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Formal Verification of Software

Area of computer science that studies and applies mathematical
methods for proving the correctness of software systems/programs
with respect to a formal specification or property.

The dissemination and importance of the role of information systems
in essential sectors of society is continually increasing, demanding
more and more for the certification/guarantee of their reliability.

This is particularly crucial when critical systems are concerned, such
as traffic control, nuclear or medical equipment.

Some facts:

the cost of maintaining software is about 66% of its total cost;
a software specification error is about 20 times more costly to repair if
detected after production than before.
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In this talk

Illustration of two standard approaches to formal verification by
example:

Model checking;
Deductive program verification.

Recent research results on the use of several extensions of Kleene
algebra to verification:

KAT (Kleene Algebra with Tests);
SKA(T) (Synchronous Kleene Algebra with and without Tests).
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Two (of many) different approaches

Model Checking

technique for the verification of (finite-state) reactive/concurrent
systems;

systems are represented by a transition system (the model);

specifications/properties are expressed by formulae of temporal logic
(LTL/CTL);

a model checker (efficient symbolic algorithm) decides if the
specification is true in the model;

if a property is not valid, a counterexample is exhibited;

in general this method is automatic for finite models;

major drawback: state space explosion.
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Two (of many) different approaches

(Deductive) Program Verification

Based on Hoare Logic, introduced by C.A.R. Hoare in 1969 for
reasoning about the correctness of imperative, sequential programs;

Deductive system that can be used to assert the correctness of a
program with respect to a given specification by constructing a
derivation.

Rules in the inference system can be applied if some side-conditions
are satisfied (proof obligations) that have to be checked by some
automatic theorem prover or some proof assistent
(automatic/semi-automatic).
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Model Checking: an Example

Mutual Exclusion

When concurrent processes share a resource (such as a file on a disk or a
database entry), it may be necessary to ensure that they do not have
access to it at the same time.

For this one has to identify certain critical sections of each process’ code
and arrange that only one process can be in its critical section at a time.

We will design a model (M) of a system with two processes and specify
several properties to be satisfied.
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An Example: Mutual Exclusion

Each process i might :

ni be in it’s non-critical state

ti trying to enter it’s critical state, or

ci be in it’s critical state

Each individual process undergoes transitions in the cycle
ni → ti → ci → ni → · · · , but the two processes interleave with each
other.

The two processes start off in their non-critical sections (global state s0).
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A first-attempt model for mutual exclusion

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7
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Two expected properties expressed as LTL-formulae

Safety Only one process is in its critical section at any time.
ϕ : G¬(c1 ∧ c2)

Liveness Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.
ψ : G (t1 → Fc1) ∧ G (t2 → Fc2)

Here G and F are temporal conectives of LTL (Linear Temporal Logic)
such that,

M, s0 |= Gθ iff for every execution path starting in s0 the formula θ is
globally true (i.e. in all states);

M, s0 |= Fθ iff for every execution path starting in s0 the formula θ is
sometime in the future true (i.e. in some state).
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A second model satisfying both properties

In order for liveness to be true it is sufficient to divide the state labelled
with t1t2 into two different states:

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 10 / 26



A second model satisfying both properties

In order for liveness to be true it is sufficient to divide the state labelled
with t1t2 into two different states:

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 10 / 26



A third property expressed as a CTL-formula

Non-blocking A process can always request to enter its critical section.
AG(n1 → EFt1) ∧ AG(n2 → EFt2)

Here AG and EF are temporal conectives of CTL (Computation Tree
Logic) such that,

M, s |= AG θ iff for All computation paths beginning in s the
property θ holds Globally (i.e. in all states);

M, s |= EF θ iff there Exists a computation paths beginning in s such
that θ holds in some Future state.

Note: this property cannot be expressed in LTL!
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SMV code for mutual exclusion

MODULE main

VAR

pr1: process prc(pr2.st, turn, 0);

pr2: process prc(pr1.st, turn, 1);

turn: boolean;

ASSIGN

init(turn) := 0;

-- safety

LTLSPEC G!((pr1.st = c) & (pr2.st = c))

-- liveness

LTLSPEC G((pr1.st = t) -> F (pr1.st = c))

LTLSPEC G((pr2.st = t) -> F (pr2.st = c))
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SMV code for mutual exclusion

MODULE prc(other-st, turn, myturn)

VAR

st: {n, t, c};

ASSIGN

init(st) := n;

next(st) :=

case

(st = n) : {t,n};

(st = t) & (other-st = n) : c;

(st = t) & (other-st = t) & (turn = myturn): c;

(st = c) : {c,n};

1 : st;

esac;

next(turn) :=

case

turn = myturn & st = c : !turn;

1 : turn;

esac;

FAIRNESS running

FAIRNESS !(st = c)
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Model checking algorithms

There is a variety of model checking tools, such as SMV, Murphy,
SPIN, Kronos, Design/CPN, etc.

But what kind of algorithms and mathematical structures are at the
core of these tools?
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Model checking algorithms with automata

Problem: Given an LTL-formula φ, a model M and a state s, check if
M, s |= φ.

Approach:

Construct an automata A¬φ that accepts a computation path π iff
π |= ¬φ, i.e. π 6|= φ.

Represent (M, s) by an automata AM,s (that accepts exactly the
computation paths in M that start in s).

Check if L(A¬φ) ∩ L(AM,s) = ∅. In this case one has M, s |= φ,
otherwise, every path belonging to the intersection of the two
languages can be exhibited as a counter-example.
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Model checking algorithms with automata

Computation paths are represented by infinite sequences of states.
Ex.: {n1, n2}{n1, t2}{t1, t2}{t1, c2}{t1, n2} . . .
Büchi automata are a type of automata that extends finite automata
to process (accept/reject) infinite words (different acceptance
criteria).

In an alternating automaton the transition function is a partial
function δ : S × Σ −→ B+(S), where B+(S) is the set of boolean
formulas built from elements in S and conectives ∨ (representing
existential choice) and ∧ (representing universal choice). Ex.:
δ(s, a) = (s1 ∧ s2) ∨ (s3 ∧ s4).

Alternating Büchi automata have the same expressive power as
nondeterministic Büchi automata, but are much more succint
(alternating Büchi automaton → exponential blow-up →
nondeterministic Büchi automaton).
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(alternating Büchi automaton → exponential blow-up →
nondeterministic Büchi automaton).
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Model checking algorithms with OBDD’s

An OBDD (Ordered Binary Decision Diagram) is a data structure
used to represent boolean functions, providing compact
representations for sets or relations.

Given a model M, sets of states of M, as well as the transition
relation of M can be encoded by OBDD’s.

An algorithm for deciding CTL-logic (the labelling algorithm) can
operate directly on the encodings (OBDD’s).

SMV programs can be compiled directly into OBDD’s without having
to go via intermediate representations (bigger size).
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Verification of sequential programs

Hoare logic is the fundamental formalism (Hoare, 1969) for reasoning
about the correctness of imperative programs.

It builds on first-order logic, dealing with the notion of correctness of
a program w.r.t. a given specification.

The specification consists of a precondition and a postcondition.

Correctness of a program is asserted by constructing a derivation in
the inference system of Hoare logic.

While doing so, onde must identify an invariant for every loop in the
program.

In the system presented here loop invariants are given beforehand by
the programmer as an input to the program verification process (and
not invented during the construction of the proof).

A program can only be proved correct if it is correctly annotated.
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System Hg

if |= φ→ ψ
{φ} skip {ψ}

if |= φ→ ψ[E/x ]
{φ} x := E {ψ}

{φ}C1 {η} {η}C2 {ψ}
{φ}C1;C2 {ψ}

{φ ∧ B}C1 {ψ} {φ ∧ ¬B}C2 {ψ}
{φ} ifB thenC1 elseC2 {ψ}

{η ∧ B}C {η}
se |= ψ → η e |= η ∧ ¬B → φ

{ψ} whileB do {η}C {φ}
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The weakest precondition strategy

System Hg contains an implicit strategy for constructing a
proof/derivation of an assertion {φ}C{ψ} in a deterministic way.

During the construction of a proof, side conditions (verification
conditions) are created, that have to be checked to hold by some
proof tool.

For the sequence rule {φ}C1;C2{ψ} an intermediate formula η has to
be guessed. For this, the weakest precondition η verifying {η}C2{ψ}
is used.
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A VCGen algorithm: computation of the weakest
preconditions of a program (wp)

Given a program C and a postcondition φ, one can compute wp(C , φ) by
the following rules. Then, {wp(C , φ)}C{φ} holds and, furthermore, if
{ψ}C{φ} holds for some ψ then ψ → wp(C , φ).

wp(skip, φ) = φ

wp(x := E , φ) = φ[E/x ]

wp(C1;C2, φ) = wp(c1,wp(C2, φ))

wp(ifB thenC1 elseC2, φ) = (B → wp(C1, φ)

∧ (¬B → wp(C2, φ)

wp(whileB do {η}C , φ) = η
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wp(ifB thenC1 elseC2, φ) = (B → wp(C1, φ)

∧ (¬B → wp(C2, φ)

wp(whileB do {η}C , φ) = η
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VCGen algorithm

First, function VC computes a set of verification conditions, without
taking the precondition into acount:

VC (skip, φ) = ∅
VC (x := E , φ) = ∅
VC (C1;C2, φ) = VC (C1,wp(C2, φ)) ∪ VC (C2, φ)

VC (ifB thenC1 elseC2, φ) = VC (C1, φ) ∪ VC (C2, φ)

VC (whileB do {η}C , φ) = {(η ∧ B)→ wp(C , η)} ∪
{(η ∧ ¬B)→ φ} ∪ VC (C , η)

Finally, the precondition has to imply the weakest precondition, which is
required for φ to hold after the execution of C :

VCG ({ψ}C{φ}) = {ψ → wp(C , φ)} ∪ VC (C , φ)
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General architecture of a program verification system

VCGenAnnotated
Program

Proof Obligations

ProverOK - NOT OK
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Exemplo

Consider the following annotated program fact:

f:=1; i:=1;

while i<= n do {f = fact(i-1) and i <= n+1} {

f:=f*i;

i:=i+1;

}

We will compute

VCG({n >= 0}fact{f = n!})

using the following abbriations:

θ = f = (i − 1)! ∧ i ≤ n + 1 and Cw = f := f ∗ i ; i := i + 1.
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VC (fact, f = n!)

= VC (f := 1; i := 1;wp(while i ≤ n do{θ}Cw , f = n!))

∪VC (while i ≤ n do{θ}Cw , f = n!)

= VC (f := 1; i := 1, θ) ∪ {θ ∧ i ≤ n→ wp(Cw , θ)}
∪{θ ∧ i > n→ f = n!} ∪ VC (Cw , θ)

= VC (f := 1,wp(i := 1, θ)) ∪ VC (i := 1, θ)

∪{f = (i − 1)! ∧ i ≤ n + 1 ∧ i ≤ n→ wp(f := f ∗ i ; i := i + 1, θ)}
∪{f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n→ f = n!}
∪VC (f = f ∗ i ,wp(i := i + 1, θ)) ∪ VC (i := i + 1, θ)

= ∅ ∪ ∅ ∪ {f = (i − 1)! ∧ i ≤ n + 1 ∧ i ≤ n

→ wp(f := f ∗ i , f = (i + 1− 1)! ∧ i + 1 ≤ n + 1)}
∪{f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n→ f = n!} ∪ ∅ ∪ ∅

= {f = (i − 1)! ∧ i ≤ n + 1 ∧ i ≤ n→ f ∗ i = (i + 1− 1)! ∧ i + 1 ≤ n + 1,

f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n→ f = n!}
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VCG ({n ≥ 0}fact{f = n!})
= {n ≥ 0→ wp(fact, f = n!)} ∪ VC (fact, f = n!)

= {n ≥ 0→ wp(f := 1; i := 1;wp(while i ≤ n do{θ}Cw , f = n!)}
{f = (i − 1)! ∧ i ≤ n + 1 ∧ i ≤ n→ f ∗ i = (i + 1− 1)! ∧ i + 1 ≤ n + 1,

f = (i − 1)! ∧ i ≤ n + 1 ∧ i ≤ n→ f = n!}
= {n ≥ 0→ wp(f := 1; i := 1; θ)}
{f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n→ f ∗ i = (i + 1− 1)! ∧ i + 1 ≤ n + 1,

f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n→ f = n!}

The following proof obligations are generated:

1 n ≥ 0→ 1 = (1− 1)! ∧ 1 ≤ n + 1

2 f = (i − 1)!∧ i ≤ n + 1∧ i ≤ n→ f ∗ i = (i + 1− 1)!∧ i + 1 ≤ n + 1)

3 f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n→ f = n!
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