
UML Checker – A Toolset for

Conformance Testing against UML

Sequence Diagrams
https://blogs.fe.up.pt/sdbt/

João Pascoal Faria, FEUP/INESC TEC, jpf@fe.up.pt

(with Ana Paiva, Mário Castro, Zuhanli Yang, Tamara Krasnova, and Bruno Lima)

MAPI, 03 December 2014

softeng.fe.up.pt

https://blogs.fe.up.pt/sdbt/
mailto:jpf@fe.up.pt

Index
2

 Motivation

 Approach: hybrid MDE

 Test ready sequence diagrams

 Tool user interface

 Tool architecture

 Live demonstration

 Key features and benefits

 Related work

 Conclusions and ongoing work

 References and further reading

Motivation

 The development of detailed UML design models of software

intensive systems for documentation only has several problems

 is time consuming

 the models are often wrong (no static analysis, compilation and testing)

 the models soon become outdated and are not maintained

 MDD approaches aim at avoiding such problems by

generating executable applications from models

 However, in many cases, the level of detail of the behavioral

models needed to generate complete applications may be too

high or only effective for specific domains

3

Approach: hybrid MDE (1)
4

 For situations where developing full behavioral models is not

practical, we propose a lightweight approach:

 continue to develop structural models from which parts of the application

can be generated (e.g., class skeletons)

 develop partial behavioral models, not sufficient for app generation, but

adequate for test generation

 This is also more in line with the agile values

 To demonstrate the approach we developed a tool that

generates executable tests from parameterized sequence

diagrams acting also as specifications of test scenarios

Partial behavior spec = Test spec

(value more) Working software over comprehensive documentation

New EA

plugin

New EA

plugin

Approach: hybrid MDE (2)

UML

Sequence

Diagrams

UML

Sequence

Diagrams

UML Class

Diagrams

UML Class

Diagrams

3a. Generate

production code

skeletons (EA)

3b. Generate test

code (TestGenerator)

New EA

plugin

New EA

plugin

Production

code (Java)

Production

code (Java)

Test code

(JUnit3)

Test code

(JUnit3)

Tracing

library

(AspectJ)

Tracing

library

(AspectJ)

New test

library

New test

library

Standard

libraries

(Java)

Standard

libraries

(Java)

Traces execution

of methods & constructors

Uses

Tests

5. Complete production code (method bodies)

6. Execute tests and see them pass

1a.

Model

app

struct

Uses

5

Developer

2. Check model consistency &

completeness (UML Checker)

1b.

Model

app

behavior

4. Execute tests and see them fail

Test ready sequence diagrams
6

Example values

for parameters

Things not yet

implemented

Things in the

system

Actor (client

app or user)

internal

interactions
external

interactions

intractions with things

not yet implemented

Exercise the

scenario for

each example

(Driver) Generate

inputs as in spec and

check responses

against spec

(Stub) Generate

the responses as

in spec

(Monitor) Trace

execution and

check against

spec

B
e
h

a
v
io

ra
l
M

o
d
e
l/

S
p
e
c

G
e
n
e
ra

te
d

T
e
st

 C
o
d

e

alt

Tool user

interface
7

not covered

conformance error

Tool architecture (v3)
8

*EPN=Extended Petri Nets

*

Live demonstration
9

 Example UML model

 Test generation

 Test code generated

 Test execution and reporting (including coverage information)

 Bug fixing

 Stubs

 Loose conformance

 Combined fragments

 User interaction testing

 Model consistency and completeness checking

Key features and benefits (1)

 Support the modeling

& automatic testing of

 External interactions

with users (UI)

 External interactions

with client

applications (API)

 Internal interactions

among objects in the

program

 Covers 4 design views (w/

structural model)

 Assures higher

conformance with spec

 Improves fault localization

 Accelerates test phase

10

Dynamic Static

Ext.

Int.

Class diagrams
(public/external

interfaces)

Sequence
diagrams
(external

interactions)

Sequence
diagrams
(internal

interactions)

Class diagrams
(private/internal

interfaces)

Feature Benefits

Key features and benefits (2)

 Parameterization

 Combined fragments
(alt, opt, loop, par)

 Keep behavioral specs
as generic as desired

11

Feature Benefits

 Loose conformance checking
 additional or intermediate calls

are allowed in implementation

 Keep behavioral specs as

simple as desired
(focus on relevant interactions)

 Automatic checking of model

consistency & completeness

 Verifiable completeness

criteria

 Higher quality assurance

 “Stubs” inject the specified

response messages for things

marked as not yet

implemented

 Iterative implemention &

testing

 Independence of external

components

Related work

Conclusions
13

 Presented a lightweight MDE approach

 Based on lightweight behavioral and structural models

 (Partial) production code and (full) test code generation from models

 That is “PSP friendly” (PSP – Personal Software Process)

 Promotes complete (in a sense), precise and reviewable designs

 Embeds test specification in the design phase (as behavior specs)

 Is designed to bring short term productivity and quality benefits

 And “agile friendly”

 Compilable models are not just documentation

 TDD/BDD [create a test = create an (external + internal) behavior spec]

Ongoing work
14

 Extend UI modeling and testing features for GUIs

 Automatically generate test data (i.e., actual values for

scenario parameters) through constraint satisfaction

 Conduct more extensive experimentation and process

performance and usability analysis

 Support the testing of time constrained, concurrent and

distributed systems, particularly for integration testing

References and further reading
15

 See: https://blogs.fe.up.pt/sdbt/

 Automating Interaction Testing with UML Sequence Diagrams: Where TDD and UML
meet, João Pascoal Faria, Agile Portugal 2010, Porto, Portugal

 Integrating Model-Driven Engineering Techniques in the Personal Software Process,
João Pascoal Faria, TSP Symposium 2012, St. Petersburg, Florida, USA

 Test Generation from UML Sequence Diagrams, João Pascoal Faria, Ana C. R. Paiva
and Z. Yang, Proceedings of the 8th International Conference on the Quality of
Information and Communications Technology (QUATIC’12), IEEE Computer Society
Press, 2012

 Automating Scenario Based Testing with UML and Aspect-Oriented
Programming, Mário Ventura de Castro, MSc thesis, FEUP, January 2013 (in
portuguese)

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams,
João Pascoal Faria, Ana C. R. Paiva, Mário Ventura de Castro, The 25th IFIP
International Conference on Testing Software and Systems, LNCS 8254, pp. 180–
195, 2013

 A Toolset for Conformance Testing against UML Sequence Diagrams based on
Event-Driven Colored Petri Nets, João Pascoal Faria, Ana Paiva, International
Journal on Software Tools for Technology Transfer, 2014 (to appear)

https://blogs.fe.up.pt/sdbt/
https://blogs.fe.up.pt/sdbt/
https://blogs.fe.up.pt/sdbt/
http://2010.agilept.org/program/talk-joao-pascoal-faria-2
http://2010.agilept.org/program/talk-joao-pascoal-faria-2
http://2010.agilept.org/program/talk-joao-pascoal-faria-2
http://2010.agilept.org/program/talk-joao-pascoal-faria-2
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Integrating-Model-Driven-Engineering.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Integrating-Model-Driven-Engineering.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Integrating-Model-Driven-Engineering.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Integrating-Model-Driven-Engineering.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2012/Integrating-Model-Driven-Engineering.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6511819&isnumber=6511765
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6511819&isnumber=6511765
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6511819&isnumber=6511765
https://blogs.fe.up.pt/sdbt/files/2013/04/AutomatingSBTwithUMLandAOP.pdf
https://blogs.fe.up.pt/sdbt/files/2013/04/AutomatingSBTwithUMLandAOP.pdf
https://blogs.fe.up.pt/sdbt/files/2013/04/AutomatingSBTwithUMLandAOP.pdf
https://blogs.fe.up.pt/sdbt/files/2013/04/AutomatingSBTwithUMLandAOP.pdf
http://ictss.sabanciuniv.edu/
http://ictss.sabanciuniv.edu/
http://softeng.fe.up.pt/SERGUP/?page_id=18
http://softeng.fe.up.pt/SERGUP/?page_id=18
http://softeng.fe.up.pt/SERGUP/?page_id=18
http://softeng.fe.up.pt/SERGUP/?page_id=18
http://softeng.fe.up.pt/SERGUP/?page_id=18

