate solution to SVP.

Babai’s algorithm to solve apprCVP

Theorem (Babai’s Closest Vertex Algorithm)

Let L ⊂ Rn be a lattice with basis v1, . . . , vn, and let w ∈ Rn be an arbitrary vector. If
the vectors in the basis are sufficiently orthogonal to one another, then the following
algorithm solves CVP.

1 Write w = t1v1 + t2v2 + · · ·+ tnvn with t1, . . . , tn ∈ R.
2 Set ai = ⌊ti⌉ for i = 1, 2, ..., n.

3 Return the vector v = a1v1 + a2v2 + · · ·+ anvn.

In general, if the vectors in the basis are reasonably orthogonal to one another, then
the algorithm solves some version of apprCVP, but if the basis vectors are highly
nonorthogonal, then the vector returned by the algorithm is generally far from the
closest lattice vector to w.

Example (4)

Let L ⊂ R2 be the lattice given by the basis

v1 = (137, 312) and v2 = (215,−187).

We are going to use Babai’s algorithm to find a vector in L that is close to the vector

w = (53172, 81743).

The first step is to express w as a linear combination of v1 and v2 using real
coordinates. We do this using linear algebra. Thus we need to find t1, t2 ∈ R such that

w = t1v1 + t2v2.

This gives the two linear equations

53172 = 137t1 + 215t2 and 81743 = 312t1 − 187t2,

or,

(53172, 81743) = (t1, t2)

󰀕
137 312
215 −187

󰀖
.

We find that t1 ≈ 296.85 and t2 ≈ 58.15. Babai’s algorithm tells us to round t1 and t2
to the nearest integer and then compute

v = ⌊t1⌉v1 + ⌊t2⌉v2 = 297(137, 312) + 58(215,−187) = (53159, 81818).

Then v is in L and v should be close to w . This is to be expected, since the vectors in
the given basis are fairly orthogonal to one another, as is seen by the fact that the
Hadamard ratio

H(v1, v2) =

󰀕
det L

||v1||.||v2||

󰀖 1
2

≈
󰀕

92699

340.75× 284.95

󰀖 1
2

≈ 0.977

is reasonable close to 1.

We now try to solve the same closest vector problem in the same lattice, but using the
new basis

v ′1 = (1975, 438) = 5v1 + 6v2 and v ′2 = (7548, 1627) = 19v1 + 23v2.

The system of linear equations

(53172, 81743) = (t1, t2)

󰀕
1975 438
7548 1627

󰀖

has the solution (t1, t2) ≈ (5722.66,−1490.34), so we set

v ′ = 5723v ′1 − 1490v ′2 = (56405, 82444).

Then v ′ ∈ L, but v ′ is not particularly close to w , since

||v ′ − w || ≈ 3308.12.

PKC using Discrete Lattices

1 Choose a near orthogonal set of linear independent vectors, in Zn, that will be
vectorial base B of the Lattice L.

2 Choose a matrix M that transforms B in a quite “skewed” vectorial base
B ′ = MB . This new base will be Alice’s public key.

3 Alice’s private key will be M.

4 If Bob wants to share some secret s with Alice, interprets s as coordinates in base
B ′, thus getting a point x in the lattice.

5 Randomly generates some (small) noise ∆x and obtains a point x ′ = x +∆x
living in Rn, that sends to Alice.

6 Alice can use M to write express x ′ in B coordinates and apply Babbai’s algorithm
to recover x .

