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Kleene Algebra with 
Tests (KAT)

• extends Kleene algebra, the algebra of  regular 
expressions, by combining it with Boolean algebra; 

• addition of  tests allows to express imperative 
program constructions; 

• equational system suitable for propositional 
program verification (program equivalence, partial 
correctness, subsumes propositional Hoare logic).



•                         set of  program symbols 

•                         set of  test symbols

KAT expressions

P = {p1, . . . , pk}

T = {t1, . . . , tl}

BExp : b ! 0 | 1 | t | ¬b | b+ b | b · b
Exp : e ! p | b | e+ e | e · e | e?



Encoding Programs in KAT 
(a simple while language)

primitive symbol p;

distinguished primitive symbol pskip;

e1e2 .

x := v

skip .

P1;P2 .

if b then P1 else P2 .

while b do P1 .

be1 + b̄e2 .

(be1)⇤b̄ .



Encoding Programs in KAT

while t1 do (p1; while t2 do p2)

P1 :

if t1 then (p1; while (t1+t2) do (if t2 then p2 else p1))

P2 :

Equivalent programs/expressions?

e2 = t1p1((t1 + t2)(t2p2 + ¬t2p1))?¬(t1 + t2) + ¬t1

e1 = (t1p1(t2p2)?¬t2)?¬t1



Hoare Logic and KAT

Hoare logic uses partial correctness assertions (PCA’s) 
to reason about program correctness; 

A PCA is a triple {b}P{c} meaning, “if b holds before 
the execution of P, and if P halts, then c will necessarily 
hold at the end of the execution of P”; 

The propositional fragment of Hoare logic (PHL) can 
be encoded in KAT; 

A PCA {b}P{c} is encoded as                 or equivalently 
by                , where e encodes P.bec̄ = 0 .

be = bec



Inference Rules for Hoare Logic

b ! c[x/e]
{b} x := e {c}

b ! c
{b} skip {c}

{b ^ c} P {d} {¬b ^ c} Q {d}
{c} if b then P else Q {d}

{b} P {c} {c} Q {d}
{b} P ; {c} Q {d}

{b ^ i} P {i} c ! i (i ^ ¬b) ! d
{c} while b do {i}P {d}



Generating a Set of Assumptions 
from a PCA  {b}P{c} (in [1])

Gen(b pskip c) = {b  c}
Gen(b p c) = {b p c} pskip 6= p 2 ⌃
Gen(b e1 c e2 d) = Gen(b e1 c) [ Gen(c e2 d)
Gen(b (ce1 + c̄e2) d) = Gen(bc e1 d) [ Gen(bc e2 d)
Gen(b ((cie)⇤c̄) d) = Gen(ic e i) [ {b  i, ic  d}

� = {b1p1b01 = 0, . . . , bmpmb0m = 0} [ {c1  c01, . . . , cn  c0n},

where p1, . . . , pm 2 ⌃ and bi, ci 2 Bexp .



A Small Example
Program P Annotated Program P

0
Symbols used

in the encoding

y := 1; p1

{y = 0!} t1

y := 1; z := 0; p2

z := 0; {y = z!} t2

while ¬z = x do while ¬z = x do t3

{ {
z := z+1; {y=z!} t2

y := y⇥z; z := z+1; p3

} {y⇥z = z!} t4

y := y⇥z; p4

}

{True} P0 {y = x!}



A Small Example (cont.)

t0p1t1p2t2(t3t2p3t4p4)⇤t3 t5 = 0

Using the correspondence of KAT primitive symbols and atomic parts

of the annotated program P

0
, as in the table and additionally encoding True

as t0 and y = x! as t5, respectively, the encoding of {True} P

0 {y = x!}
in KAT is

� = {t0p1t1 = 0, t1p2t2 = 0, t2t3p3t4 = 0, t4p4t2 = 0, t2  t2, t2t3  t5}

The corresponding set of assumptions � is .



Deciding Equivalence Modulo a Set 
of Assumptions 

It has been shown (Kozen’00), that for all KAT expressions r1, . . . , rn, e1, e2
over ⌃ = {p1, . . . , pk} and T = {t1, . . . , tl}, an implication of the form

r1 = 0 ^ · · · ^ rn = 0 ! e1 = e2

is a theorem of KAT if and only if

e1 + uru = e2 + uru

where u = (p1 + · · ·+ pk)⇤ and r = r1 + . . .+ rn.

For the factorial program this is equivalent to proving

t0p1t1p2t2(t3t2p3t4p4)
?t3t5 + uru = 0 + uru,

where u = (p1+p2+p3+p4)? and r = t0p1t1+t1p2t2+t3t2p3t4+t4p2t2+t2t3t5.



we were particularly 
interested in …

• transferring and extending classical results and 
techniques for regular expressions to KAT; 

• compact representations of  KAT expressions by 
(non-)deterministic automata; 

• feasible algorithms for checking equivalence of  
KAT expressions.



X0 = At .

Xn+1 = X ⇧Xn .

↵1p1↵2p2 · · · pn�1↵n 2 GS .

At = {x1 · · ·xl | xi 2 {ti, ti}, ti 2 T}

set of all truth assignments to T

The standard language theoretic model of  KAT: 
Guarded Strings over    and TP

GS = (At · P)? · At
set of guarded strings over P and T

X ⇧ Y = { x↵y | x↵ 2 X,↵y 2 Y }



The language theoretic model of  KAT (cont.)

e1 = e2 GS(e1) = GS(e2)iff

GS(p) = {↵p� | ↵,� 2 At }
GS(b) = {↵ | ↵ 2 At ^ ↵  b}
GS(e1 + e2) = GS(e1) [ GS(e2)
GS(e1 · e2) = GS(e1) ⇧ GS(e2)
GS(e?1) = [n�0GS(e1)n,

where ↵  b if ↵ ! b is a propositional tautology.

every e 2 Exp denotes a set GS(e) ✓ GS



Example:

Consider e = t1p(pq?t2 + t3q)?Consider e = t1p(pq?t2 + t3q)?

where P = {p, q} and T = {t1, t2, t3},

and

At = {t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3, t1t2t3}

We have for instance,

t1t2t3 p t1t2t3 q t1t2t3 2 GS(e)



A = hS, s0, o, �i

Automata for guarded strings 

e0 e1 e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (1, q)

(t2t3, q) t2

o(e0) = 0, o(e1) = 1, o(e2) = t2

� = {(e0, (t1, p), e1), (e1, (1, p), e2), . . .}

t1t2t3 p t1t2t3 q t1t2t3 2 GS(A)



Automata for Guarded Strings 
and KAT expression equivalence

• in [1] an derivative based algorithm to decide the equivalence 
of  KAT expressions, as well as an algorithm for deciding 
equivalence, modulo a set of  assumptions, were presented; 

• in [2] Mirkin’s construction for regular expressions was adapted 
to obtain an Equation automaton for KAT expressions 
(avoiding the exponential blow-up on the number of  states/
transitions due to the presence of  truth-assignments); 

• the state complexity of  the Equation automaton was shown to 
be, on average and asymptotically, a quarter of  the size of  the 
original KAT expression (and half  the size of  another 
construction - the Glushkov automaton).



Automata for Guarded Strings 
and KAT Expression Equivalence

• in [3] the classical subset construction for determinizing 
nondeterministic finite automata was adapted to KAT; 

• generalisation of  the Hopcroft & Karp algorithm for 
testing deterministic finite automata equivalence to 
KAT [3]. 

• decision procedure for testing KAT equivalence without 
explicitly constructing the automata, by introducing a 
new notion of  partial derivative [3].



Synchronous Kleene 
Algebra (with Tests)   

SKA & SKAT 
• SKA is a decidable framework that combines Kleene 

Algebra with a synchrony model of  concurrency 
(Prisacariu’10); 

• elements of  SKA can be seen as processes taking place 
within a fixed discrete time frame; 

• at each time frame they may execute one or more basic 
actions or then come to a halt. 

• the extension Synchronous Kleene Algebra with Tests 
(SKAT) combines SKA with a boolean algebra.



Let AB be a set of basic actions, then the set of SKA expressions contains 0

plus all terms generated by the following grammar

↵ ! 1 | a | ↵+ ↵ | ↵ · ↵ | ↵⇥ ↵ | ↵⇤
(a 2 SKA)

Each SKA expression defines a set of words (regular language) over the al-

phabet

⌃ = P(AB) \ {;}

where the synchronous product of two words x = �1 · · ·�m and y = ⌧1 · · · ⌧n,
with n � m, is defined by

x⇥ y = y ⇥ x = (�1 [ ⌧1 · · ·�m [ ⌧m)⌧m+1 · · · ⌧n.

Example: Let AB = {a, b}, hence ⌃ = {{a}, {b}, {a, b}}. For x = {a}{a, b}{b}
and y = {b}{a}{a, b}{a}{a, b}, we have

x⇥ y = {a, b}{a, b}{a, b}{a}{a, b}.



• SKAT is the natural extension of  KAT to the 
synchronous setting (Prisacariu’10); 

• its standard models are sets over guarded 
synchronous strings (GSS); 

• Prisacariu defined automata for GSS, built in two 
layers: one to process a synchronous string and 
another to represent the valuations of  the booleans.



Contributions to SKA(T)

• in [4]: definition of  a partial derivative automaton 
for SKA; 

• new decision procedure for SKA terms equivalence; 

• definition of  a simple notion of  automaton for 
SKAT; 

• extension of  the derivative based methods developed 
for SKA to SKAT.



References
• Almeida, Broda, Moreira; Deciding KAT and Hoare 

Logic with Derivatives, GANDALF 2012. 

• Broda, Machiavelo, Moreira, Reis; On the average size of  
Glushkov and Equation Automata for KAT expressions, 
FCT 2013. 

• Broda, Machiavelo, Moreira, Reis; On the Equivalence of  
Automata for KAT expressions, CiE 2014. 

• Broda, Cavadas, Moreira, Deciding Synchronous Kleene 
Algebra with Derivatives, FoSSaCS 2015 (submitted).



Thank You!


