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Motivation 

 The development of detailed UML design models of software 

intensive systems for documentation only has several problems 

 is time consuming  

 the models are often wrong (no static analysis, compilation and testing) 

 the models soon become outdated and are not maintained 

 MDD approaches aim at avoiding such problems by 

generating executable applications from models 

 However, in many cases, the level of detail of the behavioral 

models needed to generate complete applications may be too 

high or only effective for specific domains 
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Approach: hybrid MDE (1) 
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 For situations where developing full behavioral models is not 

practical, we propose a lightweight approach:  

 continue to develop structural models from which parts of the application 

can be generated (e.g., class skeletons)   

 develop partial behavioral models, not sufficient for app generation, but 

adequate for test generation 

 

 This is also more in line with the agile values 

 

 To demonstrate the approach we developed a tool that 

generates executable tests from parameterized sequence 

diagrams acting also as specifications of test scenarios 

 

 

 

 

Partial behavior spec = Test spec 

(value more) Working software over comprehensive documentation 
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Test ready sequence diagrams 
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Tool user  
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Tool architecture (v3) 
8 

*EPN=Extended Petri Nets 

* 



Live demonstration 
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 Example UML model 

 Test generation 

 Test code generated 

 Test execution and reporting (including coverage information)  

 Bug fixing 

 Stubs 

 Loose conformance 

 Combined fragments 

 User interaction testing 

 Model consistency and completeness checking 



Key features and benefits (1) 

 Support the modeling 

& automatic testing of 

 External interactions 

with users (UI) 

 External interactions 

with client 

applications (API) 

 Internal interactions 

among objects in the 

program 

 Covers 4 design views (w/ 

structural model) 

 Assures higher 

conformance with spec 

 Improves fault localization 

 Accelerates test phase 
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Key features and benefits (2) 

 Parameterization 

 Combined fragments 
(alt, opt, loop, par) 

 Keep behavioral specs 
as generic as desired 
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Feature Benefits 

 Loose conformance checking 
 additional or intermediate calls 

are allowed in implementation 

 Keep behavioral specs as 

simple as desired 
(focus on relevant interactions) 

 Automatic checking of model 

consistency & completeness 

 Verifiable completeness 

criteria 

 Higher quality assurance 

 “Stubs” inject the specified 

response messages for things 

marked as not yet 

implemented 

 Iterative implemention & 

testing 

 Independence of external 

components 



Related work 



Conclusions 
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 Presented a lightweight MDE approach 

 Based on lightweight behavioral and structural models 

 (Partial) production code and (full) test code generation from models 

 That is “PSP friendly” (PSP – Personal Software Process) 

 Promotes complete (in a sense), precise and reviewable designs 

 Embeds test specification in the design phase (as behavior specs) 

 Is designed to bring short term productivity and quality benefits 

 And “agile friendly” 

 Compilable models are not just documentation 

 TDD/BDD [create a test = create an (external + internal) behavior spec] 



Ongoing work 
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 Extend UI modeling and testing features for GUIs 

 Automatically generate test data (i.e., actual values for 

scenario parameters) through constraint satisfaction 

 Conduct more extensive experimentation and process 

performance and usability analysis 

 Support the testing of time constrained, concurrent and 

distributed systems, particularly for integration testing 
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