
Some Results on
(Synchronous) Kleene

Algebra with Tests

 Sabine Broda
António Machiavelo

Nelma Moreira
Rogério Reis

Ricardo Almeida
Sílvia Cavadas

Faculty of Sciences, University of Porto, Portugal
1 Computer Science Department & CMUP

2 Mathematics Department & CMUP
3 Project-Grants (CANTE & AVIACC

Kleene Algebra with
Tests (KAT)

• extends Kleene algebra, the algebra of regular
expressions, by combining it with Boolean algebra;

• addition of tests allows to express imperative
program constructions;

• equational system suitable for propositional
program verification (program equivalence, partial
correctness, subsumes propositional Hoare logic).

• set of program symbols

• set of test symbols

KAT expressions

P = {p1, . . . , pk}

T = {t1, . . . , tl}

BExp : b ! 0 | 1 | t | ¬b | b+ b | b · b
Exp : e ! p | b | e+ e | e · e | e?

Encoding Programs in KAT
(a simple while language)

primitive symbol p;

distinguished primitive symbol pskip;

e1e2 .

x := v

skip .

P1;P2 .

if b then P1 else P2 .

while b do P1 .

be1 + b̄e2 .

(be1)⇤b̄ .

Encoding Programs in KAT

while t1 do (p1; while t2 do p2)

P1 :

if t1 then (p1; while (t1+t2) do (if t2 then p2 else p1))

P2 :

Equivalent programs/expressions?

e2 = t1p1((t1 + t2)(t2p2 + ¬t2p1))?¬(t1 + t2) + ¬t1

e1 = (t1p1(t2p2)?¬t2)?¬t1

Hoare Logic and KAT

Hoare logic uses partial correctness assertions (PCA’s)
to reason about program correctness;

A PCA is a triple {b}P{c} meaning, “if b holds before
the execution of P, and if P halts, then c will necessarily
hold at the end of the execution of P”;

The propositional fragment of Hoare logic (PHL) can
be encoded in KAT;

A PCA {b}P{c} is encoded as or equivalently
by , where e encodes P.bec̄ = 0 .

be = bec

Inference Rules for Hoare Logic

b ! c[x/e]
{b} x := e {c}

b ! c
{b} skip {c}

{b ^ c} P {d} {¬b ^ c} Q {d}
{c} if b then P else Q {d}

{b} P {c} {c} Q {d}
{b} P ; {c} Q {d}

{b ^ i} P {i} c ! i (i ^ ¬b) ! d
{c} while b do {i}P {d}

Generating a Set of Assumptions
from a PCA {b}P{c} (in [1])

Gen(b pskip c) = {b c}
Gen(b p c) = {b p c} pskip 6= p 2 ⌃
Gen(b e1 c e2 d) = Gen(b e1 c) [Gen(c e2 d)
Gen(b (ce1 + c̄e2) d) = Gen(bc e1 d) [Gen(bc e2 d)
Gen(b ((cie)⇤c̄) d) = Gen(ic e i) [{b i, ic d}

� = {b1p1b01 = 0, . . . , bmpmb0m = 0} [{c1 c01, . . . , cn c0n},

where p1, . . . , pm 2 ⌃ and bi, ci 2 Bexp .

A Small Example
Program P Annotated Program P

0
Symbols used

in the encoding

y := 1; p1

{y = 0!} t1

y := 1; z := 0; p2

z := 0; {y = z!} t2

while ¬z = x do while ¬z = x do t3

{ {
z := z+1; {y=z!} t2

y := y⇥z; z := z+1; p3

} {y⇥z = z!} t4

y := y⇥z; p4

}

{True} P0 {y = x!}

A Small Example (cont.)

t0p1t1p2t2(t3t2p3t4p4)⇤t3 t5 = 0

Using the correspondence of KAT primitive symbols and atomic parts

of the annotated program P

0
, as in the table and additionally encoding True

as t0 and y = x! as t5, respectively, the encoding of {True} P

0 {y = x!}
in KAT is

� = {t0p1t1 = 0, t1p2t2 = 0, t2t3p3t4 = 0, t4p4t2 = 0, t2 t2, t2t3 t5}

The corresponding set of assumptions � is .

Deciding Equivalence Modulo a Set
of Assumptions

It has been shown (Kozen’00), that for all KAT expressions r1, . . . , rn, e1, e2
over ⌃ = {p1, . . . , pk} and T = {t1, . . . , tl}, an implication of the form

r1 = 0 ^ · · · ^ rn = 0 ! e1 = e2

is a theorem of KAT if and only if

e1 + uru = e2 + uru

where u = (p1 + · · ·+ pk)⇤ and r = r1 + . . .+ rn.

For the factorial program this is equivalent to proving

t0p1t1p2t2(t3t2p3t4p4)
?t3t5 + uru = 0 + uru,

where u = (p1+p2+p3+p4)? and r = t0p1t1+t1p2t2+t3t2p3t4+t4p2t2+t2t3t5.

we were particularly
interested in …

• transferring and extending classical results and
techniques for regular expressions to KAT;

• compact representations of KAT expressions by
(non-)deterministic automata;

• feasible algorithms for checking equivalence of
KAT expressions.

X0 = At .

Xn+1 = X ⇧Xn .

↵1p1↵2p2 · · · pn�1↵n 2 GS .

At = {x1 · · ·xl | xi 2 {ti, ti}, ti 2 T}

set of all truth assignments to T

The standard language theoretic model of KAT:
Guarded Strings over and TP

GS = (At · P)? · At
set of guarded strings over P and T

X ⇧ Y = { x↵y | x↵ 2 X,↵y 2 Y }

The language theoretic model of KAT (cont.)

e1 = e2 GS(e1) = GS(e2)iff

GS(p) = {↵p� | ↵,� 2 At }
GS(b) = {↵ | ↵ 2 At ^ ↵ b}
GS(e1 + e2) = GS(e1) [GS(e2)
GS(e1 · e2) = GS(e1) ⇧ GS(e2)
GS(e?1) = [n�0GS(e1)n,

where ↵ b if ↵ ! b is a propositional tautology.

every e 2 Exp denotes a set GS(e) ✓ GS

Example:

Consider e = t1p(pq?t2 + t3q)?Consider e = t1p(pq?t2 + t3q)?

where P = {p, q} and T = {t1, t2, t3},

and

At = {t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3}

We have for instance,

t1t2t3 p t1t2t3 q t1t2t3 2 GS(e)

A = hS, s0, o, �i

Automata for guarded strings

e0 e1 e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (1, q)

(t2t3, q) t2

o(e0) = 0, o(e1) = 1, o(e2) = t2

� = {(e0, (t1, p), e1), (e1, (1, p), e2), . . .}

t1t2t3 p t1t2t3 q t1t2t3 2 GS(A)

Automata for Guarded Strings
and KAT expression equivalence

• in [1] an derivative based algorithm to decide the equivalence
of KAT expressions, as well as an algorithm for deciding
equivalence, modulo a set of assumptions, were presented;

• in [2] Mirkin’s construction for regular expressions was adapted
to obtain an Equation automaton for KAT expressions
(avoiding the exponential blow-up on the number of states/
transitions due to the presence of truth-assignments);

• the state complexity of the Equation automaton was shown to
be, on average and asymptotically, a quarter of the size of the
original KAT expression (and half the size of another
construction - the Glushkov automaton).

Automata for Guarded Strings
and KAT Expression Equivalence

• in [3] the classical subset construction for determinizing
nondeterministic finite automata was adapted to KAT;

• generalisation of the Hopcroft & Karp algorithm for
testing deterministic finite automata equivalence to
KAT [3].

• decision procedure for testing KAT equivalence without
explicitly constructing the automata, by introducing a
new notion of partial derivative [3].

Synchronous Kleene
Algebra (with Tests)

SKA & SKAT
• SKA is a decidable framework that combines Kleene

Algebra with a synchrony model of concurrency
(Prisacariu’10);

• elements of SKA can be seen as processes taking place
within a fixed discrete time frame;

• at each time frame they may execute one or more basic
actions or then come to a halt.

• the extension Synchronous Kleene Algebra with Tests
(SKAT) combines SKA with a boolean algebra.

Let AB be a set of basic actions, then the set of SKA expressions contains 0

plus all terms generated by the following grammar

↵ ! 1 | a | ↵+ ↵ | ↵ · ↵ | ↵⇥ ↵ | ↵⇤
(a 2 SKA)

Each SKA expression defines a set of words (regular language) over the al-

phabet

⌃ = P(AB) \ {;}

where the synchronous product of two words x = �1 · · ·�m and y = ⌧1 · · · ⌧n,
with n � m, is defined by

x⇥ y = y ⇥ x = (�1 [⌧1 · · ·�m [⌧m)⌧m+1 · · · ⌧n.

Example: Let AB = {a, b}, hence ⌃ = {{a}, {b}, {a, b}}. For x = {a}{a, b}{b}
and y = {b}{a}{a, b}{a}{a, b}, we have

x⇥ y = {a, b}{a, b}{a, b}{a}{a, b}.

• SKAT is the natural extension of KAT to the
synchronous setting (Prisacariu’10);

• its standard models are sets over guarded
synchronous strings (GSS);

• Prisacariu defined automata for GSS, built in two
layers: one to process a synchronous string and
another to represent the valuations of the booleans.

Contributions to SKA(T)

• in [4]: definition of a partial derivative automaton
for SKA;

• new decision procedure for SKA terms equivalence;

• definition of a simple notion of automaton for
SKAT;

• extension of the derivative based methods developed
for SKA to SKAT.

References
• Almeida, Broda, Moreira; Deciding KAT and Hoare

Logic with Derivatives, GANDALF 2012.

• Broda, Machiavelo, Moreira, Reis; On the average size of
Glushkov and Equation Automata for KAT expressions,
FCT 2013.

• Broda, Machiavelo, Moreira, Reis; On the Equivalence of
Automata for KAT expressions, CiE 2014.

• Broda, Cavadas, Moreira, Deciding Synchronous Kleene
Algebra with Derivatives, FoSSaCS 2015 (submitted).

Thank You!

