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Abstract

Inductive Logic Programming (ILP) systems is a set of Machine Learning techniques that have
been quite successful in knowledge discovery in relational domains. These systems implemented in
Prolog are among the most successfull ILP systems. They challenge the limits of Prolog systems
due to heavy usage of resources, such as database accesses and memory usage, and very long
execution times. In this work we discuss the fundamental performance issues found in an ILP
engine – the April system. Namely, we evaluate the impact of a fundamental technique, called
coverage caching, that stores previous results in order to avoid recomputation. To understand
the results obtained we profiled April’s execution and present initial results. We advocate that
the indexing mechanisms used in YAP Prolog database are inefficient and that improvement of
these mechanisms may lead to significant improvements in Prolog based ILP systems.

Keywords: Inductive Logic Programming, Coverage Caching, Prolog indexation

1 Introduction

Inductive Logic Programming (ILP) [1, 2] is an established subfield of Machine Learning (ML). The
objective of ILP is the induction of first-order clausal theories from a set of examples and prior
knowledge. From a theoretical point of view, ILP is at the intersection of inductive learning and logic
programming [2].

There are two major motivations for using ILP. First, ILP provides an excellent framework for
learning in multi-relational domains. Second, the theories learned by general purpose ILP systems are
in an high-level formalism, which is often understandable and meaningful for the domain experts. The
advantages of ILP have been demonstrated through successful applications in difficult, industrially
and scientifically relevant problems. Examples include engineering, natural language processing,
environmental sciences, and the life sciences. For a survey of initial ILP applications see [3]. A more
up-to-date list of applications of ILP systems to real world problems can be found in [4].

One major criticism of ILP systems is that they often have long running times. Several approaches
have thus been proposed to improve ILP performance, such as several efficiency improvements [5,
6, 7, 8, 9], sampling on examples or on the search space [10], and parallelism [11, 12, 13]. Most of
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the refered techniques can be combined with others leading to further improvements. Understanding
which techniques can contribute the most can thus be quite a difficult task.

April is a new ILP system that aims at exploiting several optimisation techniques for logic
programming induction. Our initial interest in designing April is to evaluate the performance impact
of different ILP techniques. Ultimately, we plan to use April to experiment with novel performance
issues, and namely with parallelism.

We have chose to implement April in Prolog, as several other ILP systems. The major reason
to do so is that the inference mechanism implemented by the Prolog engine is fundamental to most
ILP learning algorithms. ILP systems can therefore benefit from the extensive work performed to
improve the performance of Prolog systems (see eg. [14, 15]). On the other hand, ILP is a non-classical
Prolog application because it uses large sets of ground facts and requires storing a large search tree.
As pointed out by De Raedt [16] and Page[17], the performance of inductive logic implementations
could be significantly improved by using special purpose Prolog implementations, thus benefiting
from improvements in the Prolog technology.

In this work we discuss the fundamental performance issues of an ILP engine - the April ILP system
that runs on the YAP [18] Prolog system. In particular we evaluate the impact of a fundamental
technique, called coverage caching [7], that stores previous results in order to avoid recomputation.
Such technique uses intensively the Prolog database. To understand the results obtained with coverage
caching we profiled April’s execution and present initial results. We argue in this report that the
indexing mechanisms used in the YAP Prolog database are inefficient and that the improvement of
such mechanisms may lead to significant improvements in Prolog based ILP systems. Our claim is
justified by experimental results.

The contribution of our work is twofold: to an ILP researcher it provides an evaluation of
the coverage caching technique implemented in Prolog using well known datasets; to a Prolog
implementation researcher it shows the need of efficient internal database indexing mechanisms.

The remainder of this report is organized as follows. Section 2 provides some ILP background.
A description of the April ILP system is provided in Section 3. Section 4 analyses the impact of the
coverage caching technique on both memory usage and execution time. In Section 5 we explain the
coverage caching impact results by analysing YAP’s profiling data. Finally, in Section 6, we draw
some conclusions.

2 ILP

This section briefly presents some concepts and terminology of Inductive Logic Programming neces-
sary for the understanding of this report, but is not intended as an introduction to the field of ILP.
For such introduction we refer to [19, 20, 21].

2.1 Problem

The objective of an ILP system is the induction of logic programs. As input an ILP system receives
a set of examples (divided in positive and negative examples) of the concept to learn, and sometimes
some prior knowledge (or background knowledge). Both examples and background knowledge are
usually represented as logic programs. An ILP system tries to produce a logic program where positive
examples succeed and the negative examples fail.

From a logic perspective, the ILP problem can be defined as follows. Let E+ be the set of positive
examples, E− the set of negative examples, E = E+ ∪ E−, and B the background knowledge. In
general, B and E can be arbitrary logic programs, but is usual for E to be set of ground Prolog
terms. The aim of an ILP system is to find a set of hypotheses (also referred as a theory) H, also a
logic program, such that the following conditions hold:

• Prior Satisfiability: B 2 E−

• Prior Necessity: B 2 E+
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• Posterior Satisfiability: B ∧H 2 E− (Consistency)

• Posterior Sufficiency: B ∧H � E+ (Completeness)

• Posterior necessity: B ∧ hi � e+
1 ∨ e+

2 ∨ . . . ∨ e+
n (∀hi ∈ H, ej ∈ E+)

The sufficiency condition is sometimes named completeness with regard to positive evidence, and
the posterior satisfiability is also known as consistency with the negative evidence. Posterior necessity
states that each hypothesis hi should not be vacuous.

The consistency condition is sometimes relaxed to allow hypotheses to be inconsistent with a
small number of negative examples (noise level). This allows ILP systems to deal with noisy data
(examples and background knowledge), i.e., sets of examples or background knowledge that contain
some inaccuracies or other flaws.

2.2 ILP as a search problem

As explained before, the normal problem of ILP is to find a consistent and complete theory, i.e., a set
of clauses that imply all given positive examples and is consistent with the given negative examples.
Since it is not immediately obvious which set of clauses should be picked as the theory, a search
through the permitted clauses is performed to find a set with the desired properties.

To find a satisfactory theory, an ILP system searches through a search space of the permitted
clauses. Thus, learning can be seen as searching for a correct theory [22]. The states in the search
space (designated as hypothesis space) are concept descriptions (hypothesis) and the goal is to find one
or more states satisfying some quality criterion. For efficiency reasons the search space is structured
by imposing a generality order upon the clauses. Such order on clauses is usually denoted by �. A
clause C is said to be a generalization of D (dually: D is a specialization of C) if C � D holds. There
are many generality orders, the most important are subsumption and logical implication. In both of
these orders, the most general clause is the empty clause �. The refinement operators [23] generalize
or specialize a hypothesis, thus generating more hypotheses.

The search can be done in two ways: specific-to-general [24] (or bottom-up); or general-to-
specific [23, 25, 26, 6] (or top-down). In the generic-to-specific search the initial hypothesis is, usually,
the more general hypothesis (i.e., �). That hypothesis is then repeatedly specialized through the use
of refinement operators in order to remove inconsistencies with the negative examples. In the specific-
to-general search the examples, with the use of background knowledge, are repeatedly generalized by
applying refinement operators.

The hypotheses generated during the search are evaluated to determine their quality. A widely
used approach to score a hypothesis is by computing its accuracy and coverage. The accuracy is the
percentage of examples correctly classified by a hypothesis. The coverage of a hypothesis h is the
number of positive (positive cover) and negative examples (negative cover) derivable from B∧h. The
time needed to compute the coverage of a hypothesis depends, primarily on the cardinality of E+

and E−.

2.3 Bias

ILP is a complex problem. Its complexity has two major origins: the size of the search space, and;
the coverage computation. In most of the problems tackled by ILP practitioners, the search space is
infinite and the non-determinate nature of the background knowledge makes the evaluation of each
example hard. Practical ILP systems attenuate the complexity of the problem through the use of
techniques to make the search more efficient and by imposing all sorts of restrictions, mostly syntactic,
on candidate hypothesis (in order to reduce the search space). Such restrictions are called bias. Even
a biased hypothesis space can be too large to make a complete search inviable (from a computational
point of view). Several types of bias have been studied [27]. A declarative representation of the bias
should be used so bias setting and shifting can be easily performed. Declarative bias may help ILP
systems to be more adaptable to particular learning tasks.
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2.4 Mode-Directed Inverse Entailment

Mode-Directed Inverse Entailment [26] (MDIE) is a technique widely implemented in ILP systems
that uses inverse entailment together with mode restrictions to find a hypotheses set H. MDIE is the
basis of the April’s induction algorithm. To explain the main idea underlying Inverse Entailment, let
us take the specification of the ILP problem: given background knowledge B and a set of examples
E, find the simplest consistent hypothesis H such that

B ∧H � E

Since the goal is to find the simplest hypothesis, each clause in H should explain at least one
example (otherwise there is a simpler H ′ which will do). If we take the case of H and E being single
Horn clauses, it is possible to rearrange the problem as

B ∧ ¬E � ¬H

Let ¬ ⊥ be the (potentially infinite) conjunction of ground literals which are true in all models of
B ∧ ¬E. Since ¬H must be true in every model of B ∧ ¬E it must contain a subset of the ground
literals in ¬ ⊥. Therefore

B ∧ ¬E � ¬ ⊥� ¬H

and for all H

H �⊥

A subset of the solutions for H can be found by considering the clauses that θ-subsume ⊥. Since,
in general, ⊥ can have infinite cardinality mode declarations are used to constrain the search for
clauses which θ-subsume ⊥. ⊥ is usually designated as the bottom clause.

3 The April system

This section describes the April ILP system. April is a non-incremental (empirical), non-interactive,
single predicate learning system. It generates non-redundant theories, can handle non-ground back-
ground knowledge, uses non-determinate predicates, uses a strong typed language and explicit bias
declarations such as mode, type, and determination declarations. April combines ideas and features
from several systems, such as Progol [26] et seq. [28, 29], Indlog [6], and CILS [30]. At the same
time April aims to be an efficient and flexible ILP system. April has been used in the research of
novel techniques that improve ILP systems efficiency. Its efficiency has been achieved through low
memory consumption and low response time. Flexibility is achieved by a modular implementation
and by providing the user with a high level of customizations. This customization allows April to
emulate other systems by changing the configuration settings. However, we should note that April’s
emulation capabilities are no substitute for an exact implementation of the original algorithm.

April is implemented mainly in Prolog and runs in the YAP [18] prolog compiler. By using a
Prolog compiler like YAP, April takes advantage of its tested and fast deductive engine. YAP also
implements advanced techniques of Logic Programming, such as implicit and explicit parallelism [14],
and tabling [15], that may be exploited in the future by April to improve response time.

The choice of using Prolog, and Prolog engines, implies some limitations concerning implemen-
tation of complex and efficient data structures. To circumvent this limitation some data structures
have been implemented in C to improve response time and/or reduce memory consumption. The
implemented data structures were made available in YAP as an external module. An example of such
data structures are the RL-Trees and the Tries [31].

Next we present a small example, followed by a simplified description of April’s main algorithm
and architecture. A detailed description of the system is available as a technical report [32].
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3.1 An Example

April constructs logic programs from examples and background knowledge. The syntax for ex-
amples, background knowledge, and hypotheses is YAP Prolog (hence ISO-Prolog standard). For
instance, given various examples of the multiplication(NumberA,NumberB,NumberR) predicate,
that multiplies two numbers, and some background knowledge, April can construct a definition of
the multiplication predicate.

Positive Examples Negative Examples Background knowledge
multiplication(0,1,0). multiplication(0,0,1). plus(X,Y,Z):-

multiplication(0,2,0). multiplication(1,2,5). number(X),

multiplication(0,3,0). multiplication(2,3,12). number(Y),

multiplication(1,4,4). multiplication(2,2,6). Z is X+Y.

multiplication(1,5,5). multiplication(2,2,2).

multiplication(2,3,6). multiplication(3,4,3). dec(X,Y):-

multiplication(2,4,8). multiplication(3,3,6). number(X),

multiplication(3,6,18). multiplication(3,4,10). Y is X-1.

multiplication(4,5,20). multiplication(4,7,11).

Table 1: Examples and background knowledge of the multiplication predicate.

With the positive and negative examples in Table 1 April induces the following theory (program):

multiplication(A,B,C):-A=C,plus(A,A,A).

multiplication(A,B,C):-dec(A,D),mult(D,B,E),plus(B,E,C).

3.2 Induction Algorithm

April accepts as input: a training set consisting of positive (E+) and, optionally, some negative
(E−) ground examples; background knowledge (B) in the form of logic programs; and a set of
constraints C that include determination declarations, mode and type declarations, background
predicates’ properties, and facilities to change system parameters. As output, April generates a
reduced1 theory H that is consistent and complete, although these conditions may be relaxed by the
constraints C.

The main algorithm of April is presented in Algorithm 1. Note that April has many configuration
options and several options slightly modify the behavior of the algorithm presented. The outcome is
that April has several algorithms that can be seen as “mutations” of the one presented. The outer
cycle contains two inner cycles that we call clause generation cycle and clause consumption cycle. The
idea underlying these two cycles refers to the cautious induction method implemented in CILS [30].
Like in CILS, April first generates a set of candidate clauses (clause generation). It then selects the
clauses with higher quality and adds them to the theory. The difference between April and CILS is
that April performs a more greedy selection, that may result in a slightly worst quality of the final
theory (when compared to CILS). The outer cycle ends when there are no positive examples left or
when the constraints are satisfied.

The clause generation cycle produces a samplesize number of clauses, each clause hi is generated
based in one example e+

i . At each iteration, an example e+
i is selected sequentially or randomly from

E+
cur (the choice is made by the user). The selected example e+

i is then saturated and flattened using
B and C, producing the bottom clause (⊥). The saturation gathers all “relevant” ground atoms
that can be derived from B ∧ H ∧ ¬e+

i and satisfy the constraints C. All relevant atoms collected
during the construction of the bottom clause are flattened. Flattening is a method to make a theory
function-free and was introduced in ILP by Rouveirol [33, 34]. Like other ILP systems, April flattens

1Let T be set of clauses. T is reduced if and only if T contains no redundant clauses.
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Algorithm 1 April’s main algorithm

Input : E− and E+ /* The training set */
B /* Background knowledge */
C /* Set of constraints */
Output: H /* A theory */
H = ∅
E+
cur = E+

SampleSize = C(samplesize) /* Size of the sample */
while notfinish condition ok() do /* Default condition: E+

cur 6= ∅ */
Best = pool best() /* Get best clause in the pool, first interaction is NULL */
j = 1
do /* Clause generation cycle */
e+
i = select example(E+

cur, C, SampleSize, j)
⊥ = saturate(B,H,C, e+

i )
hi = reduction(⊥, B,H,C,E+

cur, E
−, Best)

if hi better than Best then Best = hi
add2pool(hi)
incrementj

while j < SampleSize and j <| E+
cur |

while Best 6= NULL /* Clause consumption cycle */
E+
cur = E+

cur − covered(Best) /* remove redundant examples */
H = H ∪Best /* Add best clause to theory */
pool remove(Best) /* Remove Best from pool */
Best = pool next best() /* Select next best clause in the pool */
if End Consumption(C) then break

end while
end while
H = rem redundant clauses(B,H,E+) /* Remove redundant clauses from H */

all function symbols by introducing equalities. The bottom clause generated will contain all literals
that may be found in the clauses generated during the search. A clause (hypothesis) is generated by
performing a search through the hypothesis space bounded bellow by ⊥. The Best clause is used by
the refinement procedure to improve pruning, thus reducing the search space and improving efficiency.
The clause hi found at each iteration is added to a pool of clauses. The pool keeps the clauses found
ordered by the number of positive and negative examples covered.

The clause consumption cycle tries to “consume” the clauses found, i.e. add the clauses to H. The
best clause in the pool is added to H, the examples covered by Best removed from E+

cur, and finally
Best is removed from the pool. Then, all clauses in the pool will have their coverages recomputed
(by invoking pool next best()). Those clauses in the pool that have a coverage of 1 are immediately
removed and the others reordered. The best clause in the pool is then used as the new Best clause.
The cycle ends when all clauses in the pool have been considered or the constraints C are satisfied.

Finally, the theory found is reduced, i.e., the redundant clauses that may exist in the theory are
removed.

3.3 Module Architecture

April is implemented as a set of Prolog modules. This modularity allows developers with knowledge
of the Prolog language to create an ILP system suited to their needs either by selecting a subset of
the modules, either by replacing an existing module with their own implementation.

Figure 1 presents April’s module architecture. The modules are organized in three major cat-
egories: data modules, functional modules, and extension modules. The data modules are used to
store data, while the functional ones implement an algorithm or some functionality. The extension
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Figure 1: April’s Architecture

modules, include modules that implement ideas available in other ILP systems, or described in papers.
Currently, there are three extension modules: the language level module, that implements Ca-

macho’s Incremental Language Level search [9]; the clause optimisations module, that implements
the optimisations described by Costa et al. [8]; and the ExamplesWeights module, that provides
functionalities to allow examples to have weights [35].

The induction module implements April’s main algorithm. The example selection module provides
the functionalities for selecting examples. The saturation module constructs a bottom clause from
a given example. The reduction module performs the search through the hypotheses space to find a
clause. The clauses generated during the search are evaluated to compute their coverage against the
given examples. The coverage computation and the explicit calls to the Prolog interpreter are done
in the evaluation module. The theory module processes the clauses found by the reduction module to
generate the final theory that is presented to the user. The cache module implements the coverage
caching scheme described in Section 3.4. The examples module manages the examples provided by
the user. The bias declarations provided by the user are stored in the bias module, and configuration
settings in the settings module. The UserSpace module stores all background knowledge provided by
the user and the clauses that are part of the final theory. The RL-tree and Tries modules provide
an interface to the correponding data structures. These data structures are described and evaluated
in [31].

3.4 Coverage Caching

An efficient coverage computation is crucial for the performance of an ILP system. Several approaches
have been proposed to improve coverage computation efficiency (see e.g [13, 8, 5, 6]), here we will
describe the technique known as coverage caching [7].

The coverage of a clause hi is computed by testing the candidate clause against the positive and
negative examples. This is done by verifying for each example e in E if B ∧ hi ` e. The time needed
to compute the coverage of a clause depends, primarily on the cardinality of E+ and E−.

The idea in coverage caching is to maintain a cache with the coverage lists and accuracy of the
clauses generated. This technique is used in other ILP systems, such as Aleph [29] and Indlog [6], to
reduce the computation time spent in coverage tests.

The coverage lists are used in these systems as follows. A hypothesis S is generated by applying a
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refinement operator to another hypothesis G. Let Cover(G) = {all e ∈ E such that B∧G � e}, where
G is a clause, B the background knowledge, and E is the set of positive (E+) and negative examples
(E−). Since G is more general than S then Cover(S) ⊆ Cover(G). Taking this into account, when
testing the coverage of S it is only necessary to consider examples in Cover(G), thus reducing the
coverage computation time. Cussens [7] extended this scheme by proposing what is designated as
coverage caching. The coverage lists are permanently stored and reused whenever necessary, thus
reducing the need to compute the coverage of a particular clause only once. Coverage lists reduces
the effort in coverage computation at the cost of significantly increasing memory consumption.

The data structure used to maintain coverage lists in systems like Indlog, Aleph, and April are
Prolog lists. For each clause two lists are kept: a list of positive examples covered and a list of negative
examples covered. A number is used to represent an example in the list. The positive examples are
numbered from 1 to | E+ |, and the negative examples from 1 to | E− |. The systems mentioned
reduce the size of the coverage lists by transforming a list of numbers into a list of intervals. For
instance, consider the coverage list [1, 2, 5, 6, 7, 8, 9, 10] represented as a list of numbers. This list is
represented as a list of intervals as [1− 2, 5− 10].

In order to reduce execution time the cache must be very efficient, by this we mean that insertions
and retrievals of elements in the cache should be done very fast. In April we use the YAP Prolog
internal database to store clauses’s coverage. Prolog databases are known to be a little slow,
nevertheless it was the only solution available within the Prolog language. The impact of coverage
caching on April’s performance is analysed in more detail in the next section.

4 April performance

To analyse the initial performance of April, in particular the impact of the coverage caching technique
on both memory usage and execution time, we conducted a series of experiments using datasets from
the Machine Learning repositories of the Universities of Oxford2 and York3. The experiments were
performed on an AMD Athlon(tm) MP 2000+ dual-processor PC with 2GB of memory, running the
Linux RedHat (kernel 2.4.20) operating system. We used version 0.5 of the April ILP system and
version 4.3.24 of YAP Prolog.

Table 2 characterizes the datasets in terms of number of positive and negative examples as well
as background knowledge size. Furthermore, it describes the April settings used for each dataset.
The parameter nodes specifies an upper bound on the number of hypotheses generated during the
search of an acceptable hypothesis. The i -depth corresponds to the maximum depth of a literal with
respect to the head literal of the hypothesis [36]. Samplesize defines the number of examples used to
induce a clause. The language (lang.) parameter specifies the maximum number of occurrences of a
predicate symbol in a hypothesis [6]. MinPos specifies the minimum number of positive examples that
a hypothesis must cover in order to be accepted. Finally, the parameter noise defines the maximum
number of negative examples that a hypothesis may cover in order to be accepted.

Note that in order to speedup the experiments we limited the search space of some datasets by
setting the parameter nodes to 1000. This reduces the total memory usage and execution time needed
to process the dataset. However, since we are comparing the memory consumption and execution
time when using coverage caching or not using it, the estimate obtained still gives a good idea of the
impact of the feature.

Table 3 presents the impact of activating coverage caching in April. It shows the total number of
hypotheses generated (| H |), the execution time, the memory usage, and the impact in performance
for execution time and memory usage (given as a ratio between using coverage caching and not using
coverage caching). The memory values presented correspond to the total memory used by April. The
coverage lists were represented as lists of intervals.

As expected, the results indicate a significant increase in memory usage when coverage caching
is activated. However, unexpectedly the use of coverage caching also increased the execution time,
more than 5 times for the larger datasets (i.e. datasets with greater number of examples and | H |).

2http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
3http://www.cs.york.ac.uk/mlg/index.html
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Characterization April’s Settings
Dataset | E+ | | E− | | B | nodes i samplesize lang. minpos noise

amine uptake 343 343 32 1000 2 20 - 50 20
carcinogenesis 162 136 44 1000 3 10 3 20 10

choline 663 663 31 1000 2 10 - 50 20
krki 342 658 1 no limit 1 all 2 1 0
mesh 2272 223 29 1000 3 20 3 10 5

multiplication 9 15 3 no limit 2 all 2 1 0
pyrimidines 881 881 244 1000 2 10 - 75 20

proteins 848 764 45 1000 2 10 - 100 100

Table 2: Settings used in the experiments

Time (sec.) Memory (bytes) yes/no(%)
Dataset | H |

no yes no yes Time Memory

amine uptake 66933 58.37 357.4 3027460 11255228 612.30 371.77

carcinogenesis 142714 616.38 506.65 7541316 13542528 82.19 179.57

choline 803366 1840.25 13596.07 5327052 32537788 738.81 610.80

krki 2579 3.78 1.15 2225176 2318084 30.42 104.17

mesh 283552 637.34 3241.73 7255884 25733376 508.63 354.65

multiplication 478 8.87 8.93 4261768 4422080 100.67 103.76

pyrimidines 372320 915.95 5581.91 5659544 27856496 609.41 492.20

proteins 433271 7837.96 794.4 27075788 27495636 10.13 101.55

Table 3: Coverage caching results

On the other hand, the proteins dataset shows a reduction of around 90% in the execution time
which is what one would like to observe when employing a caching mechanism.

5 Profiling April execution

The observed overheads in execution time presented in the previous section, being so unexpected,
prompted us to further investigate the reasons for this behavior. A issue that we would like to clarify
is whether coverage caching reduced the number of goal invocations executed. We decided to activate
YAP’s profiling and then rerun the April system for all datasets previously considered and observe
the impact of coverage caching on the number of calls and retries.

Table 4 shows the total number of calls and retries performed by YAP with the cache activated
and deactivated. The result values represent the aggregate number of calls and retries for all datasets.
Note that the number of retries shown, with the cache deactivated, is lower than the real value because
in some datasets the YAP counters overflowed. In these cases the maximum value possible was used
instead. The use of cache reduced the number of calls by 90% and reduced the number of retries by
at least 15%. This shows that the use of caching clearly achieves the goal of reducing computation
but surprisingly the execution time increased by 56%. Note that the number of calls were reduced
by 30 billions approximately.

To identify the causes for the increase in execution time, when using caching, we analyzed the
profile logs in more detail to locate the modules that may be responsible for the overhead. Table 5
presents the distribution of the number of calls among the Prolog modules used by April. For each
module, the table shows the number of calls and their weight within the total number of calls when
cache is activated or deactivated, together with the variation in the number of calls when cache is
activated. To simplify the table analysis, we disregard the modules whose weight was less than 1%.
We also do not show the number of retries because the values are rather low in most of the modules.



5 PROFILING APRIL EXECUTION 11

Module cache=yes cache=no yes/no
Calls 3,141,742,379 33,508,263,954 0.09

Retries 26,112,058,881 >30,730,206,551 0.84
Time (sec.) 38731.23 24718.04 1.56

Table 4: Total number of calls and execution time

The main exception is the user space module that contains the background knowledge and is the
module where examples coverage is performed.

cache=yes cache=no
Module

Calls Weight Calls Weight
CallsVariation

prolog 1,276,198,146 0.40 8,198,176,038 0.24 -6,921,977,892
utils 135,853,979 0.04 1,513,841,607 0.04 -1,377,987,628

configuration 359,712,522 0.11 7,787,249,741 0.23 -7,427,537,219
reduction 148,255,423 0.04 193,442,229 0.00 -45,186,806
idb cache 365,087,943 0.11 52 0.00 +365,087,891
evaluation 58,306,774 0.01 3,805,843,802 0.11 -3 747,537,028
saturation 222,043,653 0.07 297,438,260 0.00 -75,394,607
user space 257,179,423 0.08 11,406,353,178 0.34 -11,149,173,755

Table 5: Calls distribution among April’s modules

The results in Table 5 show that the use of cache reduced the number of calls in all modules
except for module idb cache that implements the cache itself. The 365 million operations made by
the cache module appear to be more expensive than the 30 billion operations whose execution were
avoided by the coverage caching.

We further analyzed the profile logs trying to identify the predicates that were causing the
inefficiency problems. Table 6 presents a summary of the number of calls for the predicates considered
more relevant. Since the number of calls for most of the predicates decreased with the use of cache,
we selected those predicates whose number of calls were still very high, or increased, or operate the
Prolog database.

Table 6 shows that in the prolog module the number of calls increased only for the assert,
recorda, numbervars, copy term, and ground predicates. The increase of calls in the idb cache

module was most felt in the idb keys predicate. All the other predicates in the idb cache make
calls to the predicates in the prolog module, in particular to the recorded predicate that YAP could
not show in the profile statistics. From the profile results we estimated that the number of calls to
the recorded predicate increased by around 22,456,790 when using coverage caching.

Since YAP does not provide the cumulative time spent computing each predicate, we did further
experiments to measure the impact of each of those predicates in the execution time. We observed
that the predicates that deal with the internal database and clausal database are the main source of
execution time overhead. The slowdown caused by these predicates appears to be exponential with
the increase of database entries. In particular, the dynamic predicate idb keys and the database
predicate recorded are those with biggest impact. These two heavily used predicates are the main
cause for coverage caching inefficiency. As the reduction or elimination of Prolog database operations
is not possible, a solution to cope with this problem could be to improve the indexing mechanism of
the YAP Prolog internal database. Moreover, we find that it would be very much useful the support
of an efficient indexing mechanism using multiple keys.
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Predicate cache=yes cache=no Variation
prolog:abolish/1 13,304 17,204 -3,900
prolog:assert/1 98,362 5,663 +92,699
prolog:assertz/1 1,592,288 2,049,054 -456,766
prolog:numbervars/3 5,265,269 4,349 +5,260,920
prolog:eraseall/1 5,902,918 7,734,758 -1,831,840
prolog:recordz/3 5,665,526 7,562,647 -1,897,121
prolog:copy term/2 5,677,883 515,905 +5,161,978
prolog:call/1 6,396,015 8,314,571 -1,918,556
prolog:erase/1 20,674,230 24,155,488 -3,481,258
prolog:recorda/3 25,866,551 23,760,276 +2,106,275
prolog:integer/1 33,843,978 1,401,877,319 -1,368,033,341
prolog:set value/2 41,545,320 1,411,971,018 -1,370,425,698
prolog:ground/1 110,305,158 90,361,520 +19,943,638
prolog:get value/2 166,244,097 942,962,169 -776,718,072
idb cache:idb keys 5,166,049 (789,534) 0 +5,166,049

Table 6: Number of calls for some predicates. The idb cache:idb keys predicate is a dynamic
predicate used to store cache keys. The value in parenthesis is the number of recalls.

6 Conclusions

This report presented an Inductive Logic Programming (ILP) system implemented in Prolog. ILP
systems are non-classical Prolog applications because of the use of large sets of ground facts and high
resource consumption (memory and CPU). Together with a description of the system implementation
we provided results showing the impact on memory usage and execution time of a technique called
coverage caching. This technique uses intensively the internal database to store results in order to
avoid recomputation.

An empirical analysis of the coverage caching technique used by April running under the Yap
Prolog showed that its use degrades the execution time although it significantly reduces the number
of Prolog calls and retries. To pinpoint this unexpected behavior we profiled April using YAP Prolog.
The analysis of the profile data obtained lead us to conclude that the use of YAP’s database is the
cause for performance degradation.

Improving the indexing mechanism of YAP Prolog internal database, moreover including efficient
support for indexing with multiple keys, will certainly improve April’s performance as well as other
applications that use the database intensively. It is our hope that these findings will motivate Prolog
implementors to further excel their implementations.
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