
Chapter 2

Schedulability Analysis of Tasks in Single Processor
Systems: Review of Relevant Work

In this chapter we survey some relevant results for the priority-based schedulability
analysis of real-time tasks, both for the fixed and for the dynamic priority
assignment schemes. We give emphasis to the worst-case response time analysis in
non pre-emptive contexts, since that analysis is of paramount importance to the
message schedulability analysis in communication networks.

2.1. Introduction

Real-time computing systems are defined as those systems in which the correctness of
the system depends not only on the logical result of computation, but also on the time at
which the results are produced (Stankovic, 1988). There are various examples of
real-time computing systems, such as command and control systems, flight control
systems or robotics.

A typical real-time computing system has a real-time program running on the system,
which reads inputs from input devices, processes these inputs, and often produces
outputs to be sent to output devices. The time between the arrival of an input from a
device and the completion of the processing for that input is called the response time for
the device (Joseph and Pandya, 1986). The relative deadline for the device can be
defined as the maximum interval between the instant of the input arrival and the
completion of the processing for that input. Hence, the response time for a device must
be smaller or equal to its relative deadline.

Assume that each input device is assigned a task (process) of the application program
and that the tasks share a same processor. The problem of determining whether the
system will meet its peak processing load, or in other words, whether no input from any
device will be lost, becomes one of schedulability analysis of tasks (Burns, 1991).

A round-robin scheduling policy ensures that each task gets a share of the processor.
However, such an approach may not be suitable for real-time systems. Assume the
following example (Krishna and Shin, 1997):

“Consider a computer controlling an aircraft. Among its tasks are maintaining
stability and keeping the cabin temperature within acceptable limits. Suppose the aircraft
encounters turbulence that makes it momentarily unstable. The computer is then
supposed to adjust the control surfaces to regain stability. If we use round-robin
scheduling for this application, the computer may switch context partway through
making the control adjustments in order to spend time making sure the cabin temperature
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is just right. The result may well be a crash, and the fact that the cabin is being
maintained at optimum temperature will be scant consolation to the passengers as the
airliner falls out the sky. What we want is to give the stability-maintenance task a very
high priority, which ensures that when stability is threatened, all other interfering tasks
are elbowed out of the way to allow this all-important task enough computer cycles.”

It follows that the consideration of priority levels is crucial to a real-time computing
system. If different inputs have different response time requirements, we need to
consider different priority levels to schedule the related processing tasks. Consider a
real-time system, within which several devices are connected at different priority levels
to a single processor computer system. An input being processed, will be pre-empted
when another input of higher priority arrives, and will only be resumed when there is no
processing remaining at higher priorities.

Assume that the input from a device is saved in a buffer, until it is overwritten by the
next input of the same device. The problem is to determine whether for a given
assignment of priority levels, the system will meet its peak processing load (i.e. no input
from any device will be lost). A more basic problem is how to assign devices to
priorities in order to meet the system-processing load.

The remainder of this chapter is organised as follows. In Section 2.2 we outline some
of the classic concepts of real-time systems. These aspects include the characterisation of
the tasks and the description of the most commonly used priority assignment schemes.
As throughout this thesis we will deal with offline schedulability analysis, in Section 2.3
we provide a brief comparison between the main two approaches for performing such
schedulability analysis: based on the utilisation of the processor; based on the actual
response time of the tasks. In Sections 2.4 and 2.5 we survey the most important results
for the schedulability analysis of tasks in single processor systems, for the case of fixed
and dynamic priority assignment, respectively. In both cases of priority assignment
schemes, we present feasibility tests based on the utilisation of the processor and on the
task's response time, and both for pre-emptive and non pre-emptive contexts.

2.2. Classical Concepts of Real-Time Systems

2.2.1. Characterisation of Tasks

In the previous section we mentioned that, in the simplest case, input devices produce
inputs at regular intervals. However, in distributed computer-controlled systems (DCCS)
not all devices operate in such manner. For example, some may have minimum and
maximum time intervals between consecutive inputs, and others may even produce
inputs at random intervals. As a consequence, tasks can be characterised according to
their predictability. As it will be seen, this characteristic of the tasks affects their
schedulability analysis.

Concerning the predictability, three basic types of tasks can be defined: periodic,
aperiodic and sporadic.

Periodic tasks, as their name implies, are released on a regular basis. They are
characterised by their period, their deadline and their required execution time per period.
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The deadline is often assumed to be equal to the period (the processing of an input must
be completed, at most, before the next input from the same device).

Aperiodic tasks are released only occasionally, and are usually triggered by an
external event. To allow worst-case calculations to be made, a minimum period between
any two aperiodic inputs (from the same device) is often defined. If this is the case, the
task involved is said to be sporadic, and its period corresponds to its minimum inter-
arrival time.

Tasks can also be characterised according to their criticality, depending on the
consequences of not being executed before their deadlines. Concerning their criticality
real-time tasks can be soft, hard or safety-critical real-time tasks.

Hard real-time tasks are those whose timely execution is critical. If deadlines are
missed, severe faults may occur in the system. If the fault is catastrophic, the task is said
to be a safety-critical real-time task. Time-utility functions are used in (Burns, 1991) to
characterise the types of tasks (Fig. 2.1). For a hard real-time task, if the computation is
completed before the deadline, the result will be fully useful; otherwise, it will not have
any utility. For a safety-critical real-time task, if the computation is completed before the
deadline, the result will be fully useful; otherwise it will have a negative utility.

In most large real-time systems, including DCCS, not all tasks will be hard or safety-
critical. Some will even have no deadlines associated, and others will have merely soft
deadlines. Soft real-time tasks are, as the name implies, not critical to the application.
However, they do deal with time-varying data and hence the utility of result may
diminish as the end of computation overpasses the deadline; but remain always positive.

a)

start
time

deadline

b)

start
time

deadline

c)

start
time

deadline

Fig. 2.1 a), b) and c) illustrate the time-utility function for a hard real-time task, a safety-critical
real-time task and a soft-real time task, respectively

2.2.2. Scheduling Tasks in Real-Time Systems

Scheduling involves the allocation of time (and resources) to tasks, in such a way that
timing requirements (or other performance requirements) are met. Scheduling has been
perhaps the most widely research topic within real-time systems. As a consequence,
there are multiple taxonomies for the scheduling schemes and for the methodologies for
the schedulability analysis.

In a single processor computing system, a set of tasks shares a common resource: the
processor. Schedulability analysis has to be performed to predict whether the tasks will
meet their timing constraints.
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The schedulability analysis can be performed online or offline (Fig. 2.2). In the first
case the schedulability of the task set is analysed at run-time, whereas in the latter it is
performed prior to run-time (pre-run-time schedulability analysis). In (Ramamritham and
Stankovic, 1994) the authors use a different notation: dynamic and static scheduling, to
denote systems that perform and do not perform the schedulability analysis at run-time,
respectively. The offline scheduling has several advantages over the online scheduling: it
requires little run time overhead and the schedulability of the task set is guaranteed
before execution. However, it requires a prior knowledge of the tasks' characteristics,
which fortunately is possible in most of real-time systems. If the tasks’ characteristics
are not known prior to run time, schedulability analysis must be performed online. There
are basically two types of online schedulers (Ramamritham and Stankovic, 1994):
planning-based and best-effort schedulers. In the former, when a new task arrives, the
scheduler tries to re-define a new schedule, which is able to comply with both the
requirements of the new task and the requirements of the previously scheduled tasks.
The new task is only accepted for execution if the schedule is found feasible. In the
latter, when a new task arrives, the scheduler does not try to perform a new schedule.
The new task is accepted for execution, and the systems tries to do its best to meet
deadlines. However, no guarantees are provided for the new coming task, as it may be
aborted during execution.

Schedulability
Analysis

Online

Planning-Based
Scheduler

Best-Effort Scheduler

Offline

Explicity Schedule
(Table-driven scheduler)

Priority-Based
Scheduler

Fixed Priority
Assignment

Dynamic Priority
Assignment

Focus of this thesis

Fig. 2.2 This figure classifies some of the most important types of schedulability analysis

Two types of offline scheduling paradigms are also described in the literature,
depending on whether the schedulability analysis produces itself a schedule (or plan)
according to which tasks are dispatched at run-time. The table-driven approach (or cyclic
executive) is the best known example of an offline scheduling that produces a schedule.
The major drawback of the table-driven approach is that it imposes severe restrictions on
the period of the tasks (Locke, 1992).

The priority-based approach is one example of offline scheduling where no explicit
schedule is constructed. At run-time, tasks are executed in a highest-priority-first basis.
Priority-based approaches are much more flexible and accommodating than table-driven
approaches.

In the remainder of this chapter we will focus our attention on the offline scheduling
paradigms, for tasks dispatched according to priority-based schemes. We assume the
following notation (Burns and Wellings, 1996):
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Table 2.1: Notation Used for the Schedulability Analysis of Tasks

Notation Description
C Worst-case computation time of the task
T Minimum time between task releases (period)
D Relative deadline of the task
P Priority level assigned to the task
R Worst-case response time of a task
U Utilisation of the task (C/T)
N Number of tasks in the system

2.2.3. Priority Assignment Schemes

One of the most used priority assignment schemes is to give the tasks a priority level
based on its period: the smaller the period, the higher the priority; that is, Ti < Tj ⇒
Pi > Pj. This assignment is intuitively explained by the fact that more critical devices will
provide inputs more frequently (via asynchronous interrupts), or will be polled more
frequently. Thus, if they have smaller periods, their worst-case response time must also
be smaller. This type of priority assignment is known as the rate monotonic (RM)
assignment, and the related pre-run-time schedulability analysis was firstly introduced in
(Liu and Layland, 1973).

If some of the tasks are sporadic, it may not be reasonable to consider the relative
deadline equal to the period. A different priority assignment can then be to give the tasks
a priority level based on its relative deadline: the smaller the relative deadline, the higher
the priority; that is, Di < Dj ⇒ Pi > Pj. This type of priority assignment is known as the
deadline monotonic (DM) assignment (Leung and Whitehead, 1982).

In both RM and DM priority assignments, priorities are fixed, in the sense that they
do not vary along time. At run-time, tasks are dispatched highest-priority-first. A similar
dispatching policy can be used if the task, which is chosen to run, is the one with the
earliest deadline. This also corresponds to a priority-driven scheduling, where the
priorities of the tasks vary along time. Thus, the earliest deadline first (EDF) is a
dynamic priority assignment scheme. Pre-run-time schedulability analysis for tasks
dispatched according to the EDF assignment scheme was also introduced in
(Liu and Layland, 1973).

In all three cases, the dispatching phase will take place either when a new task is
released or the execution of the running task ends.

2.2.4. Pre-emptive and Non Pre-emptive Systems

In a priority-based scheduler, a higher-priority task may be released during the execution
of a lower-priority one. If the tasks are being executed in a pre-emptive context, the
higher-priority task will pre-empt the lower-priority one. Contrarily, in a non
pre-emptive context, the lower-priority task will be allowed to complete its execution
before the higher-priority task starts execution. This situation can be described as a
priority inversion due to non pre-emption (a higher-priority task is delayed by a lower-
priority one).
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2.2.5. Characteristics of the Priority Assignment Schemes

The EDF priority assignment scheme has several advantages over the fixed priority
assignment schemes (Spuri, 1996). A first advantage is that it always achieves higher
processor utilisation, as was demonstrated in (Liu and Layland, 1973). Additionally, and
contrarily to the RM or DM, EDF as been shown to be optimal when arbitrary deadlines
are assumed, that is when the relative deadlines are allowed to be greater than the period
of the tasks (Lehoczky, 1990).

On the other hand, fixed priority assignment schemes have some important
advantages over EDF. Indeed, the EDF dispatching policy is computationally more
demanding at run time. Although this aspect has more impact for the task scheduling in
single processor environments, it should not be discarded for message scheduling in
communication networks (Zuberi and Shin, 1995; Meshi et al., 1996). Most hard
real-time systems also have soft real-time components, which can execute at lower
priority levels. In EDF, these tasks may occasionally delay execution of more stringent
tasks (Sha et al., 1991). Another important drawback of the EDF dispatching policy is its
inability to deal with transient overloads (for instance due to exceptions or error recovery
actions), since in such a situation some tasks may not meet their deadlines. Contrarily,
with a fixed priority assignment approach, a subset of the more critical tasks would still
be able to meet their deadlines. With an EDF approach, this is much more difficult to
achieve (Buttazzo and Stankovic, 1993). At last, but not least, the analytical methods for
computing worst-case response times are much more complex in the case of EDF, even
though they are to be used offline.

Consider the following example (Table 2.2), which illustrates the differences between
RM and EDF scheduling. We assume relative deadlines equal to the tasks' periods.

Table 2.2: Task Set Example A

Task Computation Time (C) Period (T)
A 35 80
B 10 55
C 5 20

Fig. 2.3 illustrates a time-line (Gantt chart) of the schedule for this task set, assuming
that all of them share a common initial release time (at time instant 0), and the tasks are
pre-emptable. In Fig 2.3, a) and b) represent the time-lines for a RM-based and an
EDF-based schedule, respectively.

2.3. Approaches for the Pre-Run-Time Schedulability Analysis

Real-time computing systems with tasks dispatched according to a priority-based policy
(we consider only RM/DM or EDF), must be tested a-priori in order to check if, during
run time, no deadline will be lost. This feasibility test is called the pre-run-time
schedulability analysis of the task set.
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Fig. 2.3 This figure illustrates the schedule for the tasks characterised by Table 2.2, according to
a) the RM priority assignment scheme, and b) the EDF priority assignment scheme. Note that in
the EDF schedule task B is occasionally delayed by task A

It can be shown that for periodic tasks, a set of tasks is schedulable if and only if there
is a feasible schedule for the LCM (least common multiple) of the periods (Lawler and
Martel, 1981). Moreover, it can also be shown that if the tasks share a common request
time (known as the critical instant), it is a pre-run-time schedulability sufficient
condition that the tasks are schedulable for the longest of the periods (Liu and Layland,
1973). This suggests that a time-line could be used to perform the schedulability
analysis. For instance, and concerning the example shown in Table 2.2, where the
longest period is 80, Fig. 2.3 shows that the schedule generated by both RM and EDF
schemes are feasible for the task set (if all the tasks share a common initial release time).
However, time-line approaches may not be effective for systems with a large number of
tasks. Hence, analytical methods are preferable.

There are mainly two types of analytical methods to perform pre-run-time
schedulability analysis. One is based on the analysis of the processor utilisation. The
other is based on the response time analysis for each individual task. In (Liu and
Layland, 1973), the authors demonstrated that by considering only the processor
utilisation of the task set, a test for the pre-run-time schedulability analysis could be
obtained.
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Contrarily, a response time test must be performed in two stages. First, an analytical
approach is used to predict the worst-case response time of each task. The values
obtained are then compared, trivially, with the relative deadlines of the tasks.

The utilisation-based tests have a major advantage: it is a simple computation
procedure, which is applied to the overall task set. By this reason, they are very useful
for implementing schedulers that check the feasibility online. However, utilisation-based
tests have also important drawbacks, when compared with their response-time
counterparts. They do not give any indication of the actual response times of the tasks.
More importantly, and apart from particular task sets, they constitute sufficient but not
necessary conditions. This means that if the task set passes the test, the schedule will
meet all deadlines, but if it fails the test, the schedule may or may not fail at run-time
(hence, there is a certain level of pessimism). It is also worth mentioning that the
utilisation-based tests cannot be used for more complicated task models (Tindell, 1992).

In the next two sections, we survey the most relevant feasibility tests for task sets
scheduled both with fixed and dynamic priority schemes, and for both pre-emptive and
non pre-emptive contexts. Depending whether the tests are applied to the overall task set
or individually to each task, they are classified as utilisation-based tests or response time
tests, respectively.

2.4. Feasibility Tests: Case of the Fixed Priority Assignment

2.4.1. Basic Utilisation-Based Test

For the RM priority assignment, Liu and Layland introduced an utilisation-based pre-
run-time schedulability test, which, when satisfied, guarantees that tasks will always be
completely executed before their deadlines:
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This utilisation-based test is valid for periodic independent tasks, with relative
deadlines equal to the period, and for pre-emptive systems. As mentioned in the previous
section, typically the utilisation-based tests are sufficient but not necessary conditions.
For instance, for the task set shown in Table 2.2, the test fails (0.87 < 0.78 is false), but
the task set is schedulable, as can be seen by the time-line of Fig. 2.3a.

In (Lehoczky et al., 1990), the authors provide an exact analysis, as given below1:
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where Ri = {(k,l)} with 1 ≤ k ≤ i and l = 1, ..., Ti/Tk.

                                                          
1 The ceiling function x is used to denote the smaller integer greater than or equal to x. Similarly, the floor

function x is used to denote the larger integer smaller than or equal to x.
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It is clear that inequality (2.2) is not an easy to use utilisation-based test, hence
loosing one of the advantages inherent to the more basic formulations: its simplicity.

2.4.2. Extended Utilisation-Based Tests

Formulations for the utilisation-based tests with deadlines smaller than periods are not
available, to our best knowledge. It is however possible to formulate simple utilisation-
based test for the case of non pre-emptive tasks.

In (Sha et al., 1990), the authors update the basic utilisation based test (2.1) to include
blocking periods, during which higher-priority tasks are blocked by lower-priority ones,
to solve the problem of non-independence of tasks (for instance tasks that share
resources which are protected by mutual exclusion):
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where Bi is the maximum blocking a task i can suffer (Sha et al., 1990). Inequality (2.3)
assumes that Pi+1 ≤ Pi, ∀i<N; that is, tasks are ordered by decreasing priority.

In a non pre-emptive context, a higher-priority task can also be "blocked" by a
lower-priority task. Assuming that the tasks are completely independent, the maximum
blocking time a task can suffer is given by:
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where lp(i) denotes the set of lower-priority tasks (than task i).
Therefore, inequality (2.3) can be used as an utilisation-based test for a set of non

pre-emptable but independent tasks, with the blocking for each task as given by (2.4).
Moreover, accepting an increased level of pessimism, inequality (2.4) can be updated to
an even simpler formulation:

( )12max 1

1  ,
1

−×≤








+







≤≤=

∑ N

i

i

Nii

N

i i

i i
T

B

T

C (2.5)

Note that if all tasks have the same computation time, (2.5) considers that each task
may be blocked at the rate of the highest-priority task.

2.4.3. Response Time Tests for the Pre-emptive Context

In (Joseph and Pandya, 1986) the authors proved that the worst-case response time Ri of
a task i is found when all tasks are synchronously released (critical instant) at their
maximum rate. Ri is defined as:

iii CIR += (2.6)
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where Ii is the maximum interference that task i can experience from higher-priority
tasks in any interval [t, t + Ri). The maximum interference (Ii) occurs, when all
higher-priority tasks are released synchronously with task i (the critical instant). Without
loss of generality, it can be assumed that all processes are released at time instant 0.

Consider a task j with higher-priority than task i. Within the interval [0, Ri), it will be
released Ri/Tj times. Therefore, each release of task j will impose an interference of Cj.
Hence, the overall interference is given by:
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where hp(i) denotes the set of higher-priority tasks (than task i). Substituting this value
back in equation (2.2), the worst-case response time Ri of a task τi is given by:
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Equation (2.8) embodies a mutual dependence, since Ri appears in both sides of the
equation. In fact all the analysis underlay this mutual dependence, since in order to
evaluate Ri, Ii must be found, and vice-versa. The easiest way to solve such equation is to
form a recurrence relationship (Audsley et al., 1993):
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The recursion ends when Wi
m+1 = Wi

m = Ri, and can be solved by successive iterations
starting from Wi

0 = Ci. Indeed, it is easy to show that Wi
m is non-decreasing.

Consequently, the series either converges or exceeds Ti (in the case of RM) or Di (in the
case of DM). If the series exceeds Ti (or Di), the task τi is not schedulable.

2.4.4. Response Time Tests for the non Pre-emptive Context

In (Audsley et al., 1993) the authors updated the analysis of Joseph and Pandya to
include blocking factors introduced by periods of non pre-emption, due to the
non-independence of the tasks. The worst-case response time is then updated to:
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which may also be solved using a similar recurrence relationship. Bi is also as given by
equation (2.4).

Some care must be taken using equation (2.10) for the evaluation of the worst-case
response time of non pre-emptable independent tasks. In the case of pre-emptable tasks,
with equation (2.8) we are finding the processor's level-i busy period preceding the
completion of task i; that is, the time during which task i and all other tasks with a
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priority level higher than the priority level of task i still have processing remaining. For
the case of non pre-emptive tasks, there is a slight difference, since for the evaluation of
the processor's level-i busy period we cannot include task i itself; that is, we must seek
the time instant preceding the execution start time of task i.

Therefore, equation (2.6) can be used to evaluate the task's response time of a task set
in a non pre-emptable context and independent tasks, where the interference must be
now re-defined:
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Consider the following worst-case response time evaluation, assuming the task set
shown in Table 2.2, for both pre-emptive and non pre-emptive contexts.

The worst-case response time of task B for the pre-emptive context (2.9) is:

15105
20

15
    ;15105

20

10
    ;10 210 =+








×



==+








×



== BBB WWW

Iterations stop at this point since WB
2 = WB

1 = 15, and thus RB = 15, which coincides
with the value given by the time-line (Fig. 2.2).

The worst-case response time of task B for the non pre-emptive context (2.11),
considering that the blocking is equal to CA, is:
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Therefore, RB = 10 + 50 = 60. This result shows that the task set example of Table 2.2
is not schedulable in a non pre-emptive context, as task B has a response time larger than
its period.

Note also that a re-definition for the critical instant must be made. The maximum
interference occurs when task i and all other higher-priority tasks are synchronously
released just after the release of the longest lower-priority task (than task i).

2.5. Feasibility Tests: Case of the Dynamic Priority Assignment

2.5.1. Basic Utilisation-Based Test

For the EDF priority assignment, Liu and Layland also introduced an utilisation-based
pre-run-time schedulability test (inequality (2.12)).
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Similarly to the pre-run-time schedulability test for the RM case (2.1), this result is
only valid for sets of non pre-emptive, independent, and periodic tasks, for which the
relative-deadline is equal to the period.

Inequality (2.12) can easily be updated to include blocking periods due to the
non-independence of the tasks. In (Baker, 1991), the author updated inequality (2.12) to:
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where Bi is the maximum blocking a task i can suffer, considering the stack resource
protocol (SRP). Inequality (2.13) assumes that Ti+1 ≥ Ti, ∀i<N; that is tasks are ordered by
decreasing period.

The key idea behind the SRP is that when a job needs a resource which is not
available, it is blocked at the time it attempts to pre-empt, rather than later, when it
actually may need the shared resource. This makes inequality (2.13) valid for sets of non
pre-emptable tasks, dispatched according to the EDF scheme.

Similarly to the updating of (2.3) to (2.5), inequality (2.13) can be updated to a
simpler (but more pessimistic) test:
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where Bi is now defined as:
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Another relevant result from (Baker, 1991) is that (2.13) can also be extended to task
sets within which tasks can have relative deadlines smaller than periods:
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As a corollary, inequality (2.12) can be extended for task sets within which Di ≤ Ti:
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These simple utilisation-based tests ((2.14) and (2.16)) are however quite pessimistic.
Less pessimistic utilisation-based tests will now be addressed in Sections 2.5.2 and 2.5.3,
for pre-emptive and non pre-emptive tasks, respectively. Later, in Sections 2.5.4 and
2.5.5, very recent results on response time analysis will be addressed, for pre-emptive
and non pre-emptive tasks, respectively.
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2.5.2. Extended Utilisation-Based Tests for the Pre-emptive Context

In (Zheng, 1993) the author extends the results of Liu and Layland in order to consider
sporadic tasks, where inequality (2.12) is updated to:
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with x+ = 0 if x < 0. The proof for this inequality is intuitive. Assume that at time t = 0,
there are no pending tasks. Then, a necessary condition to guarantee the tasks' deadlines
is that the amount of time, T, needed to transmit all tasks generated during [0, t] with
absolute deadlines ≤ t, is not greater than t. Since the minimum inter-arrival time for a
task i is Ti, there are at most (t – Di)/Ti

+ requests for that task during [0, t] with
deadlines ≤ t. Those requests will need, at most, (t – Di)/Ti

+ × Ci time to be completed.
Thus, the maximum value for T is given by ∑i=1,..,n((t – Di)/Ti

+ × Ci). Note that if Di = Ti,
inequality (2.18) is satisfied if (2.12) is satisfied, since in this case (t – Ti)/Ti

+ ≤  t/Ti.
This different formulation has advantages over (2.17), in the sense that it turns out to

be a sufficient and a necessary condition (theoretically without any level of pessimism).
However, inequality (2.18) can not be classified as a simple test (when compared to
(2.17)). It has an additional problem, since it must be checked over an infinite
continuous length interval [0, ∞).

However, considering that expression ∑i=1,..,n((t – Di)/Ti
+ × Ci) does only change at

k×Ti+Di time instants, inequality (2.18) does only need to be checked for these time
instants. Consider the task set example given by Table 2.3.

Table 2.3: Task Set Example B

Task Computation Time (C) Period (T) Deadline (D) Utilisation (U)
A 30 80 60 0.375
B 10 40 40 0.250
C 5 25 15 0.200

For this task set example, the left-hand side of inequality (2.18) is plotted against its
right-hand side (Fig. 2.4), and thus the task set is schedulable by the EDF priority
assignment in a pre-emptive context.

Although the consideration of steps for the evaluation of inequality (2.19) eases its
use, the problem still remains for the upper limit for t. Different authors have addressed
this issue. It is possible to prove that if the total utilisation of the processor is ≤ 1
(condition (2.12)), it exists a point tmax, such that ∑i=1,..,n((t – Di)/Ti

+ × Ci) ≤ t always
hold for∀t ≥ tmax. Consequentely, inequality (2.18) can be re-written as follows:
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In (Baruah et al., 1990a) and (Baruah et al., 1990b) the authors demonstrated that tmax

could be given by (U/(1-U))×maxi=1,...,.N{(Ti-Di)}, where U represents the overall
processor's utilisation (∑i=1,...,.N (Ci/Ti)). This result was further improved in (Ripoll et al.,
1996), where the upper limit for t is defined as tmax=((∑i=1,...,.N (1-Di/Ti)×Ci)/(1-U).
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Although this last formulation gives a smaller value for tmax, it still suffers from the same
disadvantage: as the overall utilisation approaches 1, tmax becomes very large.
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Fig. 2.4  This figure illustrates a time-line (b) for the synchronous asap release pattern of task set
shown in Table 2.3. In a), the left-hand side of inequality (2.18), denoted as L(t), is represented

For this reason, another approach is considered in (Rippoll et al., 1996) and
(Spuri, 1995), where the authors demonstrate that tmax = L (synchronous processor's busy
period). The synchronous processor's busy period is defined as the time interval from the
critical instant up to the first instant when there are no more pending tasks in the system.
For instance, for the time-line shown in Fig. 2.4b), L = 65. Analytically, L can be found
as follows:
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Equation (2.20) is solved by recurrence, starting with L0 = ∑i=1,..,NCi. When
Lm+1 = Lm = L, the solution has been found (note that this recurrence relationship
converges if, and only if condition (2.12) is verified). For the task set of Table 2.3, it
follows that:
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and iterations stop, as L3 = L2 = L = 65.
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2.5.3. Extended Utilisation-Based Tests for the non Pre-emptive Context

For the non pre-emptive context, a similar test was presented in (Zheng, 1993) and
(Zheng and Shin, 1994):
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Comparing to the test for the pre-emptive context (2.18), the inclusion of the blocking
factor is intuitive (see Section 2.5.1.). However, in (George et al., 1996) the authors
discuss the pessimism inherent to the inequality (2.21). The main argument is that in this
inequality it is considered that the cost of possible priority inversions is always initiated
by the longest task and, moreover, it is effective during the entire interval under analysis.
To reduce this level of pessimism, they suggest the following modification:
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That is, the blocking factor is only included if its deadline occurs after t.
Considering that the execution time of a task is expressed as a multiple of the system's

tick, the blocking task must start its execution one tick before the critical instant. As a
consequence, in the diverse formulations which have been including blocking factors
due to the system's non pre-emptability, such blocking could be expressed as (Ci - 1).

2.5.4. Response Time Tests for the Pre-emptive Context

The worst-case response time analysis for pre-emptive EDF scheduling was first
introduced in (Spuri, 1996). The starting point for such analysis was that the worst-case
response time for a general task set is not necessarily obtained considering the critical
instant, as defined for the fixed priority case. In his work, Spuri demonstrated that the
worst-case response time of a task i is found in the processor's deadline-i busy period
(analogous to the processor's level-i busy period in the case of fixed priorities).
However, the longest processor's deadline-i busy period may occur when all tasks but
task i (contrarily to the case of fixed priority assignment) are synchronously released and
at their maximum rate.

This means that, in order to find the worst-case response time of task i, we need to
examine multiple scenarios within which, while task i has an instance released at time a,
all other tasks are synchronously released at time t = 0. As an example, consider the task
set shown in Table 2.5.

Table 2.5: Task Set Example C

Task Computation Time (C) Period (T) Deadline (D) Utilisation (U)
A 1 4 4 0.250
B 2 6 6 0.333
C 2 9 9 0.222
D 2 15 15 0.133
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Considering that all tasks are synchronously released at time instant 0, then a
time-line is as shown in Fig. 2.5.

Task A

Task B

Task D

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Task C

Response = 6 Response = 7

Fig. 2.5 This time-line illustrates the fact that, when evaluating the synchronous busy period, the
worst-case response time does not occur for the first instance of task C

From Fig. 2.5 we can conclude that the instance of task C which is released at time
instant t = 9 (a = 9) has a higher response time than the instance which is released at
t = 0 (a = 0). Thus, given a value of a, the response of an instance of task i, which is
released at time a, is:

( ) ( ){ }aaLCaR iii −= ,max (2.23)

where Li(a) is the length of the deadline-i busy period, which starts at time instant t = 0.
Li(a) can be evaluated by the following iterative computation:
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Equation (2.17) can be solved by recurrence, starting with Li
0(a) = 0. When

Li
m+1(a) = Li

m(a) = Li(a), the solution has been found. Obviously, in equation (2.24), the
computational load only considers tasks that have deadlines earlier than Di. Consider the
task set example of Table 2.6.

Table 2.6: Task Set Example D

Task Computation Time (C) Period (T) Deadline (D)
A 1 4 4
B 2 10 10

Consider that a = 0. At time instant t = 9, and for task B, the number of instances
released for task A is 3 (9/4 = 3). However, from those 3 releases, only the first 2 have
absolute deadlines earlier than the deadline of task B (since 1 + (10 - 4)/4 = 2). Assume
again the scenario of Table 2.5. Using equation (2.24), with a = 0, the evaluation of the
response time for task C is:
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Substituting this result back into equation (2.23), gives RC(0) = 6. The same
computation, but now a = 9 (also illustrated in the time-line given by Fig. 2.5) gives:
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Substituting this result back into equation (2.23), gives RC(9)=max {2, (16 - 9)} = 7,
and thus it is now clear that the worst-case response time of a task i is not necessarily
found when all tasks are synchronously released.

Finally, in the general case, the worst-case response time for a given task i is:

( ){ }aRR i
a

i
0

max
≥

= (2.25)

The remaining problem is how to determine the values of a. Looking to the right-hand
side of equation (2.24), we can easily understand that its value only changes at k × Tj +
Dj  – Di

 steps.
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with L as given by equation (2.20).

2.5.5. Response Time Tests for the non Pre-emptive Context

The worst-case response time analysis for the non pre-emptive EDF scheduling was
introduced in (George et al., 1996). The main difference from the analysis for the
pre-emptive case is that a task instance with a later absolute deadline can possibly cause
a priority inversion. Thus, and similarly to what was said for the fixed priority case
(Section 2.4.4), instead of analysing the deadline-i busy period preceding the completion
time of task i, we must analyse the busy period preceding the execution start time of the
task’s instance. Consequently, the response time of the τi ‘s instance released at time a
is:

( ) ( ){ }aCaLCaR iiii −+= ,max (2.27)

where Li(a) is now the length of the busy period (preceding execution).
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Thus, Ri(a) can be evaluated by means of the following iterative computation:
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This equation may be solved also by recurrence. Note again that the blocking factor
could be written as (Ci – 1). Note also that in order to analyse the busy period, the start
of execution time, 1 + Li(a) / Tj, is used instead of Li(a) / Tj.

2.6. Summary

In this chapter we provide a comprehensive survey of the most relevant results for the
pre-run-time schedulability analysis of task sets in single processor systems.

The feasibility tests have been classified as utilisation-based tests and response time
tests, according to the information which is provided by its evaluation; that is, in the
former and indication is provided on the overall processor utilisation, while on the latter,
the actual response time of each individual task is provided as a result.

Feasibility tests for fixed and dynamic priorities (both for the pre-emptive and non
pre-emptive contexts) are provided (when available).

The emphasis is given to feasibility tests for non pre-emptable, independent task sets,
within which tasks may have deadlines smaller than periods, as they will be the
foundation of Chapter 7, where they will be adapted to encompass the characteristics of
P-NET and PROFIBUS networks.

Finally, it is important to mention that this chapter is not an extended survey of all the
important scheduling aspects, which could be pertinent to DCCS. The presented results
are those strictly necessary as the background for the remaining chapters of this thesis.
Just to mention some of the aspects which were not addressed in detail in this chapter,
we can refer the problem of shared resources (Sha et al., 1990; Rajkumar et al., 1988),
the problem of co-operative scheduling (Tindell, 1992; Tindell, 1994; Tindell and Clark,
1994; Palencia and Harbour, 1998), the problem of arbitrary deadlines (Lehoczky, 1990;
Tindell and Clark, 1994; Palencia and Harbour, 1998) or the problem of finding the
worst-case execution time of tasks (Puschner and Koza, 1989).
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