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Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

Context
• Last week we used and generated keys
• How is this done?

For Symmetric Crypto
• Generated uniformly at random
• Derived using a Key Derivation Function

• From a password or low entropy secret
• From a high-entropy master key from key exchange protocol

For Asymmetric Crypto
• Key generation algorithm → key pair
• Private key holder generates both keys; publishes public key
• Asymmetric keys are typically much larger

• RSA keys take roughly 4096-bits for 128-bit security
• Elliptic-curve keys take roughly 400-bits for 128-bit security
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Storage and Generation
Keys are often the most sensitive material a secure system holds

Ideally, in an external secure hardware
• Hardware Security Module (HSM)
• Smartcard or similar cryptographic token

Key wrapping
• Long-term keys are often wrapped before storage
• To encrypt with another key
• Password-based encryption (low security)
• Wrap with HW-protected master key (standard security)
• Master key stored in trusted hardware (high security)
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To Be Random

Q1: Which of these numbers are random?
1. 00000000
2. 10101010
3. 00100100
4. 10011101
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Randomness is not a property of a bit string, but rather:

• The bit generation process
• The bit string sampling procedure
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Q1: Which of these numbers are random?
1. 00000000 - Not random!
2. 10101010 - Not random (pattern)
3. 00100100 - Maybe not random?
4. 10011101 - Seems random...

Randomness is not a property of a bit string, but rather:

• The bit generation process
• The bit string sampling procedure

Q2: Which of these numbers will more likely appear in a fair
randomness generator?
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Randomness Distributions
Randomized processes described using randomness distributions.

We start with the uniform distribution over a finite field S.

A process U samples from the uniform distribution if

∀s∗ ∈ S, Pr[s = s∗ : s←$ U] = 1
|S|

Q1: If we roll a fair dice, what is the probability of getting 1?
1
6 ≈ 0.1667

Q2: If we do a fair sampling of a byte, what is the
probability of getting 00000000 or 10011101?

2
28 ≈ 0.0078

5 / 28
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Quantifying Randomness

As you might have inferred, for the uniform sampling of λ bits, the
probability of each element in the set is 1

2λ .

We do not always want to generate “nicely structured” bit strings
• E.g. a value from 0 . . . 254
• How to use uniformly generated bytes for this?

Q1: Get a byte, compute the result mod 255. Is it uniform?

Bad corner case: bytes 0 and 255 both give us 0!

Q2: Get a byte, exclude value 255 and retry. Is it uniform?

It is, and is called rejection sampling. Q3: what is the downside?
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Entropy
We will mostly use entropy as an intuitive concept
• It measures uncertainty w.r.t. a sampling output

Mathematically, it can be defined for a distribution X as

H(X ) =
∑

s∗∈S
−Pr[s∗] · logb(Pr[s])

• It is maximized by the uniform distribution, with entropy λ

28 · (− 1
28 · log2( 1

28 )) = 8

• Entropy here quantifies the number of uncertainty bits
• In this example, we are uncertain of exactly 8 bits

• If a sampling is biased, it has less uncertainty, i.e. entropy
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Random Number Generators

How do we get uniform coins?

• It starts with a physical process
• A source of entropy, e.g., some natural process that is believed

to sample l-bits from a high-entropy distribution
• Typically l >> λ where λ is the assumed entropy
• Randomness extractors (often a hash function) compress such

bit strings down to λ bits
• The result bit strings are assumed to be uniform

• The combined process is called a Random Number Generator
• High-security RNGs currently exploit quantum effects
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Pseudorandom Generators - Part 1

Good randomness is hard to generate, so RNGs are usually slow

Pseudorandom Generators are crypto’s response to this problem:
• PRG takes a small, uniform seed of length λ

• Generates long, random-looking bit strings l >> λ

• PRGs are deterministic algorithms!

A Pseudorandom generator is a function G : {0, 1}λ → {0, 1}l

Security: (without delving deep in probability) an attacker must
be unable of distinguishing PRG outputs from a truly random string
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Pseudorandom Generators - Part 2
PRG : {0, 1}λ → {0, 1}l

r'

r

PRG(k)

RNG

Reasoning
• Use a strong RNG to generate seed r of (small) size λ

• Use the PRG on seed r to generate (much larger) r ′ of size l

Q: Can we have secure PRGs (indistinguishable from uniform
distribution), considering adversaries with unbound power?
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Security of Pseudorandom Generators
U : {0, 1}l → {0, 1}l

PRG : {0, 1}λ → {0, 1}l

• An adversary can simply test all 2λ cases
• Security refers to a computationally limited adversary
• One that cannot (realistically) test all possible PRG inputs

11 / 28
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Security in Practice
Redefine “impossible to break”
• With reasonable resources (time, memory, HW power)
• With probability higher than negligible

Practical schemes are computationally impossible to break

Take an encryption scheme and an attacker that does not know k
• Attacker chooses non-repeating inputs Xi and gets

• Yi chosen uniformly at random if b = 1
• Yi = E (k, Xi) if b = 0

• Attacker guesses b and wins if b = b′

We define the adversary’s advantage ϵ as

ϵ = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

Best attack for ϵ = 2−40 takes 280 steps

12 / 28



Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

Security in Practice
Redefine “impossible to break”
• With reasonable resources (time, memory, HW power)
• With probability higher than negligible

Practical schemes are computationally impossible to break

Take an encryption scheme and an attacker that does not know k
• Attacker chooses non-repeating inputs Xi and gets

• Yi chosen uniformly at random if b = 1
• Yi = E (k, Xi) if b = 0

• Attacker guesses b and wins if b = b′

We define the adversary’s advantage ϵ as

ϵ = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

Best attack for ϵ = 2−40 takes 280 steps

12 / 28



Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

Security in Practice
Redefine “impossible to break”
• With reasonable resources (time, memory, HW power)
• With probability higher than negligible

Practical schemes are computationally impossible to break

Take an encryption scheme and an attacker that does not know k
• Attacker chooses non-repeating inputs Xi and gets

• Yi chosen uniformly at random if b = 1
• Yi = E (k, Xi) if b = 0

• Attacker guesses b and wins if b = b′

We define the adversary’s advantage ϵ as

ϵ = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

Best attack for ϵ = 2−40 takes 280 steps
12 / 28



Cryptographic Keys Randomness Security in Practice PRGs in Practice Cryptographic Security

Concrete Numbers - Part 1

Some numbers for scale
• Not easy to perceive very very large numbers
• The estimated age of the universe in nanosecs is around 288

• The number of atoms in the universe is roughly 2256

A common security parameter
• A common size for keys is 128 bits
• Consider the following events

• Winning a lottery with 9 million participants (all of Portugal)
• Guessing a 2128 size key at the first try

Q1: Which event is more likely?

Q2: By how much?
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Concrete Numbers - Part 2

Security is defined as (t, ϵ)-security
• For some well-defined attack model
• Any attacker must run in at most t steps
• Has at most ϵ success advantage/probability
• t is a lower-bound on the work needed to break the scheme

Define security of the best possible encryption with key space 2128

Q1: For t = 2128, what is ϵ? ϵ = 1

Q2: For t = 1, what is ϵ? ϵ = 2−128

Q3: For t = 264, what is ϵ? ϵ = 2−64

The more tries you get, the greater ϵ becomes: (t, t/2128) security

14 / 28
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Quantifying Security
Lower bound on the work required for a successful attack

Number of steps of the best attack
• n-bits security
• Best attack to break the scheme requires 2n steps
• n-bit keys cannot ever give more than n-bit security

• Q1: Why?
• Brute-force attack allows finding the correct key
• l-bit keys could lead to n-bit security s.t. n << t

• Q2: When?
• Best attack is more efficient than brute-force
• Common in asymmetric cryptography
• Keys must follow specific structures, not random bit strings

• Quantifying using n-bit security permits comparing schemes
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Good Security Values for Real-world Crypto

The 2128 rule of thumb
• Designs for which best attacks are at (t, ϵ) = (288, 2−40)

For how long do we need security to hold?
• Moore’s law: computational power doubles every 2 years
• n + 1 bit security every 2 years
• This no longer seems to be true, but...
• Maybe we will have quantum computers soon

Long-term security: ≈ 256-bit keys

Short-term security: ≈ 80-bit keys may be OK
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• Maybe we will have quantum computers soon

Long-term security: ≈ 256-bit keys

Short-term security: ≈ 80-bit keys may be OK
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Stateful PRGs in Operating Systems

Randomness generation is statful
• ... in modern OSs
• PRG keeps a state
• OS mixes output of entropy source into PRG state

Extract and expand randomness
• st ← init(): SO initializes state
• st ← refresh(R, st): SO adds entropy (reseeds)
• (C , st)← next(N, st): SO returns N random bits
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Dealing With a Compromised State

Backtracking ⇐ resistance
• Suppose an adversary corrupts the PRG state
• Past randomness should not be compromised

• We might have used it to generate cryptographic material
• A.k.a. forward secrecy (for past secret keys)

Prediction ⇒ resistance
• Suppose the adversary corrupts the PRG state
• SO adds extra (hidden) entropy to PRG state
• Future output should look random once more
• Hence refresh must be called regularly
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Linux systems

• PRG is accessible at /dev/urandom
• In ∗nix-style, PRG is mapped to a file
• Careful to make sure system calls are successful!

Link to code from LibreSSL

In some variants, there is a blocking /dev/random based on an
entropy simulator
• Check if there is “sufficient entropy”
• Blocks otherwise
• Current consensus indicates that, for most applications, this is

not useful (see this link for more information)

19 / 28

https://github.com/libressl/openbsd/blob/master/src/lib/libcrypto/arc4random/getentropy_linux.c
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Caution: statistical tests are not sufficient

• Q: What type of tests can we do over “random” inputs?

• Count number of 1s and 0s
• Check distribution of 8-bit words
• Look for patterns
• . . .

Irrelevant for Security
• Possible to pass statistical tests
• Totally insecure for cryptographic purposes

Cryptographic PRGs come with a proof of security
• Goal: Given n bits of input, can an adversary guess bit n + 1?
• Secure PRGs used directly, or as building blocks to other PRGs
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Security Assurance
There are two main ways in which security is ensured:
• Heuristically
• Provably (not probably!)

Heuristic Security
• Large community constantly trying to break schemes
• Cryptanalysts trying to disprove n-bit security
• The AES block cipher is an example

Provable Security
• Mathematical proof
• Breaking a scheme implies solving a hard problem
• A mathematical problem, or breaking another scheme!
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Provable Security

Assumption: mathematical problem P cannot be efficiently solved

Goal: Breaking scheme C cannot be efficiently done

Methodology: building a reduction
• Take any (hypothetical) attacker A that breaks C
• Construct (concrete) reduction BA

• I.e. B uses A as a subroutine
• Show that B solves P when A succeeds

We never state that C is secure by itself

We state that C is as secure as the hardness of P
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An Example of Provable Security - Part 1

Assume that AES is a semantic secure scheme, i.e.

C

A
(m0, m1)

c = AES(k, mb)

b'

b = b'

An adversary with non-negligible victory probability (over 1
2), i.e a

successful A must not exist!
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An Example of Provable Security - Part 2
Consider an encryption scheme that just repeats AES 2 times.

E (k, m) = AES(k, m) |AES(k, m)

C

B
(m0, m1)

c = E(k, mb)

b'

b = b'

Q: given that AES is secure, is this secure?

• It should be...
• We are just repeating the encryption
• Can we demonstrate this?
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An Example of Provable Security - Part 3

C

A
(m0, m1)

c = AES(k, mb)

b'

b = b'

B
(m0, m1)

c | c

b'

• Suppose a successful B exists
• Then, we can construct a concrete A to break AES like this
• Contradiction! We assumed that no such A can exist!

Corollary
• No BA can exist (AES is secure)
• As such, no A can exist
• So, scheme E must be secure!
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Caveats of Provable Security

Problem P is called a hardness assumption
• It can be a mathematical problem, such as factoring
• It can be some other cryptogaphic construction

Proof assurance ≤ assumption assurance
• Proofs of security are relative to assumptions
• Security only holds if assumptions are true

Most of the assumptions are validated via heuristic security
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Heuristic Security

Validating hardness assumptions is crucial for modern cryptography

Methodology for heuristic security has been progressing

• Standards take years to define
• Competitions where proposals are scrutinized

• It is how AES was established as the de facto encryption
standard for the overwhelming majority of applications

• And is how PQ encryption schemes are being selected
• “My construction wins if I break your construction”

• Yet again we see the value of the Kerckhoffs’s principle!
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