
Proceedings of CICLOPS’2003

Colloquium on Implementation of Constraint and
LOgic Programming Systems

December 2003

Ricardo Lopes, Michel Ferreira (Eds.)

Technical Report DCC-2003-05

PREFACE

This book contains the Proceedings of the CICLOPS’03 – Colloquium on Implementation

of Constraint and LOgic Programming Systems 2003 – held in Mumbai (India), December

2003.

CICLOPS’03 means to bring together, in an informal setting, people involved in research on

sequential and parallel implementation technologies for logic and constraint programming

languages and systems, in order to promote a much needed exchange of ideas and feedback

on recent developments. We hope that the workshop will provide meeting ground for people

working on implementation technology for different aspects of execution of logic-based and

constraint-based languages and systems.

This workshop continues a tradition of successful workshops on Implementations of Logic

Programming Systems, previously held with considerable success in Budapest (1993) and

Ithaca (1994), the Compulog Net workshops on Parallelism and Implementation Technologies

held in Madrid (1993 and 1994), Utrecht (1995) and Bonn (1996), the Workshop on Paral-

lelism and Implementation Technology for (Constraint) Logic Programming Languages held

in Port Jefferson (1997), and Manchester (1998), Las Cruces (1999), and London (2000), and

recently the Colloquium on Implementation of Constraint and LOgic Programming Systems

in Paphos (Cyprus-2001) and Copenhagen (2002).

1

Workshop Coordinators

Michel Ferreira and Ricardo Lopes (Portugal)

Program Committee

• Bart Demoen (Belgium)

• Christian Schulte (Sweden)

• David S. Warren (USA)

• Enrico Pontelli (USA)

• Haifeng Guo (USA)

• Inês de Castro Dutra (Brazil)

• Kostis Sagonas (Sweden)

• Manuel Carro (Spain)

• Michel Ferreira (Portugal)

• Ricardo Lopes (Portugal)

Referees

Bart Demoen, Bert Van Nuffelen, Christian Schulte, David S. Warren, David Trallero Mena,

Enrico Pontelli, Hai-Feng Guo, Inês de Castro Dutra, José F. Morales, Kostis Sagonas,

Lúıs Lopes, Manuel Carro, Manuel Eduardo Correia, Michel Ferreira, Nikolay Pelov, Tom

Schrijvers, Ricardo Lopes, Ricardo Rocha

Acknowledgments

This printing was supported by project APRIL (Project POSI/SRI/40749/2001).

2

CICLOPS 2003 Program
09h30 Invited Talk: Performance Issues in Prolog Applications. 5

Vı́tor Santos Costa

10h30 Coffee break

Session 1 Chair: Michel Ferreira

11h00 CHR for XSB 7

Tom Schrijvers, David S. Warren and Bart Demoen

11h30 Simplifying Dynamic Programming via Tabling 21

Hai-Feng Guo and Gopal Gupta

12h00 A Tabling Engine Designed to Support Mixed-Strategy Evaluation 33

Ricardo Rocha, Fernando Silva and Vı́tor Santos Costa

12h30 Lunch

Session 2 Chair: Ricardo Rocha

14h00 Alternatives for compile & run in the WAM 45

Remko Tronçon, Gerda Janssens and Bart Demoen

14h30 A tag change with support for extra types and two more 59

experiments in hProlog

Bart Demoen and Phuong-Lan Nguyen

15h00 Controlling Code Expansion in a Multiple Specialization Prolog 75

Compiler

Michel Ferreira and Lúıs Damas

15h30 Improving the Compilation of Prolog to C Using Type and 89

Determinism Information: Preliminary Results

J. Morales, M. Carro and M. Hermenegildo

16h00 Coffee break

Session 3 Chair: Christian Schulte

16h30 Incremental Copying Garbage Collection for WAM-based Prolog 103

systems

Ruben Vandeginste and Bart Demoen

17h00 Smodels with CLP: a Treatment of Aggregates in ASP 117

Enrico Pontelli, Tran Cao Son and Islam Elkabani

17h30 Implementing Constructive Negation 129

Susana Muñoz and Juan José Moreno-Navarro

3

4

Performance Issues in Prolog Applications.

V́ıtor Santos Costa
COPPE/Universidade Federal do Rio de Janeiro, Brasil

vitor@cos.ufrj.br

http://www.cos.ufrj.br/∼vitor

Abstract

Prolog is an expressive programming language based on a subset of First Order Logic, and
has been widely used in Artificial Intelligence Research. Examples include Machine Learning,
say, for implementing Inductive Logic Programming, and Natural Language Processing, where
applications range from the well-known work in Definite Clause Grammars to automata-based
parsing. In this talk, we discuss how Prolog implementations matter in achieving AI application
performance and scalability, and present some solutions that are currently being research for
Prolog systems. Throughout we draw from our own experience in supporting a Prolog system,
and in designing ILP applications.

We observe that excellent data-base indexing is critical. Often, applications are initially
developed for smallish examples, where data-base access is guaranteed to be fast. Unfortunately,
when practitioners experiment with real-life like situations, performance simply breaks down.
Until recently, Prolog implementations were simply not good enough in this regard. We discuss
some recent work on the B-Prolog, XSB and YAP systems that tries to address the problem.

A related issue is that efficient data-base updating must be supported. For instance, many
AI systems must perform search, and use the data-base to store the search space. Many AI
applications thus add and remove items often, whilst still requiring fast lookup. We discuss two
solutions: the use of tries as in XSB Prolog, and extending the indexing mechanism, as done
recently in YAP Prolog.

Some Prolog applications require functionality beyond what is provided by the standard Pro-
log engine. Sometimes, we will need Prolog extensions, but sometimes even better performance
can be achieved by writing a specialised interpreter or performing a simple transformation. In
one example, we discuss a small program for modelling RAS pathways on a cell. Tabling allows
a declarative formulation to run for non-trivial queries. But full tabling is not necessary: a
poor-man’s version of tabling achieves even better results. As a second example we discuss the
CLP(BN) implementation: although we need coroutining to support generic queries, we have
taken advantage of meta-interpreters, for instance, to do efficient learning when complete data
is available.

We believe that Prolog can be effectively used for non-trivial AI programs. To do so, collab-
oration between users and implementors is fundamental.

5

6

CHR for XSB

Tom Schrijvers David S. Warren Bart Demoen

Dept. of Computer Science, K.U.Leuven, Belgium
Dept. of Computer Science, State University of New York at Stony Brook, USA

{toms,bmd}@cs.kuleuven.ac.be warren@xsb.com

Abstract

XSB is a highly declarative programming system consisting of Prolog extended with tabled
resolution. It is useful for many tasks, some of which require constraint solving. Thus flexible
and high level support for constraint systems is required. Constraint Handling Rules is exactly
such a high level language embedded in Prolog for writing application tailored constraint solvers.

In this paper we present the integration of a CHR system in the XSB system and especially
our findings on how to integrate CHR with tabled resolution, such as how to deal with issues as
call abstraction of constraints, constraint store merging, answer store projection and constraint
store representations for tabling.

We illustrate the power of the XSB-CHR combination with two examples in the field of model
checking. It is indeed possible to quickly write application specific constraint solvers, experiment
with them and achieve a reasonable performance and high readability. The combination of
XSB’s goal-driven fixpoint execution model with CHR’s committed choice bottom-up approach
has proven not only feasible, but considerably useful as well.

1 Introduction

XSB (see [14]) is a Prolog system with tabled resolution. Tabled resolution is useful for recursive
query computation, allowing programs to terminate in many cases where Prolog does not. Parsing,
program analysis, model checking, data mining and diagnosis and many more applications benefit
from tabled resolution. We refer the reader to [1] for a coverage of XSB’s SLG execution strategy.

The use of constraint solvers in XSB has been a quite laborious and inconvenient endeavor up
to now. Initially XSB provided no builtin support at all for dealing with constraints. Hence XSB
programmers resorted to interfacing with foreign language libraries or implementation of constraint
solvers in XSB itself with close coupling of constraint solver and application as a consequence. The
initial feasibility study of a real time model checking system used a meta interpreter written in
XSB to deal with constraints (see [11]). The full system implementation then reports of interfacing
XSB with the POLINE polyhedra based constraint solver library and passing around handles to
the constraint store in the XSB program (see [7]). A later version of this real time model checking
application switched to using distance bound matrices implemented in XSB itself (see [12]). This
shows that there is certainly a demand for constraints in the XSB setting, but that a satisfactory
solution with sufficient ease of use and a reasonable implementation has not been found so far.

In an attempt to amend some of the constraint problems in XSB, it has been extended with
attributed variables (see [2]). Attributed variables is a Prolog language feature that is particularly
suited for constraint solver implementation as it allows efficient association of data with variables

7

and user hooks on variable binding. Unfortunately this feature has not caught on in XSB as a basis
for constraint systems because it is a particularly low level feature that still requires considerable
scheduling considerations by the constraint solver programmer. However, the work on attributed
variables in XSB is not lost, as attributed variables are indeed a powerful implementation tool for
constraint systems: efficient compilation of CHR to Prolog relies heavily on it (see [10]).

It is precisely these key features of CHR that are missing in XSB: Constraint Handling Rules, or
CHR for short, is a high level language designed for writing application-oriented constraint systems
(see [8]). We refer the reader to [9] for a survey of syntax, semantics, theoretical and practical
work on CHR. In this paper we will introduce CHR with a quick informal review of syntax and
semantics using a simple example (see Section 1.1).

Section 2 will present a general overview of the hProlog CHR system as well as some of its more
interesting implementation details. Section 3 will then address the core matter of this paper, the
integration of the CHR system in tabled execution. Subsequently, Section 4 briefly illustrates the
power of the resulting CHR-XSB system with two model checking applications, one of which is the
earlier mentioned real time model checking application. Finally, Section 5 concludes and suggests
possible future work.

1.1 CHR by Example

The set of constraint handling rules below defines a less-than-or-equal constraint (leq/2) over num-
bers. The rules illustrate several syntactical features of CHR.

X leq X ⇐⇒ true.
X leq Y ⇐⇒ number(X), number(Y) | X =< Y.
X leq Y, Y leq X ⇐⇒ X = Y.
X leq Y \ X leq Y ⇐⇒ true.
X leq Y, Y leq Z =⇒ X leq Z.

The first, second and third rule are simplification rules, indicated by the double arrow. To the
left of the arrow is the head of a rule. A simplification rule has the meaning that the constraints
in the head can be simplified to the Prolog goal in the body, true for the first rule. Variables in
constraints are never bound to each other or to terms in the head of a rule; only equality tests are
used. The meaning of this first rule should be obvious: the leq relation is reflexive, and hence X
leq X is trivially satisfied and bears no information.

The second rule shows that a rule can be extended by a guard, after the arrow and before
the vertical bar. In this case the guard is number(X), number(Y). The body of the rule is only
executed for constraints that match the head and satisfy the guard. The guard can be any Prolog
goal that does not bind variables of the head. Rule two replaces the constraint with a simple Prolog
inequality check if the arguments are bound to numbers.

The third rule illustrates that the head of a rule can contain a conjunction of multiple con-
straints. It formulates the antisymmetry property of the leq constraint.

The fifth rule with the =⇒ is a propagation rule. The body of the rule is executed once for
every matching combination of constraints in the head, not removing the head constraints.

The fourth rule is a “simpagation” rule. It has the same meaning as a simplification rule where
the constraints before the backslash would be posed again in the body. However it is more efficient
in that it never removes those head constraints and does not unnecessarily trigger rules in that

8

way. In the leq constraint definition its role is to declare the set semantics of the constraint, i.e.
the number of copies of a constraint is not important and hence it is more efficient to keep only
one.

Operationally, when a constraint is posed the rules are tried in order. For a multi-headed
rule, the additional constraints are looked for in the constraint store. The outcome is that the
posed constraint is either simplified away or reaches the end of the rules and gets suspended in the
constraint store. Suspended it can either be used as an additional constraint for a multi-headed
rule or wait until it gets triggered. Triggering of a suspended constraint occurs when any variable
in the constraint gets bound. The constraint then tries to match all rules in order again.

2 The hProlog CHR System

Initially the CHR system described in this paper was written for the hProlog system. hProlog is
based on dProlog (see [6]) and intended as an alternative backend to HAL (see [5]) next to the
current Mercury backend. The initial intent of the implementation of a CHR system in hProlog
was to validate the underlying implementation of dynamic attributes (see [4]).

The hProlog CHR system consists of a preprocessor and a runtime system. The preprocessor
compiles embedded CHR rules in Prolog program files into Prolog code.

The compiled form of CHR rules is very close to that of the CHR system by Christian Holzbaur,
which is used in SICStus and Yap. The precompiler is intended as a basis for experimentation with
optimized compilation of CHR rules, both through inference and programmer declarations.

The runtime system is nearly identical to that of Christian Holzbaur: suspended constraints
are stored in a global constraint store. Variables in suspended constraints have attributes on them
that function as indexes into this global store. Binding of these attributed variables causes the
suspended constraints on them to trigger again.

The main advantage of the hProlog implementation is that the dynamic nature of the attributed
variables in hProlog allows to move more functionality from the compiled rules to the runtime
system.

Little difficulty was experienced while porting the preprocessor and runtime system from hPro-
log to XSB. The main problem turned out to be XSB’s overly primitive implementation of at-
tributed variables: it did not support attributes in different modules. Moreover, the actual binding
of attributed variables was being delayed to the interrupt handler where it was left up to the pro-
grammer. This causes unintuitive and unwanted behavior in several cases: while the binding is
delayed from unification to interrupt handling, other code can be executed in between that relies
on variables being bound, e.g. arithmetic. Due to these problems of the current XSB attributed
variables, it was deemed acceptable to model them more closely to the hProlog behavior. This of
course facilitated the porting of the CHR system considerably.

3 CHR and Tabled Execution

The main challenge of introducing CHR in XSB is integrating the forward chaining fixpoint com-
putation of the CHR system with the backward chaining fixpoint computation of tabled resolution.

A similar integration problem has been solved in [2], where a general framework for constraint
solvers written with attributed variables for XSB is described. The name Tabled Constraint Logic
Programming (TCLP) is coined in that publication.

9

The main difference for the programmer between CHR and attributed variables for developing
constraint solvers, i.e. the fact that CHR is a much higher level language, should be carried over
to the tabled context. Hence tabled Constraint Handling Rules should provide a more convenient
level of programming constraint solvers, hiding execution details whenever possible, than TCLP
with attributed variables.

In [2] the general framework specifies three operations to control the tabling of constraints: call
abstraction, entailment checking of answers and answer projection. It is left up to the constraint
solver programmer how to implement these operations with respect to his solver implementation.

In the following we formulate these operations in terms of the CHR implementation and provide
a higher level CHR interface for answer projection. In this manner the solver programmer is not
confronted with the underlying CHR implementational intricacies.

3.1 Call Abstraction

Call abstraction replaces the called goal with a call to a more general goal followed by an operation
that ensures that only the answer substitutions applicable to the particular call are retained. At
the level of ordinary non-constraint Prolog, abstraction means not passing certain bindings in to
the call. E.g. p(q,A) can be abstracted to p(Q,A). This goal has then to be followed by Q = q to
ensure that only the appropriate bindings for A are retained.

In XSB call abstraction is a means to control the number of tables. When a predicate is called
with many different instantiation patterns, a table is generated for each such call instantiation
pattern. Thus it is possible that the information for the same fully instantiated call is present
many times in tables for different call instantiation patterns. However, this amount of duplication
in the tables can be avoided by using call abstraction to restrict to a small set of call instantiation
patterns.

For constraint logic programming, call abstraction can be extended from bindings to constraints:
abstraction means removing some of the constraints on the arguments. Consider for example the
call p(Q,A) with constraint Q leq N on Q. This call can be abstracted to p(Q’,A), followed by Q’
= Q to reintroduce the constraint.

Abstraction is especially of value for those constraint solvers where the number of constraints
on a variable can be much larger than the number of different bindings for that variable. Consider
for example a finite domain constraint solver with constraint domain/2, where the first argument
is a variable and the second argument the list of its possible values. If the variable can be bound
to at most n values it can take as much as 2n different domain/2 constraints, one for each subset
of values.

Varying degrees of abstraction are possible and may depend on the particular constraint system
or application. Full constraint abstraction, i.e. the removal of all constraints from the call, is
generally more suitable for CHR for the following reason:

• CHR rules do not require constraints to be on variables. This means that constraints can be
on ground terms or atoms as well. It is not straightforward to define abstraction for ground
terms as these are not necessarily passed in as arguments but can just as well be created
inside the call. Hence there is no explicit link with the call environment, while such a link is
needed for call abstraction. As such, only no abstraction or full constraint abstraction seem
suitable for CHR.

• Full constraint abstraction is preferable when the previously mentioned table blow-up is likely.

10

Moreover, it may be quite costly for certain constraint domains to sort out what constraints
should be passed in to the call or abstracted away, involving transitive closure computations of
reachability through constraints. Hence often full abstraction is cheaper.

For CHR full abstraction requires the execution of the tabled predicate with a fresh empty
constraint store. If the call environment constraint store were used, interaction with new constraints
would violate the assumption of full abstraction.

The code below shows how a predicate p/1 that requires tabling:

:- table p/1.

p(X) :- ...

is transformed into two predicates, where the first one is called, takes care of the abstraction,
calls the second predicate and afterwards combines the answer with the previously abstracted away
constraints.

p(X) :-
get_global_store(S_E),
set_empty_store,
tabled_p(X1,S_A),
merge_stores(S_E,S_A,S_E1),
set_global_store(S_E1),
X1 = X.

:- table tabled_p/2.

tabled_p(X,S_A) :- ...

The further implementation of tabled p and merge stores will be discussed in the next Sec-
tions.

3.2 Tabled Store Representation and Merging

When a tabled predicate p returns, the answer constraint store sa should be stored in the answer
table. When a subsequent call to p is made, sa should be fetched from the table and merged with
the calling environment constraint store se. On a high level this means that all the constraints in sa

have to be inserted in se and triggered in such a fashion that the merged store reaches a consistent
final state, i.e. with all the applicable simplifications and propagations.

The implementation of the tabled predicate tabled p mentioned above is revealed here. It has
an extra argument, the tabled store representation S A, that is extracted from the global store after
the original body of p, now moved to the predicate orig p, has been executed.

tabled_p(X,S_A) :-
orig_p(X),
extract_store_representation(S_A).

orig_p(X) :- ... /* body of original p */.

The representation of the answer store in the table and the highly correlated merging algorithm
determine largely the cost of a call to a tabled predicate with constraints. Two different imple-
mentations have been explored and it appears the more naive approach is the best. An indication
of what programs or predicates are good candidates for tabling with respect to time efficiency, is
obtained from this conclusion. Obviously if termination is an issue, tabling is paramount.

11

Suspension Representation This representation aims at storing the suspended constraints in
the answer table in much the same way as they are represented in the constraint store. The
constraint store is an updatable term, containing suspended constraints grouped by functor. Each
suspended constraint is represented as a suspension term, containing among others the following
information:

• the unique ID for sorting and equality testing

• the goal to execute when triggered, this goal contains the suspension itself as an argument,
hence creating a cyclic term

• the propagation history

Furthermore, variables involved in the suspended constraints behave as indexes into the global
store: they have the suspensions stored in them as attributes.

It is possible to store attributed variables in answer tables (see [3]), but two other issues do pose
a problem. Firstly, the tables do not deal with cyclic terms1. This can be dealt with by breaking
the cycles before storage and resetting them after fetching. Secondly, the unique identifiers have to
be replaced after fetching by fresh ones as multiple calls would otherwise create multiple copies of
the same constraints all with identical identifiers.

In addition to the above operations upon retrieval, the suspensions are inserted into the call
environment store and then triggered.

By keeping the tabled representation as close as possible to the global store representation we
hope to save on execution time during merging: the propagation history of the answer store is
retained and hence answer constraints will not propagate a second time.

It turns out that in the programs we have tested so far, preparing constraints for storage in the
tables and proper initialization upon retrieval is considerably more costly than repropagation. One
has to bear in mind that retrieval of a table consists of creating new terms and attributed variables.
Hence preserving a useful structure in the table is hardly better than preserving the data in any
other format that allows easy derivation of that structure.

Naive Representation The naive representation aims at keeping the information in the table
in as simple a form as possible: for each constraint only the goal to pose this constraint is retained
in the table. It is easy to create this goal from a suspension and easy to merge this goal back into
another constraint store: it needs only to be called.

When necessary the goal will create a suspension with a fresh unique ID and insert it into
the constraint store. However in many cases it may prove unnecessary to do so because of some
simplification through interaction with constraints in the calling environment.

The only information that is lost in this representation is the propagation history. This may
lead to multiple propagations for the same combination of head constraints. For this to be sound,
it is necessary that the CHR rules behave according to set semantics, i.e. the presence of multiple
identical constraints should not lead to different answers modulo identical constraints.

In all the applications we have encountered, this approach turns out to be better. The simplicity
of storage and retrieval are more important than unnecessary propagation overhead.

1If the cycle point were represented as an attributed variable, then XSB tabling would handle the cyclic terms.
However, this representation was deemed inappropriate due to its complexity and expected performance.

12

All in all the conclusion seems to be that superior efficiency through tabling can only be achieved
if a certain amount of simplification or non-constraint related computation occurs inside the tabled
predicate and if the cost of creating the tabled constraints is smaller than executing the predicate.
Hence just as it makes no sense to table append/3, it makes no sense to table the constraint
equivalent of append/3, a predicate that builds a large constraint store straightforwardly.

3.3 Answer Combination and Entailment Checking

In some cases it is undesirable to have multiple answers for a tabled predicate. While all the answers
are valid, they may all be just approximations. In such a case one would like to combine all answers
to a single most specific answer.

Using the XSB local strategy for table completion, at the end of the tabled predicate we merge
a previous answer store s0 with a new answer store s1. After merging the store will be simplified
and propagated to s, combining both answers. If this combined answer s is different from s0, then
s0 is discarded.

The computation of the shortest path serves as a good illustration:

path(A,B,D) :- edge(A,B,D1), D leq D1.
path(A,B,D) :- path(A,C,D1), edge(C,B,D2), D leq D1 + D2.

Suppose appropriate rules for the leq/2 constraint in the above program, as in Section 1.1. The
query path(x,y,D) will then find an answer for every single path from x to y. The answers will only
differ in the upper bound on D.

If we are only interested in the most specific answer, we can make sure to include the following
CHR rule:

X leq D1 \ X leq D2 ⇐⇒ D1 =< D2 | true.

The same mechanism can be used to check entailment: if the combined answer store s is equal
to one of the two, then that answer entails the other.

s0 + s1 = si ∧ i ∈ {0, 1} =⇒ si � s1−i

Here the symbol + is used to indicate merging of constraint stores and = means equality of
constraint stores. Constraint store equality is discussed later, in Section 3.5

3.4 Answer Projection

Often it is necessary to project the answer constraint store on the non-local variables of the call.
The usual motivation is that constraints on local variables are meaningless outside of the call.
The constraint system should be complete so that no unsatisfiable constraints can be lost through
projection.

For tabling there is an additional and perhaps even more pressing motivation for projection: a
predicate with an infinite number of different answers may be turned into a predicate with a finite
number of constraints by throwing away the constraints on local and unreachable variables.

In some cases it may suffice to look at the constraints in the store separately and given a
set of non-local variables to decide whether to keep the constraint or not. In those cases it may
be convenient to exploit the operational semantics of CHR rules and implement projection as a

13

project/1 constraint with the list of variables to project on as an argument. A series of simpagation
rules can then be used to look at and decide on what constraints to remove. A final simplification
rule at the end can be used to remove the project/1 constraint from the store.

The predicate tabled p would then look like:

tabled_p(X,S_A) :-
orig_p(X),
project([X]),
extract_store_representation(S_A).

The following example shows how to project away all leq/2 constraints that involve arguments
not contained in a given set V arSet:

project(VarSet) \ X leq Y ⇐⇒ \+ (member(X,VarSet),member(Y,VarSet)) | true.
project(VarSet) ⇐⇒ true.

Besides removal of constraints more sophisticated operations such as weakening are possible.
E.g. consider an constraint ∈ /2 for a set constraint solver that constraints an element to be in a
list and a nonempty/1 constraint that indicates a set should not be empty:

project(VarSet) \ Elem ∈ Set ⇐⇒ member(Set,VarSet), \+ member(Elem,VarSet) | nonempty(Set).

This approach is of course not general in the sense that certain constraint domains may need
more information than just the variables to project on, such as more intricate knowledge of the
contents of the constraint store. In addition it relies on operational semantics and ordering of
constraints. However, it is a rather compact and high level notation and as such it might be
possible to infer conditions on its usage under which the technique is provably correct.

3.5 Constraint Store Equality

The need to check constraint store equality arises at three different locations:

• Partial call abstraction means a subset of the call environment store is passed in. The tabling
system then needs to check whether a previous call with the same passed in constraint store
appears in a table.

• Entailment checking means we need to check whether a merged store equals one of the initial
stores.

• New answer checking means that a new answer store is compared with previous answer stores.
This operation performed by the tabling mechanism is needed to avoid multiple copies of the
same answer.

We can consider this equality checking with the naive representation of constraints presented
previously in mind. Any permutation of this list represents the same constraint store.

When exact variable identity matters, i.e. in the case of entailment checking, the representation
can be easily brought in a canonical form based on an arbitrarily chosen ordering of the involved
variables, e.g. by sorting of the constraints.

14

For comparison with call or answer patterns in the tables, exact variable identity is not required.
Equality checking needs to be done modulo variable renaming.

Elaboration on heuristics for an algorithm falls outside of the scope of this paper. The problem
can be ignored altogether, with possible duplication in tables as a consequence, or only partially
tackled, e.g. by simple sorting and pattern matching.

4 Applications

XSB Prolog, with its tabling, has proven very convenient for model checker implementation. The
XMC toolset (see [13]), written on top of XSB, is a witness to that. An important feature previously
missing from XSB, a simple way to write application tailored constraint solvers, has now been added
with CHR.

In this section we will look at two model checking applications that both use tabling and
constraint solving but in different ways. Both systems previously turned to ad hoc implementations
of constraint solvers to satisfy their constraint solving needs. It took very little effort to replace
these ad hoc solvers with more flexible and higher level CHR solvers.

We will focus on the constraint-related problems only and refer the reader to specialized pub-
lications regarding model checking, if more insight into the bigger scope of the applications is
desired. However the common approach of the two following model checking applications is based
on reachability between states in an automaton or nodes in a graph.

The standard reachability definition in Prolog gives rise to infinite loops for cyclic graphs.

reach(X,Y) :- edge(X,Y).
reach(X,Y) :- edge(X,Z), reach(Z,Y).

Fortunately in XSB these infinite loops are avoided by tabling the reach/2 predicate. Hence
this reach/2 predicate is the main intersection point for tabling and CHR in our two applications.

4.1 Model Checking of Data-Independent Systems

Data-independent systems manipulate data variables over unbounded domains but have a finite
number of control locations. Such systems can be modeled as extended finite automata, finite
automata with guards on the transitions and variable mapping relations between source and des-
tination locations.

The approach of [15] represents these systems as constraint logic programs: variables are passed
along states collecting more and more constraints. Hence the reach/2 predicate will have to be
described as discussed in Section 3 to deal with CHR constraints on the relevant variables.

Of this constraint approach to checking data-independent systems we studied one model that
checks for a particular vulnerability in the comsat program. Comsat is a Unix server that notifies
users of new mail by printing the first 7 lines to the user’s terminal. Earlier versions of this program
had a vulnerability that would allow a malicious person to obtain root access on the machine comsat
is running on.

The exact property we are looking for here is whether a user can write arbitrary data to the
/etc/passwd password file. If that is the case then that user can easily set a new password that is
known to him for the root user. Two conditions exist under which this is possible:

• The user has write permission on /etc/passwd. This is a trivial solution.

15

• the user has write permission on /etc/utmp2 This file stores user login information, including
the user’s terminal. By setting the root’s terminal to /etc/passwd and sending a mail to
root, any user can manage to set a new root password.

A simple model of the system that only allows to find the first solution was available to the
authors. Nevertheless it contains the typical features of an extended finite automaton, while not
overly drawing attention to the complexity of the problem at hand, to serve as a good proof of
concept for CHR in a tabled context.

Constraints perform three tasks in this application:

• They record the conditions under which state transitions in the model can be taken, and as
such specify the conditions under which the system is vulnerable to attack by a user.

• They allow to rule out the uninteresting case that the user is root.

• They enable avoidance of impossible transitions in the model through failure because of
unsatisfiable constraints.

The previous implementation of the constraints used an explicit list-based constraint store.
From time to time consistency checks, simplification and projection were performed on this store.

It was easily replaced by 2 constraints, neq/2 for user inequality and exists/2 for the existence
of a file in a file system.

neq(User,Name) \ neq(User,Name) ⇐⇒ true.
exists(File,FileSystem) \ exists(File,FileSystem) ⇐⇒ true.
exists(file(Name,Permissions,Data),FS) ⇐⇒ lookup(Name,FS,P,D) | Permissions = P, Data = D.

project(User,FS) \ neq(AUser,FS) ⇐⇒ User \ == AUser | true.
project(User,FS) \ exists(File,AFS) ⇐⇒ AFS \ == FS | true.

lookup(Name,FS,Permissions,Data) :- member(file(Name,Permissions,Data),FS).

The reach/2 predicate was transformed to do full constraint abstraction and the above de-
scribed projection onto variables of interest.

With this CHR implementation we have much more confidence in the scheduling of projection,
simplification and satisfiability checking. The implementation is much more compact and readable
as well. The program runs in less than a millisecond.

4.2 Model Checking of Real Time Systems

The problem looked at here is model checking for timed automata. See [16] for an overview of
different techniques.

Timed automata are automata with a finite set of clocks that can take continuous values between
0 and ∞. All clocks advance synchronously. Transitions between states can have upper and lower
bound constraints on clock values. In addition, clocks can be reset on a transition. In a state clocks
can delay for any amount of time before taking a next transition.

2The actual location of this file may vary between different Unix systems.

16

The constraint solving subproblem consists of determining the upper and lower bounds on all
clocks for a certain transition given:

• the lower bound of the clocks at the start state of the transition

• the constraints on the clocks for the transition

• the maximum pairwise distances between clocks determined by resets

The previous implementation in the XMC toolkit (see [12]) used distance bound matrices
(DBMs) to represent constraint stores. The necessary matrix manipulations were provided to
pose constraints, determine the canonical form, reset clocks and delay.

We have replaced the DBM implementation with CHR constraints:

• lowerbound(N,O,C) with N a number, O either ≤ or < and C a clock. This expresses the
constraint that n ≤ c or n < c.

• upperbound(N,O,C) with N a number, O either ≥ or > and C a clock. This expresses the
constraint that c ≤ n or c < n.

• diff(N,O,C1,C2) with N a number, O either ≥ or > and both C1 and C2 clocks. This is used
to model the distance constraints. Its meaning is that n ≥ c1 − c2 or n > c1 − c2.

Clock resets and delays have been implemented as operations on a list representation of the
constraint store. For the actual constraint solving constraints on the clocks 24 CHR rules have
been implemented, of which the following 3 are a sample :

upperbound(X,≤,N1) \ upperbound(X,≤,N2) ⇐⇒ N1 ≤ N2 | true.

upperbound(X,≤,N1), lowerbound(X,≥,N2) =⇒ N1 ≥ N2.

dist(X,Y,≤,D), upperbound(Y,≤,N) =⇒ M is N + D, upperbound(X,≤,M).

In this application we used tabling on two levels: reach/2 as well as edge/2 transitions.
In contrast to the previous application and the general approach discussed in Section 3 no

constraint call abstraction is performed. Instead the constraint store is passed around explicitly
when not doing any constraint solving. As no auxiliary variables are introduced, no projection is
applied either. To take care of clocks delaying in states before taking a transition, upper bound
constraints on them are removed in the explicit representation of the constraint store. For the
solving of the constraint on an edge transition the explicit constraint store is converted to the usual
global CHR constraint store and afterwards the other way around.

Instead of performing constraint abstraction in the tabled predicates, clock name abstraction is
performed: i.e. clock names are replaced by variables. This allows answer reuse for identical call
constraint stores modulo clock names. This optimization is quite useful in the case of parallelization
of multiple identical automata. The clock names will be different for different instances of the
automaton, but states and constraints are otherwise identical. The original DBM implementation
is not easily capable of this optimization as rows and clocks implicitly correspond with clock names
and reordering of rows and columns on other criteria would be non-trivial compared to the near
canonicalization performed on the CHR list representation.

17

The preliminary results of this implementation are that performance equal to that of the DBM
implementation has been achieved. The code however is much more concise and more confidence
in the correctness of the implementation has been achieved as it is much closer to the semantics of
the problem domain than the mapping onto DBM matrix manipulations. Moreover, future work
on this application will explore high level optimizations enabled by the CHR implementation and
semantical extensions of tabled automata such as different kinds of constraints on clocks.

5 Conclusion and Future Work

In this paper we have shown that it is possible to integrate the committed choice bottom-up
execution of CHRs with the tabled top-down execution of XSB. In particular the issues related to
the consistency of the global CHR store and tables have been established and solutions have been
formulated for call abstraction, tabling constraint stores, answer projection, answer combination
(e.g. for optimization), and answer entailment checking.

Furthermore CHR with tabling has proven a powerful combination: both CHR and tabled XSB
relieve the programmer of the complicated underlying scheduling mechanism behind the scenes and
put the focus on higher level semantics.

Model checking provides a rich application field. The combination of CHR and XSB extends
the conciseness of ordinary model checking systems to those with constraints. Indeed the next step
in the search for applications is to explore more expressive models than are currently viable with
traditional approaches: the flexible nature of CHR makes it easy to experiment with various types
of custom constraints.

Competitive performance has been observed in the model checking domain. The high level
nature of the CHR implementation has revealed some optimizations not apparent or feasible to
other implementations. These and more general performance aspects will be explored in future
work.

As mentioned earlier in Section 3.5, pattern equality testing of constraint stores remains a
challenge. The efficiency and accuracy of the used algorithm may have a considerable impact on
the overall runtime of particular applications.

Other aspects of tabling constraints that have not been touched in this paper are how to
implement partial abstraction and the implications for variant and subsumption based tabling.
Partial abstraction and subsumption are closely related. The former transforms a call into a more
general call while the latter looks for answers to more general calls, but if none are available still
executes the actual call.

It is also worth mentioning that an XSB release with the presented CHR system will soon be
publicly available (see http://xsb.sf.net).

Acknowledgements

We would like to thank Giridhar Pemmasani and Beata Sarna-Starosta for allowing and assisting
us to rework their model checking systems with CHR constraint solvers.

Tom Schrijvers is a research assistant of the Fund for Scientific Research - Flanders (Bel-
gium)(F.W.O. - Vlaanderen)

18

References

[1] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
Journal of the ACM, 43(1):20–74, 1996.

[2] B. Cui and D. S. Warren. A System for Tabled Constraint Logic Programming. In Computa-
tional Logic, pages 478–492, 2000.

[3] B. Cui and D. S. Warren. Attributed Variables in XSB. In I. Dutra, V. S. Costa, G. Gupta,
E. Pontelli, M. Carro, and P. Kacsuk, editors, Electronic Notes in Theoretical Computer Sci-
ence, volume 30. Elsevier, 2000.

[4] B. Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation. Report
CW 350, Department of Computer Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[5] B. Demoen, M. G. de la Banda, W. Harvey, K. Marriott, and P. J. Stuckey. An Overview of
HAL. In Principles and Practice of Constraint Programming, pages 174–188, 1999.

[6] B. Demoen and P.-L. Nguyen. So many WAM variations, so little time. In J. Lloyd, V. Dahl,
U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey,
editors, Computational Logic - CL2000, First International Conference, London, UK, July
2000, Proceedings, volume 1861 of Lecture Notes in Artificial Intelligence, pages 1240–1254.
ALP, Springer, 2000.

[7] X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled Resolution + Constraints: A Recipe
for Model Checking Real-Time Systems. In IEEE Real Time Systems Symposium (RTSS),
Orlando, Florida, November 2000.

[8] T. Frühwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Programming:
Basics and Trends, number 910 in Lecture Notes in Computer Science, pages 90–107. Springer
Verlag, March 1995.

[9] T. Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and K. Marriot,
editors, Special Issue on Constraint Logic Programming, volume 37, October 1998.

[10] C. Holzbaur and T. Frühwirth. Compiling Constraint Handling Rules. In
ERCIM/COMPULOG Workshop on Constraints, CWI, Amsterdam, 1998.

[11] M. Mukund, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. Verma. Symbolic Bisimulation
using Tabled Constraint Logic Programming. In International Workshop on Tabulation in
Parsing and Deduction (TAPD), Vigo, Spain, September 2000.

[12] G. Pemmasani, C. R. Ramakrishnan, and I. V. Ramakrishnan. Efficient Model Checking
of Real Time Systems Using Tabled Logic Programming and Constraints. In International
Conference on Logic Programming (ICLP), Lecture Notes in Computer Science, Copenhagen,
Denmark, July 2002. Springer.

[13] C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roychoudhury,
and V. N. Venkatakrishnan. XMC: A Logic-Programming-Based Verification Toolset. In

19

Twelfth International Conference on Computer Aided Verification (CAV), volume 1855 of
Lecture Notes in Computer Science, pages 576–580, Chicago, Illinois, July 2000. Springer.

[14] K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui, E. Johnson, L. de Castro,
S. Dawson, and M. Kifer. The XSB Programmer’s Manual: version 2.5, vols. 1 and 2, 2001.

[15] B. Sarna-Starosta and C. Ramakrishnan. Constraint-Based Model Checking of Data-
Independent Systems. In 5th International Conference on Formal Engineering Methods, 2003.

[16] S. Yovine. Model Checking Timed Automata. In European Educational Forum: School on
Embedded Systems, pages 114–152, 1996.

20

Simplifying Dynamic Programming via Tabling

Hai-Feng Guo
Computer Science Department, University of Nebraska at Omaha

Omaha, NE 68182-0500, USA
Email: haifengguo@mail.unomaha.edu

Gopal Gupta
Computer Science Department, University of Texas at Dallas

Richardson, TX 75083-0688 USA
Email: gupta@utdallas.edu

Abstract

In the dynamic programming paradigm the value of an optimal solution is recursively defined
in terms of optimal solutions to subproblems. This definition can be very tricky and error-prone
to specify. This paper presents a novel, elegant method based on tabled logic programming
that simplifies the specification of such dynamic programming solutions. Our method intro-
duces a new mode declaration for tabled predicates. The arguments of each tabled predicate
are divided into indexed and non-indexed ones so that tabled predicates can be regarded as
functions: indexed arguments represent input values and non-indexed arguments represent out-
put values. The non-indexed arguments in a tabled predicate can be further declared to be
aggregate, e.g. the minimum, so that while generating answers, the global table will dynamically
maintain the smallest value for that argument. This mode-declaration scheme, coupled with
recursion, provides a considerably easy-to-use method for dynamic programming: there is no
need to define the value of an optimal solution recursively, instead, defining a general solution
suffices. The optimal value as well as its corresponding concrete solution can be derived implic-
itly and automatically using tabled logic programming systems. Experimental results are shown
to indicate that the mode declaration improves both time and space performances in solving
dynamic programming problems on tabled LP systems.

1 Introduction

Tabled logic programming (TLP) systems [2, 3, 5, 6] have been put to many innovative uses, such
as model checking [7] and non-monotonic reasoning [10], due to their highly declarative nature
and efficiency. A tabled logic programming system can be thought of as an engine for efficiently
computing fixed points, which is critical for many practical applications. A TLP system is essential
for extending traditional LP system (e.g., Prolog) with tabled resolutions. The main advantages
of tabled resolution are that a TLP system terminates more often by computing fixed points,
avoids redundant computation by memoing the computed answers, and keeps the declarative and
procedural semantics consistent for pure logic programs.

The main idea of tabled resolution is never to compute the same call twice. Answers to certain
calls are recorded in a global memo table (heretofore referred to as a table), so that whenever
the same call is encountered later, the tabled answers are retrieved and used instead of being
recomputed. This avoidance of recomputation not only gains better efficiency, more importantly,

21

it also gets rid of many infinite loops, which often occur due to static computation strategies (e.g.
SLD resolution [1]) adopted in traditional logic programming systems.

Dynamic programming algorithms are particularly appropriate for implementation with tabled
logic programming [9]. Dynamic programming is typically used for solving optimization problems.
It is a general recursive strategy in which optimal solution to a problem is defined in terms of op-
timal solutions to its subproblems. Dynamic programming, thus, recursively reduces the solution
to a problem to repetitively solving its subproblems. Therefore, for computational efficiency it is
essential that a given subproblem is solved only once instead of multiple times. From this stand-
point, tabled logic programming dynamically incorporates the dynamic programming strategy [9]
in the logic programming paradigm. TLP systems provide implicit tabulation scheme for dynamic
programming, ensuring that subproblems are evaluated only once.

In spite of the assistance of tabled resolution, solving practical problems with dynamic pro-
gramming is still not a trivial task. The main step of dynamic programming paradigm is to define
the value of an optimal solution recursively in terms of the optimal solutions to subproblems. This
definition could be very tricky and error-prone. As the most widely used TLP system, XSB pro-
vides table aggregate predicates [2, 10], such as bagMin/2 and bagMax/2, to find the minimal or
maximal value from tabled answers respectively. Those predicates are helpful in finding the optimal
solutions, and therefore in implementing dynamic programming algorithms. However, users still
have to define optimal solutions explicitly, that is, specify how the optimal value of a problem is
recursively defined in terms of the optimal values of its subproblems. Furthermore, the aggregate
predicates require the TLP system to collect all possible values, whether optimal or non-optimal,
into the memo table, which could dramatically increase the table space needed.

Another important issue in dynamic programming is that once the optimal value is found for a
problem, the concrete solution leading to that optimal value needs to be constructed. This requires
that each computed value be associated with some evidence (or explanation [11]) for solution
construction. In the tabled logic programming formulation, an extra argument is added to the
tabled predicates in which a representation of the explanation is conveniently built. Unfortunately,
to put explanation as an extra tabled predicate argument results in recording of the explanation
as part of the answers to tabled calls. This can dramatically increase the size of the global table
space because there can be many explanations for a single answer in the original program. Similar
issues are raised in [9] on generating parse-trees: determining whether there is a parse-tree can be
done in time cubic on the length of the string (worst case) whereas the number of parse trees may
be exponential. Therefore, from a complexity standpoint, use of TLP for dynamic programming
has certain negative aspects.

This paper presents a novel declarative method based on the tabled logic programming paradigm
for simplifying dynamic programming solutions to problems. The method introduces a new mode
declaration for tabled predicates. The mode declaration classifies arguments of a tabled predicate
as indexed or non-indexed. Each non-indexed argument can be thought of as a function value
uniquely determined by indexed arguments. The tabled logic programming system is optimized to
perform variant checking based only on the indexed arguments. This new declaration for tabled
predicates and modified procedure for variant checking makes it easier to collect a single associ-
ated explanation for a tabled answer, e.g., a concrete solution for an optimal value in dynamic
programming paradigm, even though, in principle there may exist a lot of explanations for the
same tabled answer. The collected explanation can be shown very concisely without involving any
self-dependency among tabled subgoals.

The mode declaration can further extend one of the non-indexed arguments to be an aggregated
value, e.g. the minimum function, so that the global table will record answers with the value of

22

that argument appropriately aggregated. Thus, in the case of the minimum function, a tabled
answer can be dynamically replaced by a new one with a smaller value during the computation.
This mode declaration is essential for obtaining the optimal solution from a general specification
of the dynamic programming solution.

This new mode-declaration scheme, coupled with recursion, provides an attractive platform
for making dynamic programming simpler: there is no need to define the value of an optimal
solution recursively, instead, defining the value of a general solution is enough. The optimal value,
as well as its associated solution, will be computed implicitly and automatically in a tabled logic
programming system that uses the new mode declaration and modified variant checking. Thus,
dynamic programming problems are solved more elegantly.

The rest of the paper is organized as follows: Section 2 introduces tabled logic programming,
in particular, implemented using dynamic reordering of alternatives (DRA) [5]. DRA is described
in subsection 2.1, followed by the typical tabled logic programming based approach for dynamic
programming in subsection 2.2. Section 3 presents our new annotation for declaring tabled goals,
followed by a detailed demonstration of how dynamic programming can benefit from this new
scheme. Section 4 presents the running performance on some dynamic programming benchmarks.
Finally, section 5 presents our conclusions.

2 Tabled Logic Programming (TLP)

Traditional logic programming systems (e.g., Prolog) use SLD resolution [1] with the following
computation strategy: subgoals of a resolvent are solved from left to right and clauses that match
a subgoal are applied in the textual order they appear in the program. It is well known that SLD
resolution may lead to non-termination for certain programs, even though an answer may exist via
the declarative semantics. That is, given any static computation strategy, one can always produce
a program in which no answers can be found due to non-termination even though some answers
may logically follow from the program. In case of Prolog, programs containing certain types of
left-recursive clauses are examples of such programs.

Tabled logic programming eliminates such infinite loops by extending logic programming with
tabled resolution. The main idea is to memorize the answers to some calls and use the memorized
answers to resolve subsequent variant calls. Tabled resolution adopts a dynamic computation
strategy while resolving subgoals in the current resolvent against matched program clauses or
tabled answers. It keeps track of the nature and type of the subgoals; if the subgoal in the current
resolvent is a variant of a former tabled call, tabled answers are used to resolve the subgoal;
otherwise, program clauses are used following SLD resolution.

In a tabled logic programming system, only tabled predicates are resolved using tabled resolu-
tion. Tabled predicates are explicitly declared as :- table p/n., where p is a predicate name and
n is its arity. A global data structure table is introduced to memorize the answers of any subgoals
to tabled predicates, and to avoid any recomputation.

We use dynamic reordering of alternatives (DRA) resolution [5] throughout this paper as an
example of tabled resolution. Other tabled resolutions, including SLG [2], SLDT [3], etc. perform
similarly toward the computation of a fixed point.

2.1 Dynamic Reordering of Alternatives (DRA)

The DRA resolution computes a fixed point in a very similar way as bottom-up execution of logic
programs [1]. Its main idea is to dynamically identify looping alternatives from the program clauses,

23

and then repetitively apply those alternatives until no more answers can be found. A looping
alternative refers to a clause that matches a tabled call and will lead to a resolvent containing a
recursive variant call.

Program 2.1 Consider the following tabled logic program defining a reachability relation:

:- table reach/2.

reach(X, Y) :- reach(X, Z), arc(Z, Y). (1)

reach(X, Y) :- arc(X, Y). (2)

arc(a, b). arc(a, c). arc(b, a).

:- reach(a, X).

As shown in Figure 1, the computation of reach(a,X) is divided into three stages: normal,
looping and complete. The purpose of the normal stage is to find all the looping alternatives (the
clause (1) leading to a variant subgoal reach(a,Z)) and record all the answers generated from
the non-looping alternatives (the clause (2)) into the table. The new answer label indicates that
the new answer generated from that successful path should be added into the table. Then, in the
looping stage only the looping alternative (clause (1)) is performed repeatedly to consume new
tabled answers until a fixed point is reached, that is, no more answers for reach(a,X) can be
found. Afterwards, the complete stage is reached. As a result, the query :- reach(a,X) returns a
complete answer set X=b, X=c and X=a, albeit the predicate is defined left-recursively.

X=b
new_answer

X=c
new_answer

Z=b

reach(a, Z),
arc(Z, X)

X=a
new_answer

fail

 Looping
AlternativesSubgoals

 Tabled

reach(a, b)
reach(a, c)
reach(a, a)

(1)

Answers

reach(a, X)

(1) (2) (1)

reach(a,X)

fail

arc(Z,X)
reach(a, Z), arc(a,X)

Z=a

arc(b, X)

X=b X=c

Z=c

arc(c, X) arc(a, X)

Normal

Looping

Figure 1: DRA Resolution 2.1

2.2 Dynamic Programming with TLP

We use the matrix-chain multiplication problem [12] as an example to illustrate how tabled logic
programming can be adopted for solving dynamic programming. A product of matrices is fully
parenthesized if it is either a single matrix or the product of two fully parenthesized matrix prod-
ucts, surrounded by parentheses. Thus, the matrix-chain multiplication problem can be stated as
follows (detailed description of this problem can be found in any major algorithm textbook covering
dynamic programming):

Problem 2.1 Given a chain 〈A1, A2, ..., An〉 of n matrices, where for i = 1, 2, ..., n, matrix Ai has
dimension pi−1 × pi, fully parenthesize the product A1A2...An in a way that minimizes the number
of scalar multiplications.

24

To solve this problem by dynamic programming, we need to define the cost of an optimal
solution recursively in terms of the optimal solutions to subproblems. Let m[i, j] be the minimum
number of scalar multiplications needed to compute the matrix Ai..j, which denotes a sub-chain of
matrices AiAi+1...Aj for 1 ≤ i ≤ j ≤ n. Thus, our recursive definition for the minimum cost of
parenthesizing the product Ai..j becomes

m[i, j] =

{
0 if i = j,
min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j.

A tabled Prolog coding is given in Program 2.2 to solve the matrix-chain multiplication problem.
The predicate scalar cost(PL, V, P0, Pn) is tabled, where PL, P0 and Pn are given by the user
to represent the dimension sequence [p0, p1, ..., pn], the first dimension p0 and the last dimension
pn, respectively, and V is the minimum cost of scalar multiplications to multiply A1..n; the built-in
predicate findall(X,G,L) is used to find all the instances of X as a list L such that each instance
satisfies the goal G; the predicate break(PL, PL1, PL2, Pk) is used to split the dimension sequence
at the point of Pk into two parts to simulate the parenthesization; and the predicate list min(L,
V) finds a minimum number V from a given list L.

Program 2.2 A tabled logic program for matrix-chain multiplication problems:

:- table scalar cost/4.

scalar cost([P1, P2], 0, P1, P2).

scalar cost([P1, P2, P3 | Pr], V, P1, Pn) :-

findall(V, (break([P1, P2, P3 | Pr], PL1, PL2, Pk),

scalar cost(PL1, V1, P1, Pk),

scalar cost(PL2, V2, Pk, Pn),

V is V1 + V2 + P1 * Pk * Pn), VL),

list min(VL, V).

break([P1, P2, P3], [P1, P2], [P2, P3], P2).

break([P1, P2, P3, P4 | Pr], [P1, P2], [P2, P3, P4 | Pr], P2).

break([P1, P2, P3, P4 | Pr], [P1 | L1], L2, Pk) :-

break([P2, P3, P4 | Pr], L1, L2, Pk).

Consider a chain 〈A1, A2, A3〉 of three matrices. Suppose that the dimensions of the matrices
are 10 × 100, 100 × 5, and 5 × 50, respectively. We can give a query :- scalar cost([10, 100,
5, 50], V, 10, 50) to find the minimum value of its scalar multiplications. As a result, V is
instantiated to 7500, corresponding to the optimal parenthesization ((A1A2)A3).

Program 2.2 shows that the programmer has to find the optimal value by comparing all possible
multiplication costs explicitly. In fact, for a general optimization problem, the definition of an
optimal solution could be quite complicated due to heterogeneous solution construction. Then,
comparing all possible solutions explicitly to find the optimal one could be very tricky and error-
prone. In this paper we present a simple method to separate the task of finding the optimal solution
from the task of specifying the general dynamic programming formulation. Using our method, the
programmer is only required to define what a general solution is, while searching for the optimal
solution is left to the TLP system.

The next thing we are interested in is finding the actual parenthesization (explanation) that led
to the optimal answer. Of course, the above program is of no help, since it only finds the optimal
value for the number of scalar multiplications. A standard method [11] to construct explanation in

25

logic programming is to add an extra argument to tabled predicates for the explanation. However,
this extra argument results in recording explanation as part of the answers to tabled calls, which
can dramatically increase the size of global table space. Consider the program for computing
reachability again, we can introduce a new transformed tabled predicate reach/3 as shown in
Program 2.3, where the third argument E is used to generate the path from X to Y. Obviously, there
are infinite number of paths from a to any node due to the cycle between a and b. Therefore,
from this standpoint of computational complexity, tabling predicates has certain drawbacks. In
this paper we show how this drawback can be removed.

Program 2.3 A tabled logic program defining a reachability relation predicate with path informa-
tion as an extra argument:

:- table reach/3.

reach(X, Y, E) :- reach(X, Z, E1), arc(Z, Y, E2), append(E1, E2, E).

reach(X, Y, E) :- arc(X, Y, E).

arc(a, b, [(a,b)]). arc(a, c, [(a,c)]). arc(b, a, [(b,c)]).

:- reach(a, Y, E).

Similar problems have been studied on justification in [13, 8]. One reasonable solution is pre-
sented in [8] by asserting the first evidence into a dynamic database for each tabled answer. However,
the evidence has to be organized as segments indexed by each tabled answer. That is, an extra
procedure is required to construct the full evidence.

3 A Declarative Method

In this section, we present a new method by introducing a special mode declaration for tabled
predicates. The mode declaration is used to classify arguments as indexed or non-indexed for each
tabled predicate. Only indexed arguments in a tabled predicate are used for variant checking.

Variant checking is a crucial operation for tabled resolution as it leads to avoidance of non-
termination. It is used to differentiate both tabled goals and their answers. While computing the
answers to a tabled goal p with tabled resolution, if another tabled subgoal q is encountered, the
decision regarding whether to consume tabled answers or to try program clauses depends on the
result of variant checking. If q is a variant of p, the variant subgoal q will be resolved by unifying it
with tabled answers, otherwise, traditional Prolog resolution is adopted for q. Additionally, when
an answer to a tabled goal is generated, variant checking is used to check whether the generated
answer is variant of an answer that is already recorded in the table. If so, the table is not changed;
this step is crucial in ensuring that a fixed point is reached.

Notice that the new method can also be applied on other tabled resolutions, such as SLG [14]
and SLDT [3], since essentially only variant checking is modified.

3.1 Mode Declaration for Evidence Construction

The new mode declaration for tabled predicates can be described in the form of
:- table mode p(a1, ..., an).

where p is a tabled predicate name, n ≥ 0, and each ai has one of the following forms:

+ denotes that this indexed argument is used for variant checking;

− denotes that this non-indexed argument is not used for variant checking.

26

Consider the reachability example again. Suppose we declare the mode as “:- table mode
reach(+,+,−)”; this means that the first two arguments of the predicate reach/3 are used for
variant checking. The new computation of the query reach(a,Y,E) is shown in Figure 2. Since
only the first two arguments of reach/3 are used for variant checking, the last two answers “Y=b,
E=[(a,b),(b,a),(a,b)]” and “Y=c, E=[(a,b),(b,a),(a,c)]”, shown on the rightmost two sub-
branches, are variant answers to “Y=b, E=[(a,b)]” and “Y=c, E=[(a,c)]” respectively. There-
fore, no new answers are added into the table at those points. The computation is then terminated
properly with three answers. As a result, each reachable node from a has a simple path.

Y=b
E=[(a,b)]
new_answer

Y=c
E=[(a,c)]
new_answer

arc(Z,Y,E2),
app(E1,E2,E)

Z=b
E1=[(a,b)]

arc(b,Y,E2),
app([(a,b)],E2,E)

Y=a
E=[(a,b),(b,a)]
new_answer

Z=c
E1=[(a,c)]

arc(c,Y,E2),
app([(a,c)],E2,E)

arc(a,Y,E2),
app(E1,E2,E)

Y=C
E=[(a,b),(b,a),(a,c)]

Z=a
E1=[(a,b),(b,a)]

Y=b
E=[(a,b),(b,a),(a,b)]

fail

 Looping
Alternatives

reach(a,b,[(a,b)])
reach(a,c,[(a,c)])
reach(a,a,[(a,b),(b,a)])

Subgoals
 Tabled

reach(a,Y,E)

Answers

(1)

reach(a,Y,E)

arc(a,Y,E)reach(a,Z,E1),
arc(Z,Y,E2),
app(E1,E2,E)

reach(a,Z,E1),

(1) (2) (1)

fail

Looping

Normal

Figure 2: DRA Resolution with Table Mode Declaration

The mode directive tabled mode makes it very easy and efficient to extract explanation for
tabled predicates. In fact, our strategy of ignoring the explanation argument during variant check-
ing results in only the first explanation for each tabled answer being recorded. Subsequent ex-
planations are filtered by our modified variant checking scheme. This feature ensures that those
generated explanations are concise and that cyclic explanations are guaranteed to be absent. For
the reachability instance shown in Figure 2, each returned path is simple such that all arcs are
distinct.

Essentially, if we regard a tabled predicate as a function, then all the non-indexed arguments
are uniquely defined by the instances of indexed arguments. For the previous example, the third
argument of reach/3 returns a single path depending on the first two arguments. Therefore,
variant checking should be done w.r.t. only indexed arguments during tabled resolution. Indexed
arguments in a tabled predicate can also be declared with the mode ‘*’ if they are always bound
before a call to the tabled predicate is invoked. In this case, even though a tabled call may have
many answers, they share the same input arguments. Therefore, for each tabled call, only one copy
of the input arguments need be stored. From these viewpoints, the mode declaration makes tabled
resolution more efficient and flexible.

3.2 Aggregate Declaration for Making Dynamic Programming Easier

The mode directive table mode can be further extended to associate a non-indexed argument of a
tabled predicate with some optimum constraint. Currently, a non-indexed argument for each tabled
answer only records the very first instance. This “very first” property can actually be generalized to
any optimum, e.g. the minimum value, in which case the global table will record answers with the
value of that argument as small as possible. That is, a tabled answer can be dynamically replaced
by a new one with smaller value during the computation. In general, given a tabled call p(I1,
I2, ..., In, NI) where Ii for 1 ≤ i ≤ n are indexed arguments and NI is a single non-indexed
argument, let p(i1, i2, ..., in, u) be the entry for predicate p (with arity n+1) in the table.

27

Suppose, a new solution is found during tabled execution represented by p(i1, i2, ..., in, v),
then, in general, the user can define an aggregation predicate f such that the new value of the non-
indexed argument is updated to w such that f(u,v,w) holds. By default, f is defined as f(X, ,X)
(the value of the non-indexed argument is set to the first one found). For dynamic programming
applications, f is set to the min predicate as follows:

f(X,Y,Z) :- min(X,Y,Z).
This can easily be generalized to the case where multiple non-indexed arguments are present.

Currently, we allow min and max as the only aggregation predicates. These are specified via
special mode declarations. Two new modes are added in the directive table mode to declare the
aggregation operation to be used for tabled predicates; both modes also imply that the arguments
are non-indexed.

0 denotes that this argument is a minimum;

9 denotes that this argument is a maximum.

The aggregation declaration can be used to make control of execution during dynamic program-
ming implicit, making the specification of dynamic programming problems more declarative and
elegant. For the matrix-chain multiplication, instead of defining the cost of an optimal solution,
we only need to specify what the cost for a general solution is. Let m[i, j] be the number of scalar
multiplications needed to compute the matrix Ai..j for 1 ≤ i ≤ j ≤ n, where n is the total number
of matrices. The recursive definition for the cost of parenthesizing Ai..j becomes

m[i, j] =
{

0 if i = j,
m[i, k] + m[k + 1, j] + pi−1pkpj if i < j.

Program 3.1 A tabled logic program with optimum mode declaration for matrix-chain multiplica-
tion problems:

:- table scalar cost/4.

:- table mode scalar cost(+, 0, -, -).

scalar cost([P1, P2], 0, P1, P2).

scalar cost([P1, P2, P3 | Pr], V, P1, Pn) :-

break([P1, P2, P3 | Pr], PL1, PL2, Pk),

scalar cost(PL1, V1, P1, Pk),

scalar cost(PL2, V2, Pk, Pn),

V is V1 + V2 + P1 * Pk * Pn.

The mode declaration scalar cost(+,0,-,-) means that only the first argument (the list of
matrix dimensions) is used for variant checking when an answer is generated, and a minimum value
is expected for the second argument (the cost of scalar multiplication). Arguments with different
modes are tested in the following order during variant checking of a recently generated answer: (1)
the indexed argument with ‘+’ mode has the highest priority to be first checked to identify whether
it is a new answer; if that is the case, a new tabled entry is required to record the answer; otherwise
a tabled answer with the same indexed argument is found; (2) this tabled answer is then compared
with the recently generated one w.r.t the argument with the optimum mode ‘0’; if the new answer
has a smaller value on the optimum argument, then a replacement over the tabled answer is required
such that the tabled answer keeps the minimum value as expected for this argument.

28

Figure 3 shows the recursion tree produced by the query
:- scalar cost([10,100,5,50],V,10,50).

Consider the tabled call scalar cost([10,100,5,50],V,10,50). Its first tabled answer has V=75000.
However, when the second answer V=7500 is computed, it will automatically replace the pre-
vious answer following the declared optimum mode. Thus, there is at most one instance of
scalar cost([10,100,5,50],V,10,50) that exists in the table at any point in time, and it rep-
resents the optimal value computed up to that point.

scalar_cost([10,100,5,50],7500,10,50)

scalar_cost([10,100],0,10,100) scalar_cost([10,100,5],5000,10,5)

scalar_cost([100,5,50],25000,100,50)

cost=75000

scalar_cost([5,50],0,5,50)

scalar_cost([100,5],0,100,5)

scalar_cost([5,50],0,5,50)

cost=25000

scalar_cost([10,100],0,10,100)

scalar_cost([100,5],0,100,5)

cost=5000

cost=7500

Figure 3: The recursion tree for the computation of scalar cost([10,100,5,50],V,10,50)

As long as the tabled Prolog engine is set to compute the fixed point semantics for logic pro-
grams with bounded term depth, the optimal value for the dynamic programming problem under
consideration will always be found. Intuitively, given a tabled call C, the DRA resolution first
finds all the answers for C using clauses not containing variant calls. Once this set of answers is
computed and tabled, it is treated as a set of facts, and used for computing rest of the answers from
the clauses leading to variant calls (looping alternatives). Whenever an answer to C is generated, it
will be selectively added to the table either as a new entry or as a replacement based on the defined
mode of the corresponding predicate. The process stops when no new answers can be computed
via the looping alternatives, i.e., a fixed point is reached. In this regard, with the assistance of
mode declaration and tabled resolution, the computation of program clauses only defining general
solutions will still produce the optimal solution.

3.3 Dynamic Programming with Evidence Construction

To make the matrix-chain multiplication problem complete, we need to construct an optimal paren-
thesization solution corresponding to the minimal cost of scalar multiplication. This construction
can be achieved with the strategy described in Section 3.1, by introducing an extra non-indexed
argument whose instantiation becomes the solution. The complete tabled logic program is shown
below:

Program 3.2 A tabled logic program for the complete matrix-chain multiplication problem:

:- table scalar cost evid/5.

:- table mode scalar cost evid(+, O, -, -, -).

scalar cost evid([P1, P2], 0, P1, P2, (P1,P2)).

scalar cost evid([P1, P2, P3 | Pr], V, P1, Pn, (E1*E2)) :-

break([P1, P2, P3 | Pr], PL1, PL2, Pk),

scalar cost evid(PL1, V1, P1, Pk, E1),

scalar cost evid(PL2, V2, Pk, Pn, E2),

V is V1 + V2 + P1 * Pk * Pn.

29

4 Experimental Results

The mode declaration scheme has been implemented in the authors’ TALS [5] system, a tabled
Prolog system implemented on the top of the WAM engine of the commercial ALS Prolog en-
gine [15]. No change is required to the DRA resolution mechanism; therefore, the same idea can
also be applied to other tabled Prolog systems.

Two major changes to the global data structure table are needed to support mode declarations.
First, each table predicate is associated with a new item mode, which is represented as a bit string.
The default mode for each argument in a table predicate is ‘-’. Second, the answers to a tabled
subgoal are selectively tabled depending on its mode declaration. The input arguments with the
mode ‘*’ in each tabled subgoal are only recorded once because the input arguments are bound
before the subgoal is invoked, and therefore same for all its answers. This optimization leads to big
improvements on both time and space system performance.

Another important implementation issue is the replacement of tabled answers. In the current
TALS system, if the tabled subgoal only involves numerals as arguments, then the tabled answer
will be completely replaced if necessary. If the arguments involve structures, however, then the
answer will be updated by a link to the new answer. Space taken up by the old answer has to
be recovered by garbage collection (the ALS Prolog’s garbage collector has not yet been extended
by us to include table space garbage recovery). As a result, if arguments of tabled predicates are
bound to structures, more table space is used up.

Our experimental benchmarks include five typical dynamic programming examples. matrix is
the matrix-chain multiplication problem; lcs is longest common subsequence problem; obst finds
an optimal binary search tree; apsp finds the shortest paths for all pairs of nodes; and knap is the
knapsack problem. All tests were performed on an Intel Pentium 4 Mobile CPU 1.8GHz machine
with 512M RAM running RedHat Linux 9.0.

without evidence construction with evidence construction
Benchmark matrix lcs obst apsp knap matrix lcs obst apsp knap
without mode 2.18 0.94 0.90 4.17 54.59 3.09 5.93 11.69 6.70 140.46
with mode 1.14 0.43 0.32 2.90 40.64 2.27 0.67 0.73 3.10 41.77

Table 1: Running time performance comparison (Seconds)

Table 1 compares the running time performance between the programs with and without mode
declaration. The first group of benchmarks are programs only seeking the optimal values without
evidence construction, while the second group are programs for the same dynamic programming
problems with evidence construction. The experimental data indicates that the programs with
mode declaration run 1.34 to 16.0 times faster than the corresponding programs without mode
declaration.

Figure 4 shows the timing information against different input sizes for matrix-chain multipli-
cation problems. Notice that the numbers on X-axis represent the total number of matrices to be
multiplied, and the numbers on Y-axis represent the running time with seconds. Whether without
evidence construction (Figure 4(a) or with evidence construction (Figure 4(b)), the graphs indi-
cate that the timings of the programs with mode are consistently better than those without mode
declaration.

Additionally, we compare the running space performance between the programs with and with-
out mode declaration in Table 2. For benchmarks without evidence construction, our experiments

30

 0

 20

 40

 60

 80

 100

 120

 140

 100 150 200 250 300

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Matrix Problem Size (Seconds)

without mode
with mode

 0

 50

 100

 150

 200

 250

 100 150 200 250 300

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Matrix Problem Size

without mode
with mode

(a) Without evidence (b) With evidence

Figure 4: Time Performance of Matrix-chain Multiplication

without evidence construction with evidence construction
Benchmark matrix lcs obst apsp knap matrix lcs obst apsp knap
without mode 4.98 78.75 2.65 20.17 222.65 9.22 92.99 4.44 29.90 399.95
with mode 0.57 23.44 0.25 14.60 14.86 11.64 44.24 17.46 21.39 305.19

Table 2: Running space comparison (Megabytes)

indicate that with mode declaration, space requirement is 1.4 to 15.0 times less compared to with-
out mode declaration. With evidence construction included, space performance can be better or
worse depending on the problems. For the matrix and obst problems trying to find the optimal
binary tree structure, the programs without mode explicitly generate all possible answers and then
table the optimal one, while the programs with mode implicitly generate all possible answers and
selectively table the better answers until the optimal one is found. In the latter case, some non-
optimal answers may be recorded in the table, unseen by the user; if the optimal answer happens
to be the first tabled answer, then no other un-optimal answers will be recorded. This is the reason
why the benchmarks matrix and obst (with evidence construction) with mode declaration take
more space than those without mode, as shown in Table 2.

5 Conclusion

A new mode declaration for tabled predicates is introduced in TLP systems to aggregate information
dynamically recorded in the table. The mode declaration classifies arguments of tabled predicates
as either indexed or non-indexed. As a result, (i) a tabled predicate can be regarded as a function
in which non-indexed arguments (outputs) are uniquely defined by the indexed arguments (inputs);
(ii) concise explanation for tabled answers can be easily constructed in a non-indexed argument;

31

(iii) the efficiency of tabled resolution is improved since only indexed arguments are involved in
variant checking; and (iv) the non-indexed arguments can be further qualified with an aggregate
mode such that an optimal value can be sought without explicit coding of the comparison.

This new mode declaration scheme, coupled with recursion, provides an elegant method for
solving dynamic programming problems: there is no need to define the value of an optimal solution
recursively, instead, defining the value of a general solution is enough. The optimal value, as well
as its associated solution, is obtained automatically by the TLP systems. This new scheme has
been implemented in the authors’ TALS system with very encouraging results.

References

[1] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[2] XSB system. http://xsb.sourceforge.net

[3] Neng-Fa Zhou, Y. Shen, L. Yuan, and J. You: Implementation of a Linear Tabling Mechanism.
In Proceedings of Practical Aspects of Declarative Languages (PADL), 2000.

[4] I.V. Ramakrishnan, P. Rao, K.F. Sagonas, T. Swift, D.S. Warren: Efficient table access
mechanisms for logic programs. Journal of Logic Programming, 38(1):31-54, Jan. 1999.

[5] Hai-Feng Guo and Gopal Gupta: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In Proceedings of International
Conference on Logic Programming (ICLP), pages 181–196, 2001.

[6] R. Rocha, F. Silva, and V. S. Costa: On a Tabling Engine That Can Exploit Or-Parallelism.
In ICLP Proceedings, pages 43–58, 2001.

[7] Y.S. Ramakrishnan, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift, D.S.
Warren: Efficient Model Checking using Tabled Resolution. In Proceedings of Computer
Aided Verification (CAV’97), pages 143–154 1997.

[8] H-F. Guo, C.R. Ramakrishnan, and I.V. Ramakrishnan: Justification using Program Trans-
formation. In Proceedings of Logic Based Program Synthesis and Tranformation, 2002.

[9] David S. Warren: Programming in Tabled Prolog (Draft Book). www.cs.sunysb.edu/~warren.

[10] Terrance Swift: Tabling for Non-Monotonic Programming. Annals of Mathematics and Arti-
ficial Intelligence, 25(3-4): 201-240, 1999.

[11] Günther Specht: Generating Explanation Trees even for Negations in Deductive Database
Systems. Proc. of the 5th Workshop of Logic Programming Environments, 1992.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to Algorithms. The MIT Press, 2001.

[13] A. Roychoudhury, C.R. Ramakrishnan, and I.V. Ramakrishnan: Justifying proofs using memo
tables. Second International ACM SIGPLAN conference on Principles and Practice of Declar-
ative Programming (PPDP), pp. 178–189, 2000.

[14] Weidong Chen and David S. Warren: Query Evaluation under the Well Founded Semantics.
ACM Symposium on Principles of Database Systems, pp. 168–179, 1993.

[15] Applied Logic Systems, Inc. http://www.als.com

32

A Tabling Engine Designed to Support Mixed-Strategy Evaluation

Ricardo Rocha Fernando Silva

DCC-FC & LIACC
Universidade do Porto, Portugal

{ricroc,fds}@ncc.up.pt

V́ıtor Santos Costa

COPPE Systems & LIACC
Universidade do Rio de Janeiro, Brasil

vitor@cos.ufrj.br

Abstract

Tabling is an implementation technique that improves the declarativeness and expressiveness
of Prolog by reusing answers to subgoals. During tabled execution, there are several points where
different operations can be applied. The decision on which operation to perform is determined
by the scheduling strategy. Whereas a strategy can achieve very good performance for certain
applications, for others it might add overheads and even lead to unacceptable inefficiency. The
ability of using multiple strategies within the same evaluation can be a means of achieving the
best possible performance. In this work, we present how the YapTab system was designed to
support the two most successful tabling scheduling strategies: batched and local scheduling; and
how it can be easily extended to support simultaneous mixed-strategy evaluation.

1 Introduction

The past years have seen wide effort at increasing Prolog’s declarativeness and expressiveness. One
such proposal that has been gaining in popularity is the use of tabling or tabulation or memoing.
Work on SLG resolution [2], as implemented in the XSB logic programming system [1], proved
the viability of tabling technology for application areas such as Natural Language Processing,
Knowledge Based Systems, Model Checking, and Program Analysis. Tabling based models are
able to reduce the search space, avoid looping, and have better termination properties than SLD
based models.

The basic idea behind tabling is straightforward: programs are evaluated by storing answers of
current subgoals in an appropriate data space, called the table space. The method then uses the
table to verify whether calls to subgoals are repeated. Whenever such a repeated call is found,
the subgoal’s answers are recalled from the table instead of being re-evaluated against the program
clauses.

During tabled execution, there are several points where we had to choose between continuing
forward execution, backtracking, consuming answers from the table, or completing subgoals. The
decision on which operation to perform is crucial to system performance and is determined by the
scheduling strategy. Different strategies may have a significant impact on performance, and may
lead to different order of solutions to the query goal. Arguably, the two most successful tabling
scheduling strategies are batched scheduling and local scheduling [6].

Batched scheduling favors forward execution first, backtracking next, and consuming answers
or completion last. It thus tries to delay the need to move around the search tree by batching the
return of answers. When new answers are found for a particular tabled subgoal, they are added to
the table space and the evaluation continues. On the other hand, local scheduling tries to complete

33

subgoals sooner. When new answers are found, they are added to the table space and the evaluation
fails. Answers are only returned when all program clauses for the subgoal in hand were resolved.

Empirical work from Freire et al. [6, 7] showed that, regarding the requirements of an application,
the choice of the scheduling strategy can differently affect the memory usage, execution time and
disk access patterns. Freire argues [5] that there is no single best scheduling strategy, and whereas
a strategy can achieve very good performance for certain applications, for others it might add
overheads and even lead to unacceptable inefficiency. As a means of achieving the best possible
performance, Freire and Warren [8] proposed the ability of using multiple strategies within the
same evaluation, by supporting mixed-strategy evaluation at the predicate level. However, to the
best of our knowledge, no such implementation has yet been done.

In this work, we present how YapTab [10] was designed to support batched and local scheduling
independently and how it can be easily extended to support simultaneous mixed-strategy evaluation.
YapTab is a sequential tabling engine that extends Yap’s execution model [12] to support tabled
evaluation for definite programs. YapTab’s implementation is largely based on the ground-breaking
design of the XSB system [1], which implements the SLG-WAM [11].

The remainder of the paper is organized as follows. First, we briefly introduce the basic tabling
definitions and discuss the differences between batched and local scheduling. We then present the
support actually implemented in YapTab to deal with both scheduling strategies and discuss and
it can be extended to support mixed-strategy evaluation.

2 Basic Tabling Definitions

Tabling is about storing intermediate answers for subgoals so that they can be reused when a
repeated subgoal appears. Whenever a tabled subgoal S is first called, an entry for S is allocated
in the table space. This entry will collect all the answers found for S. Repeated calls to variants of
S are resolved by consuming the answers already stored in the table. Meanwhile, as new answers
are found, they are stored into the table and returned to all variant subgoals. Within this model,
the nodes in the search space are classified as either: generator nodes, corresponding to first calls
to tabled subgoals; consumer nodes, corresponding to variant calls to tabled subgoals; or interior
nodes, corresponding to non-tabled subgoals.

Tabling based evaluation has four main types of operations for definite programs: entering a
tabled subgoal; adding a new answer to a generator; exporting an answer from the table; and trying
to complete a subgoal. In more detail:

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if the subgoal is in
the table, and if not, adds a new entry for it and allocates a new generator node. Otherwise,
it allocates a consumer node and starts consuming the available answers.

2. The new answer operation returns a new answer to a generator. It verifies whether a newly
generated answer is already in the table, and if not, inserts it. Otherwise, it fails.

3. The answer resolution operation is executed every time the computation reaches a consumer
node. It verifies whether newly found answers are available for the particular consumer node
and, if any, consumes the next one. Answers are consumed in the same order they are inserted
in the table. Otherwise, it suspends the current computation, either by freezing the whole
stacks [11], or by copying the execution stacks to separate storage [4], and schedules a possible
resolution to continue the execution.

34

4. The completion operation determines whether a tabled subgoal is completely evaluated. A sub-
goal is said to be completely evaluated when all its possible resolutions have been performed,
that is, when no more answers can be generated and the variant subgoals have consumed
all the available answers. It executes when we backtrack to a generator node and all of its
clauses have been tried. If the subgoal has been completely evaluated, the operation closes its
table entry and reclaims space. Otherwise, it resumes one of the consumers with unconsumed
answers.

Completion is needed in order to recover space and to support negation. We are most interested
on space recovery in this work. Arguably, in this case we could delay completion until the very
end of execution. Unfortunately, doing so would also mean that we could only recover space for
consumers (suspended subgoals) at the very end of the execution. Instead we shall try to achieve
incremental completion [3] to detect whether a generator node has been fully exploited, and if so
to recover space for all its consumers.

Completion is hard because a number of generators may be mutually dependent, thus forming
a Strongly Connected Component (or SCC). Clearly, we can only complete SCCs together. We will
usually represent an SCC through the oldest generator. More precisely, the youngest generator
node which does not depend on older generators is called the leader node. A leader node is also the
oldest node for its SCC, and defines the current completion point.

3 Scheduling Strategies

At several points we had to choose between continuing forward execution, backtracking to interior
nodes, returning answers to consumer nodes, or performing completion. The actual sequence of
operations thus depends on the scheduling strategy. We next discuss in some more detail batched
and local scheduling.

3.1 Batched Scheduling

Batched scheduling takes its name because it tries to minimize the need to move around the search
tree by batching the return of answers. When new answers are found for a particular tabled subgoal,
they are added to the table space and the evaluation continues until it resolves all program clauses
for the subgoal in hand. Only then the newly found answers will be returned to consumer nodes.

Batched scheduling schedules the program clauses in a depth-first manner as does the WAM.
Calls to non-tabled subgoals allocate interior nodes. First calls to tabled subgoals allocate generator
nodes and variant calls allocate consumer nodes. However, if we call a variant tabled subgoal,
and the correspondent subgoal is already completed, we can avoid consumer node allocation and
instead perform what is called a completed table optimization [11]. This optimization allocates a
node, similar to an interior node, that will consume the set of found answers executing compiled
code directly from the table data structures associated with the completed subgoal [9].

When backtracking we may encounter three situations: (i) if backtracking to a generator or
interior node, we take the next available alternative; (ii) if backtracking to a consumer node, we
take the next unconsumed answer; (iii) if there are no available alternatives or no unconsumed
answers, we simply backtrack to the previous node on the current branch. Note however that, if
the node without alternatives is a leader generator node, then we must check for completion.

In order to perform completion, we must ensure that all answers have been returned to all
consumers in the SCC. The process of resuming a consumer node, consuming the available set of

35

answers, suspending and then resuming another consumer node can be seen as an iterative process
which repeats until a fixpoint is reached. This fixpoint is reached when the SCC is completely
evaluated.

At engine level, the fixpoint check procedure is controlled by the leader of the SCC. The procedure
traverses the consumer nodes in the SCC in a bottom-up manner to determine whether the SCC has
been completely evaluated or whether further answers need to be consumed. Initially, it searches
for the bottom consumer node with unresolved answers, and as long as there are available answers,
it will consume them. After consuming the available set of answers, the consumer suspends and
fails into the next consumer with unresolved answers. This process repeats until it reaches the
last consumer node, in which case it fails into the leader node in order to allow the re-execution
of the fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC are marked
completed and the stack segments belonging to the completed subtree are released.

3.2 Local Scheduling

Local scheduling is an alternative tabling scheduling strategy that tries to complete subgoals sooner.
Evaluation is done one SCC at a time, and answers are returned outside of a SCC only after that
SCC is completely evaluated. When new answers are found, they are added to the table space and
the evaluation fails. Answers are only returned when all program clauses for the subgoal in hand
were resolved. We next present in Fig. 1 a small example that clarifies the differences between
batched and local evaluation.

1. b(X)
2. X = 1
3. X = 2

subgoal answers

4. complete

:- table b/1. b(1).
a(X,Y) :- b(X), b(Y). b(2).

 ?- a(x,Y).

0. a(x,Y)

1. b(X), b(Y)

8. Y = 2

1. b(X)

2. X = 1 5. X = 2

Table space

1. b(X)
2. X = 1
5. X = 2

subgoal answers

3. b(Y)

4. Y = 1

6. b(Y)

9. Y = 2 7. Y = 1

0. a(x,Y)

1. b(X), b(Y)

10. Y = 2

X = 1

1. b(X)

2. X = 1 3. X = 2

Table space

5. b(Y)

6. Y = 1

8. b(Y)

X = 2

7. Y = 2 9. Y = 1

10. complete
X = 1 X = 2

Batched
scheduling

Local
scheduling

Figure 1: Batched versus local scheduling

36

At the top, the figure illustrates the program code and the query goal used in both evaluations.
Declaration :- table b/1 in the program code indicates that calls to predicate b/1 should be
tabled. The two sub-figures below depict the evaluation sequence for each scheduling strategy,
which includes the resulting table space and forest of trees. The numbering of nodes denotes the
evaluation sequence. The leftmost tree represents the original invocation of the query goal a(X,Y).
As we shall see, computing a(X,Y) requires computing b(X). For simplicity of presentation, the
computation tree for b(X) is represented independently at the right. We next describe in more
detail the two evaluations.

In both cases, the evaluation begins by resolving the query goal against the unique clause for
predicate a/2, thus calling the tabled subgoal b(X). As this is the first call to b(X), we create a
generator node (generators are depicted by white oval boxes) and insert a new entry in the table
space for it. The first clause for b(X) immediately succeeds, obtaining a first answer for b(X) that
is stored in the table (step 2). The interesting aspect that results from the figure, is how both
strategies handle the continuation of the evaluation of b(X).

For batched scheduling, the evaluation proceeds executing as in standard Prolog with the contin-
uation call b(Y), therefore creating consumer node 3 (consumers are depicted by gray oval boxes).
Node 3 is a variant call to b(X), so instead of resolving the call against the program clauses, we
consume answers from the table space. As we already have one answer stored in the table for this
call (X=1), we continue by consuming the available answer, which leads to a first solution for the
query goal (X=1;Y=1). When returning to node 3, we must suspend the consumer node because
there are no more answers for it in the table. We then backtrack to node 1 to try the second clause
for b(X), and a new answer is found (X=2). In the continuation, a new consumer is created (node 6)
and two new solutions are found for the query goal (steps 7 and 8). Node 6 is then suspended and
the computation backtracks again to node 1. At that point, we can check for completion. However,
the generator cannot complete because consumer 3 has unconsumed answers. The computation is
then resumed at node 3 and a new solution for the query goal is found (step 9). When returning
to the generator node 1, we can finally complete the tabled subgoal call b(X) (step 10).

On the other hand, for local scheduling, the evaluation fails back after the first answer was
found (step 2) in order to find the complete set of answers for b(X) and therefore complete before
returning answers to the calling environment. We thus backtrack to node 1, execute the second
clause for b(X), and find a second answer for it (step 3). Then, we fail again to node 1, and the
tabled subgoal call b(X) can be completed (step 4). The two found answers are consumed next by
executing compiled code directly from the table structure associated with the completed subgoal
b(X). The variant calls to b(X) at steps 5 and 8 are also resolved by executing compiled code from
the table.

In batched scheduling, when a new answer is found, variable bindings are automatically propa-
gated to the calling environment. For some situations, this behavior may result in creating complex
dependencies between consumers. On the other hand, the clear advantage of local scheduling shown
in the example does not always hold. Since local scheduling delays answers, it does not benefit
from variable propagation, and instead, when explicitly returning the delayed answers, it incurs
an extra overhead for copying them out of the table. Local scheduling does perform arbitrarily
better than batched scheduling for applications that benefit from answer subsumption, that is,
where we delete non-minimal answers every time a new answer is added to the table. On the other
hand, Freire et al. [6] showed that, on average, local scheduling is about 15% slower than batched
scheduling in the SLG-WAM. Similar results were also obtained for batched and local scheduling
in YapTab [10].

37

4 Implementation

We next give a brief introduction to the implementation of YapTab. Throughout, we focus on the
support for the two tabling scheduling strategies.

The YapTab design is very close to the original SLG-WAM [11]: it introduces a new data area,
the table space; a new set of registers, the freeze registers; an extension of the standard trail, the
forward trail ; and four new operations: tabled subgoal call, new answer, answer resolution, and
completion. The substantial differences between the two designs reside in the data structures and
algorithms used to control the process of leader detection and scheduling of unconsumed answers.
The SLG-WAM considers that such control should be done at the level of the data structures
corresponding to first calls to tabled subgoals, and it does so by associating completion frames to
generator nodes. It uses a completion stack of generators to detect completion points. Essentially,
the completion stack stores information about the generator nodes and the dependencies between
them. Each time a new generator is introduced it becomes the current leader node. Each time a
new consumer is introduced one verifies if it is for an older generator node G. If so, G’s leader node
becomes the current leader node.

On the other hand, YapTab innovates by considering that the control of leader detection and
scheduling of unconsumed answers should be performed through the data structures corresponding
to variant calls to tabled subgoals, and it associates a new data structure, the dependency frame,
to consumer nodes. We believe that managing dependencies at the level of the consumer nodes
is a more intuitive approach that we can take advantage of. The new data structure allows us
to eliminate the need for a separate completion stack and to slightly improve the fixpoint check
procedure. In the SLG-WAM, each step of the fixpoint check procedure is done by traversing the
consumers in a SCC by groups, with each group corresponding to consumers for a common variant
subgoal. YapTab simplifies by considering the whole set of consumers within a SCC as a single
group, and it thus traverses the whole set in a single pass.

4.1 Table Space

The table space can be accessed in different ways: to look up if a subgoal is in the table, and if
not insert it; to verify whether a newly found answer is in the table, and if not insert it; to forward
answers to consumer nodes; and to mark subgoals as completed. Hence, a correct design of the
algorithms to access and manipulate the table is a critical issue to obtain an efficient implementa-
tion. Our implementation uses tries as the basis for tables, as proposed by Ramakrishnan et al. [9].
Tries provides complete discrimination for terms and permits lookup and possibly insertion to be
performed in a single pass through a term.

Figure 2 shows the general table structure for a tabled predicate. Table lookup starts from
the table entry data structure. Each table predicate has one such structure, which is allocated at
compilation time. A pointer to the table entry can thus be included in the compiled code. Calls to
the predicate will always access the table starting from this point.

The table entry points to a tree of trie nodes, the subgoal trie structure. More precisely, each
different call to the tabled predicate in hand corresponds to a unique path through the subgoal trie
structure. Such a path always starts from the table entry, follows a sequence of subgoal trie data
units, the subgoal trie nodes, and terminates at a leaf data structure, the subgoal frame.

Each subgoal frame stores information about the subgoal, namely an entry point to its answer
trie structure. Each unique path through the answer trie data units, the answer trie nodes, corre-
sponds to a different answer to the entry subgoal. All answer leave nodes are chained together in
insertion time order in a linked list, so that we can recover answers in the same order they were

38

Table Entry

Subgoal Trie Structure

Answer
Trie

Structure

Answer
Trie

Structure

Answer
Trie

Structure

Tabled
Predicate

Compiled Code

S
g
F
r
_
f
i
r
s
t
_
a
n
s
w
e
r S

g
F
r
_
l
a
s
t
_
a
n
s
w
e
r

Subgoal
Frame

Subgoal
Frame

Subgoal
Frame

Figure 2: Using tries to organize the table space

inserted. The subgoal frame points at the first and last entry in this list. A consumer node thus
needs only to point at the leaf node for its last consumed answer, and consumes more answers just
by following the chain of leaves.

4.2 Tabled Nodes

In YapTab, applying batched or local scheduling to a tabled evaluation only depends on the way
generators are implemented. All the other tabling extensions are commonly used for both strategies
without any modifications. As we shall see, this makes YapTab highly suitable to support mixed-
strategy evaluation.

Remember that interior nodes are implemented as WAM choice points [13]: the CP TR, CP H,
CP B, CP CP, CP AP and CP ENV choice point fields are used to store at choice point creation, respec-
tively, the top of trail; top of global stack; failure continuation choice point; success continuation
program counter; choice point next alternative; and current environment. Generator and consumer
nodes are implemented as WAM choice points extended with some extra fields to control tabling
execution.

To implement consumer nodes we extended the WAM choice points with the dependency frame
data structure. Dependency frames store the last consumed answer for the correspondent consumer
node; and information to efficiently check for completion points, and to efficiently move across the
consumer nodes with unconsumed answers.

To prevent answers from being returned to the calling environment of a generator node, after a
new answer is found for a particular tabled subgoal, local scheduling fails and backtracks in order
to search for the complete set of answers. These answers are consumed later when all program
clauses for the subgoal in hand were resolved. Therefore, when backtracking to a generator node
without alternatives, we must also act like a consumer node to consume the set of found answers.
Thus, for local scheduling, generator choice points are also extended with dependency frames. For
batched scheduling we only need to access the subgoal frame where answers should be stored, so

39

generators are implemented as WAM choice points extended with a pointer to the corresponding
subgoal frame, the CP SgFr field. Figure 3 illustrates how consumers and generators are differently
handled to support batched and local scheduling.

Batched scheduling

Answer
Trie

Structure

Subgoal
Frame

Table space

DepFr_previous

DepFr_sg_fr

DepFr_last_answer

DepFr_leader

DepFr_back_leader

DepFr_previous

DepFr_sg_fr

DepFr_last_answer

DepFr_leader

DepFr_back_leader

TOP_DF

DepFr_previous

DepFr_sg_fr

DepFr_last_answer

DepFr_leader

DepFr_back_leader

CP_SgFr

TOP_DF

Local scheduling

Generator
choice point

Consumer
choice point

Generator
choice point

Consumer
choice point

Figure 3: Consumers and generators with batched and local scheduling

Each dependency frame is a five field data structure. The DepFr previous is a pointer to the
previous dependency frame on stack and it allows to form a list of dependency frames on stack. A
global TOP DF variable points to the youngest dependency frame on stack. The DepFr sg fr and
the DepFr last answer are pointers respectively to the correspondent subgoal frame and to the
last consumed answer, and they are used to connect choice points with the table space in order to
search for and to pick up new answers. Moreover, for local scheduling, we use the DepFr sg fr field
of the dependency frame to access the correspondent subgoal frame. For batched scheduling, we use
the new CP SgFr choice point field. The DepFr leader and the DepFr back leader are pointers
respectively to the leader node at creation time and to the leader node where we perform the most
recent unsuccessful completion operation, and they are used to support the fixpoint check procedure.
The dependency frame DepFr leader field is initialized by the compute leader() procedure, whilst
the DepFr back leader field is initialized with a NULL value. Their use is detailed next.

4.3 Answer Resolution

The answer resolution operation should be executed every time the computation fails back to a
consumer. To achieve this, when a new consumer choice point is allocated, its CP AP field is made
to point to the answer resolution instruction. Figure 4 shows the pseudo-code for it.

Initially, the procedure checks the table space for unconsumed answers. If there are new answers,
it loads the next available answer and proceeds. Otherwise, it schedules for a backtracking node. If
this is the first time that backtracking from that consumer node takes place, then it is performed as
usual to the previous node. This is the case when the DepFr back leader field is NULL. Otherwise,
we know that the computation has been resumed from an older leader node L during an unsuccessful

40

answer_resolution (consumer node CN) {
DF = dependency_frame_for(CN)
if (DepFr_last_answer(DF) != SgFr_last_answer(DepFr_sg_fr(DF)))

load_next_unconsumed_answer_and_proceed()
back_cp = DepFr_back_leader(DF)
if (back_cp == NULL)

backtrack()
df = DepFr_previous(DF)
while (consumer_for(df) is younger than back_cp) {

if (DepFr_last_answer(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// move to previous consumer with unconsumed answers
DepFr_back_leader(df) = back_cp
move_to(consumer_for(df))

}
df = DepFr_previous(df)

}
// move to older leader node
move_to(back_cp)

}

Figure 4: Pseudo-code for answer resolution()

completion operation. Therefore, backtracking must be done to the next consumer node that has
unconsumed answers and that is younger than L. We do this by restoring bindings and stack
pointers. If no such consumer node can be found, backtracking must be done to node L.

The process of resuming a consumer node, consuming the available set of answers, suspending
and then resuming another consumer node can be seen as an iterative process which repeats until
a fixpoint is reached. This fixpoint is reached when the SCC is completely evaluated.

4.4 Leader Nodes

The completion operation takes place when we backtrack to a generator node that (i) has exhausted
all its alternatives and that (ii) is a leader node (remember that the youngest generator which does
not depend on older generators is called a leader node). We designed novel algorithms to quickly
determine whether a generator node is a leader node. The key idea in our algorithms is that
each dependency frame holds a pointer to the resulting leader node of the SCC that includes
the correspondent consumer node. Using the leader node pointer from the dependency frames, a
generator can quickly determine whether it is a leader node. More precisely, a generator L is a
leader node when either (a) L is the youngest tabled node, or (b) the youngest consumer says that
L is the leader.

Our algorithm thus requires computing leader node information whenever creating a new con-
sumer node C. We proceed as follows. First, we hypothesize that the leader node is C’s generator,
say G. Next, for all consumer nodes older than C and younger than G, we check whether they
depend on an older generator node. Consider that there is at least one such node and that the
oldest of these nodes is G′. If so then G′ is the leader node. Otherwise, our hypothesis was correct
and the leader node is indeed G. Leader node information is implemented as a pointer to the choice
point of the newly computed leader node. Figure 5 shows the procedure that computes the leader
node information for a new consumer.

The procedure traverses the dependency frames for the consumer nodes between the new con-
sumer and its generator in order to check for older dependencies. As an optimization it only searches
until it finds the first dependency frame holding an older reference (the DepFr leader field). The
nature of the procedure ensures that the remaining dependency frames cannot hold older references.

For local scheduling, when we store a new generator node G we also allocate a dependency
frame. As an optimization we can avoid calling compute leader() to initialize the DepFr leader

41

compute_leader (consumer node CN) {
DF = dependency_frame_for(CN)
leader_cp = generator_for(CN)
df = TOP_DF
while (consumer_for(df) is younger than leader_cp) {
if (leader_cp is equal or younger than DepFr_leader(df)) {

// found older dependency
leader_cp = DepFr_leader(df)
break

}
df = DepFr_previous(df)

}
DepFr_leader(DF) = leader_cp

}

Figure 5: Pseudo-code for compute leader()

field, because it will always compute G as the leader node.

4.5 Completion with Batched Scheduling

When a generator choice point tries the last program clause, its CP AP field is updated to the
completion instruction. Since then, every time we backtrack to the choice point the instruction
gets executed. Figure 6 shows the pseudo-code that implements completion for batched scheduling.

completion (generator node GN) {
if (GN is the current leader node) {
df = TOP_DF
while (consumer_for(df) is younger than GN)) {

if (DepFr_last_answer(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// move to first consumer with unconsumed answers
DepFr_back_leader(df) = GN
move_to(consumer_for(df))

}
df = DepFr_previous(df)

}
perform_completion()

}
backtrack()

}

Figure 6: Pseudo-code for completion() with batched scheduling

Initially, the procedure finds out if the generator is the current leader node. If not, it simply
backtracks to the previous node. Being leader, it checks whether all younger consumer nodes have
consumed all their answers. To do so, it walks the chain of dependency frames looking for a frame
which has not yet consumed all the generated answers. If there is such a frame, the computation
should be resume to the corresponding consumer node. Otherwise, it can perform completion.
This includes (i) marking as complete all the subgoals in the SCC; (ii) deallocating all younger
dependency frames; and (iii) backtracking to the previous node to continue the execution.

4.6 Completion with Local Scheduling

To implement completion for local scheduling, we only need to slightly change the previous proce-
dure. Figure 7 shows the modified pseudo-code.

42

completion (generator node GN) {
if (GN is the current leader node) {
df = TOP_DF
while (consumer_for(df) is younger than GN) {

if (DepFr_last_answer(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// move to first consumer with unconsumed answers
DepFr_back_leader(df) = GN
move_to(consumer_for(df))

}
df = DepFr_previous(df)

}
perform_completion()
completed_table_optimization() // new

}
CP_AP(GN) = answer_resolution // new
load_first_unconsumed_answer_and_proceed() // new

}

Figure 7: Pseudo-code for completion() with local scheduling

There is a major change to the completion algorithm for local scheduling. As newly found
answers cannot be immediately returned, we need to consume them at a later point. If we perform
completion successfully, we start consuming the set of answers that have been found by execut-
ing compiled code directly from the trie data structure associated with the completed subgoal.
Otherwise, we must act like a consumer node and start consuming answers.

5 Discussion

In result of its clear design based on the dependency frame data structure, YapTab already includes
all the machinery required to support batched and local scheduling simultaneously. Extending
YapTab to use multiple strategies at the predicate level is straightforward. Only two new features
have to be addressed: (i) support strategy-specific Prolog declarations like ’:- batched path/2.’
in order to allow the user to define the strategy to be used to resolve the subgoals of a given predicate;
(ii) at compile time generate appropriate tabling instructions, such as batched new answer or
local completion, accordingly to the declared strategy for the predicate. With these two simple
compiler extensions we are able to use all the algorithms described and already implemented for
batched and for local scheduling without any further modification.

The proposed data structures and algorithms can also be easily extended to support different
strategies per predicate, that is, allow the user to define the strategy to be used to resolve each
subgoal. Moreover, they can be extended to support dynamic switching from batched to local
scheduling, while a generator is still producing new answers. However, further work is still needed
to study if there is a use for such flexibility.

In this work we concentrated on the issues concerning the design and implementation of both
strategies. Currently, we have already batched and local scheduling functioning separately in
YapTab and we are now working on adjusting the system for mixed-strategy evaluation. After
having the system implementing mixed-strategy evaluation we plan to use a set of common tabled
benchmarks to investigate and study the impact of combining both strategies for tabled evaluation.

43

Acknowledgments

This work has been partially supported by APRIL (POSI/SRI/40749/2001), CLoPn (CNPq),
PLAG (FAPERJ), and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia and Programa POSI.

References

[1] The XSB Logic Programming System. Available from http://xsb.sourceforge.net.

[2] W. Chen, M. Kifer, and D. S. Warren. Hilog: A Foundation for Higher-Order Logic Program-
ming. Journal of Logic Programming, 15(3):187–230, 1993.

[3] W. Chen, T. Swift, and D. S. Warren. Efficient Top-Down Computation of Queries under the
Well-Founded Semantics. Journal of Logic Programming, 24(3):161–199, 1995.

[4] B. Demoen and K. Sagonas. CHAT: The Copy-Hybrid Approach to Tabling. Future Generation
Computer Systems, 16(7):809–830, 2000.

[5] J. Freire. Scheduling Strategies for Evaluation of Recursive Queries over Memory and Disk-
Resident Data. PhD thesis, Department of Computer Science, State University of New York,
1997.

[6] J. Freire, T. Swift, and D. S. Warren. Beyond Depth-First: Improving Tabled Logic Programs
through Alternative Scheduling Strategies. In International Symposium on Programming Lan-
guage Implementation and Logic Programming, number 1140 in Lecture Notes in Computer
Science, pages 243–258. Springer-Verlag, 1996.

[7] J. Freire, T. Swift, and D. S. Warren. Taking I/O seriously: Resolution reconsidered for disk.
In International Conference on Logic Programming, pages 198–212, 1997.

[8] J. Freire and D. S. Warren. Combining Scheduling Strategies in Tabled Evaluation. In Work-
shop on Parallelism and Implementation Technology for Logic Programming, 1997.

[9] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient Access Mech-
anisms for Tabled Logic Programs. Journal of Logic Programming, 38(1):31–54, 1999.

[10] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine Designed to Support
Parallelism. In Conference on Tabulation in Parsing and Deduction, pages 77–87, 2000.

[11] K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-Order Stratified
Logic Programs. ACM Transactions on Programming Languages and Systems, 20(3):586–634,
1998.

[12] V. Santos Costa. Optimising Bytecode Emulation for Prolog. In Principles and Practice of
Declarative Programming, number 1702 in Lecture Notes in Computer Science, pages 261–267.
Springer-Verlag, 1999.

[13] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,
1983.

44

Alternatives for compile & run in the WAM

Remko Tronçon Gerda Janssens Bart Demoen

K.U.Leuven – Department of Computer Science

{remko,gerda,bmd}@cs.kuleuven.ac.be

Abstract

Decision tree learning algorithms dynamically generate huge queries. Because these queries
are executed often, the trade-off between meta-calling and compiling & running them has been
in favor of the latter, as compiled code is faster. However, compilation is expensive, and ex-
periments show that sometimes meta-call can outperform compile & run. In this paper, we
investigate alternative approaches that either improve meta-call execution, or reduce compila-
tion time without sacrificing execution speed. By embedding the meta-call we can improve its
execution by a factor of 3 to 4. We also propose a hybrid scheme of compilation and meta-call
that reduces compilation times by an order of magnitude. Our results strongly suggest that the
same techniques are worth applying in the context of decision tree learners.

1 Introduction

In the context of inductive learning, we are involved in a system named ilProlog [1], which is a
Prolog system with a WAM [8] based abstract machine emulator (written in C), and with special
support for Inductive Logic Programming (ILP). One of its features is the use of query packs [3].
Such a query pack is basically the body of a rule with no arguments, containing a huge number
of disjunctions. The query pack execution in ilProlog deals with the disjunctions in a special way,
e.g. by avoiding a branch when it has already succeeded before. These query packs are generated
dynamically by the ILP system, compiled by the underlying Prolog system, and the compiled code
is executed on a dataset (which is actually a large collection of different logic programs). This is
not an unreasonable approach, and we have indeed measured large speedups in ILP systems based
on this approach [3].

The compilation of a query pack takes in many cases more time than its execution, and since
query pack generation happens incrementally, we have investigated incremental compilation of
query packs. However, incremental query pack compilation requires a tight coupling between the
generation of a query pack and its compilation. On top of that, matters are complicated by the
fact that in between the generation phase and the compilation phase, a query pack transformation
pass can be helpful for performance reasons [4]. Maintaining the coupling between generation and
compilation in the presence of the transformations became virtually impossible, and the alternative
seemed to fall back on meta-interpretation of the generated queries as in early versions of the
system. But compilation and subsequent execution results in a speedup: folklore says indeed that
meta-interpretation is ten (or more) times slower than normal execution. So we were faced with
a choice: give up speed for added flexibility (i.e. allow query pack transformations and interpret
the resulting queries) or gain speed (by compilation) but lose the query pack transformations. We
followed another alternative and attempted to speed up meta-interpretation to the point that (full)

45

compilation is no longer necessary. The result of this research is two-fold: in Section 4 we present
an extremely fast meta-interpreter that can be described in three lines of (new) abstract machine
code; in Section 5 we present a hybrid scheme in which a query pack is compiled partially: only the
control flow is compiled. The compilation times are much smaller than the full fledged compilation
described in [7], and the execution has the same efficiency as fully compiled code, or better. We
start by showing in Section 3 that, contrary to the common belief, meta-interpretation of a program
can be more efficient than the execution of compiled code for the same program.

Although our motivation lies in optimizing ILP execution systems using features such as query
packs, we will for now focus on queries containing just regular conjunctions and disjunctions. Future
work will extend the ideas to special disjunctions used in query packs. This means that this paper
is of general interest to any plain WAM implementation.

We assume knowledge of Prolog and its implementation. For a good introduction to the WAM,
see [2].

2 Background & Motivation

We will start by sketching a particular setting in which this work is relevant, namely the execution
of queries in Inductive Logic Programming.

The goal of Inductive Logic Programming is to find patterns in a large set of data (or examples).
In ILP, each example is a logic program, and the patterns are represented as logic queries. The
way in which ILP searches for these patterns is basically generate-and-test: generated queries are
run on all examples; based on the failure or success of these queries, only the ones with the ‘best’
results1 are kept and are extended (e.g. by adding a literal in the back). These newly generated
queries are in turn tested on each example, and this process continues until a satisfactory query
(or a set of queries) describing the examples has been found.

At each step, a set of queries is executed on a large set of logic programs (the examples).
Moreover, since these queries are the result of adding different literals to the end of another query,
the queries in this set have a lot of common prefixes. To avoid repeating the common parts by
executing each query separately, the set of queries is transformed into a special kind of disjunction,
a query pack [3]. For example, the set of queries

?- a, b, c, d.
?- a, b, c, e.
?- a, b, f, g.

will be transformed into the query

?- a, b, ((c,(d;e)) ; f).

However, because only the success of a query on an example is measured, the normal Prolog
disjunction might still cause too much backtracking, so the ’;’/2 has slightly different semantics in
query packs, and cuts away queries from the disjunction as soon as they succeed.

Since each query pack is going to be run on a large set of examples, it seems straightforward to
compile the query pack first, and run the compiled code on the examples. However, as mentioned in
the introduction, compilation takes more time than execution, and on top of that hinders exploiting
the incremental nature of query packs. Therefore, we will investigate alternatives for this compile
& run approach.

1which queries are best depends on the ILP algorithm.

46

SICStus Prolog Yap ilProlog hProlog
compiled 15.00 22.05 19.22 13.64
call 4.91 3.91 1.68 1.59
conj call 8.95 2.63 1.14 1.00

Table 1: Normalized execution times for running a query in 3 different ways

3 Meta-call

A first alternative to executing compiled code, is to simply meta-call the query. While this might
seem a slow alternative, we will start by showing that this approach is not always unreasonable.

Consider the following program:

a :- b, f(<big_term>).
b.
...
b.
f(_) :- fail.

where predicate b has a number of alternatives, say N , and <big term> is a large term. More
specific, let N be 20, and <big term> a list of 60 different terms of the form g(0).

Suppose that we want to activate the body of a. A normal way of doing this is to query a:

?- a.

This will execute the compiled body of a. However, there are two alternatives for this. Firstly, we
can meta-call the goal which consists of the body of a as a Prolog term:

?- call((b, f(<big_term>))).

Secondly, we can also use the information we have about generated queries: they are always con-
junctions which do have a left side which is a simple (callable) goal. Instead of calling the body of
a using call, we can use a special predicate conj call, which is defined as

conj_call((X,Y)) :- !, call(X), conj_call(Y).
conj_call(X) :- call(X).

Trying these three approaches in a number of different Prolog systems and measuring the
execution time (without compilation) results in the timings shown in Table 1. The timings are
normalized with respect to the execution of conj call in hProlog. ilProlog and hProlog are two
descendants of dProlog [5]; the reason for including hProlog in the measurements is that hProlog
has an ISO-compatible meta-call like SICStus Prolog, while ilProlog and Yap do not type-check
all arguments of a conjunction to be callable goals before executing the conjunction (as the ISO
Prolog standard imposes).

In all cases, we see that the meta-call is faster than the compiled call, and that the specialized
conj call is even faster2. The explanation is simple: the construction of the <big term> is performed
over and over again in the compiled version, and not even once in the meta-called versions.

2except for SICStus Prolog: the reason is extra overhead due to the module system and term expansion.

47

Since we have control over the generation of the body (it is one query from a query pack), we
can try variations like representing a conjunction as a list of its conjuncts and use a list version of
conj call :

conj_call([]).
conj_call([X|Y]) :- call(X), conj_call(Y).

This gives extra speedup in all systems, because list traversal is implemented better than conjunc-
tion traversal.

One could think that the situation can be easily improved for the compiled version, by compiling
it as if its code where:

a :- X = <big_term>, b, f(X).

However, such a transformation - although correct - can make performance worse: if b fails, the
term has been constructed in vain. Moreover, the memory requirement can become arbitrarily
larger if this transformation is performed systematically in a Prolog program.

From these results, we can conclude that compile&run is not a priori the fastest alternative,
even without taking into account the overhead of compilation. However, the normal meta-call
and the conj call do not always perform as well as the execution of compiled code, so we will try
optimizing this in the following section. Table 1 also shows that ilProlog has already excellent
meta-call performance, so any improvement on it is relevant.

4 Embedding the meta-call

To get more speedup from a specialized meta-call such as conj call, it should be implemented in
the internals of the Prolog system. One could choose to implement the specialized call completely
in the host language of the system, but it is conceptually clearer to implement a series of new
emulator instructions and to use those to implement conj call. Also, this approach results in the
same performance.

Taking into account the knowledge we have about the input to the first version of conj call, its
WAM-code is:

gettbreg A2 0
switchonterm struct=L1, else=L2 *

L1: get_structure A1 ,/2 *
unitvar A1 *
allocate 3 *
unipvar Y2 *
puttbreg A2 0
call call/1 (user) *
putpval Y2 A1 #
deallex conj_call/1 #

L2: execute call/1 *

We can make a new instruction mc switch, which performs all the actions from the instructions
labeled with *, and another new instruction mc continueconj that performs the actions of the
instructions labeled with #. The instructions labeled with 0 have no more function, and are simply
deleted. This leads to the code:

48

L1: mc_switch L2
L2: mc_continueconj L1

The instruction mc switch distinguishes 2 types of terms in the first argument register: a ’,’/2
term and a goal. In the latter case, the goal is simply called. When the argument is a con-
junction, an environment is allocated, and the first argument of ’,’/2 is called with the label of
mc continueconj (passed through the argument of mc switch) as its continuation. When execu-
tion reaches mc continueconj, the environment created by mc switch is deallocated, the continu-
ation pointer is restored, and mc switch is executed with the second argument of ’,’/2.

Let’s now extend the conj call from the previous section to an embedded meta-call which can
handle disjunctions. The Prolog-code for such a predicate would be:

conjdisj_call((X,Y)) :- !, call(X), conjdisj_call(Y).
conjdisj_call((X;Y)) :- !, (conjdisj_call(X) ; conjdisj_call(Y)).
conjdisj_call(X) :- call(X).

Note that since the disjunctions might in turn contain conjunctions in both arguments, we cannot
assume that the first argument of ’;’/2 is a simple goal as we could with ’,’/2.

To implement this in the WAM, the mc switch instruction has to be extended, and an extra
instruction mc continuedisj is introduced. The resulting code is as follows.

L1: mc_switch L2 L3
L2: mc_continueconj L1
L3: mc_continuedisj L1

The only extension mc switch needs is the ability to handle a third type of term in the first argu-
ment register: a ’;’/2 term. In this case, a choice-point is created with the label of mc continuedisj
(passed through the second argument of mc switch) as an alternative, after which mc switch is
executed on the first argument of ’;’/2. In mc continjuedisj, the choice-point is removed, and
mc switch is executed with the second argument of ’;’/2.

For subsequent goals in a conjunction, the embedded meta-call will do a deallocate of an environ-
ment (in mc continueconj), immediately followed by an allocate (in mc switch). Such redundancy
can be avoided by adding an extra test: mc continueconj checks the next functor, and skips the
deallocate and allocate if it is again a conjunction.

As results will show, this new ‘embedded’ meta-call results in a speedup of factor 3 to 4 over
normal meta-call. However, as will be clear from the performance evaluation in Section 6, it is not
fast enough. Also, the implementation of an embedded meta-call suffers from the drawback that
extending it to better deal with built-ins requires adding more checks in the mc switch instruction,
which is both cumbersome and likely to slow down the execution.

49

5 Control flow compilation

The major reason why meta-call can be competitive with running a compiled query is that the
code for the compiled query contains instructions for setting up the arguments of the called goals
– the put instructions. This requires costly emulator cycles in compiled code, while setting up the
arguments for the meta-called goal happens in the same emulator cycle as the call itself. Moreover,
compilation itself is costly due to the non-linear allocation tasks such as assigning variables to
environment slots, managing argument registers, . . .

It would be interesting to combine this advantage of meta-interpretation (avoiding to set up
arguments to goals using put instructions), with a simple form of compilation without expensive
operations such as register allocation. Such a simple compiler would amongst others have the ad-
vantage that it can inline built-ins, and would be easy to extend. For this purpose, we introduce
control flow compilation. The idea is to generate code for a query which describes the flow of
control, but where the goals themselves are still meta-called in the sense that their arguments have
been preconstructed on the heap before the execution has started. The code generated by control
flow compilation will look very much like ordinary code, but it will not contain any instructions
related to arguments of goals, neither to variables. We illustrate the idea by a sequence of steps
that will lead to the desired compilation.

Given the query ?- a(X,Y),(b(Y,Z);c(Y,Z);d(Y,Z)). We can flatten this out into the structure
query(a(X,Y),b(Y,Z),c(Y,Z),d(Y,Z)), and generate a predicate cf call which, given this term as
an argument, executes the original query:

cf_call(Query) :-
arg(Query,1,G1),
call(G1),
(arg(Query,2,G2), ?- cf_call(query(a(X,Y),b(Y,Z),c(Y,Z),d(Y,Z))).
call(G2)

; arg(Query,3,G3),
call(G3)

; arg(Query,4,G4),
call(G4)

).

Notice how this code reflects the structure of the query, but calls the individual goals using meta-
call. Compiling this predicate results in the following WAM code:

allocate 3
getpvar Y2 A1
put_int A2 1 *
putpval Y2 A3 *
builtin_arg_3 A3 A2 A1 *
call call/1 *
trymeorelse L1
put_int A2 2 #
putpval Y2 A3 #
builtin_arg_3 A3 A2 A1 #
deallex call/1 #

L1: retrymeorelse L2

50

put_int A2 3 #
putpval Y2 A3 #
builtin_arg_3 A3 A2 A1 #
deallex call/1 #

L2: trustmeorelsefail
put_int A2 4 #
putpval Y2 A3 #
builtin_arg_3 A3 A2 A1 #
deallex call/1 #

This block of instructions starts by allocating the environment on the stack, and putting the
argument of the predicate (the query/4 term) into the second variable slot of the environment, Y2.
Then, each group of instructions labeled with * and # represent the call to arg/3, immediately
followed by a call to call/1. Except for the varying integer argument for arg/3 and the call or
deallex instruction in the end, these groups are identical. We therefore merge the instructions
labeled * into a new instruction arg call, and the instructions labeled # into arg deallex. Both
instructions fetch a given argument from the structure in Y2, put it in the first argument register
for call/1, and finally either call call/1 (for arg call) or deallocate the environment and execute
call/1 (for arg deallex). If we use these new instructions, the new code for cf call becomes:

allocate 3
getpvar Y2 A1
arg_call 1
trymeorelse L1
arg_deallex 2

L1: retrymeorelse L2
arg_deallex 3

L2: trustmeorelsefail
arg_deallex 4

What remains is essentially only the control flow of the original query as can be seen in Figure 1.
Generating both the WAM code for cf call and the flat query structure used in this code is simple,
and can be done in linear time without the need of the full fledged compiler.

The standard control flow compilation scheme leaves room for some optimizations. The im-
plementation arg call and arg deallex uses call/1 which, for a goal of arity n, loops over all n
arguments of the goal, putting them in argument registers, and finally performs the call to the
goal. Since it is reasonable to assume that the goals will have a limited amount of arguments most
of the time, we can specialize arg call for goals with arguments under this limit by unrolling the
argument loop, and as such avoid a loop during each meta-call.

6 Performance measurements

The experiments we describe in this section were performed with ilProlog. The ilProlog system
was extended to support the two new approaches proposed in this paper: new abstract machine
instructions were implemented, and a light-weight compiler for the control flow compilation was
added. For both the compile & run and the control flow compilation approach, we used the facility
of ilProlog to load compiled code directly into the code area without writing it to a file. The

51

Compiled code Control flow code
...

...
bldtvar A1

arg call 1putpvar Y2 A2
call a/2
trymeorelse L1 trymeorelse L1
putpval Y2 A1

arg deallex 2bldtvar A2
deallex b/2

L1: retrymeorelse L2 retrymeorelse L2
putpval Y2 A1

arg deallex 3bldtvar A2
deallex c/2

L2: trustmeorelsefail trustmeorelsefail
putpval Y2 A1

arg deallex 4bldtvar A2
deallex d/2

Figure 1: Compiled code & ‘control flow code’ for a(X,Y),(b(Y,Z);c(Y,Z);d(Y,Z))

experiments were run on a Pentium III 660 Mhz with 256 Mb main memory running Linux under
a normal load.

We generated benchmark conjunctions and disjunctions. We used two kinds of calls: either
all calls had ground arguments (e.g. a(1,1),a(1,1)), or the calls had variables as arguments
and consecutive calls shared variables (e.g. a(X,Y),a(Y,Z) or a(X,Y), a(Y,Z), (a(Z,A),a(A,B)
; a(Z,C),a(C,D) ; a(Z,E), a(E,F))). In order to judge the performance of our approaches, the
execution time spent in the called predicates was made minimal by using deterministic predicate
definitions that are actually just facts (e.g. the fact a(X, Y). is compiled into a proceed).

The tables report on the following benchmarks:

• conj sh 65: a conjunction of 65 calls with shared variables.

• conj gr 65: a conjunction of 65 ground calls.

• conj sh 130: a conjunction of 130 calls with shared variables.

• conj gr 130: a conjunction of 130 ground calls.

• disj sh 5: a disjunction with branching factor 3, 5 consecutive calls in a branch, with shared
variables between consecutive calls and a total of 65 calls in the disjunction.

• disj gr 5: same as disj sh 5, but with ground calls.

• disj sh 10: a disjunction with branching factor 3, 10 consecutive calls in a branch, with shared
variables between consecutive calls and a total of 130 calls in the disjunction.

• disj gr 5: same as disj sh 10, but with ground calls.

52

conj disj
sh 65 gr 65 sh 130 gr 130 sh 5 gr 5 sh 10 gr 10

comp 1.155 1.366 2.165 2.576 1.069 1.178 1.709 1.987
call 9.485 9.508 18.968 18.906 7.195 7.228 13.204 13.204
emc 2.269 2.265 4.450 4.430 1.740 1.757 3.178 3.165
cfcomp 1.000 1.000 1.896 1.871 1.000 1.007 1.564 1.577

Table 2: Normalized execution times.

conj disj
sh 65 gr 65 sh 130 gr 130 sh 5 gr 5 sh 10 gr 10

comp 11.484 8.120 23.872 16.170 10.598 7.356 21.048 14.257
cfcomp 1.000 1.025 1.965 1.962 1.000 0.952 1.752 1.775

Table 3: Normalized compilation times.

The results in Table 2, 3, and 4 are normalized with respect to the control flow compilation case,
namely with respect to conj sh 65 for the conj benchmarks and with respect to disj sh 5 for the
disj benchmarks. Table 2 shows the normalized execution time of a query when it is executed using
compile & run (comp), meta-call (call), embedded meta-call (emc), and control flow compiled code
(cfcomp). Embedding the meta-call results in a substantial improvement over normal meta-call,
which is of course due to the massive instruction compression. However, statically compiling the
control flow seems to have an even bigger impact on the execution time: there is a speedup of up to
a factor 9 over normal meta-call, and it even results in slightly faster execution than compiled code,
making it the fastest approach of all four. This is mainly caused by the fact that compiled code
needs extra work to set up each call as opposed to the other three approaches. Both the normal
and the embedded meta-call also benefit from this fact, but there is apparently too much overhead
in having to deal with the control flow at run time to be an improvement over normal compilation.

For the compiled code, the execution of the ground queries is slower than the execution of the
queries with variables. This is due to the instruction merging of subsequent putpval and putpvar
instructions in ilProlog, which reduces the number of emulator cycles for the benchmarks with
shared variables. For the other three approaches, the kind of arguments in the calls makes no
difference as they all meta-call their goals. For all four execution schemes, the execution time is
linear in the number of calls as expected.

The calls in the benchmarks have only two arguments. When the number of arguments in-
creases, the number of emulation cycles for the compile & run approach also increases , whereas
the effect on the meta-call based approaches will be less important. So, we claim that when the
number of arguments is higher than 2, the meta-called approaches will perform even better com-
pared to compile & run.

conj disj
sh 65 gr 65 sh 130 gr 130 sh 5 gr 5 sh 10 gr 10

comp 1.961 2.911 3.882 5.793 1.927 2.772 4.265 5.443
cfcomp 1.000 1.000 1.961 1.961 1.000 1.000 1.890 1.890

Table 4: Normalized code size.

53

1e-06

1e-05

1e-04

 10 100 1000 10000 100000

C
os

t p
er

 e
xa

m
pl

e
((

c
+

 r
*e

)/
r)

Examples

compile
cfcomp

emc
metacall

Figure 2: Cost (compilation + execution) of running disj sh 5 on a varying amount of examples

Table 3 shows the time needed for compiling a query using the normal compiler (comp) and
control flow compilation (cfcomp). The control flow compilation is up to an order of magnitude
faster than normal compilation. It also generates up to 3 times less code than normal compilation,
as can be seen in Table 4. The instruction merging also has an impact on the code size of the
compiled queries, explaining the difference in size between the compiled ground queries and queries
with variables. For the benchmarks, full compilation takes about 10 times longer than control flow
compilation.

Since in the ILP setting each query is compiled only once, but is run many times (once for each
example), it is interesting to get a better idea for which number of examples it pays off to do full
compilation. Therefore, let (c + r ∗ e) be the total time for executing a query on r examples, with
c the compilation time of the query and e the execution time for one run of the query. Computing
the average over all examples (c + r ∗ e)/r gives us an estimate of the cost of evaluating a query
on one example. For the benchmark query disj sh 5, this cost is plotted in function of the number
of examples in Figure 2. For the meta-call and the embedded meta-call, the function is constant,
namely the execution time for running the query once. Normal meta-call is cheaper than compile
& run below 200 examples, and cheaper than control flow compilation below 17 examples. The
embedded meta-call is cheaper than compile & run below 2000 examples, and cheaper than control
flow compilation below 150 examples. Control flow compilation always outperforms compile & run.

7 Discussion and future work

When we started with this work, we hoped that an embedded implementation of the meta-call
would be competitive with the execution after a full compilation. As it turned out, this is not true:
the embedded meta-call is slower by a factor two, and the slowdown became prominent when on
top of conjunctions, also disjunctions were supported. We think we can still improve the embedded
meta-call, but this is not our priority at the moment.

54

a/2
X
Y

Environment
stack

query/4
Y2

Heap

Goal

Query structure

Figure 3: Memory layout for control flow compilation

Because the embedded meta-call did not live up to our expectations, we started investigating the
compilation of the control flow only: it bears resemblance with structure sharing implementations
of Prolog, but without some of its disadvantages. Execution of the code obtained by compiling
only the control flow is competitive with the execution of fully compiled code. We have shown
this for ordinary disjunctions and conjunctions, and we are confident that this result will carry
over to the case of query packs: when going to query packs, the only difference in the generated
code concerns the disjunction related instructions, and they are the same in both schemas. This is
further supported by the fact that pack compilation takes about as long as full compilation of the
corresponding disjunction. In the context of decision tree learning, it means that we can achieve a
ten-fold speed-up of the pack compilation time without increasing the execution time. Since pack
compilation time takes from 50 to 100% of the pack execution time, we can expect a good overall
speed-up, which moreover scales nicely when the decision trees become larger.

So, our main future work is in adapting control flow compilation such that query packs [3] and
other related execution mechanisms [6] are supported.

We also intend to work on improving control flow compilation: it can be seen in Figure 3 that the
arg call instruction needs two indirections to get at the called term. This can be reduced to one
indirection with a more clever layout for the query structure. Another improvement concerns the
inlining of built-ins in the query, even during control flow compilation. The built-in optimization
seems impossible in the context of the embedded meta-call.

One issue mentioned in the introduction was incremental compilation: much of the complexity of
incremental (full) compilation comes from having to deal with variables, i.e. variable classification,
stack slot allocation and (abstract machine) register allocation. The control flow compilation never
needs to deal with variables, and incremental compilation becomes a more attractive possibility
again.

Acknowledgments

Remko Tronçon is supported by the Institute for the Promotion of Innovation by Science and Tech-
nology in Flanders (I.W.T.). This work is partially supported by the GOA ‘Inductive Knowledge
Bases’.

55

References

[1] The ACE data mining system. http://www.cs.kuleuven.ac.be/˜dtai/ACE/.

[2] H. Ait-Kaci. The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research Report,
1990. See also: http://www.isg.sfu.ca/~hak/documents/wam.html.

[3] H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele. Improving
the efficiency of Inductive Logic Programming through the use of query packs. Journal of
Artificial Intelligence, 16:135–166, 2002.

[4] V. S. Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens, J. Struyf,
H. Vandecasteele, and W. V. Laer. Query transformations for improving the efficiency of ILP
systems. Journal of Machine Learning Research, 2002. http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publ info.pl?id=38848.

[5] B. Demoen and P.-L. Nguyen. So many WAM variations, so little time. In J. Lloyd, V. Dahl,
U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey,
editors, Computational Logic - CL2000, First International Conference, London, UK, July 2000,
Proceedings, volume 1861 of Lecture Notes in Artificial Intelligence, pages 1240–1254. ALP,
Springer, 2000.

[6] R. Tronçon, H. Vandecasteele, J. Struyf, B. Demoen, and G. Janssens. An Execution Mechanism
for Combining Query Packs and Once-Transformations. In Inductive Logic Programming, 13th
International Conference, ILP 2003, Szeged, Hungary, Short Presentations, pages 105–115,
2003. http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=40938.

[7] H. Vandecasteele, B. Demoen, and G. Janssens. Compiling large disjunctions. In First Inter-
national Conference on Computational Logic : Workshop on Parallelism and Implementation
Technology for (Constraint) Logic Programming Languages, pages 103–121. Imperial College,
2000. http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=32065.

[8] D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI, 1983.

56

57

58

A tag change with support for extra types and
two more experiments in hProlog∗

Bart Demoen † Phuong-Lan Nguyen ‡

Abstract

The original WAM specializes abstract machine code and term representation for lists, squeezes the
environment stack and choice point stack into one memory area and offers support for only one atomic
data type. Most Prolog systems follow the list specialization, but the control stacks are often separated
and also more data types are supported at the implementation level than in the WAM. We show within
hProlog the performance effect of the list specialization and the control stack choice. We also introduce
in hProlog four extra basic types and show how it was done without performance loss.

1 Introduction

We assume knowledge of Prolog and its WAM based implementation. For a good introduction to the WAM
[17], see [1].

Since [6], our Prolog implementation named dProlog has evolved into hProlog, which will become a
back-end for HAL [5]. Over the past year, we have adapted hProlog because of HAL, and we performed
some more experiments. We report here on these developments and experiments.

hProlog is WAM based. The WAM originally defined only the data types ATOM, LIST, STRUCT and
REF and since heap addresses are typically a multiple of four, the encoding of these dynamic tags follows
naturally. Many Prolog systems have a larger number of supported data types and some also chose to
dedicate part of the heap word to information only used during garbage collection. This means that the
very simple tagging scheme of the WAM is not used in practice. Another issue is that the WAM treats lists
in a special way, both in the tagging scheme and in the instruction set. BinProlog on the other hand uses
tag-on-data (see [16]) and it treats the ./2 functor as any other functor. We wanted to establish whether the
list optimizations are really worth their while in the WAM. Section 2 reports on it.

The second experiment concerns the layout of the environment stack and the choice point stack: the
WAM interleaves these stacks. Systems like XSB [13] and SICStus Prolog [11] use two separate memory
areas for these two stacks; we name that the two stack model. Yap [3] on the other hand still uses the WAM
layout. Yap is a particularly fast system, so we wanted to find out whether its choice for the traditional stack
layout is important for its performance. hProlog was at first implemented with the two stack model, so we
created a version which differs from the original one only in that aspect. We report on that in Section 3.

Finally, we come back to types and tagging schemes: in [6] we showed how dProlog - the predecessor
of hProlog - has excellent performance. While converting hProlog further to a HAL back end we needed to
introduce several new data types. We show how we have done this without losing performance and without
restricting further the available address space for the heap: the report is in Section 4.

∗This paper contains a condensed version of three internal reports which discuss each issue separately and in more depth: [12, 7]
and [8] can be obtained from http://www.cs.kuleuven.ac.be/publicaties/rapporten/

†Department of Computer Science, K.U. Leuven, Belgium, bmd@cs.kuleuven.ac.be
‡Institut de Mathèmatiques Appliquées, UCO, Angers, France, nguyen@ima.uco.fr

59

2 Should we optimize lists ?

The list optimization is described in the original WAM and as far as we know, all implementations of the
WAM indeed follow the WAM in this respect. The BinWAM [15] is an exception and it is not pure WAM in
other respects as well. The list optimization consists of two cascading optimizations - cascading, because
they are not orthogonal in practice: one does not make sense without the other.

1. the instruction set is specialized for lists (we will refer to this as LSIS)

2. the heap representation of lists is specialized (we will refer to this as LSHR)

The former has lead to instructions like get list as a list-specialized version of get structure: the gain is in
the fact that the instruction does not need to encode as an argument the functor, because it is known to be
./2. Some WAM based implementation even have a get nil instruction.

The heap representation specialization is the one that represents a list as a special tagged (LIST) heap
pointer which points to two consecutive cells that contain the car and the cdr of the list: this is in line with
early LISP implementations.

Specializing the heap representation for lists without specializing the instruction set as well, seems
pointless: each *structure instruction must then distinguish the LIST case from the other functors. On the
other hand, specializing the instruction set without specializing the heap representation, makes perfect sense
as we will indeed show. Note that this is in line with the experiment reported on in [6] when we implemented
a tag-on-data representation scheme which does not specialize the heap representation for lists.

We list first some advantages and disadvantages of not specializing the heap representation of lists:

+ one tag becomes available for a more interesting purpose

+ support for rational trees becomes easier

+ garbage collection becomes more safe (see [9])

– loss of performance

– larger memory use

Note that we cannot perform the experiment just by a source to source transformation that would trans-
form every list occurrence to another binary functor: the implementation of many built-ins have hard-wired
in them that they produce or accept the specialized list representation (findall/3, =../2, sort/2 ...). So for our
experiment, we need to do quite a bit of changes. We actually made two new versions of hProlog 1.8:

• hProlog nolist which treats ./2 as any other binary functor both for instructions and for its heap repre-
sentation

• hProlog nolist(LSIS) which uses the same heap representation for ./2 as for other binary functors, but
which has a List Specialized Instruction Set

2.1 hProlog nolist

hProlog nolist was made by changing the compiler in its abstract syntax tree building phase, and by rewriting
a few internal macros and a bit of C-code. As examples:

#define is_list(p) tag(p) == LIST

60

became

#define is_list(p) is_struct(p) && *(get_struct_pointer(p)) == dot_2

and

#define make_list(p) (((long)(p) << 1) | LIST)

in a C fragment like: *x = make_list(h); became

#define make_list(p) make_struct_pointer(p)

and the corresponding fragment:

*x = make_list(h); *h = dot_2; h++;

Such changes are a bit tedious, but easy to get right.

2.2 hProlog nolist(LSIS)

Introducing LSIS was done at two levels: the loader transforms some structure instructions with dot 2
as structure argument into the corresponding list instruction - we did this only for the get structure and
put structure instructions because the other structure instructions occur quite infrequently. This results in
code that is close to what the original compiler generates. There are small differences because the original
compiler knows about the size of a cons cell. The main remaining difference however was that the original
compiler generates an instruction switchonlist skip - which speeds up nrev quite a bit - and there was no
switchonterm skip yet. So we had to introduce it - also by a peephole pass - and then let it be transformed
to the switchonlist skip.

We have in the code above used dot 2: at the C-level, one can think of it as a (global) variable that is
initialized (at start up time) to the appropriate functor table handle for ./2. This view requires a memory
access every time dot 2 is used and also in longer assembler instructions. One can alternatively make sure
that the value of dot 2 is known at compile time, e.g. by running the system and printing it out and then
using this value in subsequent runs. Then code will look like *(get_struct_pointer(p)) == 179
if 179 happens to be the value of dot 2. For this to work, the handle for ./2 should be constant across runs
of course. One has an interest in keeping this value small. We have chosen to make ./2 the first functor
that is ever put in the functor table, resulting in the value 19. This reduces also the length of the assembler
instructions needed to implement operations referring to dot 21. We do not report on the effect of this trick
here: it is just part of the LSIS scheme.

2.3 Benchmark results

We are interested in time and space for a set of benchmarks: these were classified roughly and a priori into
benchmarks that manipulate lists a lot (the upper part of Table 1) and the other benchmarks that manipulate
lists very little or in a balanced way. Performance wise, one expects to see the biggest (negative) impact
of not having LSHR in the first category, and none or just a small one in the second category. Space wise,
similar comments apply. For hProlog nolist and hProlog nolist(LSIS), we just give the relative difference to
the original hProlog (which includes LSHR and LSIS) in %, i.e.

100 ∗ (X(hProlog nolist) − X(original hProlog))/X(original hProlog)
where X can be time or heap size. Each benchmark was run with enough initial heap, trail ... space, so that
no garbage collection or expansions were triggered.

1because this value is used as an immediate operand in the assembler instruction

61

The code size is also influenced by the choice between the three systems. The code in original hProlog
and hProlog nolist(LSIS) is virtually the same 2. The code size in hProlog nolist(LSIS) is about 1.3%
smaller than in hProlog nolist measured over the whole benchmark set.

The experimental evaluation was performed on a Pentium III, 500MHz, with RedHat Linux and with
256Mb RAM.

nrev poly 10 browse crypt ham queens reducer zebra
nolist +20 +14 +8 +7 +4 +3 +3 +2
lsis +18 +9 +9 +7 +5 +1 +3 +1

snrev boyer cal send chat meta qsort sdda comp
nolist -21 +1 -1 0 -2 -1 -1 0
lsis -21 0 -1 0 -2 -1 -1 0

Table 1: Performance difference of hProlog nolist and hProlog nolist(LSIS) with hProlog

Most of the benchmarks are classical ones. comp is an old version of the XSB compiler compiling
itself. The upper part of Table 1 shows that the impact of abandoning LSHR is very pronounced for the nrev
benchmark - this is as expected. In most of the other benchmarks that we judged a priori to be list-intensive
(and consequently expected a bigger slowdown), we found a slowdown of 10% up to almost none.

The lower part of Table 1 shows that abandoning LSHR and in the course of doing so introducing some
reasonable instruction specialization and merging, we get most often a break even. We find the figure for
the benchmark comp most significant: it is the only real application (still of smaller than medium size) and
there was no noticeable performance loss by giving up LSHR. snrev is a version of nrev with a binary functor
different from ./2: that column shows the speed-up obtained by introducing switchonterm skip.

It is clear that even with a specialized instruction set for lists, abandoning LSHR must lead to a higher
memory foot print, i.e. a higher heap consumption. We have measured this to be between almost 50% for
nrev (as expected) to 0% for boyer - for comp it was about 20%.

In [7] we also report in more detail on differences in cache behavior for the different versions.

2.4 Final comments on the LIST optimization

Changing a tagging scheme in an existing system is usually not an option - although it was quite easy in
the case of hProlog. So the value of this work is clearly not in persuading people to throw away LSHR.
Also, in a native code implementation, the performance difference can be expected to be larger: since there
is no emulator overhead, the extra instructions executed and the extra cache misses in hProlog nolist most
certainly will show up. But it shows that by ignoring lists during the development of a Prolog system, no
unreasonable penalty needs to be incurred.

The most important result for us is that on comp, the only more or less realistic benchmark, there is
no meaningful speed difference between a system with LSIS+LSHR and a system without, even though
the compiler uses lists itself: typical non-trivial applications indeed use lists and other terms in a rather
balanced way. The other benchmarks seem to indicate that LSIS is not so effective as LSHR. This research
was a necessary step for us in understanding how to use type information in hProlog: this type information
is present in HAL programs. Mercury [14] has already shown the way of course, with a specialized data
representation for each type. We needed to gain experience with these issues in the emulator context.

2indexing is influenced in unpredictable ways

62

3 One or two stacks ?

In this section we have again used hProlog 1.8 as a starting base.
We will use the following terminology: the environment stack is the stack with environments or stack

frames in more traditional terminology; the choice point stack contains the choice points. The original WAM
uses an interleaved environment/choice point stack which is named the local stack.

Several Prolog implementations do not use the original local stack anymore: SICStus Prolog was per-
haps the first one, but neither XSB nor hProlog use a single stack for environments and choice points.
Apparently, the original motivation was that locality of reference is better in a two stack model, but also
that the two stack model offers easier implementation of parallel Prolog systems or tabling based on sus-
pension/resumption of consumers as in XSB. Yap however implements the original single local stack model
and Yap is very fast, if not the fastest emulator around. The natural question is of course whether this is a
coincidence and indeed one of the reasons for the current work is to investigate to what extent Yap’s perfor-
mance could be attributed to this traditional approach to the local stack. We have consequently performed
the following experiment: the implementation of hProlog 1.8 was adapted in such a way that a compile (of
the C-code) time option generates a system that uses either the original WAM local stack or the (default)
two stack. We will refer to these versions of hProlog as one stack and two stack. We will describe the
adaptations in more detail in Section 3.1. We then report on the time and space performance of * stack on a
set of benchmark programs in Section 3.2.

3.1 Changes to the hProlog machine

The text below can be understood without knowing the particularities of the hProlog variant of the WAM,
but some of the quoted code only makes sense if one knows that in hProlog, environments are always
upside-down and no environment trimming is performed.

The data structures hProlog is largely3 re-entrant and one record - together with what it points to -
captures one incarnation of the WAM as implemented by hProlog. This record - a struct in C, named
machine - contains all WAM (and extended WAM) registers, pointers to all stacks and stack limits, the open
files and the information for statistics. In two stack mode, the machine contains a TOS4 register and pointers
to the boundaries of the environment and the choice point stack. In one stack mode, it does not contain the
TOS register and instead of the previously mentioned delimitations, the begin, the end, and the overflow
limit of the single stack for choice points and environments.

One more data structure is affected by the stack decision: the choice point. In two stack mode it contains
the top of environment stack; in one stack it does not.

The code The code for resetting the registers on backtracking differs, as in the one stack mode, TOS need
not be reset - and when a choice point is created, it need not be saved.

At the moment that a choice point is pushed, the top of the choice point stack must be determined. In
two stack mode, this is trivial: the top of the choice point stack is always the current B. In one stack mode,
we get code like:

if (B < E) topofcp = B; else topofcp = E;

3The program and symbol tables are global by choice; the interrupt routines (in C) need to know which machine is executing.
4top of environment stack

63

In two stack mode and assuming that the top of the environment stack - TOS - is set correctly at the start
of the execution, it needs updating at the allocate and deallocate instructions. At allocate TOS comes in
correct, and is changed by

TOS = TOS - nrofpermvars;

for allocating an environment with (nrofpermvars-2) permanent variable slots. (the 2 represents the fixed
part of the environment: the environment back pointer and the continuation pointer)

At deallocate, the computation of TOS must take into account environments blocked by the current top
choice point:

if (E > B[tos]) TOS = B[tos];
else TOS = E;

A similar piece of code is needed in two stack mode when a cut is executed.
In one stack mode we must compute the top of environment stack at allocate, since we chose not to save

it in the choice points. The code is similar as above for deallocate in two stack mode. This is the only place
where the top of environment stack is computed and used in one stack mode.

The code and heap garbage collectors, and the expansions of the run-time stacks were disabled: they are
not called during the tests because we start all tests with an initial size that is large enough.

3.2 Time and space performance

The time and space performance was measured on a set of classical benchmark programs and a compiler
compiling itself (some artificial benchmarks are reported on in [12]). Timings are reported in milliseconds:
benchmarks were repeated a number of times until some reasonable total was obtained. The %difference
column contains the excess of one stack over two stack, i.e. a negative sign reflects badly on two stack.
Timings were made on the same machine as in 2.3.

Table 2 shows differences of about 3% in time both ways. That hardly seems meaningful, but the
meta qsort and queens are very backtracking intensive. This seems to indicate that backtracking programs
benefit from having a single stack. On the other hand, sdda contradicts this general conclusion.

For comparison: SICStus 3.10.0 and Yap-4.4.4 take 1755 and 1440 msecs for comp respectively. SIC-
Stus follows the two stack model, Yap has single stack.

The same table contains data about the difference in space usage between the two systems: we mention
the sum of the maximal usage of in the environment stack and the choice point stack in the two implemen-
tations. There are two reasons for expecting smaller numbers for one stack: (1) a choice point is smaller (6
as opposed to 7 fixed entries) and (2) one can easily construct a program that allocates N stack cells for a
number of environments, deallocates them and then allocates the same amount of space for choice points:
in one stack, this takes up N cells, but in two stack, it uses at least 2 ∗ N : the actual worst case ratio is
(2+ 1/6). On the other hand, in the one stack model, the cut can free the space of a choice point, but it can-
not be reused immediately as in the two stack model, so in that case the two stack model has a smaller stack
usage. The worst case for the one stack model depends on the maximal number of slots for arguments in the
cut away choice points. If that maximum is N , the worst case constant factor is asymptotically (N/3 + 3).

64

Benchmark Time Space
one two %diff one two %diff

boyer 690 700 -1.5 424 448 -5.4
browse 870 860 +1.1 5736 6139 -7.0
cal 1140 1160 -1.8 37 47 -27.0
chat 980 970 +1.0 1830 1913 -4.5
crypt 700 700 0 98 106 -8.1
ham 1400 1390 +0.7 494 542 -9.7
meta qsort 910 940 -3.2 4892 4631 +5.3
nrev 1060 1040 +1.9 189 192 -1.5
poly 10 530 530 0 132 144 -9.0
queens 16 1160 1180 -1.7 268 287 -7.0
queens 2220 2290 -3.1 195 216 -10.7
reducer 280 280 0 794 764 +3.7
sdda 690 670 +2.9 287 303 -5.5
send 760 770 -1.3 87 112 -28.7
tak 790 790 0 166 177 -6.6
zebra 1680 1680 0 141 179 -26.9
average -0.4 -9.2
comp 1249 1256 -0.6 12402 12111 +2.3

Table 2: Time (msecs) and space (machine words) performance: one stack against two stack

On the whole, the one stack model is favorable to backtracking intensive programs.
Note that the space figures in Table 2 include the setup for the benchmarks5.
The one stack model has more chance to win space wise when the life times of choice points and

environments overlap: this seems not true in more realistic programs like comp. The space comparison
never shows the extreme worst case. Most often the two stack model uses significantly more space: on top
of that, in a realistic scenario the two stack model must pre-allocate more space (roughly double) than the
one stack model.

3.3 Final comments on the one vs. two stack issue

The power of this contribution is in the fact that within basically the same system the two alternative stack
layouts are implemented and that all other aspects of the abstract machine were kept the same: this means
that any observed performance differences can be attributed to the difference between one and two stacks.
The fact that hProlog has reasonable performance compared to other state-of-the-art WAM emulators, adds
to the credibility of the experiment.

Folklore tells that the locality of reference is better in the single stack model and that consequently the
performance should be better. The experiment confirms this, but in a weak sense: the differences are so
small that they seem hardly significant. The main conclusion is that there is no good performance reason
to chose one model over the other and that certainly the excellent speed of Yap cannot be attributed to its
traditional stack layout.

5that is why the diff column for nrev is not equal to zero

65

4 New tags for new data types

The tag change reported on in this section, was performed within hProlog 2.3 and is meant to stay.
At some point we felt the need to incorporate two more data types in hProlog: character and string.

While these can be implemented without adapting the tagging scheme, it is aesthetically more pleasing to
do so and definitely from a performance point of view more desirable. We had previously also introduced
attributed variables in hProlog, and we wanted to support big integers.

These new types were not supposed to slow down the system, neither (further) restrict the address space
that hProlog in principle allows for the heap: it used to be 2 Gb on a 32-bit machine6.

During the development of hProlog (starting with dProlog) we made one big mistake: while most data
representation issues are hidden carefully, the decision to represent a free variable as an untagged self-pointer
is freely used everywhere in the code, as well as the fact that a reference is an untagged pointer. This means
that we could not (easily) change the representation of a reference chain and an undefined variable.

In Section 4.1 we explain the hProlog tagging scheme. The interaction with the garbage collector can
be found in [8]. Section 4.4 contains the experiments and Section 4.5 finished with a conclusion.

4.1 Three tag bits and the works

We are developing hProlog almost exclusively on 32-bit machines. Pointers to the heap are aligned on a 4
byte boundary and the highest order bit of pointers returned by malloc is 0 (malloc is used for areas like the
heap). This means that we can use 3 bits for the tagging. We chose to use three lower bits and to shift the
word when necessary. This resulted in the following tags in bits 1 to 3:

REFERENCE 000 and 100 (**) ATT 101 (*)
STRING 001 (*) STRUCT 110 (*)
SIMPLE 010 LIST 111 (*)
NUMBER 011 (*)

(**) means that the contents of the word is to be interpreted as a pointer. As usual in the WAM, a
self-reference means an undef - the end of a reference chain.

(*) means that the word should be (logically) shifted to the right, and masked with ˜0x3, to obtain a
pointer 7 to a sequence of cells that contain more data. The case LIST is implemented as in traditional
WAM: the pointer points to two consecutive cells on the heap and these are the head and tail of the list. In
the other (*) cases, the (derived) pointer points to a header which also must have a tag because of the heap
garbage collector.

SIMPLE: The tag SIMPLE is overloaded and means that the rest of the word encodes an atom, a character,
a small integer or is a structure header (i.e. a functor descriptor) or a string header. Atom, character and
small integer are atomic in the Prolog sense of the built-in. Let a cell have the SIMPLE tag - remember it is
only 3 bits.

• If the cell’s fourth bit is zero, the remaining 28 bits encode a small integer in the usual two’s complement. This
choice ensures that detecting whether some cell contains a small integer is fast.

• If the fourth bit is one, bits 5 to 11 (7 bits) often contain an arity, so we name this field the generalized arity or
genarity for short.

– If the genarity equals 0x7f, the cell is an atom and the remaining 21 bits denote an index in the atom table.

6hProlog does not restrict the size of the other memory areas
7[2] describes an alternative to shifting: negation of the bits can be used for one of the pointers

66

– If the genarity equals 0x7e, the remaining 21 bits encode a character.

– If the genarity equals 0x7d, the cell contains a STRING header, and the 21 bits encode the length of the
string.

– In all other cases the cell contains a functor, i.e. the header of a structure on the heap. The 21 bits denote
again an index in the functor table, where the name, the real arity and (if present) the code entry point
of the functor can be found. If the genarity is different from zero, it represents the actual arity of the
functor, otherwise the arity must be looked up in the functor table. It means that functors with an arity
smaller than 124 (0x7d) do not need this general look-up and that covers most occurrences of functors
and it allows support for very large arities.

Note that general unification and abstract machine instructions do not need to distinguish between these
last 4 cases: a header is only reachable by its tagged pointer and the case ATOM, SMALLINT and CHAR
need no distinction. Section 4.2 gives an overview of the representations in the form of pictures.

NUMBER and STRING: A NUMBER tagged word is a pointer to the header of either a floating point
number (a C double) or a bigint. As for any tagged pointer, the pointer is extracted from the word w by

pointer = (((unsigned long)w) >> 1) & ˜0x3

The same is true for LIST, FUNCTOR and ATT tagged pointers.
The header of a bigint (BIGINT HEADER) has the value 0 and the REAL HEADER has the value 1.

At first we tried to pack more info in the BIGINT HEADER, but later refrained from doing so mainly for
simplicity reasons.

The REAL HEADER is followed by two cells: the double. Its precision and range is as in C.
The BIGINT HEADER is followed by a cell that encodes the length (in words) of the bigint, its sign

and a bit telling whether to find the (absolute) value in the next cells or not. The latter is related to heap
overflow. Execution that does not overflow the heap during a computation, always produces the value cells
immediately after the information cell. For more on this issue, see [8].

A STRING tagged pointer points to a cell which is identified as a STRING HEADER because it has a
SIMPLE tag and a genarity that equals 0x7d. The remaining 21 bits indicate the length of the string in bytes:
the length in words is easily derived from that. The characters are represented as in C. There is no trailing
zero byte and in principle a string can contain zero bytes. It would be easy to incorporate strings with wide
characters in this scheme.

4.2 Pictures that show the tags and the heap layout

Figure 1 shows the atomic types with a SIMPLE tag and which are tagged-on-data, as well as the two kind
of variables in hProlog: ordinary (Herbrand) variables and attributed variables. A reference has the same
tag as a free variable.

Figure 2 shows the Prolog types which use tag on pointer: LIST, STRING, STRUCT and NUMBER.
In the case of STRING, STRUCT and NUMBER, the pointer points to a header. The LIST pointer points
directly to two other Prolog terms.

4.3 Code generation considerations

New abstract machine code instructions must be introduced for supporting directly the new types. For
characters, these are just variants of the instructions for atoms.

The instructions for strings are similar, but one must cater for the fact that not every string has the same
length. As a result, some string instructions have a variable length themselves.

67

i SIMPLE0

SIMPLE10x7findex

SIMPLE10x7e c

small integer i

atom at index

character c

(a) The SIMPLE tag with variants

REF REF

attributed variable

<attributes>
ATT

reference undef

(b) Variables

Figure 1: Simple tag and variables

LIST a list
NUMBER

1

the double 3.14

NUMBER

0

12 1
0xffd3
0xa97

bigint −(0xa97 << 32 + 0xffd3)

with arity 3 and index

a compond termSTRUCT

the string "abcdef"STRING

a b c d

e f

0x7d6 SIMPLE0

index 3 SIMPLE0

Figure 2: Other types

The instruction switchonbound 8 uses a hash table for fast access of the appropriate clause(s). It is
trivially extended to also work on input and head arguments that are of the type character or string. However,
in HAL - just as in Mercury - a set of facts like

foo(asd).
foo("hello").

cannot be typed correctly, because a union type with string and some other data is not possible. The same
applies to other built-in types. We have therefore disabled indexing on arguments which are a mixture of
values of these basic types and something else. We have not (yet) taken advantage of that by specializing the
indexing instructions, but it has a detrimental effect on at least one benchmark: cal.pl contains the predicate
cal key/3 of which some facts are shown

cal_key(1, 6, 1).
cal_key(2, 2, 1).

8name inherited from XSB

68

...
cal_key(jan, 6, 1).
cal_key(feb, 2, 1).
...

hProlog does no longer apply indexing to such a predicate. The benchmarks show therefore timings for
cal.pl and for simple cal.pl, which is a version of cal from which we eliminated all the facts for cal key with
an atom in the first argument: they are not activated during the benchmark. While on the topic of changes
to benchmarks: in sdds, we have replaced the occurrence of "A" = [A] by A = 0’A because of the
introduction of strings.

4.4 Experimental evaluation of the new tag scheme

Extending the tag scheme - and the instruction set - of a system that is among the fastest around, runs the
risk of slowing it down: we intended to show that the introduction of more natively supported types does
not need to slow down an already fast system. We use the same set of benchmarks as in [6] and we simply
compare the performance of dProlog1.0 which has the original tagging scheme with hProlog2.3.9 which
has the new tagging scheme with the extra types supported: see Table 3. We also show the performance of
SICStus Prolog 3.10.0 and Yap-4.4.2 because that gives additional credibility to the figures. One must keep
in mind that the benchmarks are old, mostly badly written and that hProlog intends to support a super-set of
Clocksin-Mellish Prolog (except for dynamic predicates).

We have previously compared the performance of our attributed variables to the SICStus Prolog ones:
see [4]. The bigints in hProlog are based on Section 4.3.1 in [10], and so are the bignums in SICStus
Prolog: the comparison is therefore not interesting, i.e. the results are basically the same. Mainstream
Prolog systems do not support strings or characters, so a specific comparison is not possible: it is of course
very easy to make benchmarks that show the superiority of supporting strings natively to supporting them
as lists of ASCII codes.

benchmark dProlog hProlog SICStus Prolog Yap
boyer 7410 5645 6115 5087
browse 7552 5290 11667 5270
simple cal 1495 1000 1370 1515
chat 807 740 1007 840
crypt 3850 2460 4237 3902
ham 977 977 1252 852
meta qsort 1372 1095 1132 1072
nrev 6472 6450 11605 6605
poly 10 557 385 490 470
queens 1807 1435 2385 1715
queens 16 1365 632 1592 700
reducer 5362 3517 4130 3382
sdda 460 372 370 340
send 6547 4332 9345 5240
tak 1235 837 1282 1142
zebra 4210 4560 5097 3485
cal 1480 1637 1357 1510
comp 1347 1300 1755 1440

Table 3: Timings for some benchmarks

69

The table shows in bold the figures that are best amongst the four and the worst figure is indicated in
italic. Timings are in milliseconds and the benchmarks were performed on an Intel 686, 1.8 GHz with
RedHat Linux. The benchmarks were compiled without some of the optimizations that hProlog can perform
(like in-lining and switch improvement).

We have singled out two benchmarks: cal for reasons explained in Section 4.3, and comp, because it is
not a traditional benchmark.

Of the 16 traditional benchmarks, hProlog is the faster on 9 and never the slowest. hProlog is slower
than dProlog only on zebra: the reason is that the general unification routine in dProlog does not support
cyclic terms, while in hProlog it does.

hProlog is slower on the original (bad typed) version of cal, because it does not index any longer on a
badly typed argument.

On modern hardware, the traditional benchmarks are no longer well suited for performance assessment,
because they need to be repeated a million times in order to obtain timings that are close to a second. The
last benchmark (comp) is the most realistic benchmark of all and hProlog also performs best for it.

We must end with a caveat: the choice of the version of gcc with which hProlog and dProlog is compiled
is crucial to the findings. We have easy access in our department to gcc 2.95.4 and 3.0.4. hProlog runs
slightly faster when compiled with 3.0.4 while dProlog benefits significantly from 2.95.4. So we have
compiled each with the gcc version that gives best results. The benchmark that is most affected by the
choice of compiler is nrev.

4.5 Discussion of the tagging scheme

All together, Table 3 seems to show our point: there is no need to lose performance or address space while
introducing more types in the WAM. And there is room for more: we have already experimented with
overloading the representation for STRINGS, so that we can have a native array type in hProlog.

5 Discussion

We have once more used hProlog as a platform for experiments. The exemplary performance of hProlog
and its completeness as a Prolog system are a guarantee that the experiments and the conclusions can be
meaningful. In the case of the one stack versus two stack experiment, the conclusion is that it does not
really matter for performance. In the case of the list optimizations, the conclusion is that it matters only for
applications using lists much more heavily than other data structures: our experience (independent of the
benchmarks) is that this is rare. The conclusions are not surprising, but it is nice to have an experimental
verification of what is intuitively believed. The final experiment - a new tag scheme allowing more native
data types - is the most important to us, because we cannot dodge the issue of supporting natively more data
types. So it is all the more important that we have achieved this without performance loss. We acknowledge
that performance is secondary to features, but it is our duty to search techniques which do not trade one for
the other. We believe we have succeeded.

Acknowledgments

Part of this work was conducted while the first author was a guest at the Institut de Mathematiques Ap-
pliquées of the Université Catholique de l’Ouest of Angers, France. Sincere thanks for this hospitality. We
also thank Henk Vandecasteele for his work on the ilProlog compiler used within hProlog, and the referees
for relevant comments that helped improve the paper. This work was partly supported by project G.0144.03
funded by the Fund for Scientific Research - Flanders,Belgium (F.W.O. - Vlaanderen).

70

References

[1] H. Ait-Kaci. The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research Report, 1990 See also:
http://www.isg.sfu.ca/˜hak/documents/wam.html.

[2] V. S. Costa. Optimising Bytecode Emulation for Prolog. In Proceedings of PPDP’99, volume 1702 of LNCS,
pages 261–277. Springer-Verlag, Sept. 1999 See also http://www.ncc.up.pt/˜vsc/Yap/.

[3] L. Damas, V. Santos Costa, R. Reis, and R. Azevedo. YAP User’s Guide and Reference Manual, 1989.

[4] B. Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation. Report CW 350, Dept. of
Computer Science, K.U.Leuven, Belgium, Oct. 2002. unpublished.

[5] B. Demoen, M. Garcı́a de la Banda, W. Harvey, K. Mariott, and P. Stuckey. An overview of HAL. In J. Jaffar,
editor, Proceedings of the International Conference on Principles and Practice of Constraint Programming,
volume 1713 of LNCS, pages 174–188. Springer, 1999.

[6] B. Demoen and P.-L. Nguyen. So many WAM variations, so little time. In J. Lloyd, V. Dahl, U. Furbach,
M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors, Computational Logic -
CL2000, First International Conference, London, UK, July 2000, Proceedings, volume 1861 of Lecture Notes in
Artificial Intelligence, pages 1240–1254. ALP, Springer, 2000.

[7] B. Demoen and P.-L. Nguyen. What if [a] really equals .(a,[]) ? Report CW 351, Department of Computer
Science, K.U.Leuven, Leuven, Belgium, Oct. 2002.

[8] B. Demoen and P.-L. Nguyen. Supporting more types in the wam: the hprolog tagging scheme. Report CW 366,
Department of Computer Science, K.U.Leuven, Leuven, Belgium, Aug. 2003.

[9] B. Demoen, P.-L. Nguyen, and R. Vandeginste. Copying garbage collection for the WAM: to mark or not to mark
? In P. Stuckey, editor, Proceedings of ICLP2002 - International Conference on Logic Programming, number
2401 in Lecture Notes in Computer Science, pages 194–208, Copenhagen, July 2002. ALP, Springer-Verlag.

[10] D. J. Knuth. Semi-numerical Algorithms. Addison-Wesley, 1981.

[11] T. I. S. Laboratory. SICStus Prolog User’s Manual Version 3.7.1. Swedish Institute of Computer Science, Oct.
1998.

[12] P.-L. Nguyen and B. Demoen. Interleaving or separating environments and choice points in the wam. Report
CW 364, Department of Computer Science, K.U.Leuven, Leuven, Belgium, Aug. 2003.

[13] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database Engine. In Proc. of SIGMOD
1994 Conference. ACM, 1994.

[14] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of mercury: an efficient purely declarative
logic programming language. Journal of Logic Programming, 29:17–64, 1996.

[15] P. Tarau. Program Transformations and WAM-support for the Compilation of Definite Metaprograms. In
A. Voronkov, editor, Russian Conference on Logic Programming, number 592 in Lecture Notes in Artificial
Intelligence, pages 462–473, Berlin, Heidelberg, 1992. Springer-Verlag.

[16] P. Tarau and U. Neumerkel. A novel term compression scheme and data representation in the binwam. In
M. Hermenegildo and J. Penjam, editors, Proceedings of the Sixth International Symposium on Programming
Language Implementation and Logic Programming, number 844 in Lecture Notes in Computer Science, pages
73–87. Springer-Verlag, Sept. 1994.

[17] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI, 1983.

71

72

73

74

Controlling Code Expansion in a Multiple

Specialization Prolog Compiler

Michel Ferreira Lúıs Damas

DCC-FC & LIACC, University of Porto,
Rua do Campo Alegre, 823 - 4150 Porto, Portugal

{michel,luis}@ncc.up.pt

Abstract

In this paper we present the work developed in the u-WAM compiler to control the code
growth that results from the multiple specialization of a program. Few attention has been de-
voted to this issue, but it is extremely important for the compilation of real programs. We show
how the u-WAM system allows performing partial multiple specialization, solving the important
problem of scalability of existing global analysis frameworks. We describe a WAM level pro-
filer which guides the selection of predicates for specialization and show that the distribution
of time per predicate in large programs is adequate for partial multiple specialization, allowing
largely improving the efficiency of a program by multiply specializing a small number of well
chosen predicates. We also show how code growth can be further improved by collapsing ver-
sions of a predicate that do not introduce new optimizations, or that introduce only negligible
optimizations, through a non-strictly identical collapsing of versions.

1 Introduction

The u-WAM Prolog compiler [5] implements multiple specialization of Prolog predicates based on
an abstract interpretation of WAM [14] code [6]. The most important aspect of this prototype
system is the fact that analysis is much more intra-procedural and less inter-procedural than other
analysis implemented using abstract interpretation over the Prolog source code. This is due to the
availability of low-level information at the WAM level.

A very important aspect when implementing a multiple specialization strategy into a compiler
is to develop an efficient way of controlling code expansion. Multiple specialization unfolds the
code of a predicate in a number of codes implementing specialized versions of the predicate. As a
result, code growth is particularly problematic in a multiple specialization compiler.

Keeping analysis intra-procedural presents the advantage of allowing to apply the process of
analysis and specialization to a number of isolated predicates within a program. The interface
between non-specialized predicates and specialized predicates is done via a special most-general-
version which, in the case of recursive predicates, directs execution to the specialized versions. This
partial multiple specialization allows to control code growth while obtaining important speed-ups
in the compilation of large programs, as long as the time relevant predicates are selected to be
multiply specialized.

Program profiling comes immediately to mind as the source for information for choosing pred-
icates. However, Prolog profiling is more complex than profiling of simpler control-flow languages.
We address Prolog profiling and describe our implementation of a WAM level profiler.

75

Another important aspect in the code expansion control of a multiple specialization implemen-
tation, is obtaining an optimal set of specialized versions within a predicate. Our WAM level
multiple specialization is particularly advantageous on this aspect, as the implementation differ-
ences between versions are clearly visible at this level. We explain how a collapsing of non-strictly
identical versions is performed to further reduce code expansion.

2 Partial Multiple Specialization

The number of versions generated for each predicate is a function of the arity of the predicate and
of the analysis domain complexity. The elements of the analysis domain are of two types: elements
which actually lead to optimizations and elements used to propagate analysis information. If d
is the number of elements of the domain and n is the number of elements which do not lead to
optimizations, then, in the worst possible case, the number of versions generated for a predicate
will be:

Pversions = (d − n)a

where a is the arity of the predicate. This is a wildly pessimistic number of versions as,
due to the structure of the domain, only a pathological predicate could achieve such a variety
of activation patterns. It is, though, an indicator of the order of growth of a multiple specialization
implementation, revealing its exponential nature. In real-size programs only the most critical
predicates of a program must be multiply specialized, performing partial multiple specialization
instead of total multiple specialization.

Traditional global dataflow analysis analyze programs considering all its predicates and all the
interactions between them, as a whole. Altering one predicate normally requires re-analysis of the
entire program. Most works on global dataflow analysis of logic programs typically assume that
the entire program is available for inspection at the time of analysis. Consequently, it is often
not possible to apply existing dataflow analyses to large programs, either because the resource
requirements are prohibitively high, or because not all program components are available when we
wish to carry out the analysis. This is especially unfortunate because large programs are typically
those that stand to benefit most from the results of good dataflow analysis. Research on global
analysis of logic programs is focusing on incremental or modular analysis, in order to overcome this
problem [12, 9]. Essentially, this involves the extension of the fix-point algorithms of the generic
analysis engines to support incremental/modular analysis.

In most analysis frameworks it is, therefore, impossible to select just a part of a program
for analysis and to produce results that are correct for the entire program. Because we extract
information from a predicate in a local basis, it becomes possible to analyze predicates individually,
selecting a number of predicates for analysis, and performing multiple specialization for them. This
is one of the most important aspects of our approach, as it does not have the scalability problems of
traditional global analysis, it can be applied to real programs, and if the predicates are well chosen
performance can be significantly improved.

Performing partial multiple specialization in the u-WAM system is simple. The WAM code of a
predicate is executed by an abstract emulator that modifies a local (predicate scope) State structure
according to the WAM instruction being abstracly executed. A call or execute instruction use the
State information to construct the calling pattern. If a calling pattern is detected for a predicate
that is not to be multiply specialized, then the calling pattern is replaced by the generic pattern.
The generic version of the called predicate is (abstractly) executed with an empty State, as opposed
to a State initialized with the information from the calling pattern in a predicate to be multiply
specialized. Figure 1 presents the abstract meaning of call(P/N). The AbstractEmulate procedure

76

executes each WAM instruction producing the State modifications. It also outputs a new specialized
WAM instruction of the current instruction being executed, for instance a get list lstndrf (Ai)
when the current State determines that Ai is a dereferenced list. In the end of the abstract emulation
of a predicate its specialized code has been generated.

call(P/N)

if (P/N ∈ Selected Preds) P ′/N ← BuildCallingPattern(P ,N ,State)
else P ′/N ← BuildGenericPattern(P ,N)
WamAnalyze(P ′/N)
ExitP ′/N ← ReadExitT ypes(P ′/N)
NewState ← UpdateState(State, ExitP ′/N)
AbstractEmulate(NextInst, NewState) → outcode1

outcode → call(P ′/N), outcode1

Figure 1: Abstract meaning of call(P/N) for partial multiple specialization

Partial multiple specialization tends to be goal-independent. At some point in the call graph,
some calling patterns will be promoted to their most general version, and the subsequent calling
patterns will be derived as goal-independent. On partial multiple specialization, the predicates
which are not selected for being multiply specialized and do not call predicates which are to be
multiply specialized, do not have to be abstractly executed. Efficiency is improved by separating
these predicates and generating independently non-specialized code for them.

Partial multiple specialization fits naturally with our intra-procedural analysis and goal-independent
specialization, and is easily implemented. However, partial multiple specialization can only yield
good results if the predicates selected for multiple specialization are correctly chosen. The next
section addresses the problem of selecting the time relevant predicates to be multiply specialized.

3 Profiling Prolog Programs

To optimize partial multiple specialization we must be able to correctly choose which predicates
to unfold. We want to generate specialized versions for the predicates which consume more time,
where optimizations will result in important speedups in the overall program execution.

To measure the most important parts of a program, profiling techniques have been used in
several programming languages to collect information during the execution of the program. The
information provided by the profiler can be used for other purposes than just improving speed of
execution, such as program debugging and code optimization[2]. For a developer a simple and
economical way of obtaining efficient programs is to write the program, obtain execution profiles
for it on representative input data, and then rewrite the most often executed parts in an optimized
way. The program can be profiled again, returning new information that can be used again in an
iterative optimization process. In our case, where the program is automatically transformed to
become more efficient and where that transformation has important consequences on code growth,
the information from execution profiles is much more useful, even essential. Totally unfolding a 1000
lines program with high-arity predicates, causes code to enlarge to unreasonable limits, eventually
leading to slow-downs rather than speedups due to caching problems. However, it happens very
often that a 1000 lines Prolog program spends 90% of the time in just a few predicates. If the

77

profiler detects those few predicates and multiple specialization is done just for those predicates,
then performance can be significantly improved with very low impact on code growth.

The implementation of profilers for traditional languages is simple and well understood. There
are two types of profilers: time profilers and count profilers. Time profilers give information about
the time spent in each procedure or piece of code. This is the most useful information to the
developer in order to improve program efficiency. It is difficult, though, to accurately time profile
a program, because the overhead of the timing instructions is large. This overhead, together with
the coarse grain of system clocks, can mislead the time estimate of fast procedures. Another
problem with the overhead of the timing instructions is that the candidate programs to profiling
and consequent optimization are programs which already take long to execute, possibly becoming
prohibitive when being profiled.

A solution for those problems is based on statistical sampling of the program execution. An
interrupt is generated on a regular or random time cycle, and we annotate the routine or part of
the code where the program counter was at that time. This idea can be easily applied to Prolog
programs, measuring the time spent inside each predicate definition. The overhead is small and
there is no need to change the program code. Errors may be, however, relatively large[8].

Count profilers give information about the number of times a procedure or piece of code is
executed. Execution counts do not give time information directly. However, if we know how much
time an instruction takes to execute the count information can be converted to time information.
The profiler we have implemented is a count profiler which converts the count information to relative
time information. Count profilers have some advantages over time profilers, because they are exact
and are able to sketch the execution path of the program.

3.1 The Control-Flow of Prolog Programs

Classical languages have a simple unidirectional flow of control, and the sequence of the program
instructions is identical to the sequence of execution. In Prolog, however, the execution has two
possible directions, forward and backward. In this case the sequence of the program execution
is not identical to the sequence of the program instructions. For example, a possible execution
sequence for the following program

h :- p1, p2, p3.
can be

h, p1, p2, p1, p2, p1, h (fail)
This more complex mechanism of flow of control introduces some interesting problems, con-

cerning the management of timing in the presence of backtracking and failure. These problems
have been addressed and solutions proposed by Debray in [4]. Essentially, care must be taken as
Prolog procedures can be entered via call or redo ports, and exited via exit or fail ports, following
the box-model of Byrd [1]. In [10], Matos describes an interesting Prolog count profiler which
displays valuable information, by defining four count values (called currents) based on these four
ports. Besides showing the values of these currents, the profiler also evaluates intrinsic predicate
characteristics based on a matrix model, that detail the origin of each current value.

3.2 WAM-Level Profiling

Prolog profilers such as [7], [4] and [10] are implemented over the Prolog source code, rewriting the
program clauses of the predicates to be profiled to call special predicates before and after executing
the call. Those special predicates are responsible for the timing or counting of predicates.

78

Our approach is different, as the profiling is performed and implemented at the WAM level. A
first advantage of such approach is that the compiler optimizations (such as clause indexing) that
could mislead the true flow of control on the Prolog source profiling implementations, are explicit
in the WAM code.

A second reason to implement a profiler at the WAM level is the higher level of detail introduced
by WAM instructions in the codification of a predicate, leading to more accurate conversion of count
information to time information, as, due to the low-level of the WAM instructions, we can more or
less fairly estimate how much time each instruction takes to execute.

A third reason is that the WAM code is more similar to the code of traditional programming
languages, with a simpler control-flow and the traditional problems of Prolog profiling disappear.

A last reason is to perform profiling at a level that can be used with the process of multiple
specialization, contributing to obtain an optimal set of versions for a particular predicate.

The implementation of our WAM profiler is simple but effective. The basic idea is to give a
certain weight to each WAM instruction. The weight is meant to represent a relative time that
the instruction takes to execute. We obtained this weight by inspecting the implementation code
of each instruction, counting the number of assignments, comparisons and operations performed.
The values of these weights can be seen as an equivalent measure to the CPU instruction cycles
each WAM instruction would take to execute.

Each instruction increments a counter with its weight. The counter can be a single global
counter translating, upon program termination, the total execution time, or it can be a number of
counters, one per predicate, translating the time spent in each predicate, or it can be a counter per
instruction type, for instance, grouping instructions in indexing instructions, control instructions,
unification instructions, etc, giving information about particular characteristics of the program.
Such characterization is important because, in Prolog, performance depends on different aspects,
such as data structure implementation for some programs, and control for others. We are basically
interested in having a counter per predicate, to order predicates by their relevance.

The single global counter can be used to check the accuracy of the count values assigned to
each WAM instruction. The proportionality of the real time a benchmark takes to execute and
the global count value obtained should be the same across different benchmarks. On the set of
benchmarks that we have tested, the error obtained was smaller than 7%.

A problem with giving a fixed weight to a WAM instruction is that the complexity of the
instruction varies, depending on the input. For instance, a large number of WAM instructions
have an intrinsic dereferencing operation. This dereferencing operation is of variable complexity,
depending on the chain length to be dereferenced. Some other instructions operate either on write
or read mode, and their complexity varies depending on this execution mode. These variations are
of small relevance [13], though. There is, however, an important problem when giving a fixed weight
to a WAM instruction, and this problem has to do with unification instructions, namely unification
between non-variable terms. The problem is that the terms to be unified can have very different
depths and arities, and such depth and arity linearly increases the complexity of the unification
instructions. Moreover, unification is everywhere in Prolog programs, making crucial the correct
measurement of such operation. WAM instructions like get value(Xi) and unify value(Xi) call
a general unification routine, Unify, which has a varying complexity. In the cases where one of the
terms is unbound the unification is reduced to making the unbound term point to the other. This
has a fixed cost that does not introduce errors in our count profiling. The problem is the unification
of two compound terms. This unification is made recursively and, in the case of structures, this
recursion is iterated in the number of arguments. The size of such recursion and iteration must
be considered when profiling the program to obtain accurate results. Therefore, the instructions

79

[p(1,1),p(2,5),p(3,8),p(4,6),p(5,3),p(6,7),p(7,2),p(8,4)]
time : 610

Profile information:

Characterization Time/predicate

Get --> 29% exe_1/0 --> 00.00%
Unify --> 39% q/0 --> 00.00%
Put --> 04% q8/0 --> 00.00%
Call --> 13% q/2 --> 00.81%
Choice-point --> 09% perm/2 --> 09.32%
Indexing --> 06% safe/2 --> 09.66%

test/2 --> 10.25%
nd/2 --> 12.34%
sel/3 --> 15.00%
pair/3 --> 42.61%

Figure 2: Profiling report of the queens8.pl benchmark

get value(Vi), unify value(Vi), and unify local value(Vi) cannot be accurately count profiled
in the same manner as the other instructions because they depend on the size of the input.

To accurately count profile these instructions we modified the Unify routine to return a number
representing the size of the recursion and iteration of its execution. The weight of the WAM
instruction is then calculated based on the returned value, translating the size of the input. If
we want more accuracy on our profiling information, the same scheme can be implemented on
the instructions which operate in write or read mode, returning different values according to the
execution mode.

3.3 Information from Profiling

We use the profiling information in three distinct situations: for program characterization, for
selection of predicates for multiple specialization and for elimination of versions of the multiply
specialized program.

3.3.1 Using the profiler for program characterization

We use the profiler reports to characterize a particular program. Such characterization is important
because in Prolog performance depends of different aspects, such as data structure implementation
for some programs, and control for others. Interpreting the speed-up results obtained on a par-
ticular benchmark is easier if we previously characterize the program, evaluating if it relies more
in unification than in choice-point management, etc. Dividing WAM instructions in 6 blocks, Get,
Unify, Put, Call, Choice-point, and Indexing instructions, and using a counter for each of these
types of instructions gives the emphasis of a particular program in each of these aspects.

In such profiling, the execution of each WAM instruction increments the respective counter
with the weight which represents its relative execution time. The report printed translates the time
percentage spent in each of these aspects, and is illustrated in the left column of Figure 2 for the
queens8 benchmark.

From this report we observe that Call instructions represent 13% of the execution time. No
gains are expected on the specialized implementation of this percentage of the program. Also,

80

more improvements are expected on the unification part of the program, Get, Unify and Put, which
represent 72% of the execution time, than over Choice-point and Indexing instructions, that only
profit from a determinism improvement. We present in Table 1 the characterization profile for the
benchmark set we have used. This is the same set we have used in [6].

Program Predicates Unification Control
Get Put Unify Call CP Index

qsort 4 25% 6% 40% 9% 13% 8%
query 6 39% 14% 1% 22% 9% 15%
derive 7 27% 4% 35% 11% 13% 10%
zebra 7 27% 1% 36% 11% 25% 0%
serialise 8 30% 3% 39% 13% 8% 7%
mu 9 26% 1% 39% 8% 18% 8%
fast mu 9 29% 9% 31% 10% 18% 3%
crypt 10 25% 12% 44% 9% 2% 8%
meta qsort 11 16% 8% 22% 19% 23% 12%
queens 8 11 29% 4% 39% 13% 9% 6%
nreverse 12 28% 2% 49% 9% 0% 12%
prover 15 24% 7% 31% 15% 14% 9%
browse 19 29% 4% 32% 12% 16% 7%
boyer 29 20% 12% 5% 26% 28% 9%
sdda 42 21% 5% 33% 15% 24% 2%
nand 78 28% 6% 27% 16% 18% 5%
chat parser 158 28% 10% 26% 16% 14% 6%

Table 1: Characterization of the benchmark programs

The first column indicates the number of predicates of the program. This is the number of
predicates after syntactic transformations, like if-then-else constructs elimination, have been per-
formed. The smallest benchmark, qsort, has only 4 predicates and the largest, chat parser, has
158.

The remaining columns present the results of the characterization profile for each benchmark.
The percentage of the execution time in each group of instructions, Get, Put and Unify for unifica-
tion, and Call, Choice-Point and Index for control, is given for each benchmark.

This table shows important differences between the programs of this benchmark set. These dif-
ferences must be considered when analyzing the speed-up results obtained in the multiple special-
ization of these programs, as, for instance, unification instructions benefit more with specialization
than control instructions.

3.3.2 Using the profiler for selection of predicates

The main task of the profiler is to give the relevance of each predicate in the total execution time
of the program. For this purpose we use a counter per predicate, and WAM instructions increment
the counter of the predicate to which they belong with the weight which represents its relative
execution time. The report printed translates the time percentage spent in each predicate of the
program, and is illustrated in the right column of Figure 2 for queens8.

From this report we observe that the predicate pair/3 is the critical predicate, being responsible
for more than 42% of the total execution time. The 4 most important predicates represent over

81

80% of the total execution time. This information is important because multiple specialization of
the 4 most important predicates can significantly improve the performance of the program, while
predicates like q/2 or perm/2 only represent a very small percentage of the execution time, and
thus should not be multiply specialized.

The goal of our profiling is to choose a reasonably small number of predicates to multiply
specialize that represents a reasonably large percentage of the execution time of the program. The
ratio between the first and the second reasonably is determinant in the success of our multiple
specialization strategy, and depends on the time per predicate distribution of Prolog programs. It
is well known that, in traditional programming languages, programs spend the great majority of
time in just a few cyclic functions. Our measurements show that this also happens with Prolog
predicates, and this result is very useful for partial multiple specialization.

Considering the size differences of the benchmarks, we analyzed the profiling information with
respect to the percentage of the number of predicates, using 10 measuring points from 10% to 100%,
in order to reach a meaningful average information. This is summarized in Table 2.

Program 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
qsort 36.5 73.3 73.3 95.8 95.8 95.8 99.8 99.8 100 100
query 35.4 35.4 69.0 69.0 84.8 99.5 99.5 100 100 100
derive 86.2 86.2 89.7 93.1 96.1 96.1 98.8 99.9 99.9 100
zebra 52.6 52.6 79.0 96.4 100 100 100 100 100 100
serialise 49.6 73.5 73.5 85.8 91.3 96.4 99.5 99.5 99.8 100
mu 26.0 50.7 71.0 84.2 91.4 91.4 96.0 99.6 100 100
fast mu 56.1 80.8 91.4 97.2 98.8 98.8 99.2 99.6 99.8 100
crypt 57.9 89.8 94.6 97.7 98.5 99.2 99.6 99.9 100 100
meta qsort 41.0 75.4 83.8 89.5 97.6 100 100 100 100 100
queens 8 42.6 57.6 70.0 80.2 99.2 100 100 100 100 100
nreverse 91.2 99.8 99.9 100 100 100 100 100 100 100
prover 60.0 74.2 93.3 96.4 99.5 99.7 99.9 99.9 100 100
browse 95.0 99.0 99.5 99.7 99.9 99.9 100 100 100 100
boyer 87.0 97.8 99.4 99.8 100 100 100 100 100 100
sdda 76.0 89.0 95.7 98.8 99.8 100 100 100 100 100
nand 65.2 83.9 90.2 94.3 97.7 99.5 99.9 100 100 100
chat parser 62.4 77.2 86.2 92.1 95.7 99.4 99.4 99.9 100 100
Average 60.0 76.2 85.9 92.4 96.8 98.6 99.5 99.8 100 100

Table 2: Percentage of execution time for varying percentages of most relevant predicates

On average 60% of the total execution time is concentrated on 10% of the predicates. Multiply
specializing this small part of the program can significantly improve the efficiency of the program.
Multiple specialization could be taken further, and applied to 20% of the predicates that, on average,
account for more than 75% of the execution time. If performance is critical and the program being
considered is not large we could select the 30% most important predicates, where almost 90% of the
total execution time is present. Further than that only marginal improvements would be achieved,
or the code growth could even introduce some slow-downs due to caching problems.

Notice that the results from Table 2 show an increasing trend as the programs become larger.
Considering the last 3 programs which have more than 40 predicates, the percentage of the execution
time on 20% of the predicates is on average 83.4%. Considering the first 7 programs, which have

82

less than 10 predicates, this percentage is 64.6%.

3.3.3 Using the profiler for elimination of versions in the multiply specialized program

Because the profiler operates over WAM code, it can also be applied to u-WAM code, i.e., to the
multiply specialized program. The specialized predicates created, formed by the pair (predicate
name/calling pattern), do not exist at the source Prolog level but exist at the (u-)WAM level.
Performing profiling on a counter per predicate basis over the multiply specialized code, as for
predicate selection, gives the relevance of each specialized version. These reports may show that
some specialized versions are very little used, or even not used at all, and can thus be eliminated.
This elimination, or collapsing, is explained in the next section.

4 Collapsing Versions

The number of versions of a predicate clearly influences the size of the codification of that predicate.
The different versions exist because they allow different optimizations to be performed. Normally
the versions are not disjunctive and are totally contained in a more general version. In a goal-
independent analysis there is always a most general version of a predicate in which the specialized
versions are contained. Even in goal-dependent analysis starting with a declared entry-point we
commonly obtain a most general version of a predicate which contains all the other specialized
versions. Finding the optimal set of specialized versions for a predicate is a complex problem, that
must balance the benefits from each version optimizations with the disadvantage of the overall code
growth. This problem has been addressed in [15] with an algorithm based on the notion of minimal
function graphs, and in [11]. Ideally, in terms of codification, every version which introduces a new
optimization should be created. Due to code growth and consequent caching problems, such rule
is not valid on practice.

In our specialization process versions are created prior to knowing which optimizations will they
allow, and the final set of versions is obtained by a collapsing process. When encountering a call
or execute instruction, the activation pattern is calculated for the predicate being called (if it is
to be multiply specialized) based on the information present on the State structure that analysis
maintains. If the activation pattern is new then a new predicate version will be created for it,
regardless of its WAM code and the optimizations the activation pattern will allow. It may happen
that the optimizations allowed will be exactly the same of a previously created version, but that
will only be detected in the end of the code specialization process. In such a case, collapsing the
versions that allow the same optimizations into a common version benefits code size and preserves
program efficiency.

The collapsing of versions occurs at three different levels in the process of specialization: in the
widening of the activation patterns in the call or execute instruction; after the code has been
generated; and after execution has been profiled.

4.1 In the Widening of the Activation Patterns

The State structure maintains information about the composition of compound registers. When
the activation pattern is calculated this compound representation is converted, through widening,
to a single atomic type, collapsing a possibly infinite number of representations into a single one.

The domain complexity greatly influences the collapsing of versions at this level. For instance,
the first analysis domain of our system had only a single list type to represent every possible

83

compound term whose functor was ./2. Our current domain has more elements which represent
the type list, namely listndrf of intndrf (a dereferenced list of dereferenced integers), considering
the composition of the term sub-terms. Whereas with the first domain all list terms are reduced
into a single type, with more complex domains the reductions are weaker, reflecting on the overall
collapsing of versions.

4.2 After Code Generation

At this level we compare the u-WAM code of each version of a predicate. Different activation
patterns can lead to exactly the same implementation code.

Comparing the u-WAM code of the different versions of a predicate is equivalent to compare
the set of optimizations of each or-record of the predicate, as is done by Puebla in [11], in the same
context of collapsing versions. In [11], the algorithm of minimization of versions receives as input
the set of table entries (or-records) computed during the analysis of the program, together with
the set of optimizations allowed in each or-record. Such set of optimizations is calculated after
analysis and prior to the execution of the minimizing algorithm. The output of the algorithm is
a partition of the or-records for each predicate into equivalence classes. For each predicate in the
original program as many versions are implemented as equivalence classes exist for it.

Two versions of a predicate that allow the same set of optimizations cannot be blindly collapsed,
since they may call a same predicate with different sets of optimizations allowed and thus the two
versions must be kept separate to allow the implementation of all possible optimizations.

Collapsing at the WAM level has some advantages. First, the set of optimizations allowed in each
version is directly visible in the u-WAM instructions. Second, as the pair predicate name/calling
pattern forms a distinct predicate at the WAM level, the comparison between the u-WAM code
of the different versions of a predicate will fail, if they call a same predicate (at the source Prolog
level) with different calling patterns. However, we might be interested in collapsing versions which
only differ in the calling patterns of the call and execute instructions. We can collapse these
versions if the distinct versions of the called predicates can also be collapsed. Consider the example
program scheme of Figure 3, where p1,p2 and q1,q2 are two versions of the same predicates.

p1: p2:
get ... get ...
... ...
put ... put ...
... ...
execute(q1) execute(q2)

q1: q2:
get ... get ...
... ...
put ... put ...
... ...
execute(r1) execute(r1)

Figure 3: Example for collapsing of versions

We try to collapse p1 and p2. Assume that the u-WAM instructions of the two versions are
identical except for the execute instructions, which call two different versions, q1 and q2. We can
collapse p1 and p2 if q1 and q2 can be collapsed, which is the case if their u-WAM instructions are
identical. If there was a difference between the u-WAM instructions of the two versions of q then
p1 and p2 could not be collapsed, in order to allow reaching the optimizations of the versions of q.

84

We generalize the process of comparison to allow some degree of difference between versions of
a predicate. If the difference is small, like between a get list lstndrf (Ai) (Ai is a dereferenced
list) and a get list nvndrf (Ai) (Ai is a dereferenced nonvar) then it can be interesting to reduce
code growth by collapsing the versions, ignoring the minor optimization. Collapsing non-identical
versions introduces a problem that did not exist with versions with exactly the same code. The
collapsed version will have just one instruction for each two possibly distinct instructions compared.
This instruction is from one of the versions, and it may introduce a non-valid optimization in the
other version. The solution for this problem is to generate the code for the collapsed versions based
on an instruction level calculation of the least-upper-bound of the two u-WAM instructions.

In Figure 4 we present the algorithm which checks if two versions of a predicate can be collapsed.
With a threshold value of 0, every version which introduces a new optimization will be im-

plemented. With higher values of threshold we can achieve a compromise between code size and
efficiency.

procedure can collapse(Pa, Pb,Diff)
if (collapse flag(Pa, Pb) = True) then return(True);
else

begin
collapse flag(Pa, Pb) = True;
foreach WAM instruction(Wi) of Pa, Pb do

begin
if (Pa(Wi) = call(Qc) and Pb(Wi) = call(Qd)

and can collapse(Qc, Qd, Diff) = False)
then

begin
collapse flag(Pa, Pb) = False;
return(False);

end
if (Pa(Wi) = execute(Qc) and Pb(Wi) = execute(Qd)

and can collapse(Qc, Qd, Diff) = False)
then

begin
collapse flag(Pa, Pb) = False;
return(False);

end
Diff = Diff + difference(Pa(Wi), Pb(Wi));

end
if (Diff < Threshold) return(True);
else return(False);

end
end can collapse

Figure 4: Collapsing checking algorithm

4.3 After Profiling

Although a determinate specialized version has a much more simplified code than its more general
versions, and thus cannot be collapsed using the previous criteria, it is often the case that it is not

85

executed a sufficient number of times to become a relevant version. This is where the profiler is
useful when applied to the already specialized program.

Although the profiler gives information about the execution time percentage of predicates and
the created specialized versions do not exist as predicates at the Prolog level, because the profiler
operates at the WAM level and at this level the pair (predicate name, activation pattern) defines
a predicate, the output of the profiler gives information about the relevance of each specialized
version.

Thus, profiling a program after multiple specialization has been performed gives relative time
information about each specialized version. Using this output information, we can replace the
specialized versions which are executed very few times by the most general version of the predicate,
resulting in insignificant performance loss and valuable code size reduction.

5 Performance of Partial Multiple Specialization

Table 3 gives, for the benchmark set, the average code growth factor and execution speed-up of the
u-WAM system over the wamcc system [3], in which u-WAM is based. We present the values for
the specialization of 20% of the predicates and for 100% of the predicates.

wamcc 2.22 u-WAM
Percentage Object Size Execution Time Object Size Execution Time
20% 1 1 1.57 1.50
100% 1 1 9.44 1.91

Table 3: Comparing average code size and execution time of wamcc and u-WAM

Multiple specialization of 20% of the predicates allows a speed-up of 1.5, while code size increases
by 1.57. Considering total multiple specialization, the speed-up increases by 1.91, while code size
increases by an unreasonable 9.44 times. The increase in compilation time is even larger. These
results clearly show the importance of partial multiple specialization.

6 Conclusions

In this paper we have presented the work developed in the u-WAM compiler to control the code
growth that results from the multiple specialization of a program. Few attention has been devoted
to this issue, but it is extremely important for the compilation of real programs. Partial multiple
specialization, though of very simple implementation in our system, solves the important problem of
scalability of existing global analysis frameworks. We have also demonstrated that the distribution
of time per predicate in large programs is adequate for partial multiple specialization, and allows
largely improving the efficiency of a program by multiply specializing a small number of well chosen
predicates.

Code growth can be further improved by collapsing versions of a predicate that do not introduce
new optimizations, or that introduce only negligible optimizations, through a non-strictly identical
collapsing of versions.

A future improvement will be the selection of predicates for multiple specialization that are not
time relevant, but that allow, through its multiple specialization, reaching new calling patterns of
time relevant predicates.

86

References

[1] L. Byrd. Understanding the control flow of PROLOG programs. In S.-A. Tarnlund, editor,
Proceedings of the Logic Programming Workshop, pages 127–138, 1980.

[2] P. P. Chang, S. A. Mahlke, and W. mei W. Hwu. Using profile information to assist classic
code optimizations. Software Practice and Experience, 1991.

[3] P. Codognet and D. Diaz. WAMCC: Compiling Prolog to C. In L. Sterling, editor, Proceed-
ings of the 12th International Conference on Logic Programming, pages 317–332, Cambridge,
June 13–18 1995. MIT Press.

[4] S. K. Debray and D. S. Warren. Automatic mode inference for prolog programs. The Journal
of Logic Programming, 5(3):78–88, September 1988.

[5] M. Ferreira. Advanced Specialization Techniques for the Compilation of Declarative Languages.
PhD thesis, Faculdade de Ciencias da Universidade do Porto, 2002.

[6] M. Ferreira and L. Damas. Wam local analysis. In V. Dahl and P. Wadler, editors, Practical
Aspects of Declarative Languages, 5th International Symposium, New Orleans, USA, January
2003, volume 2562 of LNCS, pages 286–303. Springer, 2003.

[7] M. M. Gorlick and C. F. Kesselman. Timing Prolog programs without clocks. In Proceedings
of the Fifth International Conference and Symposium on Logic Programming, pages 426–435,
San Francisco, Aug. - Sept. 1987. IEEE, Computer Society Press.

[8] S. L. Graham, P. B. Kessler, and M. K. McKusick. An execution profiler for modular programs.
Software Practice and Experience, 13(8):671–685, Aug. 1983.

[9] M. V. Hermenegildo, G. Puebla, K. Marriott, and P. J. Stuckey. Incremental analysis of
constraint logic programs. ACM Transactions on Programming Languages and Systems,
22(2):187–223, Mar. 2000.

[10] A. B. Matos. A matrix model for the flow of control in Prolog programs with applications to
profiling. Software Practice and Experience, 24(8):729–746, Aug. 1994.

[11] G. Puebla and M. V. Hermenegildo. Implementation of multiple specialization in logic pro-
grams. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 77–87, La Jolla, California, June 1995.

[12] G. Puebla and M. V. Hermenegildo. Optimized Algorithms for Incremental Analysis of Logic
Programs. In R. Cousot and D. A. Schmidt, editors, 3rd International Symposium on Static
Analysis, volume 1145 of LNCS, pages 270–284, Aachen, Germany, Sept. 1996. Springer Verlag.

[13] H. Touati and A. Despain. An empirical study of the Warren Abstract Machine. In Proceedings
of the Fifth International Conference and Symposium on Logic Programming, pages 114–124,
San Francisco, Aug. - Sept. 1987. IEEE, Computer Society Press.

[14] D. H. D. Warren. An Abstract PROLOG Instruction Set. Technical Report 309, Artificial
Intelligence Center, Computer Science and Technology Division, SRI International, Oct. 1983.

[15] W. Winsborough. Multiple specialization using minimal-function graph semantics. Journal of
Logic Programming, 13(2-3):259–290, July 1992.

87

88

Improving the Compilation of Prolog to C
Using Type and Determinism Information:

Preliminary Results�

J. Morales�

���������	
���
��
�	
��

M. Carro�

��������
�	
��

M. Hermenegildo� �

�������
�	
��

Abstract

We describe the current status of and provide preliminary performance results for a compiler of Prolog to C.
The compiler is novel in that it is designed to accept different kinds of high-level information (typically ob-
tained via an analysis of the initial Prolog program and expressed in a standardized language of assertions)
and use this information to optimize the resulting C code, which is then further processed by an off-the-shelf
C compiler. The basic translation process used essentially mimics an unfolding of a C-coded bytecode emu-
lator with respect to the particular bytecode corresponding to the Prolog program. Optimizations are then
applied to this unfolded program. This is facilitated by a more flexible design of the bytecode instructions
and their lower-level components. This approach allows reusing a sizable amount of the machinery of the
bytecode emulator: ancillary pieces of C code, data definitions, memory management routines and areas,
etc., as well as mixing bytecode emulated code with natively compiled code in a relatively straightforward
way. We report on the performance of programs compiled by the current version of the system, both with
and without analysis information.

1 Introduction

Several techniques for implementing Prolog have been devised since the original interpreter developed by
Colmerauer and Roussel [5], many of them aimed at achieving more speed. An excellent survey of a sig-
nificant part of this work can be found in [26]. The following is a rough classification of implementation
techniques for Prolog (which is, in fact, extensible to many other languages):

� Interpreters (such as C-Prolog [16] and others), where a slight preprocessing or translation might be
done before program execution, but the bulk of the work is done at runtime by the interpreter.

� Compilers to bytecode and their interpreters (often called emulators). The compiler produces relatively
low level code in a special-purpose language. An interpreter of such low-level code is still required.
Most emulators are currently based on the Warren Abstract Machine (WAM) [28, 1], but other propos-
als exist [24, 13].

� Compilers to a lower-level language, typically (“native”) machine code. In this case the output requires
little or no additional support to be executed. One solution is for the compiler to generate machine
code directly. Examples of this are the Aquarius system [27], versions of the SICStus Prolog [22]
compiler for some architectures, the BIM-Prolog compiler [14], and the Gnu Prolog compiler [7].
Another alternative is to generate code in a (lower-level) language, such as, e.g., C-- [12] or C, for
which a machine code compiler is readily available; the latter is the approach taken by ����� [4].

�This work is partially supported by Spanish MCYT Project TIC 2002-0055 ������, and EU IST Projects 2001-34717 ���� and
IST-2001-38059 �	�
, and by the Prince of Asturias Chair in Information Science and Technology at the University of New Mexico. J.
Morales is also supported by an MCYT fellowship co-financed by the European Social Fund.

�Technical University of Madrid, Boadilla del Monte, E-28660, Spain.
�Departments of Computer Science and Electrical and Computer Engineering, U. of New Mexico (UNM).

Each solution has its advantages and disadvantages:

Executable performance vs. executable size and compilation speed: Compilation to lower-level code can
achieve faster programs by eliminating interpretation overhead and performing lower-level optimizations.
In general, performing as much work as possible at compile time in order to avoid run-time overhead brings
faster execution speed at the expense of using more resources during the compilation phase and possibly
producing larger executables. In general, compilers are much more complex and take longer to preprocess
programs for execution than interpreters. This difference gets larger as more sophisticated forms of code
analysis are performed as part of the compilation process. This can impact development time, although
sophisticated analyses can be turned off during development and applied when only generating production
code. Interpreters in turn have potentially smaller load/compilation times and are often a good solution due
to their simplicity when speed is not a priority. Emulators occupy an intermediate point in complexity and
cost. Highly optimized emulators [19, 20, 6, 22, 2] offer very good performance and reduced program size
(since single bytecode instructions correspond to several machine code instructions), which may be a crucial
issue for very large programs and symbolic data sets.

Portability: Interpreters offer portability in a straightforward way since executing the same Prolog code
in different architectures boils down (in principle) to simply recompiling the interpreter. Emulators usually
retain the portability of interpreters, since only the emulator has to be recompiled for every target archi-
tecture (bytecode is usually architecture-independent), unless of course they are written in machine code.1

Compilers to native code require architecture-dependent back-ends, i.e., a new translation into machine code
has to be developed for each architecture. This typically makes porting and maintaining these compilers a
non-trivial task. The task of developing these back-ends can be simplified by using an intermediate RTL-level
code [7], although still different translations of this code are needed for different architectures.

Opportunities for optimizations: Code optimization can applied at all levels: to the Prolog level itself [18,
29], to WAM code [8], to lower-level code [15], and/or to native code [27, 23]. At a higher language level
it is typically possible to perform more global and structural optimizations, which are then implicitly carried
over onto lower levels. On the other hand, additional, lower-level optimizations can be introduced as we
approach the native code level. These optimizations require exposing a level of detail in the operations that
is not normally visible at higher levels. One of the most important motivations for compiling to machine
code is precisely to be able to perform these low-level optimizations. In fact, recent performance evaluations
show that well-tuned emulator-based Prolog systems can beat, at least in some cases, Prolog compilers which
generate machine code directly but do not perform extensive optimization [7]. The approach of translating to
a low-level language such as C is interesting because it makes portability straightforward, as C compilers exist
for most architectures, and, on the other hand, C is low-level enough that it allows expressing in it a large
class of low-level optimizations which will make into the final executable code in a form known beforehand,
and which go beyond what can be expressed solely by means of Prolog-to-Prolog transformations.

Given all the considerations above, it is safe to say that different approaches are useful in different situ-
ations and perhaps even for different parts of the same program. In particular, the emulator approach with
its competitive compilation times, program size, and performance, can be very useful during development,
and in any case for non-performance bound portions of large symbolic data sets and programs. On the other
hand, in order to generate the highest performance code it seems appropriate to perform optimizations at
all levels and to eventually translate to machine code so that even the lowest-level optimizations can be per-
formed, at least for parts of the program. The selection of a low-level language such as C as an intermediate
target can offer a good compromise between opportunity for optimization and portability for native code.

In our compiler we have taken precisely such an approach: we use translation to C during which we apply
several optimizations, making use of high-level information. Our starting point is the standard version of the
Ciao Prolog system [2]. This is essentially an emulator-based system of quite competitive performance. Its
abstract machine is an evolution of the &-Prolog abstract machine [10], itself a separate evolution branch
from early versions (0.5–0.7) of the SICStus abstract machine. We have developed a compiler from Prolog
to native code, via an intermediate translation to C, where the translation scheme adopts the same scheme
for memory areas, data tagging, etc. as the emulator. This facilitates mixing emulated and native code
(as done also by SICStus) and also has the important practical advantage that many complex and already

1This is the case for the Quintus emulator although it is coded in a generic RTL language (“PROGOL”) to simplify ports.

90

existing fragments of C code present in the components of the emulator (such as builtins, low-level file and
stream management, memory management and garbage collection routines, etc.) can be reused by the new
compiler. This is important because our intention is to develop not a prototype but a full compiler that can
be put into everyday use and it would be an unrealistic amount of work to develop all those parts again.
Also, compilation to C allows us to translate Prolog modules into C files that can be compiled as source files
in multi-language applications.

As mentioned before, the selection of C as target low-level language allows performing a large class
of low-level optimizations while easing portability. A practical advantage in this sense is the availability
of C compilers for most architectures, such as ���, which generate very efficient executable code. The
difference with other systems which compile to C comes from the fact that the translation that we propose
includes a scheme for optimizing the resulting code using higher-level information available at compile-time
regarding determinacy, types, instantiation modes, etc. of the source program. The objective is better run-
time performance, including a reduction of the size of executables. We also strive to preserve portability and
maintainability by avoiding the use of non-standard C code as much as possible.

This line of reasoning lead us also not to adopt other approaches such as compiling to C--. The goal of
C-- is to achieve portable high performance without relinquishing control over low-level details. However,
the associated tools do not seem to be presently mature enough as to be used for a compiler in production
status within a near future, and not even to be used as base for a research protoype in their present stage.
Future portability will also depend on the existence of back-ends for a range of architectures. We, however,
are quite confident that the backend which now generates C code could be adapted to generate C-- (or other
low-level languages) without too many problems.

The high-level information is expressed by means of a powerful and well-defined assertion language [17],
and inferred by automatic global analysis tools which code the results of analysis as assertions or simply
provided by the user. In our system we take advantage of the availability of relatively mature tools for this
purpose within the Ciao system, and, in particular the preprocessor, CiaoPP [11].

Our approach is thus different from, for example, ����� (the forerunner of the current Gnu Prolog),
which also generated C, but did not use extensive analysis information (and it used low-level, clever tricks
which in practice tied it to a particular C compiler, ���). Aquarius [27] (and [23]) used analysis information
at several compilation stages, but they generated directly machine code, and it has proved difficult to port
and maintain these systems. Also, program analysis technology was not as mature at the time as it is now.
Notwithstanding, they were landmark contributions that proved the power of using global information in a
Prolog compiler.

A drawback of putting more burden on the compiler is that compile times grow, and compiler complexity
increases, specially in the global analysis phase. While this can turn out to be a problem in extreme cases,
incremental analysis in combination with a suitable module system [3] can result in very reasonable analysis
times in practice. Moreover, global analysis (or even the compilation to C) are not mandatory in our proposal
and can be reserved for the phase of generating the final, “production” executable. We expect that, as the
system matures, the Prolog-to-C compiler itself (now in a prototype stage) will not be slower than a Prolog-
to-bytecode compiler.

2 The Basic Compilation Scheme

We now present the basic compilation strategy. The optimizing compilation using global program informa-
tion will be described in Section 3.

The compilation process starts with a preprocessing phase which canonizes clauses (removing aliasing
and structure unification from the head, also known as “normalization”), and expands disjunctions, nega-
tions and if-then-else constructs. It also unfolds calls to ���� when possible into calls to simpler arithmetic
predicates, replaces the cut by calls to the lower-level predicates �	
������	� (which stores in its argu-
ment the address of the current choicepoint) and �	
���
� (which performs a cut to the choicepoint whose
address is passed in its argument), and performs a simple, local analysis which gathers information about
the type and freeness state of variables.2 Having this analysis in the compiler (in addition to the analyses

2In general, the types used throughout the paper are instantiation types, i.e., they have mode information built in (see [17] for

91

put variable(I,J) �uninit,I� = �uninit,J�
put value(I,J) �init,I� = �uninit,J�
get variable(I,J) �uninit,I� = �init,J�
get value(I,J) �init,I� = �init,J�
unify variable(I[, J]) �� (initialized(J)) ����

�uninit,I� = �init,J�
����

�uninit,I� = �uninit,J�
unify value(I[, J]) �� (initialized(J)) ����

�init,I� = �init,J�
����

�init,I� = �uninit,J�

Table 1: Representation of some WAM unification instructions with types.

performed by the preprocessor) allows improving the code even in the case that no external information is
available from previous stages or the user. The following steps of the compiler include the translation from
this normalized version of Prolog to WAM-based instructions (at this point the same ones used by the Ciao
emulator), and then splitting these WAM instructions into an intermediate low level code and performing
the final translation to C.

Typing WAM Instructions: WAM instructions dealing with data are handled internally using an enriched
representation which encodes the possible instantiation state of their arguments.

This allows using original type information, and alsotop

init uninit

first local unsafe

bottom

Figure 1: Lattice of WAM types.

generating and propagating lower-level information re-
garding the type (i.e., from the point of view of the tags
of the abstract machine) and instantiation/initialization
state of the variables (which is not seen at a higher level).
Each unification instruction is represented as �TypeX, X�
= �TypeY, Y�, where TypeX and TypeY refer to the classi-
fication of WAM-level types (see Figure 1), and X and Y
refer to variables, which may be later stored as WAM X or
Y registers or directly passed on as C function arguments.

Table 1 summarizes the aforementioned representation for some selected cases. The registers taken as
arguments are the temporary registers x(I), the stack registers y(I) and the register for structure arguments
n(I). The last one can be seen as the second argument which is implicit in the unify * WAM instructions.
A number of other special-purpose registers (��,
	��, . . .) are available, and used, for example, to hold
intermediate results from expression evaluation and to record whether a builtin failed. * constant, * nil,
* list and * structure WAM instructions are represented similarly. Only register variables x(�) are created
in an uninitialized state, and they are initialized on demand (in particular, when calling another predicate
which may overwrite the registers, and in the points where garbage collection can start). Stack and structure
(heap) variables are created initialized.

One of the advantages of this representation is that it is more uniform than the traditional WAM instruc-
tions. In particular, as more information is known about the variables, the associated (low level) types can
be refined and more specific code generated. Using a richer lattice and initial information (Section 3), a
more descriptive intermediate code is generated and used in the back-end.

Generation of the Intermediate Low Level Language: WAM instructions are then split into simpler ones,
which are more suitable for optimizations. This also allows simplifying the generation of the final C code
(and probably also the generation of code in other languages of similar abstraction level). The degree of
complexity of the low-level code is similar to the one proposed in the BAM [25]. Table 2 summarizes the
instructions. The Type argument which appears in several of them is intended to reflect the type of the
instruction arguments: for example, in the instruction bind, Type used to specify if the arguments contain a

a more complete discussion of this issue). Freeness of variables distinguishes between free variables and the top type, “term”, which
includes any term.

92

Choice, stack and heap management instructions
no choice Mark that there is no alternative
first choice(Arity, Alt) Create a choicepoint
middle choice(Arity, Alt) Change the alternative
last choice(Arity) Remove the alternative
complete choice(Arity) Complete the choice point
cut choice(Chp) Cut to a given choice point
push frame Allocate a frame on top of the stack
complete frame(FrameSize) Complete the stack frame
modify frame(NewSize) Change the size of the frame
pop frame Deallocate the last frame
recover frame Recover after returning from a call
ensure heap(CS, Amount, Arity) Ensure that enough heap is allocated.

(CS indicates completion status of the choice point)
Data

load(X, Type) Load X with a term
trail if conditional(A) Trail if A is a conditional variable
bind(TypeX, X, TypeY, Y) Bind X and Y
read(Type, X) Begin read of the structure arguments of X
deref(X, Y) Dereference X into Y
move(X, Y) Copy X to Y
globalize if unsafe(X, Y) Copy X to Y ensuring safety
globalize to arg(X, Y) Copy X to argument register Y ensuring safety
call(CallerImp, CalledImp, Pred, In, Out, FailCont) Call a builtin or a user predicate. CallerImp and

CalleeImp mark how caller and callee are compiled.
Control

ijump(X) Jump to the address stored in X
jump(Label) Jump to Label
cjump(Cond, Label) Jump to Label if Cond is true
switch on type(X, Var, Str, List, Cons) Jump to the label that matches the type of X
switch on functor(X, Table, Else)
switch on cons(X, Table, Else)

Conditions
not(Cond) Negate the Cond condition
test(Type, X) True if X matches Type
equal(X, Y) True if X and Y are equal
erroneous(X) True if X has an erroneous value

Table 2: Control and data instructions.

variable (and, if this is known, whether it lives in the heap, in the stack, etc.) or not. For the unification
of structures, the use of write and read modes is avoided using a two-stream scheme (see [26] for an
explanation and references) which is encoded using with the unification instructions in Table 1 and later
translated into the required series of assignments. This scheme requires explicit control instructions, hence
the existence of jump instructions (jump, cjump, and ijump). Jumps are performed to labels, marked as global
(when they have to be stored in global data structures, such as the next alternative in a choicepoint) or local.
For efficiency in indexing, the WAM instructions switch on term, switch on cons and switch on functor are
also included, although the C back-end does not exploit them fully at the moment, resorting to a linear
search in some cases. Failing is done by jumping to the special label fail. Builtins return an exit state in one
argument, which is used to decide whether to backtrack or not. Determinism information, when available,
is passed on through this stage and used when compiling with optimizations (see Section 3).

Compilation to C: This stage in turn produces the output C code. This C code conceptually corresponds
to an unfolding of the initial bytecode emulator loop with respect to the particular sequence(s) of bytecode
corresponding to the program. In the points where the emulated program counter changes continuations
are passed using pointers to functions. Each block of bytecode (i.e., each sequence beginning in a label and
ending in an instruction involving a possible jump) is translated to an individual C function. The state of the

93

����� 	
��� � �����

��� � 		������������ 	��	����� ���
����	�������

������������ ���	����� ������� �

���

�������
��� � �����
����

������ ���� �

!

������������ ����
���	����� ������� �

���

������ �������
����

!

Figure 2: The C execution loop and blocks scheme.

abstract machine is the input argument to the function and the next continuation is the output argument.
This approach avoids building functions that are too large and would create problems for the C compiler.
Figure 2 shows schematic versions of the execution loop and of the functions that code blocks are compiled
into. The translation also incorporates an optimization which reduces the function calling overhead: ��
�

statements are used for jumps to local labels which are located in the same code block.
This scheme does not require using machine-dependent options of the C compiler or extensions to the

ANSI C language (although machine-dependent optimizations can of course be given to the C compiler).
Other systems, as [20] or [21], take advantage of machine-dependent and non-portable constructs to in-
crease performance. However, one of the goals of our system –to study the impact of optimizations based
on available information on the program– can be achieved with the proposed compilation scheme, and, as
mentioned before, we give portability and code cleanliness a high priority. The possibility of producing more
efficient but non-portable code can always be added at a later stage.

An Example — the ���
�� Predicate: We will illustrate briefly the different stages of compilation using
the well-known factorial program (Figure 3). We have chosen it due to its simplicity, even if the performance
gain is not very high in this case. The code after the first canonizing and rewriting stage is shown in Figure 4.
The WAM code corresponding to the recursive clause is listed in the leftmost column of Table 3, and the
internal representation of this code appears in the same table, in the middle column. Note how variables are
annotated using information which can be deduced from local inspection of the clause.

This WAM-like representation is translated to the low-level code shown in Figure 5 (ignore, for the
moment, the shadowed and framed regions; they will be further discussed in Section 3). This code, which is
quite low-level now, is what is finally translated to C.

For reference, executing ���
���� �� 20000 times took 0.65 seconds running emulated bytecode, and
0.63 seconds running the code compiled to C (a speedup of 1.03). This was all done without using any
external, global type information. In the next section we will see how this performance can be improved
with the use of type information.

��
�	"# $��

��
�	%# &� '�

% � "#

%" �� % � $#

��
�	%"# &"�#

& �� % � &"�

Figure 3: Factorial, initial code.

��
�	(#)� '�

" � (#

$ �)�

��
�	(#)� '�

(� "#

����������$�$	(# ��#

��
�	�# +�#

*����������,��� 	(# +#)��

Figure 4: Factorial, after preprocessing.

3 Improving Code Generation

As mentioned in Section 1, our objective is to improve the code generation process using information regard-
ing global properties of predicates which is coded as assertions [17] –a few such assertions can be seen in
the example of Section 3. In the current version of the compiler optimization is performed using information
on instantiation types (i.e., moded types) as well as number of solutions (determinacy).

94

WAM code Without Types With Types
put constant(0,2) 0 = �uninit,x(2)� 0 = �uninit,x(2)�
builtin 2(37,0,2) �init,x(0)� � �int(0),x(2)� �int,x(0)� � �int(0),x(2)�
allocate builtin push frame builtin push frame
get y variable(0,1) �uninit,y(0)� = �init,x(1)� �uninit,y(0)� = �var,x(1)�
get y variable(2,0) �uninit,y(2)� = �init,x(0)� �uninit,y(2)� = �int,x(0)�
init([1]) �uninit,y(1)� = �uninit,y(1)� �uninit,y(1)� = �uninit,y(1)�
true(3) builtin complete frame(3) builtin complete frame(3)
function 1(2,0,0) builtin sub1 1(builtin sub1 1(

�init,x(0)�, �uninit,x(0)�) �int,x(0)�, �uninit,x(0)�)
put y value(1,1) �init,y(1)� = �uninit,x(1)� �var,y(1)� = �uninit,x(1)�
call(fac/2,3) builtin modify frame(3) builtin modify frame(3)

fact(�init,x(0)�, �init,x(1)�) fact(�init,x(0)�, �var,x(1)�)
put y value(2,0) �init,y(2)� = �uninit,x(0)� �int,y(2)� = �uninit,x(0)�
put y value(2,1) �init,y(1)� = �uninit,x(1)� �number,y(1)� = �uninit,x(1)�
function 2(9,0,0,1) builtin times 2(�init,x(0)�, builtin times 2(�int,x(0)�,

�init,x(1)�,�uninit,x(0)�) �number,x(1)�, �uninit,x(0)�)
get y value(0,0) �init,y(0)� = �init,x(0)� �var,y(0)� = �init,x(0)�
deallocate builtin pop frame builtin pop frame
execute(true/0) builtin proceed builtin proceed

Table 3: WAM code and internal representation without and with external types information. Underlined
instruction changed due to additional information.

The generation of low-level code using additional type information makes use of an extended type lattice
obtained by replacing the init element in the lattice in Figure 1 with the type domain in Figure 6. This
information enriches the Type parameter of the low-level code. Additionally, as mentioned before, any
information about the determinacy / number of solutions of each call is carried over into this stage and used
in it to optimize the generated C code.

In general, information about the types of variables and determinism of predicates allows avoiding intro-
ducing unnecessary tests during the compilation to low level code. The standard WAM compilation performs

�����������	
��

���� ������
����

������ ��������������� ��������������
�

����������������
������������������������������������

���������
�������

������������������������
�

���������������

����������
��������������������������������

����������

����������������

��������������������������������� ��

���������
�������

������������������������
�������������!��

������� ��

��������������������������������

�������!��
�������� ������
�

����������������

�����������

���� ������
�

�������
��������

�����������
�"�������
�#��$�

�����������$������

���� �����

����������%����

����������%�
��

�����%������������$��

�������� ��������

������������ ��"����#����������

��������������������������

�����%���������

����% ��������

���������������������������

����������������	
��

�����������

������� �����

�����%�
�������

�����%���������

������������
�"���������#��������
�

��������������������������

������%���������

����������������

���������%�"���������#��$�

�����������$������

��� �����

����������������

Figure 5: Low level code for the ���
�� example (see also Section 3).

95

init
var

first local unsafe
nonvar

list str
str(N/A)

atomic
number

int
int(X)

large
large(X)

atom
atom(X)

bottom

Figure 6: Extended init subdomain.

also some optimizations (e.g., classification of variables and indexing on the first argument), but it is based
on a per-clause (per-predicate, in the case of indexing) based analysis, and in general it does not propagate,
e.g., information deduced from arithmetical builtins. A number of further optimizations can be done by
using richer type, mode, and determinism information:

Unify instructions: A call to the general unify builtin is replaced by the more specialized bind instruction
if one or both arguments are known to store variables. When arguments are known to be constants, a simple
comparison instruction is emitted instead.

Two-Stream Unification: The unification of a register with a structure or constant requires some tests
for determining the unification mode (read or write). Also, in read mode, an additional test is required to
compare the register value with the constant or the structure functor. These tests can often be reduced to
true or false at compile-time if enough information is known about the variable.

Index Tree Generation: Type information is also used to optimize the generation of index trees, which are
used as part of the clause selection process. An index tree is generated by selecting some literals from the
beginning of the clause, mostly builtins and unifications, which give some amount of type/mode information.
This is used to construct a decision tree on the types of the first argument.3 When type information is
available, the indexing tree can be optimized by removing some of the tests in the nodes.

Avoiding Unnecessary Variable Safety Tests: Another optimization performed in the low level code using
type information is the replacement of globalizing instructions for unsafe variables by explicit dereferences.
When the type of a variable is nonvar, its globalization is equivalent to a dereference, which is faster.

Uninitialized Output Arguments: When possible, letting the called predicate fill in the contents of output
arguments in pre-established registers avoids allocation, initialization and binding of free variables, which is
slower.

Selecting Optimized Predicate Versions: Calls to predicates can also be optimized in the presence of type
information. Specialized versions (in the sense of low level optimizations) can exist and be selected using the
call patterns deduced from the type information. The current implementation does not support automatic
versions of user predicates (since this is done automatically by the preprocessor[18]), but it does optimize
natively internal builtin predicates written in C (such as, e.g., arithmetic builtins) which results in relevant
speedups in many cases.

3This can of course be extended to other arguments.

96

Determinism: These optimizations are based on two types of analysis. The first one uses information
regarding the number of solutions for a predicate call to deduce, for each such call, if there is a known and
fixed fail continuation. Then, instructions to create choicepoints and to restore previous choicepoint states
are inserted. The resulting code is then re-analyzed to remove these instructions when possible or to replace
them by simpler ones (e.g., to restore a choice point state without untrailing, if it is known at compile time
that the execution will not trail any value since the choice point was created). The latter can take advantage
of additional information regarding register, heap, and trail usage of each predicate.4 In addition, the C
back-end can generate different argument passing schemes based on determinism information: predicates
with zero or one solution can be translated to a function returning a boolean, and predicates with exactly
one solution to a function returning ����.

An Example — the ���
�� Predicate with program information: Let us assume that it is known that
���
�� (Figure 3) is always called with its first argument instantiated to a small integer (an integer which
fits into a tagged word of the internal representation) and its second argument is a free variable. This
information can be written in the assertion language as follows:5

��
��	 ��	� ���
��� �� � ��
 � ��� ! ��
 � ���"	�#

which reflects the types and modes of the calls and successes of the predicate. The propagation of that
information through the canonized predicate gives the annotated program shown in Figure 7.

��
�	(#)� '�

����	���	(��#

" � (#

����	-��)��#

$ �)�

��
�	(#)� '�

����	���	(��#

(� "#

����	���	(��# ����	-��	���#

����������$�$	(# ��#

����	��.	���# ����	-��	+��#

��
�	�# +�#

����	���	(��# ����	��,*��	+��#

����	-��)��#

*����������,��� 	(# +#)��

Figure 7: Annotated factorial (using type information).

The WAM code generated for this example is shown in the rightmost column of Table 3. Underlined
instructions were made more specific due to the initial information — note, however, that the representation
is homogeneous with respect to the “no information” case. The impact of type information in the generation
of low-level code can be seen in Figure 5. Instructions in the shaded regions are removed when type
information is available, and the (arithmetic) builtins enclosed in rectangles are replaced by calls to versions
specialized to work with small integers and which do not perform type/mode testing. The optimized ���
��

program took 0.54 seconds with the same call as in Section 2: a 20% speedup with respect to the bytecode
version and a 16% speedup over the compilation to C without type information.

4 Performance Measurements

We have evaluated the performance behavior of the executables generated with our compiler using transla-
tion to C with respect to that of the emulated bytecode on a set of standard benchmarks. The benchmarks
are not real-life programs, and some of them have been executed up to 10.000 times in order to obtain rea-
sonable and stable execution times. All the measurements have been made in a Pentium 4 Xeon @ 2.0GHz
with 1Gb of RAM, running Linux with a 2.4 kernel and using ��� 3.2 as C compiler. A short description of
the benchmarks follows:

4This is currently known only for internal predicates written in C, and which are available by default in the system, but the scheme
is general and can be extended to Prolog predicates.

5The ���� prefix implies that this information is to be used, rather than to be checked by the compiler.

97

Program Bytecode Non opt. C Opt1. C Opt2. C
(Std. Ciao)

/�����$$ 	$� 691 391 (1.76) 208 (3.32) 166 (4.16)

�.0� 	$"""� 1525 976 (1.56) 598 (2.55) 597 (2.55)
0��,�� 	$""""� 896 697 (1.28) 403 (2.22) 402 (2.22)
��1 	$"""� 9836 5625 (1.74) 5285 (1.86) 771 (12.75)
����- 	$""""� 125 83 (1.50) 82 (1.52) 72 (1.74)
0��. 	$""� 439 251 (1.74) 199 (2.20) 177 (2.48)
/���� 	$""""� 521 319 (1.63) 378 (1.37) 259 (2.01)
�20 	$"� 494 508 (0.97) 469 (1.05) 459 (1.07)
��* 	$"""� 263 245 (1.07) 234 (1.12) 250 (1.05)
1��3��� 	$� 621 441 (1.40) 390 (1.59) 356 (1.74)
Average Speedup (1.47) (1.88) (3.18)

Table 4: Bytecode emulation vs. unoptimized, optimized (types), and optimized (types and determinism)
compilation to C.

Program GProlog WAMCC SICStus SWI Yap Mercury Opt2. C
Mercury

/�����$$ 	$� 809 378 572 5869 362 106 1.57

�.0� 	$"""� 1258 966 1517 8740 1252 160 3.73
0��,�� 	$""""� 1102 730 797 7259 1233 336 1.20
��1 	$"""� 11955 7362 6869 74750 8135 482 1.60
����- 	$""""� 108 126 121 339 100 72 1.00
0��. 	$""� 440 448 420 1999 424 84 2.11
/���� 	$""""� 618 522 523 2619 354 129 2.01
�20 	$"� — — 415 — 340 — —
��* 	$"""� — — 285 — 454 — —
1��3��� 	$� 911 545 631 2800 596 135 2.63

Average 1.98

Table 5: Speed of other Prolog systems and Mercury

crypt: Cryptoarithmetic puzzle involving multiplication.
primes: Sieve of Erathostenes (with N = 98).
tak: Computation of the Takeuchi function with arguments
���$� �� %� ��.
deriv: Symbolic derivation of polynomials.
poly: Symbolically raise &'&(&) to the 10�� power.
qsort: QuickSort of a list of 50 elements.
exp: Computation of 13���� using both a linear- and a logarithmic-time algorithm.
fib: Computation of ����� using a simply recursive predicate.
knight: Chess knight tour (visit only once all the board cells) in a 5�5 board.

A summary of the results appears in Table 4. The number between parentheses in first column is the
number of iterations of each benchmark (used to obtain an execution long enough). The second column
contains the execution times of programs compiled to bytecode (this represents the speed of the standard
Ciao bytecode emulator). The third column corresponds to programs compiled to C without compile-time
information (which corresponds, basically, to mimicking the bytecode execution). The fourth and fifth
columns correspond, respectively, to the execution times when compiling to C using type information and
type+determinism information to optimize the resulting code. The numbers between parentheses are the
speedups relative to the bytecode version. All times are in milliseconds.

In order to know how these numbers compare with the performance of other Prolog systems, Table 5
shows the execution times (also in milliseconds) for the same benchmarks in four well-known Prolog com-
pilers: GNU Prolog 1.2.16, wamcc 2.23, SICStus 3.8.6, SWI-Prolog 5.2.7, and Yap 4.5.0. The aim here is
not really to compare directly with them, because a different technology is being used (compilation to C and

98

use of external information which they cannot take advantage of), but rather to establish that our baseline,
the speed of the bytecode system (Ciao), is similar (and quite close, in particular, to that of SICStus and
Yap). Thus, in principle, comparable optimizations could be made in these systems. YAP was itself compiled
with multi-precision arithmetic, which makes its execution a little bit slower than without it (just some mil-
liseconds, not enough as to make a significant difference). The cells marked with “—” correspond to cases
where the benchmark could not be executed (in GNU Prolog, wamcc, and SWI, due to lack of multi-precision
arithmetic).

We also include the performance results for the compiler for the Mercury language [21] (version 0.11.0).
Strictly speaking the Mercury compiler is not a Prolog compiler, since the source language is substantially
different from Prolog. On the other hand the Mercury language does have enough similarities to be relevant
and its performance is interesting as an upper reference line given that the language was designed precisely
to allow the compiler, which directly generates machine code, to achieve very high performance by using ex-
tensive low-level optimization compilation techniques. Also, the language design requires that the programs
necessarily contain as part of the source the necessary information to perform these optimizations.

Going back to Table 4, while some performance gains are obtained in the naive translation to C, such
gains are not very significant, and there is even one program which shows a slowdown. We have tracked this
down to be due to several factors:

� The simple compilation scheme generates C code that is as clean and portable as possible, avoiding
tricks which would speed up the programs. The execution profile is also very near to what the emulator
would do.

� The C execution loop (Figure 2) is slightly more costly (by a few assembler instructions) than the
fetch/switch loop of the emulator. We have identified this as a cause for the poor speedup of programs
where recursive calls dominate the execution time. We want, of course, to improve this point in the
future.

� The increment in size of the program (see Table 6) may also cause more cache misses. We also want
to investigate this point in more detail.

As expected, the performance obtained when using compile-time information is much better. The best
speedups are obtained in benchmarks using arithmetic builtins, for which the compiler produces optimized
versions where several groundness and type checks have been removed. This is, for example, the case of
*�		��, in which it is known that all the numbers involved are small integers (i.e., there is no need for infinite
precision arithmetic). Besides avoiding checks, the functions which implement the arithmetic operations for
small integers are simple enough as to be inlined by the C compiler. This is an example of an added benefit
which comes for free from compiling to an intermediate language (C, in this case) and using tools designed
for it. When determinism information is used, the execution is often (but not always) improved. The
Takeuchi function (
��) is an extreme case, where determinism information saves choicepoint generation
and execution time. While the performance obtained is still far (a factor of 2 on average) from that of
Mercury, the results are encouraging given that we are dealing with a more complex source language (which
preserves fully unification, logical variables, etc.), we are using a portable approach (compilation to standard
C), and we have not applied yet all possible optimizations.

Table 6 compares object size of the bytecode and the different schemes of compilation to C. Unit is bytes.
As mentioned in Section 1, due to the different granularity of instructions, larger object files and executables
are expected when compiling to C. The ratio depends heavily on the program and the optimizations applied.
Size increase can be as large as ��� when translating to C without optimizations, and the average case sits
around a 7-fold increase. This is also partially due to the indexing mechanism, which repeats some code.
We plan to improve this in the future. It must also be pointed out that executing the bytecode requires
always the presence of the bytecode emulator, which is around 300Kb (depending on the architecture and
the optimizations applied) and which should be added to the figures in Table 6 for the emulator. On the
other hand this can be shared among different executables as a library. The executables obtained through
C do not need the emulation loop, and only the code for the GC routines and the definition of predicates
internally written in C has to be linked at runtime.

The size of the object code produced by ����� is roughly comparable to that generated by our compiler,
although ����� produces smaller object code files. However the final executable / process size depends also

99

Program Bytecode Non opt. C Opt1. C Opt2. C
/�����$$ 7167 36096 (5.03) 29428 (4.10) 42824 (5.97)

�.0� 12205 186700 (15.30) 107384 (8.80) 161256 (13.21)
0��,�� 6428 50628 (7.87) 19336 (3.00) 31208 (4.85)
��1 5445 18928 (3.47) 18700 (3.43) 25476 (4.67)
����- 9606 46900 (4.88) 46644 (4.85) 97888 (10.19)
0��. 13541 163236 (12.05) 112704 (8.32) 344604 (25.44)
/���� 6982 90796 (13.00) 67060 (9.60) 76560 (10.96)
�20 6463 28668 (4.43) 28284 (4.37) 25560 (3.95)
��* 5281 15004 (2.84) 14824 (2.80) 18016 (3.41)
1��3��� 7811 39496 (5.05) 39016 (4.99) 39260 (5.03)
Average Increase (7.39) (5.43) (8.77)

Table 6: Compared size of object files (bytecode vs. C).

on which libraries are linked statically and/or dynamically. The Mercury system is somewhat incomparable
in this regard: it certainly produces relatively small component files but then relatively large final executables
(over 1.5 MByte).

The size, in general, decreases when using type information, as many dynamic type tests are removed.
The average size is now around five times the bytecode size. Adding determinism information increases the
code size because of the additional inlining performed by the C compiler and the more complex parameter
passing code. The options passed on to the C compiler were the same in all the programs, and the decision
of whether to inline or not was left to it. Some experiments showed that asking the C compiler to do more
aggressive inlining did not help to achieve better speedups.

It is interesting that some of the optimizations used in the compilation to C would not give comparable
results when applied directly to a bytecode emulator. A version of the bytecode emulator hand-coded to work
only with small integers (which can be boxed into a tagged word) performed worse than that obtained doing
the same with compilation to C. That suggests that when the overhead of calling builtins is reduced, as is
the case in the compilation to C, some optimizations which only produce minor improvements for emulated
systems acquire greater importance.

5 Conclusions and Future Work

We have reported on the scheme and performance of a Prolog-to-C compiler which uses type analysis and
determinacy information to improve the final code by removing type and mode checks and by making calls
to specialized versions of some builtins. We have also provided preliminary performance results for this
compiler. Our compiler is still in a preliminary stage, but already shows promising results.

The compilation uses internally a simplified and more homogeneous representation for WAM code, which
is then translated to a lower-level intermediate code. This step uses the type and determinacy information
available at compile time. This code is finally translated into C by the compiler back-end. The intermediate
code, as in other similar compilers, makes the final translation step easier and will make it easier to develop
new back-ends for other target languages.

We have found using the same information to optimize a WAM bytecode emulator to be more difficult
and to result in lower speedups, due to the greater granularity of the bytecode instructions (which aims
at reducing the cost of fetching them). The same result has been reported elsewhere [26], although some
recent work tries to improve WAM code by means of local analysis [9, 8].

We expect to be able to use information (e.g., determinacy) to improve also clause selection, as well as to
generate a better indexing scheme at the C level by using hashing on constants, instead of the linear search
performed now. Also, we want to study which other optimizations can be added to the generation of C code
without breaking its portability, and how the intermediate representation can be used to generate code for
other back-ends (for example, GCC RTL, CIL, Java bytecode, etc.).

100

References

[1] H. Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press, 1991.

[2] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla. The Ciao Prolog
System. Reference Manual (v1.8). The Ciao System Documentation Series–TR CLIP4/2002.1, School
of Computer Science, Technical University of Madrid (UPM), May 2002. System and on-line version of
the manual available at �

�����+��#���#��#���#	��,��
���	�-����.

[3] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In International Conference on
Computational Logic, CL2000, number 1861 in LNAI, pages 131–148. Springer-Verlag, July 2000.

[4] P. Codognet and D. Diaz. WAMCC: Compiling Prolog to C. In L. Sterling, editor, International Conference
on Logic Programming, pages 317–331. MIT PRess, June 1995.

[5] A. Colmerauer. The Birth of Prolog. In Second History of Programming Languages Conference, ACM
SIGPLAN Notices, pages 37–52, March 1993.

[6] B. Demoen and P.-L. Nguyen. So Many WAM Variations, So Little Time. In Computational Logic 2000,
pages 1240–1254. Springer Verlag, July 2000.

[7] D. Diaz and P. Codognet. Design and Implementation of the GNU Prolog System. Journal of Functional
and Logic Programming, 2001(6), October 2001.

[8] M. Ferreira and L. Damas. Multiple Specialization of WAM Code. In Practical Aspects of Declarative
Languages, number 1551 in LNCS. Springer, January 1999.

[9] M. Ferreira and L. Damas. Wam local analysis. In B. Demoen, editor, Proceedings of CICLOPS 2002,
pages 13–25, Copenhagen, Denmark, June 2002. Department of Computer Science, Katholieke Uni-
versiteit Leuven.

[10] M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-Parallelism. New
Generation Computing, 9(3,4):233–257, 1991.

[11] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Development Using Abstract
Interpretation (and The Ciao System Preprocessor). In 10th International Static Analysis Symposium
(SAS’03), number 2694 in LNCS, pages 127–152. Springer-Verlag, June 2003.

[12] S. L. P. Jones, N. Ramsey, and F. Reig. C--: A Portable Assembly Language that Supports Garbage Collec-
tion. In G. Nadathur, editor, International Conference on Principles and Practice of Declarative Program-
ming, number 1702 in Lecture Notes in Computer Science, pages 1–28. Springer Verlag, September
1999.

[13] A. Krall and T. Berger. The VAM�� - an abstract machine for incremental global dataflow analysis of
Prolog. In M. G. de la Banda, G. Janssens, and P. Stuckey, editors, ICLP’95 Post-Conference Workshop on
Abstract Interpretation of Logic Languages, pages 80–91, Tokyo, 1995. Science University of Tokyo.

[14] A. Mariën. Improving the Compilation of Prolog in the Framework of the Warren Abstract Machine. PhD
thesis, Katholieke Universiteit Leuven, September 1993.

[15] J. Mills. A high-performance low risc machine for logic programming. Journal of Logic Programming
(6), pages 179–212, 1989.

[16] F. Pereira. C-Prolog User’s Manual, Version 1.5. University of Edinburgh, 1987.

[17] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visualization Tools for
Constraint Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag, September 2000.

101

[18] G. Puebla and M. Hermenegildo. Abstract Specialization and its Applications. In ACM Partial Evaluation
and Semantics based Program Manipulation (PEPM’03), pages 29–43. ACM Press, June 2003. Invited
talk.

[19] Quintus Prolog User’s Guide and Reference Manual—Version 6, April 1986.

[20] V. Santos-Costa, L. Damas, R. Reis, and R. Azevedo. The Yap Prolog User’s Manual, 2000. Available
from �

�������#���#��#�
�.�������.

[21] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an efficient purely
declarative logic programming language. JLP, 29(1–3), October 1996.

[22] Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Sweden. SICStus Prolog 3.8
User’s Manual, 3.8 edition, Oct. 1999. Available from �

�������#����#�	�����
���.

[23] A. Taylor. LIPS on a MIPS: Results from a prolog compiler for a RISC. In 1990 International Conference
on Logic Programming, pages 174–189. MIT Press, June 1990.

[24] A. Taylor. High-Performance Prolog Implementation. PhD thesis, Basser Department of Computer Sci-
ence, Unversity of Sidney, June 1991.

[25] P. Van Roy. Can Logic Programming Execute as Fast as Imperative Programming? PhD thesis, Univ. of
California Berkeley, 1990. Report No. UCB/CSD 90/600.

[26] P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Implementation. Journal of Logic
Programming, 19/20:385–441, 1994.

[27] P. Van Roy and A. Despain. High-Performace Logic Programming with the Aquarius Prolog Compiler.
IEEE Computer Magazine, pages 54–68, January 1992.

[28] D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artificial Intelligence Center, SRI
International, 333 Ravenswood Ave, Menlo Park CA 94025, 1983.

[29] W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics. Journal of Logic
Programming, 13(2 and 3):259–290, July 1992.

102

Incremental Copying Garbage Collection for

WAM-based Prolog systems

Ruben Vandeginste Bart Demoen

Department of Computer Science,
Katholieke Universiteit Leuven, Belgium

{ruben,bmd}@cs.kuleuven.ac.be

Abstract

We present an incremental copying garbage collector for the heap in WAM-based Prolog
systems. We describe a heap layout in which the heap is divided in a number of equal-sized
blocks. Other changes to the standard WAM allow to garbage collect these blocks independently
from each other. Independent collection of heap blocks is the basis of our incremental algorithm.
Compared to other copying collectors for Prolog, this collector has several advantages. First of
all, it reduces pause times by only collecting one heap block at a time. Second, our algorithm
has in many cases a lower memory usage than standard semi-space copying collectors. Our
algorithm is based on copying without marking (contrary to the more frequently used mark-
copy algorithms in the context of Prolog); but while usually a copying collector needs a to space
as big as the size of its from space, our collector needs a to space only the size of one heap block.
Another benefit is that this algorithm also allows for a variety of garbage collection policies
(including generational ones).

1 Introduction

We assume some basic knowledge about Prolog and its implementation. The WAM [13, 1] (Warren
Abstract Machine) is a well-known virtual machine with a specialized instruction set for the execu-
tion of Prolog code. The WAM has proven to be a good basis for efficient Prolog implementations,
and a lot of systems are based on it. We also assume basic knowledge about garbage collection in
general; a good overview is given in [14, 11]. Some good references related to garbage collection for
Prolog are [2, 3, 4, 9].

The WAM defines 3 different memory areas: a merged stack for environments and choicepoints,
a trail, and a heap. Different memory management techniques are available to recover space in
these areas. In this work we focus on memory management of the heap. The basic WAM already
provides a mechanism to recover space allocated on the heap. Each time the system backtracks, it
can deallocate all data allocated since the creation of the most recent choicepoint. We define a heap
segment as the space on the heap, delimited by the heap pointers in 2 consecutive choicepoints.
So, upon backtracking, the WAM can recover all space on the heap allocated for the most recent
heap segment. This technique for recovering heap space is called instant reclaiming.

In practice however, instant reclaiming alone is not sufficient. Also, many Prolog programs
are rather deterministic, in which case instant reclaiming is not effective. Because of this, Prolog
systems need garbage collection for the heap. Early on, many systems used mark-slide garbage
collection [2] because of the following properties. Mark-slide garbage collection preserves the cell
order and as a consequence also preserves heap segments (which is important for instant reclaiming).

103

Also important is memory usage; besides mark and chain bits (2 extra bits per heap cell), no extra
space is needed for garbage collection.

Lately copying garbage collection has become more popular. Contrary to mark-slide garbage
collection, copying garbage collection does not preserve the cell order, nor the heap segments and
consequently loses the ability to do instant reclaiming. A copying garbage collector, however,
has better complexity than a mark-slide garbage collector and in most cases copying collectors
outperform mark-slide collectors.

Still, there is an issue with semi-space copying collectors in Prolog: during garbage collection
extra cells might be created and this can cause the to space to overflow. These collectors are
considered unsafe. A detailed discussion of this problem can be found in [9]. Copying collectors
can be made safe by adding a marking phase and most copying collectors in the context of Prolog
are in fact mark-copy collectors [4]. Recent work in [9], however, has shown that copying without
marking is still pretty safe and that a simple change in the copying algorithm (optimistic copying)
can make the problem less severe. Moreover, eliminating the marking phase gives a considerable
performance improvement. We use optimistic copying as the basis for our incremental algorithm.

The current copying collectors for Prolog still have some drawbacks. One drawback is that most
simple copying collectors can only do major collections, collecting the full heap at once. Since the
Prolog program is stopped during the collection cycle, this leads to big pause times for applications
with big heaps. Some applications however have timing constraints and require these pause times
to be small. Because of this, reducing pause times has always been an important topic in garbage
collection. In this work we reduce the pause times by collecting only part of the heap during each
collection cycle. This is called incremental collection. An extra benefit of incremental collection in
the case of copying collection is that the to space is smaller. Most copying collectors are semi-space
copying collectors and they need both a from space for allocation and a to space for collection.
The to space must always be as big as the from space. This means however that only half of the
allocated space can be used as useful heap space. In the case of an incremental collector, the to
space only needs to be as big as the part to be collected in the next collection cycle.

In section 2 we discuss how we modify the standard heap layout of the WAM. We explain the
modifications needed for backtracking and trailing in this new heap layout. We also show how
instant reclaiming can be done on parts of the heap that have not been collected. Next, in section
3 the implementation of the incremental garbage collector is discussed. We introduce a write
barrier and remembered sets, which are needed to guarantee correct incremental collections. We
evaluate the performance of the incremental collector in section 4. Some benchmarks are presented
to investigate the time performance as well as the memory usage. In section 5 we discuss possible
improvements to the current implementation. We intend to further investigate the issues discussed
there. Finally, we conclude with section 6.

The experimental evaluation presented in this paper was performed on a Pentium4 1.7Ghz
(256Kb L2 cache) with 768Mb RAM. Timings are given in milliseconds, space measurements in
heap cells (4 bytes). The incremental collector has been implemented for hProlog 1.7. hProlog is
a successor of dProlog [8] and is meant to become a back-end of HAL [7]. hProlog is based on the
WAM, but it differs in the following: it has a separate choicepoint and environment stack, it always
allocates free variables on the heap and version 1.7 does not tidy the trail on cut. Experimental
results are compared to the standard hProlog 1.7 system. hProlog 1.7 uses by default optimistic
copying [9] for garbage collection. We will refer to the system with the incremental collector as
inc gc, and to the original system with the optimistic collector as opt gc. For the performance
evaluation, we disabled early reset in opt gc; we believe this gives a better comparison between
the 2 systems, since currently inc gc does not implement early reset. We discuss how early reset

104

can be adapted to fit into inc gc in 5.3.
Our benchmark set consists of the following benchmarks: chess, mqueens, browsegc, boy-

ergc, dnamatchgc, takgc and serialgc. Benchmarks chess and mqueens are taken from [9].
The other benchmarks are taken from [12]. They are classical benchmarks, but have extra param-
eters to increase the size of the benchmark. This makes them more interesting for testing garbage
collector performance. We run them with the following input: browsegc (5000), boyergc (5),
dnamatchgc (1000), takgc (28,16,8), serialgc (1000000).

2 Prolog execution with a modified heap layout

2.1 bb heap: a block-based heap layout

The basis for the incremental garbage collector is a modified heap layout, which is better suited
for incremental collections. This heap layout consists of several heap blocks with a fixed number
of cells. We will refer to this new heap layout as the bb heap, and to the standard WAM heap
layout as the wam heap.

In bb heap, the logical heap is an ordered set of heap blocks. Some extra data structures are
used for the management of these blocks. They keep the blocks chronologically ordered, indepen-
dently of the address order. This block order keeps all data in the bb heap ordered by creation
time. The most recent block in the heap is used for allocation; we call this the current block .
Whenever the current block overflows, the heap is expanded: an extra heap block is allocated and
added to the heap. All heap blocks, that are part of the heap, are active. Heap blocks can become
inactive because of instant reclaiming or garbage collection. Inactive blocks are no longer part of
the heap, but they are added to a freelist and can be used for future heap expansion.

Note that the idea to divide the heap in separate blocks is not new: incremental copying
collectors as in [10, 5] have a very similar heap layout as the one we present here. One important
difference though is that bb heap keeps a strict order on the heap blocks.

2.2 Heap blocks and backtracking

2.2.1 Instant reclaiming

Because instant reclaiming allows to recover an unbounded amount of memory at a constant cost,
it is important to preserve this property during normal program execution. Instant reclaiming
relies on the fact that the order of the heap segments is preserved. The bb heap keeps the heap
data chronologically ordered (as long as no garbage collection has occurred), and as such also keeps
the heap segments ordered. This means that instant reclaiming is possible within a block as well
as over block boundaries. Upon backtracking we can deallocate all heap cells allocated after the
creation of the most recent choicepoint (all heap cells belonging to the topmost heap segment). If
the topmost segment consists of several blocks, then all blocks that contain cells belonging to that
segment exclusively can be freed. In the block where this segment starts, we can also reclaim that
part of the block belonging to that segment.

2.2.2 Trailing

Upon backtracking to a certain choicepoint, all bindings done after the creation of that choicepoint
need to be undone. Trailing is the WAM mechanism which remembers these bindings. We only

105

want to record the relevant bindings on the trail: the binding of variables older than the current
choicepoint; this is called conditional trailing.

In the wam heap this conditional trailing is easily done by comparing the address of the
variable which is going to be bound and the heap pointer in the topmost choicepoint, as shown in
the following pseudo-code.

if (CellPtr < BH) trail(CellPtr);

If the variable is older (smaller address) than the pointer in the choicepoint (points to higher
address), then the binding should be trailed. This relies on the fact that the continuous wam heap
grows towards higher memory addresses.

In the bb heap, things get a little tougher because we cannot rely on the fact that a higher
memory address corresponds to a more recent creation time. As long as a block has not been garbage
collected, higher memory addresses still correspond to newer cells for cells within that block. For
cells in different blocks, we need to know whether one block is older than another one. We do this
by giving each block a timestamp when adding it to the heap. Blocks with smaller timestamps are
older than blocks with bigger timestamps. Timestamps are preserved during garbage collection.
The conditional trailing then looks like the following pseudo-code.

if ((same_block(CellPtr,BH) && (CellPtr < BH))
|| (!same_block(CellPtr,BH) && older_block(CellPtr,BH)))

trail(CellPtr);

If the variable and the heap pointer in the choicepoint belong to the same block, then we can use
the address order; if not, then we compare the age of the blocks.

A common optimization to reduce trail usage is the following. When a variable is bound to
another variable, the youngest cell is always bound to the oldest cell. This reduces the chance that
the binding needs to be trailed. This optimization is currently not implemented in the bb heap
system, but we intend to investigate this in the future.

2.3 Overhead due to heap layout

The more expensive trailing mechanism and the management of the data structures involved in
the bb heap incur a certain run-time cost, even when garbage collection is not needed or used by
the program. To measure this cost, we compare the wam heap and the bb heap on a number of
benchmarks. Both heap layouts are implemented for hProlog 1.7. The wam heap system is always
started with a heap big enough to run a particular benchmark without needing garbage collection.
We configured the bb heap system for different heap block sizes (the block size is mentioned in
table 1 in bytes). The bb heap systems are started with a heap consisting of one block. When
the current block overflows, an extra block is added to the heap and used for new allocations. No
garbage collection is performed. We did not include the benchmarks mqueens and chess here,
since they can not run without garbage collection.

Table 1 shows the time needed to run a particular benchmark with each system. To isolate
the performance loss during the execution of a program, we measure the time needed for running
the benchmark only. Startup time and allocation of heap space (time spent in malloc and in the
UNIX system call mmap) are not considered. Management of our own data structures related to
the heap blocks is included in the timings. The results are also shown in a graph in figure 1. The
graph shows the performance of the bb heap relative to the wam heap.

We observe the following:

• The benchmarks show that there is some overhead in the bb heap systems, but the overhead
is generally small with a maximum of 6% for boyergc in the bb heap 2Mb system.

106

wam heap bb heap 2Mb bb heap 4Mb bb heap 8Mb bb heap 16Mb
browsegc 5319 5571 5557 5397 5121
boyergc 9074 9644 9481 9416 9177
dnamatchgc 2414 2488 2508 2499 2446
takgc 1380 1444 1435 1430 1412
serialgc 7725 7635 7622 7600 7448

Table 1: Overhead of the heap layout

br
ow

se
gc

bo
ye

rg
c

dn
am

atc
hg

c
tak

gc

se
ria

lgc

1.0

1.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
el

at
iv

e
ru

n-
tim

e

wam_heap

bb_heap 2Mb

bb_heap 4Mb

bb_heap 8Mb

bb_heap 16Mb

Figure 1: Overhead of the heap layout

• Smaller block sizes in the bb heap systems result in more overhead. For a given benchmark,
bb heap systems with a smaller block size have more blocks; consequently there is more
overhead due to the switching of current block upon backtracking. Also there are more
current block overflows, upon which a new block has to be added to the heap.

• For dnamatchgc, bb heap 2Mb is faster than bb heap 4Mb; the difference however, is
negligible and is probably due to slight variations in the benchmark conditions or cache
effects. A similar reason applies to bb heap 16Mb being slightly faster than wam heap for
browsegc.

• serialgc runs systematically faster in the bb heap systems. We suspect this is due to cache
effects. With a cache simulator, we found that the bb heap systems have more data accesses
than the wam heap system, but fewer cache misses (up to 10% less L2 cache misses).

3 Incremental collection with heap blocks

3.1 Basic principle

Incremental collection in the bb heap is done by collecting one heap block during each collection
cycle. Since the garbage collector is based on a copying collector, a to space is needed as large as
the from space. This means that one heap block should always be reserved as to space.

Figure 2 shows what happens during garbage collection. Before the collection, in figure 2(a),
the bb heap consists of 3 blocks: block 1 (the oldest block), block 2 (the current block) and one
block currently not in use. A garbage collection collects one block (we call this the from block) and
copies all its live cells to a free block (we call this the to block). In this example block 1 is the from
block . During the collection (figure 2(b)) block 1 is collected and all its live data is copied to the

107

1

2

free

H

(a) Before gc

1

2

free

H

from
block

to
block

(b) During gc

1

2

free

H

(c) After gc

Figure 2: Incremental garbage collection in the bb heap

free block. Finally in figure 2(c) the to block becomes the new block 1, and this block is linked to
block 2.

Note that if the from block contains garbage (block 1), then the to block still contains some free
space at the end of the collection. Each heap block has a pointer to indicate this. If the next block
(block 2) is collected in a subsequent collection, its live data can be copied to this free space (top
of block 1). When all free space is used, the copying is continued with a free block.

The free space left in a to block can also be used for subsequent allocation of new data. However,
since the to block inherits the timestamp from the from block , this means that newly allocated data
in the free space of the to block inherits this timestamp. In case the collected block is different
(older) from the current block , this can lead to unnecessary trailing of the newly allocated variables,
and it makes instant reclaiming more difficult. Therefore our allocation policy never allocates new
data in the to block if the collected block is different from the current block .

3.2 Write barriers and remembered sets

During an incremental collection we want to collect one heap block independently from the other
blocks. During the collection cycle, all live data found in that block (the from block) is copied to a
new block (the to block). The root set is defined as a set of references, which are known to point to
live cells in the heap. In the WAM, the root set consists of references found in the environments,
the choicepoints, the trail and the argument registers; all these memory areas contain references to
(live) cells on the heap.

However, the root set alone is not sufficient to find all live cells in a heap block without scanning
other blocks. In the bb heap, it is possible that a cell in a block is not referenced by any element
of the root set, although it can be referenced by a live cell in another block. An example of this
is shown in figure 3(a). The cell is live, because it is indirectly referenced by the root set. At
collection time, we want to know which cells in other blocks have references to cells in the from
block , without scanning all other blocks. We call references from cells in one block (the source
block) to cells in another block (the target block) inter-block references; references to cells in the
same block are called intra-block references. We need a mechanism to remember the inter-block
references. This can be done with a write barrier and remembered sets.

108

1

2

H

root
set

(a) Indirect reference

1

2

H

root
set

write
barrier

(b) Write barrier

1

2

H

2->1

1->2

(c) Remembered sets

Figure 3: Write barriers and remembered sets

3.2.1 Write barrier

A write barrier is a mechanism to monitor write operations. Each time a value is about to be
written in a memory cell, this action is intercepted by the write barrier. This is a more general
mechanism, and is for example also used for trailing. The write barrier for trailing checks whether
something is written in a cell older than the current choicepoint, and in that case, it puts the
relevant cell on the trail. In this incremental collector, an extra write barrier checks whether an
inter-block reference is created (figure 3(b)) and in that case, remembers it by recording it in a
remembered set (figure 3(c)).

A more elaborate discussion about write barriers and their implementation can be found in [11].
Write barrier implementations can be software-only or use the virtual memory hardware (protecting
pages for writing). We implemented a software-only write barrier. The code for the write barrier
is only added for assignments where the creation of inter-block references is possible, and has been
optimized as described in [6].

3.2.2 Remembered sets

Remembered sets are collections of inter-block references. Several configurations are possible for
the organization of these sets. One commonly used option is to have one remembered set for each
block; the write barrier puts all references to cells in a certain block in that block’s remembered set.
Another option is to have remembered sets for each combination of source block and target block .
Our implementation uses the latter (figure 3(c)). This configuration has 2 important advantages.
First, during garbage collection only the remembered sets that have the from block as target block
need to be scanned. Second, after garbage collection, all old entries in the remembered sets should be
removed; this corresponds to removing all remembered sets that have the from block as either source
block or target block . Note that the write barrier remains active during garbage collection: inter-
block references newly created during garbage collection are added to new or existing remembered
sets.

3.3 Overhead due to write barriers and remembered sets

To investigate the effect of the write barrier on program run-time, we compare the wam heap, the
bb heap (without write barrier) and the bb heapwb (bb heap with write barrier and remembered
sets). Again we present bb heapwb systems for different sizes of the heap blocks. The same settings

109

apply as in section 2.3. None of the systems do garbage collection.
Table 2 contains the timings for the benchmarks for each bb heapwb system. The maximal size

of the remembered sets (number of entries) is also included. Figure 4 shows the performance of the
bb heapwb systems relative to the performance of the wam heap system. The graph also includes
the timings for the bb heap systems, as presented in 2.3.

wam heap bb heapwb 2Mb bb heapwb 4Mb bb heapwb 8Mb bb heapwb 16Mb
ttot ttot mremset ttot mremset ttot mremset ttot mremset

browsegc 5319 6404 1042695 6079 782547 5620 0 5668 0
boyergc 9074 9949 1115 9837 606 9769 316 9716 176
dnamatchgc 2414 2598 217 2588 120 2578 50 2571 11
takgc 1380 1465 0 1462 0 1454 0 1434 0
serialgc 7725 9114 22891761 9132 22891060 9031 22890701 9054 22395214

Table 2: Overhead of the write barrier and remembered sets

br
ow

se
gc

bo
ye

rg
c

dn
am

atc
hg

c
tak

gc

se
ria

lgc

1.0
1.1
1.2
1.3

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

R
el

at
iv

e
ru

n-
tim

e

wam_heap

bb_heap 2Mb

bb_heap_wb 2Mb

bb_heap 4Mb

bb_heap_wb 4Mb

bb_heap 8Mb

bb_heap_wb 8Mb

bb_heap 16Mb

bb_heap_wb 16Mb

Figure 4: Overhead of the write barrier and remembered sets

From the figures we observe that:

• The write barrier gives an extra overhead; the total overhead of the bb heapwb systems
compared to the wam heap system can be as high as 20% (browsegc in bb heapwb 2Mb).

• Benchmarks (boyergc, dnamatchgc, takgc), where most references are very local (the
reference and the data it points to are very close to each other in the heap), experience a
rather small overhead from the write barrier: in these cases bb heapwb has an overhead of
about 5% compared to bb heap. The reason is that although the write barrier is triggered,
it rarely needs to put references in the remembered sets.

• serialgc has a very high overhead in the bb heapwb systems. The benchmark first initializes
some data, and afterwards builds a tree with references to this data. All newer data contains
references to the oldest data on the heap. There is a lot of write barrier activity and compared
to boyergc, dnamatchgc and takgc the write barrier traps a higher percentage of inter-
block references, which have to be inserted into the remembered sets.

110

• browsegc is a benchmark where most references are very local, still it experiences very high
overhead from the write barrier. We didn’t find a good explanation for this behaviour. Cache
effects might be the reason.

• The size of the remembered sets becomes smaller as the block size increases. This is what we
intuitively expect, because moving from small blocks to bigger blocks, some inter-block refer-
ences become intra-block references and as such, there will be less entries in the remembered
sets.

4 Experimental results of the incremental garbage collector

The incremental garbage collector for hProlog consists of a bb heapwb system and the optimistic
copying algorithm which is used for garbage collection of the heap blocks.

We plan to investigate garbage collection policies in the future (as discussed in section 5.4),
but currently we use the following. Garbage collections are always (and only) triggered when the
current block overflows. The collector then collects the current block . If more than 70% of the cells
from that block survive the collection, we deem it not worthwhile to collect that block any longer
and the next time a garbage collection is triggered, a new block will be added to the heap and used
for future allocations. This is a very simple generational policy.

We compare several inc gc systems (with different block sizes) with the standard hProlog 1.7
system, opt gc. We give opt gc always an initial heap size of 8Mb. The garbage collection policy
in opt gc is as follows: a garbage collection is triggered whenever the heap is full, all collections are
major collections (they collect the whole heap at once) and opt gc doubles the heap size whenever
more than 70% of the heap survives a collection.

Table 3 contains the results of benchmarks with inc gc. We do not present all benchmarks
here, we left out the ones that are too small to be interesting concerning heap usage. We measured
the following items: tgc (total time spent on garbage collection), ttot (total run-time, including
tgc), # gcs (number of garbage collections), tmin/tavg/tmax (minimum/average/maximum pause
time, time needed for one garbage collection cycle), memtot (total memory usage for heap and
remembered sets, including to space) and memremset (space usage of the remembered sets). Time
measurements are in milliseconds, space measurements in heap cells.

We observe the following:

• The maximum pause time in the inc gc systems is always smaller than in opt gc; the
difference varies from a factor of 1.5 (chess and inc gc 16Mb) up to a factor of 35 (serialgc
and inc gc 2Mb). Within the inc gc systems, smaller block sizes give smaller pause times.
The reason for this is that the amount of work for the incremental collector increases with
the size of its blocks. The relative difference between pause times across different block
sizes depends on the size of the root set; the relative difference will be smaller as the root
set becomes bigger. This can be seen for mqueens, where the root set is very small (big
difference in pause times), and chess, where the root set is large.

• The number of garbage collections in opt gc is in most cases lower than in inc gc. This is to
be expected since the collections in opt gc are major and collect the whole heap, while the
collections in inc gc are minor and collect only part of the heap. For the inc gc systems,
there are also more collections as the block size goes down.

• Total garbage collection time in inc gc is sometimes smaller, sometimes bigger than in
opt gc. A priori, we expect garbage collection time in inc gc systems to be higher, since

111

opt gc inc gc 2Mb inc gc 4Mb inc gc 8Mb inc gc 16Mb
chess tgc/ttot 1975/10780 5260/14443 3804/12860 1667/10840 1016/9823

gcs 6 34 19 7 4
tmin/tavg/tmax 3/329/656 0/154/290 0/200/320 0/238/353 0/254/426

memtot 10702298 8771802 9184855 11195751 12898775
memremset 907482 796247 709991 315863

mqueens tgc/ttot 9663/71743 10463/80213 10555/76943 10302/75910 11379/78433
gcs 136 1291 646 321 158

tmin/tavg/tmax 3/71/220 0/8/24 0/16/47 3/32/87 10/72/146
memtot 31996008 15530340 16034702 17062597 22308854

memremset 325988 306062 285381 1337334
boyergc tgc/ttot 5365/14410 6326/16243 3899/13763 2633/12360 1953/11560

gcs 14 108 54 25 12
tmin/tavg/tmax 80/383/1160 10/58/107 27/72/117 50/105/147 87/162/230

memtot 31994970 24117913 23068961 23068832 25165889
memremset 665 289 160 65

serialgc tgc/ttot 4730/11930 3620/16400 2807/13993 2488/11703 1614/11000
gcs 9 84 42 22 10

tmin/tavg/tmax 36/525/2544 10/43/74 27/66/97 60/113/166 114/161/200
memtot 63996002 49518269 48372865 49321568 42853895

memremset 12293821 11672705 11572832 9299463

Table 3: Benchmark results

they have more collections and (during the benchmark) scan the root set more often than
opt gc. However, it is difficult to draw conclusions from these timings. First of all, garbage
collection in different systems is triggered at different times. And second, inc gc and opt gc
use a different garbage collection policy; which policy is best, completely depends on the
characteristics of the benchmark.

• In most cases, the inc gc systems have a lower memory usage than the opt gc system. This
is what we expected because of the smaller to space. In some cases (chess in inc gc 8Mb
and 16Mb) inc gc needs more memory. One reason for this is probably that inc gc keeps
more cells live than opt gc, because it supposes that all cells in the remembered sets are live,
while this is not always true.

• In the inc gc systems, the remembered sets become smaller as the block size increases (ex-
cept for mqueens in inc gc 16Mb). As already noticed in section 3.3, this is because moving
from small blocks to bigger blocks, some inter-block references will become intra-block ref-
erences. However this is only valid in systems without garbage collection. In the presence
of garbage collection, systems with different block sizes trigger collections at different times.
Consequently, data may be placed in different locations on the heap. A data structure like a
tree may be placed within one block in one system, while it is spread over 2 heap blocks in
another system (and creates a lot of inter-block references in that case). Something like this
might have happened with mqueens in inc gc 16Mb. We intend to further investigate the
relation between block size and remembered set usage in the future.

• The total run-time in inc gc systems with small block sizes is always bigger than in opt gc.
This is partly due to the overhead at run-time, and partly due to the time taken for garbage
collection (a lot of collections, that all scan the whole root set).

The benchmarks show that the incremental garbage collector, inc gc, succeeds to obtain substan-
tially lower pause times, and that it generally has a lower memory usage than opt gc.

112

5 Future enhancements

5.1 Tidy trail

Tidy trail is a technique to recover trail space upon cut. When the program executes a cut, it cuts
away one or more choicepoints; this can render some entries on the trail useless. Tidy trail compacts
the trail by removing these entries. Many Prolog systems implement tidy trail, but hProlog 1.7
doesn’t. For certain programs however, this would drastically reduce trail space usage (for example
in boyergc). We think this is an important optimization for inc gc, because the trail is part
of the root set, which is scanned at each collection cycle. Tidy trail makes the root set smaller,
and therefore makes collections cheaper. We plan to implement tidy trail for both the opt gc and
inc gc systems and investigate its effect on performance.

5.2 Remembered sets

Currently we use arrays (mainly for simplicity) for the remembered sets and backtracking does
not remove entries from the remembered sets. As a result, remembered sets can contain duplicate
entries and our collector must take these into account. We plan to investigate the removal of
entries from the remembered sets on backtracking further: a better datastructure - like linked lists
or hashtables - needs to be introduced.

5.3 Early reset

During garbage collection, it is possible to reset certain bindings recorded on the trail (or for a
value-trail to reset the recorded cells to the value they would get upon backtracking); this is called
early reset. With early reset, the garbage collector takes over some of the untrailing work that
would be done upon backtracking. This is beneficial because trail entries, subject to early reset,
can be removed from the trail. Because of this, early reset can lead to a smaller root set, just like
tidy trail.

Early reset is only possible for cells referenced by the trail, which are not used in the forward
execution of the program. For each choicepoint, for which we can compute the forward execution
and the corresponding set of reachable data, we can apply early reset on the accompanying trail
segment (that part of the trail that would be untrailed upon backtracking to that specific choice-
point). It is possible to determine the reachable data from a certain choicepoint and apply early
reset to the appropriate trail entries during garbage collection. A more in-depth discussion about
this technique can be found in [2, 3].

Early reset relies on the fact that we can find all live data in the forward execution of any
choicepoint. This is done by recursively marking or forwarding all cells from the root set which
are reachable through the current environment. Cells, that are not reachable through the current
environment are eligible for early reset; they will not be used in the forward execution, so we can
safely reset them to the value they will get upon backtracking.

In a bb heapwb system, in which we do incremental collections, early reset is not possible with-
out some modifications. If we want to find all cells reachable in the forward execution, then we
should also scan (and mark) cells in other blocks of the heap, because they might have indirect
references to cells in the block we are about to collect. An approximation of early reset is possible
however, we call it partial early reset. As seen in section 3.2, remembered sets contain all refer-
ences from other blocks of the heap to the current block . Before scanning cells in the reachable
environments, first we start forwarding from references found in the remembered sets. Since this

113

assumes that all cells referenced from other blocks are live and reachable in the forward execution,
this is a conservative approximation of the real set of cells reachable in the forward execution.
After forwarding cells referenced through the remembered sets, early reset can be done as with a
standard heap layout. However, because partial early reset is less precise (more conservative), and
because we can only do early reset for cells in the current block , it will gain less space on the trail as
normal early reset would do. We intend to implement partial early reset and see how it compares
to standard early reset.

5.4 Garbage collection policy

The garbage collector uses a garbage collection policy to decide about when and how to collect.
To initiate a garbage collection, several kinds of triggers can be used. We could use the following
criteria as triggers:

• the current block is full

• a certain amount of the current heap block is in use

• an amount of allocation has been done since the previous collection

• an amount of time has passed since the previous collection

• the size of certain remembered sets hits a threshold

The current implementation only triggers garbage collection when the current block overflows.
The policy also decides which heap block to collect at a certain collection. Several options are

available for this. A generational policy would define a number of generations and try to frequently
collect blocks in the youngest generations, and only rarely collect blocks in the oldest generations.
We could also use a policy to mimic older-first garbage collection. Such a policy would start by
collecting the oldest blocks and collect more recent blocks in subsequent collections; in this way it
tries to avoid to collect very young data. inc gc has a very simple generational policy currently
and we plan to investigate more complex policies in the future.

6 Conclusion

We presented an incremental copying collector for WAM-based Prolog systems. The collector relies
on the bb heap, a heap layout different from the standard WAM heap layout. Due to this new
heap layout, a number of modifications to the standard WAM were needed. The final system
with the incremental collector has decent performance, as shown in a number of benchmarks. In
general, the collector substantially lowers pause times and has better memory usage. We also
proposed a number of enhancements to the current implementation, which we intend to implement
and investigate in the future.

References

[1] H. Aı̈t-Kaci. The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research Report,
1990 See also: http://www.isg.sfu.ca/~hak/documents/wam.html.

[2] K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin. Garbage collection for Prolog based on
WAM. Communications of the ACM, 31(6):719–741, June 1988.

114

[3] Y. Bekkers, O. Ridoux, and L. Ungaro. Dynamic Memory Management for Sequential Logic
Programming Languages. In Y. Bekkers and J. Cohen, editors, Proceedings of IWMM’92:
International Workshop on Memory Management, number 637 in Lecture Notes in Computer
Science, pages 82–102. Springer-Verlag, Sept. 1992.

[4] J. Bevemyr and T. Lindgren. A simple and efficient copying Garbage Collector for Prolog. In
M. Hermenegildo and J. Penjam, editors, Proceedings of the Sixth International Symposium
on Programming Language Implementation and Logic Programming, number 844 in Lecture
Notes in Computer Science, pages 88–101. Springer-Verlag, Sept. 1994.

[5] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss. Beltway: Getting around
garbage collection gridlock. In Proceedings of SIGPLAN 2002 Conference on Programming
Languages Design and Implementation, PLDI’02, Berlin, June, 2002, volume 37(5) of ACM
SIGPLAN Notices. ACM Press, June 2002.

[6] S. M. Blackburn and K. S. McKinley. In or out?: putting write barriers in their place. In
Proceedings of the third international symposium on Memory management, pages 175–184.
ACM Press, 2002.

[7] B. Demoen, M. Garćıa de la Banda, W. Harvey, K. Mariott, and P. Stuckey. An overview
of HAL. In J. Jaffar, editor, Proceedings of the International Conference on Principles and
Practice of Constraint Programming, volume 1713 of LNCS, pages 174–188. Springer, 1999.

[8] B. Demoen and P.-L. Nguyen. So many WAM variations, so little time. In J. Lloyd, V. Dahl,
U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey,
editors, Computational Logic - CL2000, First International Conference, London, UK, July
2000, Proceedings, volume 1861 of Lecture Notes in Artificial Intelligence, pages 1240–1254.
ALP, Springer, 2000.

[9] B. Demoen, P.-L. Nguyen, and R. Vandeginste. Copying garbage collection for the WAM:
to mark or not to mark ? In P. Stuckey, editor, Proceedings of ICLP2002 - International
Conference on Logic Programming, number 2401 in Lecture Notes in Computer Science, pages
194–208, Copenhagen, July 2002. ALP, Springer-Verlag.

[10] R. L. Hudson and J. E. B. Moss. Incremental collection of mature objects. In Proc. Int.
Workshop on Memory Management, number 637, pages 388–403, Saint-Malo (France), 1992.
Springer-Verlag.

[11] R. Jones and R. Lins. Garbage Collection: Algorithms for automatic memory management.
John Wiley, 1996 See also http://www.cs.ukc.ac.uk/people/staff/rej/gcbook/gcbook.html.

[12] X. Li. Efficient Memory Management in a merged Heap/Stack Prolog Machine. In Proceedings
of the 2nd ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP’00), pages 245–256. ACM Press, 2000.

[13] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI, 1983.

[14] P. R. Wilson. Uniprocessor garbage collection techniques. In Proc. Int. Workshop on Memory
Management, number 637, Saint-Malo (France), 1992. Springer-Verlag.

115

116

Smodels with CLP: a Treatment of Aggregates in ASP

Enrico Pontelli Tran Cao Son Islam Elkabani

Department of Computer Science
New Mexico State University

{epontell,tson,ielkaban}@cs.nmsu.edu

Abstract

We present the development of a system that integrates an engine for computation of answer
sets with an engine for constraint solving. The integrated system allows us to provide a flexible
and effective management of aggregate functions during answer set computation.

1 Introduction

In recent years we have witnessed a renovated interest towards the development of practical, effec-
tive, and efficient implementations of different flavors of logic programming. A significant deal of
research has been invested in the development of systems that support logic programming under
answer set semantics, favoring the creation of a novel programming paradigm, commonly referred
to as Answer Set Programming (ASP). Many practical systems have been recently proposed to
support execution of ASP [14, 7, 1, 11]. The logic-based languages provided by these systems
offer a variety of syntactic structures, aimed at supporting the requirements arising from different
application domains. Our objective is to introduce different types of aggregates in ASP. Database
query languages (e.g., SQL) use aggregate functions—such as sum, count, max, and min—to obtain
summary information from a database. Aggregates have been shown to significantly improve the
compactness and clarity of programs in various flavors of logic programming [10, 6]. We expect
to gain similar advantages from the introduction of different forms of aggregations in ASP. In the
next examples, we demonstrate the use of aggregates in ASP.

Example 1 Consider a job scheduling problem, where we have a total number of machines
(resource(Max)) and a number of jobs. Each job uses one machine and lasts for a certain duration
(duration(Job,Time)). We can define a predicate active(Job, T ime) and use the aggregate count
to calculate the number of active jobs at the time instance T ime. The number of active jobs cannot
be greater than the number of machines:

active(Job,Time) :- time(Time), duration(Job, Len), start(Job,Init),
Time >= Init, Time < Init+Len.

:- time(T), resource(Max), count(T, active(Job,T)) > Max.

Example 2 ([12]) Let owns(X,Y,N) denote the fact that company X owns a fraction N of the
shares of the company Y . We say that a company X controls a company Y if the sum of the shares
it owns in Y together with the sum of the shares owned in Y by companies controlled by X is greater
than half of the total shares of Y .1

1For the sake of simplicity we omitted the domain predicates required by smodels.

117

control(X, X, Y, N) :- owns(X,Y,N).
control(X, Z, Y, N) :- control(X,Z), owns(Z,Y,N).
fraction(X,Y,N) :- sum(M,control(X,Z,Y,M)) = N.
control(X,Y) :- fraction(X,Y,N), N >0.5.

A significant body of research has been developed in the database and in the constraint pro-
gramming communities exploring the theoretical foundations and, in a more limited fashion, the
algorithmic properties of aggregation constructs in logic programming (e.g. [10, 16, 12, 5]). More
limited attention has been devoted to the more practical aspects related to computing in logic
programming in presence of aggregates. In [2], it has been shown that aggregate functions can
be encoded in ASP (e.g., example 1 above). The main disadvantage of this proposal is that the
obtained encoding contains several intermediate variables, thus making the grounding phase quite
expensive in term of space and time. Recently, a number of proposals to extend logic program-
ming with aggregate functions have been developed, including work on the use of aggregates in
the ASET system [8], extensive work on sets and grouping in logic programming [15, 6], and the
excellent implementation of aggregates in the dlv system [4]. of A-Prolog enriched with aggregation
on sets. The specific approach proposed in this work accomplishes the same objectives as [4, 8].
The novelty of our approach lies in the technique adopted to support aggregates. Following the
spirit of our previous efforts [6, 3], we rely on the integration of different constraint solving tech-
nologies to support the management of different flavors of sets and aggregates. In this paper, we
describe a back-end inference engine, obtained by the integration of smodels with a finite-domain
constraint solver, capable of executing smodels program with aggregates. The back-end is meant
to be used in conjunction with front-ends capable of performing high-level constraint handling of
sets and aggregates (as in [6]). We will refer to that system as smodels–ag hereafter.

2 The Language

Now we will give a formal definition for the syntax and semantics of the language accepted by the
smodels-ag system. This language is an extension to the language accepted by the smodels system
by aggregate functions.

2.1 Syntax

The input language accepted by our system is analogous to the language of smodels with the
exception of a new class of literals - the aggregate literals.

Definition 1 An smodels-ag system intentional set is a set of the form {X,Goal[X, Ȳ]}.
An smodels-ag system intentional multiset is a multiset of the form {{X,Goal[X, Ȳ]}}.
where X is the grouped variable while Ȳ are the existentially quantified variables. i.e. {X : ∃ Ȳ s.t
Goal[X, Ȳ] is true}.
and Goal[X, Ȳ] is an atom or an expression of the form:

• atom(X) (where Ȳ is empty).
• atom1(X, Ȳ) : atom2(Ȳ) (where atom2(Ȳ) is the domain predicate of Ȳ).

Definition 2 An aggregate function is of the form aggr(S), where S is either an intensional set
or an intensional multiset, and aggr is one of the following functions: count, sum, min, max.
An aggregate atom is of the form aggr(S) op Result, where op is one of the relational operators
drawn from the set {=, ! =, <,>,<=, >=} and Result is either a variable or a numeric constant.

118

The variables X, Ȳ are locally quantified within the aggregate. At this time, the aggregate literal
cannot play the role of a domain predicate—thus other variables appearing in an aggregate literal
(e.g., Result) are treated in the same way as variables appearing in a negative literal.

Definition 3 An smodel-ag rule is in the form:

B ← L1, . . . , Ln

where B is a positive literal, L1, . . . , Ln are either positive or negative aggregate or non-aggregate
literals.

For simplicity, we require the body of each smodel-ag rule to contain at most one aggregate.

Definition 4 An smodel-ag program is a set of smodel-ag rules.

In smodels-ag, we have opted for relaxing the stratification requirement present in [4, 8], which
avoids the presence of recursion through aggregates. The price to pay is the possibility of generating
non-minimal models [6, 10]; on the other hand, the literature has highlighted situations where
stratification of aggregates prevents natural solutions to problems [12, 5].

Example 3 Consider the following program:

p(1). p(2). p(3).
q : − sum{X, q(X)} > 10.
p(5) : − q.

This program contains recursion through aggregates. It has the two answer sets A1 =
{p(1), p(2), p(3)} and A2 ={p(1), p(2), p(3), p(5), q}. It is obvious that the model A2 is not a minimal
model, which is a natural result due to the recursion through aggregate atoms.

2.2 Semantics

Now we will provide the semantics for the language. In particular, we are interested in the stable
model semantics [9] of the language based on the interpretation of the aggregate atoms. First,
we will start by defining the domains over which aggregate functions are defined and smodels-ag
program variables are assigned.

Definition 5 Let P be an smodels-ag program, then UP is the set of all constants appearing in
P . Let P be an smodels-ag program, then UP is the set of all possible multisets over constants
appearing in UP .

Let P be an smodels-ag program, then UN
P is the set of all possible multisets over natural

numbers appearing in UP . Now we can give the meanings of the aggregate functions as follows:

• sum: It is a mapping from UN
P to N . It computes the sum of the elements in a multiset.

• count: It is a mapping from UP to N . It computes the number of the elements in a multiset.

• min: It is a mapping from UN
P to N . It computes the minimum element in a multiset.

• max: It is a mapping from UN
P to N . It computes the maximum element in a multiset.

119

Definition 6 (Valuation Function) Let V denotes the set of variables in program P then σ : V �→
UP is the valuationfunction that maps variables in P to constants in UP .

Definition 7 (Grounding) Given an atom A and a valuation function σ for variables in A, we
define the notion of grounding of A w.r.t σ as follows:

• If A = p(v1, . . . , vn) is a non-aggregate atom, then the grounding of p(v1,. . . , vn) w.r.t σ is
given by p(σ(v1),. . . , σ(vn)).
• If A = aggr{X,Goal(X, Ȳ)} op Result is an aggregate atom, then its grounding w.r.t σ is
given by aggr{〈σ(X), Goal(σ(X), σ(Ȳ))〉} op Result, where {〈σ(X), Goal(σ(X), σ(Ȳ))〉} is a
ground set of pairs.

The notion of grounding can be extended to rules and to programs. We denote a grounded program
P by Ground(P).

Definition 8 Let P be an smodels-ag program, then BP is the set of all ground non-aggregate
atoms which can be formed by using predicate symbols in P with constants from UP .

Now we are ready to assign a precise meaning to the syntactic entities of our language (aggregate
and non-aggregate atoms) w.r.t an interpretation I. An interpretation I of an smodels-ag program
P is defined, informally, as a subset of non-aggregate atoms in BP (i.e, I ⊆ BP).

Definition 9 An interpretation I for an smodels-ag program P is a function that maps a grounded
atom A in P into its truth value as follows:

• If A is a grounded non-aggregate atom then we say that the interpretation of A is true w.r.t
I if A ∈ I, otherwise A is false w.r.t I.
• If A is a grounded aggregate atom in the form

aggr{〈σ(X), Goal(σ(X), σ(Ȳ))〉} op Result

then we say that the interpretation of A is true w.r.t I if aggr{σ(X) | where Goal(σ(X), σ(Ȳ))
∈ I} op Result is true, otherwise A is false w.r.t I, where the interpretation of aggr is a
value computed according to the meaning of aggr that we have mentioned above, and the
interpretation of op is given by the usual meaning of the relational operators {=, ! =, <,>
,<=, >=}.

We define an interpretation I to be a model of a grounded atom A denoted by I |= A, if A is
true w.r.t I. Similarly, we can extend the definition of |= to conjunctions of atoms. We define an
interpretation I to be a model of a grounded rule: B ← L1, . . . , Ln, where L1, . . . , Ln are either
aggregate or non-aggregate literals, if I models L1, . . . , Ln implies I models B. I is a model of
a rule if it is a model of each grounding of the rule. We can notice now that the stable models
defintion of an smodel-ag program might follow directly from [9]. Also, we shall remember that
stable models minimality can not be guaranteed in this case, as mentioned earlier.

3 Integrating a Constraint Solver in an Answer Set Solver

We now describe the most relevant aspects of our system. The general idea of our solution is to
employ finite domain constraints to encode the aggregates in a program.

120

3.1 Representing Aggregates as Constraints

Now we are going to show how to represent all different kinds of aggregates as finite domain
constraints. First, each atom appearing in an aggregate is represented as a variable with domain
0..1; then the whole aggregate is expressed as a constraint involving such variables. This can be
shown as in the following subsections.

3.1.1 Count Aggregate

An aggregate atom in the form count{X,Goal(X)} op Result is represented as a finite domain
constraint in the form:

X[i1] + X[i2] + . . . + X[in] con op Result

where the X[i]’s are finite domain constraint variables representing all the ground atoms of Goal(X),
the i’s are the indices of the ground atoms in the atom table and con op is the ECLiPSe operator
corresponding to the relational operator op. E.g., given the atoms p(1), p(2), p(3), the aggregate
count{A, p(A)}<3 will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, X[1]+X[2]+X[3] #< 3

where X[1],X[2],X[3] are constraint variables corresponding to p(1), p(2), p(3) respectively.

3.1.2 Sum Aggregate

An aggregate atom in the form sum{X,Goal(X)} op Result is represented as a finite domain
constraint in the form:

X[i1] ∗ vi1 + X[i2] ∗ vi2 + . . . + X[in] ∗ vi1 con op Result

where the X[i]’s are finite domain constraint variables representing all the ground atoms of Goal(X),
the i’s are the indices of the ground atoms in the atom table, vi’s are the constants instantiating
the atom Goal(X) and con op is the ECLiPSe operator corresponding to the relational operator
op. E.g., given the atoms p(1), p(2), p(3), the aggregate sum{A, p(A)}<3 will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, X[1]∗1+X[2]∗2+X[3]∗3 #< 3

where X[1],X[2],X[3] are constraint variables corresponding to p(1), p(2), p(3) respectively.

3.1.3 Max Aggregate

An aggregate atom in the form max{X,Goal(X)} op Result is represented as a finite domain
constraint in the form:

maxlist([X[i1] ∗ vi1 , X[i2] ∗ vi2 , . . . , X[in] ∗ vin]) con op Result

where the X[i]’s are finite domain constraint variables representing all the ground atoms of Goal(X),
the i’s are the indices of the ground atoms in the atom table, vi’s are the constants instantiating
the atom Goal(X) and con op is the ECLiPSe operator corresponding to the relational operator
op. E.g., given the atoms p(1), p(2), p(3), the aggregate max{A, p(A)}<5 will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, maxlist([X[1] ∗ 1,X[2] ∗ 2,X[3] ∗ 3]) #< 5

where X[1],X[2],X[3] are constraint variables corresponding to p(1), p(2), p(3) respectively.

121

3.1.4 Min Aggregate

It might seem that the representation of the min{X,Goal(X)} op Result aggregate atom as a
finite domain constraint is analogous to that of the max aggregate with the only difference of
using minlist/1 instead of maxlist/1. This is not absolutely true. We have noticed a problem
that might evolve when we represent the min aggregate in the same way as we did with the max
aggregate. The problem is that we might have one or more values of the Xi’s are set to 0, which
are the Xi’s that represent ground atoms having false truth values, this might lead to a wrong
answer when we compute the minimum value in a list, since the result will be 0 all the time,
although the real minimum value could be another value rather than 0 (the minimum value of
the vi’s that correspond to the X[i]’s representing ground atoms having true truth values). E.g. ,
given the atoms p(3), p(4), p(5), if we already knew that p(3) and p(4) are true, while p(5) is false,
in this case if we use the same representation as the max aggregate in representing the aggregate
min{A, p(A)}<2 that will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, minlist([X[1] ∗ 3,X[2] ∗ 4,X[3] ∗ 5]) #< 2.

This representation is wrong, since in this case the result for this constraint will be true, since the
result from applying minlist will be 0 and 0 is less than two, but the correct answer should be
false, since the minimum of the values that correspond to ground atoms having true truth value
is 3 which is not less than 2. In order to overcome this problem, we have suggested the following
representation of the aggregate atom min{X,Goal(X)} op Result as a finite domain constraint:

Y [i1] # = (X[i1]∗1)+1,
Y [i2] # = (X[i2]∗2)+1,

...
Y [in] # = (X[in]∗n)+1,

element(Y [i1], [M, vi1 , . . . , vin], Z[i1]),
element(Y [i2], [M, vi1 , . . . , vin], Z[i2]),

...
element(Y [in], [M, vi1 , . . . , vin], Z[in]),
minlist([Z[i1], Z[i2], . . . , Z[in]]) con op Result

where M is a very large constant such that M > vi, for all possible values of i, the Yi’s are selector
indices that are used to select a value from the list [M, vi1 , . . . , vin] to be assigned to the Z[i]’s
by using the fd-library constraint element/3 and the Z[i]’s are the new list of X[i] ∗ vi with the
exception that each X[i] ∗ vi that corresponds to an atom with a false truth value is changed to
M . E.g. , by applying this treatment for the previous example, we will find that Z[1] is assigned
3, Z[2] is assigned 4 and Z[3] is assigned a large number, say 100000. In this case the result of the
constraint minlist([Z[1], Z[2], Z[3]]) #< 2 is false, which is a correct answer (since 3 < 2 is false).

3.2 System Architecture

The overall structure of smodels-ag is shown in Fig. 1. The current implementation is built using
smodels (2.27) and the ECLiPSe (5.4) constraint solver. At this stage it is a prototype aimed at
investigating the feasibility of the proposed ideas.

122

3.2.1 Preprocessing

The Preprocessing module is composed of three sequential steps. In the first step, a program
– called Pre-Analyzer – is used to perform a number of simple syntactic transformations of the
input program. The transformations are mostly aimed at rewriting the aggregate literals in a
format acceptable by lparse. The second step executes the lparse program on the output of the
pre-analyzer, producing a grounded version of the program encoded in the format required by
smodels (i.e., with a separate representation of rules and atoms). The third step is performed by
the Post-Analyzer program whose major activities are:

• Identification of the dependencies between aggregate literals and atoms contributing to such
aggregates; these dependencies are explicitly included in the output file. (The lparse output
format is extended with a fourth section, describing these dependencies.)

• Generation of the constraint formulae encoding the aggregate; e.g., an entry like
“57 sum(x,use(8,x),3,greater)” in the atom table (describing the aggregate sum(X,use(8,X)) > 3)
is converted to “57 sum(3,[16,32,48],“X16 * 2 + X32 * 1 + X48 * 4 + 0 #> 3”)” (16, 32, 48 are indices
of the atoms use(8,)).

• Simplification of the constraints making use of the truth values discovered by lparse.

3.2.2 Models Computation

The Model Computation module (Fig. 1) is in charge of generating the models from the input
program. The module consists of a modified version of smodels interacting with an external finite
domain constraint solver (in this case, the ECLiPSe solver).

As in smodels, each atom in the program has a separate internal representation—including ag-
gregate literals. In particular, each aggregate literal representation maintains information regarding
what program rules it appears in. The representation of each aggregate literal is similar to that of
a standard atom, with the exception of some additional fields; these are used to store an ECLiPSe
structure representing the constraint associated to the aggregate. Each standard atom includes a
list of pointers to all the aggregate literals depending on such atom.

4 Data Structures

Now we will describe in more details the modifications done to the smodels system data struc-
tures, in order to extend the smodels system with aggregate functions and make it capable of
communicating the ECLiPSe constraint solver.

4.1 Atom

Most of the new data structures that have been added in the new smodels-ag system are extension
to the class Atom. This is because we are introducing a new type of atoms (aggregate constraint
atom) which has its own properties. In order to represent these properties we have augmented the
class Atom with the following data structures:

• bool aggregate : It specifies whether this atom is an aggregate constraint atom or not.
• Atom ** dependents: If this atom is an aggregate constraint, dependents is the list of atoms

on which this aggregate depends on.
• int numberofdependents: If this atom is an aggregate constraint, numberofdependents is

the number of atoms on which this aggregate depends on

123

SMODELS ECLiPSe

Post Constraint

Post Aggregate Constraint

Expand

Pick

Check aggregate
 completion

Expand

Constraint
Store

Completed Aggregate
Truth Value

Values of Labeled
Constraint Variables

Figure 1: Overall System Structure

• Atom ** constraints: It is the list of aggregate constraint atoms that depends on this atom.
• int numberofconstraints: It is the number of aggregate constraint atoms that depends on

this atom.
• int met dependents: If this atom is an aggregate constraint, met dependents is the number

of its dependent atoms which still have unknown truth values.
• long my index: It is the index of this atom in the atom table.
• char * constraint formula: If this atom is an aggregate constraint atom, constraint formula

is the formula of this aggregate constraint atom that will be posted on the ECLiPSe constraint
store. (e.g., X[12] ∗ 1 + X[13] ∗ 2 + X[14] ∗ 3 #< 4).

• char * dependent formula: If this atom is an aggregate constraint atom, dependent formula
is the conjunction of the primitive constraint dependents of this aggregate constraint that are
already posted on the ECLiPSe constraint store. (e.g., true, X[12] = 1, X[13] = 0).

• EC word PosCon: It is an ECLiPSe data structure that holds the positive constraint that
will be posted into the ECLiPSe constraint store. (e.g., X[12] #= 1).

• EC word NegCon: It is an ECLiPSe data structure that holds the negative constraint that
will be posted into the ECLiPSe constraint store. (e.g., X[13] #= 0).

• EC word conterm: It is an ECLiPSe data structure that holds the aggregate constraint that
will be posted into the ECLiPSe constraint store.

4.2 Finite Domain Variables

The communication between the smodels system and the ECLiPSe is a two-way communication.
smodels system is posting constraints into the ECLiPSe constraint solver. On the other hand,
ECLiPSe is communicating the smodels by either sending the truth value of a posted completed
aggregate constraint or by sending back values of labeled variables to the smodels system as an
answer for a posted non-completed aggregate constraint. In order to return an answer of a posted
non-completed aggregate constraint to the smodels, we need to refer to these ECLiPSe terms (finite

124

Post Constraint

Pick a non-aggregate atom
 to be guessed

Check Completed Aggregate
Constraint Truth Value

Pick an aggregate atom
to be guessed

p(2)true
Post

If the index of p(5)
in the atom table is 12

X[12] #= 1

Post

Choice Point

fail fail

Choose r(7)

repeat

Post

Propagate
(True / False)

SMODELS
Model Constructor

ECLiPSe

Constraint Store

sum(X,p(X)) > 4

true & X[12]#=1 & X[13]#=0
& X[14]#=1

 true & X[12]#=1 & X[13]#=0 &
X[14]#=1 & X[12]*2 + X[13]*4 #> 4

Choose sum(Y,q(Y)) < 6

Post

q(3)true
Post

If the index of q(3)
in the atom table is 14

X[14] #= 1

repeat

Choice Point

X[14]*3+X[5]*2
+X[3]*1 #< 6

X[14]#=1

(X[5], X[3] are Labeled)

X[5]=1,X[3]=0

X[3]=1,X[5]=0

X[5]=0,X[3]=0

#\+(X[14]*3+X[5]*2
+X[3]*1 #< 6)

X[3]=1,X[5]=1

q(2),not q(1)

not q(2),q(1)

not q(2),not q(1)

q(2),q(1)

Propagate values of
 labeled variables to atoms

true false

Post aggregate
sum(X, p(X))<4 X[12]*2 + X[13]*4 #< 5

If the index of p(4)
in the atom table is 13 X[13] #= 0p(4) false

X[13] is labeled

sum(X,p(X))>4 false

Figure 2: Communication smodels to ECLiPSe

domain variables) from the smodels (C++). This can be done by using the ECLiPSe data types
EC refs and EC ref. In our case, we have added the following data structures as global variables
in order to handle this situation:

EC refs X(n): It is an ECLiPSe data structure that holds n references for n ECLiPSe variables.
These variables hold the recent values of the ECLiPSe finite domain constraints variables. By this
way we can have an easy access from the smodels to the values of the labeled variables assigned in
the ECLiPSe.

EC ref *DigitList: It is an ECLiPSe data structure that holds a reference to a list of ECLiPSe
finite domain variables.

5 Execution Control

In this section we will describe the execution of the system in details. The main flow of execution is
directed by smodels. In parallel with the construction of the model, our system builds a constraint
store within ECLiPSe. The constraint store maintains one conjunction of constraints, representing
the level of aggregate instantiation achieved so far. The implementation of the smodels-ag system
required changes to almost all the modules of the smodels system. During our description for the
control of execution, we are going to highlight some of the main changes that have been applied to

125

the smodels system modules.

Expand: The goal of the smodels expand module is to extend the set of atoms whose truth values
are known (true/false) as much as possible. In our smodels-ag system we extend the expand module
such that each time an aggregate dependent atom is made true or false, a new constraint is posted
in the constraint store. If i is the index of such atom within smodels, and the atom is made true
(false), then the constraint X[i]#=1 (X[i]#=0) is posted in the ECLiPSe constraint store. (Fig.
2, first two post operations). If the ECLiPSe returns EC fail this means that a conflict is detected
(inconsistency), so the control returns to the smodels where the conflict is handled. Otherwise,
ECLiPSe returns EC succeed and the control returns to the smodels expand module again.

Also since aggregate literals are treated by smodels as standard program atoms, they can be
made true, false, or guessed. The only difference is that, whenever their truth value is decided, a
different type of constraint will be posted to the store—i.e., the constraint representation of the
aggregate (Fig. 2, third post operation). If the aggregate literal is made false, then a negated
constraint will be posted (negated constraints are obtained by applying the #\+ ECLiPSe opera-
tor). In this case, ECLiPSe returns an answer for the posted aggregate constraint to the smodels,
in other words, it returns an instantiation for labeled variables that satisfies the aggregate con-
straint. This instantiation is interpreted into a truth value for atoms in the smodels and then the
control returns to the expand module again. If there are more than one answer for the aggregate
constraint, the control must return back to the ECLiPSe for backtracking and generating another
answer, this happened after the smodels computes the stable model containing the previous answer
and backtracks for computing another model.

Observe that the constraints posted to the store have an active role during the execution:
• constraints can provide feedback to smodels by forcing truth or falsity of previously uncovered

atoms (truth value is unknown at that time). E.g., if the constraint X[12]∗2 + X[13]∗4#<5
is posted to the store (corresponding to the aggregate sum(X, p(X))<4) and X[12]#=1 has
been previously posted (e.g., p(2) is true), then it will force X[3]#=0, i.e., p(3) to be false (
Fig. 2, third post operation).

• inconsistencies in the constraint store have to be propagated to the smodels computation.

Check aggregate completion: An aggregate literal may become true/false not only as the result
of the deductive closure computation of the smodels expand procedure, but also because enough
evidence has been accumulated to prove its status. E.g., if the truth value of all atoms involved in
the aggregate has been established, then the aggregate can be immediately evaluated. In this case,
we call the aggregate literal the completed aggregate. Every time an aggregate dependent atom is
made true or false its aggregate literal is checked for its completion. If the aggregate is completed,
then it’s constraint representation is posted in the constraint store (Fig. 2, fifth post operation).
In this case, ECLiPSe returns the truth value of the aggregate constraint to the smodels, then the
control returns back to the expand module in order to use this knowledge (aggregate literal truth
value) in its deductive closure computation. E.g., if the constraint X[12]∗2+X[13]∗4#>4 is posted
to the store (corresponding to the aggregate sum(X, p(X))>4) and X[12]#=1 and X[13]#=0 have
been previously posted (e.g., p(2) is true and p(4) is false), then in this case ECLiPSe returns
false as a truth value for the aggregate literal sum(X, p(X))>4 to the smodels (Fig. 2, fifth post
operation). Similarly, as in the previous cases, in this case also inconsistencies in the constraint
store are propagated to the smodels for handling conflicts.

126

Pick: The structure of the computation developed by smodels is reflected in the structure of the
constraints store (see Fig. 2). In particular, each time smodels generates a choice point (e.g., as
effect of guessing the truth value of an atom), a corresponding choice point has to be generated in
the store. Similarly, whenever smodels detects a conflict and initiates backtracking, a failure has
to be triggered in the store as well (see Fig. 2, fourth post operation). Observe that choice points
and failures can be easily generated in the store using the repeat and fail predicates of ECLiPSe.
In our smodels-ag system, we have extended the smodels pick module to allow aggregate atoms
to be picked and its truth value is guessed in the same manner as in the case of non-aggregate
atoms. Obviously, aggregate atoms that are picked are non-completed aggregate atoms since, as
we mentioned previously, aggregate atoms are checked for their completion every time a dependent
atom is made true or false. In this case, the picked aggregate atom is set to true and posted into the
constraint store with labeling the unbounded finite domain variables of the aggregate constraint
formula. A choice point is generated into the ECLiPSe constraint store and an answer is generated
for the labeled variables, then the control returns back to the smodels for continuing the current
model computation. If a conflict is detected, it is propagated to the ECLiPSe constraint store
where a failure is generated to force backtracking to the choice point, then the control returns back
to the smodels where backtracking takes place and then the aggregate atom is set to false and a
negated constraint representation of the aggregate atom is posted. If no conflicts were detected,
then the smodels will continue the computation of the model and a backtracking will take place for
constructing a new model. At this point the control will return back to the ECLiPSe where a new
answer is generated (Fig. 2, last post operation).

6 Discussion and Conclusions

The prototype implementing these ideas has been completed and used on a pool of benchmarks.
Performance is acceptable, but we expect to obtain significant improvements by refining the inter-
face with ECLiPSe. Combining a constraint solver with smodels brings many advantages:
• since we are relying on an external constraints solver to effectively handle the aggregates, the

only step required to add new aggregates (e.g., times, avg) is the generation of the appropriate
constraint formula during preprocessing;

• the constraint solvers are very flexible; e.g., by making use of Constraint Handling Rules we can
implement different strategies to handle constraints and new constraint operators;

• the constraint solvers automatically perform some of the optimizations described in [4];
• it is a straightforward extension to allow the user to declare aggregate instances as eager ; in this

case, instead of posting only the corresponding constraint to the store, we will also post a labeling,
forcing the immediate resolution of the constraint store (i.e., guess the possible combinations of
truth values of selected atoms involved in the aggregate). In this way, the aggregate will act as
a generator of solutions instead of just a pruning mechanism.
We believe this approach has advantages over previous proposals. The use of a general constraint

solver allows us to easily understand and customize the way aggregates are handled (e.g., allow
the user to select eager vs. non-eager treatment); it also allows us to easily extend the system to
include new form of aggregates, by simply adding new type of constraints. Furthermore, the current
approach relaxes some of the syntactic restriction imposed in other proposals (e.g., stratification
of aggregations). The implementation requires minimal modification to the smodels system and
introduces insignificant overheads for regular programs. The prototype confirmed the feasibility of
this approach. Future work includes:

• further relaxation of some of the syntactic restrictions. E.g., the use of labeling allows the

127

aggregates to “force” solutions, so that the aggregate can act as a generator of values; this
may remove the need to include domain predicates to cover the result of the aggregate (e.g.,
the safety condition used in dlv).

• development of an independent grounding front-end; the current use of a pre-analyzer is
dictated by the limitations of lparse in dealing with syntactic extensions.

Acknowledgments

The research has been partially supported by NSF grants CCR-9900320, EIA-00220590, CCR-
0130887, and CCR-0975279.

References

[1] Y. Babovich and V. Lifschitz. Computing Answer Sets Using Program Completion.

[2] C. Baral. Knowledge Representation, reasoning, and declarative problem solving, Cambridge,
2003.

[3] A. Dal Palu’ et al. Integrating Finite Domain Constraints and CLP with Sets. PPDP, ACM,
2003.

[4] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, G. Pfeifer. . Aggregate Functions in Disjunctive
Logic Programming. IJCAI, 2003.

[5] M. Denecker et al. Ultimate well-founded and stable semantics for logic programs with aggre-
gates. In ICLP, Springer. 2001.

[6] A. Dovier, E. Pontelli, and G. Rossi. Intensional Sets in CLP. ICLP, Springer Verlag, 2003.

[7] T. Eiter et al. The KR System dlv: Progress Report, Comparisons, and Benchmarks. In
KRR, 1998.

[8] M. Gelfond. Representing Knowledge in A-Prolog. Logic Programming & Beyond, Springer,
2002.

[9] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. In International
Symposium on Logic Programming, pp. 1070–1080, MIT Press, 1988.

[10] D. Kemp and P. Stuckey. Semantics of Logic Programs with Aggregates. In ILPS, 1991.

[11] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of Logic Programs By SAT Solvers.
AAAI’02.

[12] K. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Databases. JCSS, 54, 1997.

[13] K. A. Ross et al. Foundations of aggregation constraints. TCS, 193(1–2), 1998.

[14] P. Simons et al. Extending and Implementing the Stable Model Semantics. AIJ, 138, 2002.

[15] O. Shmueli et al. Compilation of Set Terms in the Logic Data Language. JLP, 12(1/2), 1992.

[16] A. Van Gelder. The Well-Founded Semantics of Aggregation. In PODS, ACM Press, 1992.

128

Implementing Constructive Negation

Susana Muñoz Juan José Moreno-Navarro
susana@fi.upm.es jjmoreno@fi.upm.es

LSIIS, Facultad de Informática
Universidad Politécnica de Madrid

Campus de Montegancedo s/n Boadilla del Monte
28660 Madrid, Spain ��

Abstract. Logic Programming has been advocated as a language for system
specification, especially for those involving logical behaviours, rules and knowl-
edge. However, modeling problems involving negation, which is quite natural
in many cases, is somewhat limited if Prolog is used as the specification / im-
plementation language. These restrictions are not related to theory viewpoint,
where users can find many different models with their respective semantics; they
concern practical implementation issues. The negation capabilities supported by
current Prolog systems are rather constrained, and there is no a correct and com-
plete implementation. In this paper, we refine and propose some extensions to the
method of constructive negation, providing the complete theoretical algorithm.
Furthermore, we also discuss implementation issues providing a preliminary im-
plementation.

Keywords Constructive Negation, Negation in Logic Programming, Constraint Logic
Programming, Implementations of Logic Programming.

1 Introduction

From its very beginning Logic Programming has been advocated to be both a program-
ming language and a specification language. It is natural to use Logic Programming for
specifying/programming systems involving logical behaviours, rules and knowledge.
However, this idea has a severe limitation: the use of negation. Negation is probably the
most significant aspect of logic that was not included from the outset. This is due to the
fact that dealing with negation involves significant additional complexity. Nevertheless,
the use of negation is very natural and plays an important role in many cases, for in-
stance, constraints management in databases, program composition, manipulation and
transformation, default reasoning, natural language processing, etc.

Although this restriction cannot be perceived from the theoretical point of view
(because there are many alternative ways to understand and incorporate negation into
Logic Programming), the problems really start at the semantic level, where the differ-
ent proposals (negation as failure (naf), stable models, well-founded semantics, explicit
negation, etc.) differ not only as to expressiveness but also as to semantics. However,

�� This work was partly supported by the Spanish MCYT project TIC2000-1632.

the negation techniques supported by current Prolog compilers are rather limited, re-
stricted to negation as failure under Fitting/Kunen semantics [8] (sound only under
some circumstances usually not checked by compilers) which is a built-in or library in
most Prolog compilers (Quintus, SICStus, Ciao, BinProlog, etc.), and the “delay tech-
nique” (applying negation as failure only when the variables of the negated goal become
ground, which is sound but incomplete due to the possibility of floundering), which is
present in Nu-Prolog, Gödel, and Prolog systems that implement delays (most of the
above).

Of all the proposals, constructive negation [4, 5] is probably the most promising
because it has been proven to be sound and complete, and its semantics is fully compat-
ible with Prolog’s. Constructive negation was, in fact, announced in early versions of the
Eclipse Prolog compiler, but was removed from the latest releases. The reasons seem to
be related to some technical problems with the use of coroutining (risk of floundering)
and the management of constrained solutions.

The goal of this paper is to give an algorithmic description of constructive negation,
i.e. explicitly stating the details needed for an implementation. We also intend to discuss
the pragmatic ideas needed to provide a concrete and real implementation. Early results
for a concrete implementation extending the Ciao Prolog compiler are presented. We
assume some familiarity with constructive negation techniques and Chan’s papers.

The remainder of the paper is organized as follows. Section 2 details our construc-
tive negation algorithm. It explains how to obtain the f rontier of a goal (Section 2.1),
how to prepare the goal for negation (Section 2.2) and, finally, how to negate the goal
(Section 2.3). Section 3 discusses implementation issues: code expansion (Section 3.1),
required disequality constraints (Section 3.2), optimizations (Section 3.3), examples
(Section 4.1) and some experimental results (Section 4). Finally, we conclude and out-
line some future work.

2 Constructive Negation

Most of the papers addressing constructive negation deal with semantic aspects. In fact,
only the original papers by Chan gave some hints about a possible implementation based
on coroutining, but the technique was only outlined. When we tried to reconstruct this
implementation we came across several problems, including the management of con-
strained answers and floundering (which appears to be the main reason why constructive
negation was removed from recent versions of Eclipse). It is our belief that this prob-
lems cannot be easily and efficiently overcome. Therefore, we decided to design an
implementation from scratch. One of our additional requirements is that we want to use
a standard Prolog implementation (to be able to reuse thousands of existing Prolog lines
and maintain their efficiency), so we will avoid implementation-level manipulations that
would delay simple programs without negations.

We start with the definition of a frontier and how it can be managed to negate the
respective formula.

2.1 Frontier

Firstly, we present Chan’s definition of frontier (we actually owe the formal definition
to Stuckey [15]).

Definition 1. Frontier
A frontier of a goal G is the disjunction of a finite set of nodes in the derivation tree

such that every derivation of G is either finitely failed or passes through exactly one
frontier node.

What is missing is a method to generate the frontier. So far we have used the sim-
plest possible frontier: the frontier of depth 1 obtained by taking all the possible single
SLD resolution steps. This can be done by a simple inspection of the clauses of the
program1. Additionally, built-in based goals receive a special treatment (moving con-
junctions into disjunctions, disjunctions into conjunction, eliminating double negations,
etc.)

Definition 2. Depth-one frontier

– If G� �G1;G2� then Frontier�G�� Frontier�G1��Frontier�G2�.
– If G� �G1�G2� then Frontier�G�� Frontier�G1��Frontier�G2� and then we have

to apply DeMorgan’s distributive property to retain the disjunction of conjunctions
format.

– If G� p�X� and predicate p�m is defined by N clauses:
p�X

1
� :�C�

1�

p�X
2
� : �C�

2�
� � �
p�X

3
� : �C�

N �

The frontier of the goal has the format: Frontier�G�� �C1�C2� � � ��CN�, where
each Ci is the union of the conjunction of subgoals C �

i plus the equalities that are

needed to unify the variables of X and the respective terms of X
i
.

Consider, for instance, the following code:

odd(s(0)).
odd(s(s(X))) :- odd(X).

The frontier for the goal odd�Y � is as follows:

Frontier�odd�Y�� � ��Y � s�0��� �Y � s�s�X���odd�X���

To get the negation of G it suffices to negate the frontier formula. This is done
by negating each component of the disjunction of all implied clauses (that form the
frontier) and combining the results.

The solutions of cneg�G� are the solutions of the combination (conjunction) of one
solution of each of the N conjunctions Ci. Now we are going to explain how to negate
a single conjunction Ci. This is done in two phases: Preparation and Negation of the
formula.

1 Nevertheless, we plan to improve the process by using abstract interpretation and detecting the
degree of evaluation of a term that the execution will generate.

2.2 Preparation

Before negating a conjunction obtained from the frontier, we have to simplify, organize,
and normalize this conjunction:

– Simplification of the conjunction. If one of the terms of Ci is trivially equivalent
to true (e.g. X �X), we can eliminate this term from Ci. Symmetrically,if one of the
terms is trivially f ail (e.g. X �� X), we can simplify Ci � f ail. The simplification
phase can be carried out during the generation of frontier terms.

– Organization of the conjunction. Three groups are created containing the com-
ponents of Ci, which are divided into equalities (I), disequalities (D), and other
subgoals (R). Then, we get Ci � I�D�R.

– Normalization of the conjunction. Let us classify the variables in the formula.
The set of variables of the goal is called GoalVars. The set of free variables of R is
called RelVars.
� Elimination of redundant variables and equalities. If Ii � X � Y , where

Y �� GoalVars, then we now have the formula �I1� � � �� Ii�1� Ii�1� � � �� INI �

D�R �σ , where σ � �Y�X�, i.e. the variable Y is substituted by X in the entire
formula.

� Elimination of irrelevant disequalities. ImpVars is the set of variables of
GoalVars and the variables that appear in I. The disequalities D i that contain
any variable that was neither in ImpVars nor in RelVars are irrelevant and
should be eliminated.

2.3 Negation of the formula

It is not feasible, to get all solutions of Ci and to negate their disjunction because Ci
can have an infinite number of solutions. So, we have to use the general constructive
negation algorithm.

We consider that ExpVars is the set of variables of R that are not in ImpVars, i.e.
RelVars, except the variables of I in the normalized formula.

First step: Division of the formula
Ci is divided into:

Ci � I�Dimp�Rimp�Dexp�Rexp

where Dexp are the disequalities in D with variables in ExpVars and Dimp are the other

disequalities, Rexp are the goals of R with variables in ExpVars and Rimp are the other

goals, and I are the equalities.
Therefore, the constructive negation of the divided formula is:

	 Ci � 	 I�
�I�	 Dimp��

�I�Dimp�	 Rimp��

�I�Dimp�Rimp�	 �Dexp�Rexp��

It is not possible to separate Dexp and Rexp because they contain free variables and they
cannot be negated separately. The answers of the negations will be the answers of the
negation of the equalities, the answers of the negation of the disequalities without free
variables, the answers of the negation of the subgoals without free variables and the
answers of the negation of the other subgoals of the conjunctions (the ones with free
variables). Each of them will be obtained as follows:

Second step: Negation of subformulas

– Negation of I. We have I � I1� � � �� INI �

 Z1 X1 � t1� � � ��
 ZNI XNI � tNI

where Zi are the variables of the equality Ii that are not included in GoalVars (i.e.
that are not quantified and are therefore free variables). When we negate this con-
junction of equalities we get the constraint

� Z1 X1 �� t1
� �� �

� I1

� � � ��� ZNI XNI �� tNI
� �� �

� INI

�
NI�

i�1

� ZiXi �� ti

This constraint is the first answer of the negation of Ci that contains NI components.
– Negation of Dimp. If we have NDimp

disequalities Dimp � D1 � � � ��DNDimp
where

Di � �
 Zi W i Yi �� si where Yi is a variable of ImpVars, si is a term without
variables in ExpVars, W i are universally quantified variables that are neither in the
equalities 2, nor in the other goals of R because otherwise R would be a disequality
of Dexp. Then we will get NDimp

new solutions with the format:

I�	 D1
I�D1�	 D2
� � �
I�D1� � � ��DNDimp

�1�	 DNDimp

where 	 Di �
 W i Yi � si. The negation of a universal quantification turns into
an existential quantification and the quantification of free variables of Z i gets lost,
because the variables are unified with the evaluation of the equalities of I. Then, we
will get NDimp

new answers.

– Negation of Rimp. If we have NRimp
subgoals Rimp � R1� � � ��RNRimp

. Then we will

get new answers from each of the conjunctions:

I�Dimp�	 R1

I�Dimp�R1�	 R2
� � �
I�Dimp�R1� � � ��RNRimp

�1�	 RNRimp

2 There are, of course, no universally quantified variables in an equality

where 	 Ri � cneg�Ri�. Constructive negation is again applied over Ri recursively
using this operational semantics.

– Negation of Dexp�Rexp. This conjunction cannot be disclosed because of the nega-
tion of
 V exp Dexp�Rexp, where V exp gives universal quantifications:
� V exp cneg�Dexp �Rexp�. The entire constructive negation algorithm must be ap-
plied again. Note that the new set GoalVars is the former set ImpVars. Variables
of V exp are considered as free variables. When solutions of cneg�Dexp �Rexp� are
obtained some can be rejected: solutions with equalities with variables in V exp. If
there is a disequality with any of these variables, e.g. V , the variable will be uni-
versally quantified in the disequality. This is the way to negate the negation of a
goal, but there is a detail that was not considered in former approaches and that
is necessary to get a sound implementation: the existence of universally quantified
variables in Dexp�Rexp by the iterative application of the method. So, what we are
really negating is a subgoal of the form:
 V exp Dexp�Rexp. Here we will provide
the last group of answers that come from:

I�Dimp�Rimp�� V exp 	 �Dexp�Rexp�

3 Implementation Issues

Having described the theoretical algorithm, including important details, we now discuss
important aspects for a practical implementation, including how to compute the frontier
and manage answer constraints.

3.1 Code Expansion

The first issue is how to get the frontier of a goal. It is possible to handle the code of
clauses during the execution thanks to the Ciao package system [3], which allows the
code to be expanded at run time. The expansion is implemented in the cneg�pl package
which is included in the declaration of the module that is going to be expanded (i.e.
where there are goals that are negations).

Note that a similar, but less efficient, behaviour can be emulated using metapro-
gramming facilities, available in most Prolog compilers.

3.2 Disequality constraints

An instrumental step for managing negation is to be able to handle disequalities between
terms such as t1 �� t2. The typical Prolog resources for handling these disequalities are
limited to the built-in predicate /== /2, which needs both terms to be ground because
it always succeeds in the presence of free variables. It is clear that a variable needs to
be bound with a disequality to achieve a “constructive” behaviour. Moreover, when an
equation X � t�Y � is negated, the free variables in the equation must be universally
quantified, unless affected by a more external quantification, i.e. � Y X �� t�Y � is the
correct negation. As we explained in [10], the inclusion of disequalities and constrained

answers has a very low cost. It incorporates negative normal form constraints instead of
bindings and the decomposition step can produce disjunctions.

A Prolog predicate =/= /2 [10] has been defined, used to check disequalities,
similarly to explicit unification (=). Each constraint is a disjunction of conjunctions of
disequalities. When a universal quantification is used in a disequality (e.g., �Y X ��
c�Y �), the new constructor fA�1 is used (e.g., X / c(fA(Y))).

3.3 Optimizing the algorithm and the implementation

Our constructive negation algorithm and the implementation techniques admit some ad-
ditional optimizations that can improve the runtime behaviour of the system. Basically,
the optimizations rely on the compact representation of information, as well as the early
detection of successful or failing branches.
Compact information. In our system, negative information is represented quite com-
pactly, providing fewer solutions from the negation of I. The advantage is twofold. On
the one hand constraints contain more information and failing branches can be detected
earlier (i.e. the search space could be smaller). On the other hand, if we ask for all so-
lutions using backtracking, we are cutting the search tree by offering all the solutions
together in a single answer. For example, we can offer a simple answer for the negation
of a predicate p (the code for p is skipped):

?- cneg(p(X,Y,Z,W)).

(X=/=0, Y=/=s(Z)) ; (X=/=Y) ; (X=/=Z) ;
(X=/=W) ; (X=/=s(0), Z=/=0) ? ;
no

(which is equivalent to �X �� 0�Y �� s�Z���X ��Y �X ��Z�X ��W �X �� s�0��Z �� 0),
instead of returning six answers upon backtracking:

?- cneg(p(X,Y,Z,W)).

X=/=0, Y=/=s(Z) ? ;
X=/=Y ? ;
X=/=Z ? ;
X=/=W ? ;
X=/=s(0) ? ;
Z=/=0 ? ;
no

Pruning subgoals. The frontiers generation search tree can be cut with a double action
over the ground subgoals: removing the subgoals whose failure we are able to detect
early on, and simplifying the subgoals that can be reduced to true. Suppose we have a
predicate p�2 defined as

p(X,Y):- greater(X,Y),
q(X,Y,Z),
r(Z).

where q�3 and r�1 are predicates defined by several clauses with a complex computa-
tion. To negate the goal p�s�0��s�s�0���, its frontier is computed:

Frontier�p�s�0��s�s�0�����

X � s�0��Y � s�s�0���greater�X �Y ��q�X �Y�Z�� r�Z��

greater�s�0��s�s�0����q�s�0��s�s�0���Z�� r�Z� �

f ail�q�s�0��s�s�0���Z�� r�Z� �

f ail

The next step is to expand the code of the subgoals of the frontier to the combination
(disjunction) of the code of all their clauses, and the result will be a very complicated
and hard to check frontier. However, the process is optimized by evaluating ground
terms. In this case, greater�s�0��s�s�0�� fails and, therefore, it is not necessary to con-
tinue with the generation of the frontier, because the result is reduced to fail (i.e. the
negation of p�s�0��s�s�0��� will be trivially true). The opposite example is a simplifi-
cation:

Frontier�p�s�s�0���s�0����

X � s�s�0���Y � s�0��greater�X �Y��q�X �Y�Z�� r�Z��

greater�s�s�0���s�0���q�s�s�0���s�0��Z�� r�Z� �

true�q�s�s�0���s�0��Z�� r�Z��

q�s�s�0���s�0��Z�� r�Z�

Constraint simplification. During the whole process for negating a goal,the frontier
variables are constrained. In cases where the constraints are satisfiable, they can be elim-
inated and where the constraints can be reduced to fail, the evaluation can be stopped
with result true.

We focus on the negative information of a normal form constraint F :

F �
�

i

�

j

� Z
i
j �Y

i
j �� si

j�

Firstly, the Prenex form [13] can be obtained by extracting the universal variables with
different names to the head of the formula, applying logic rules:

F � �x
�

i

�

j

�Y i
j �� si

j�

and using the distributive property:

F � �x
�

k

�

l

�Y k
l �� sk

l �

The formula can be separated into subformulas that are simple disjunctions of disequal-
ities :

F �
�

k

�x
�

l

�Y k
l �� sk

l �� F1� ����Fn

Each single formula Fk can be evaluated. The first step will be to substitute the exis-
tentially quantified variables (variables that do not belong to x) by Skolem constants s i

j
that will keep the equivalence without losing generality:

Fk � �x
�

l

�Y k
l �� sk

l �� �x
�

l

�Y k
Skl �� sk

Skl�

Then it can be transformed into:

Fk �	
 x	�
�

l

�Y k
Skl �� sk

Skl���	FeK

The meaning of Fk is the negation of the meaning of Fek;

Fek �
 x	�
�

l

�Y k
Skl �� sk

Skl��

Solving the negations, the result is obtained through simple unifications of the variables
of x:

Fek �
 x
�
	�Y k

Skl �� sk
Skl��
 x

�
�Y k

Skl � sk
Skl�

Therefore, we get the truth value of Fk from the negation of the value of Fek and,
finally, the value of F is the conjunction of the values of all Fk. If F succeeds, then
the constraint is removed because it is redundant and we continue with the negation
process. If it fails, then the negation directly succeeds.

4 Experimental results

Our prototype is a simple library that is added to the set of libraries of Ciao Prolog.
Indeed, it is easy to port the library to other Prolog compilers. The only requirement is
that attributed variables should be available.

This section reports some experimental results from our prototype implementation.
First of all, we show the behaviour of the implementation in some simple examples.

4.1 Examples

The interesting side of this implementation is that it returns constructive results from a
negative question. Let us start with a simple example involving predicate boole�1.

boole(0).
boole(1).

?- cneg(boole(X)).
X=/=1, X=/=0 ? ;
no

Another simple example obtained from [15] gives us the following answers:

p(a,b,c).
p(b,a,c).
p(c,a,b).

proof1(X,Y,Z):-
X =/= a,
Z = c,
cneg(p(X,Y,Z)).

?- proof1(X,Y,Z).

Z = c,
X=/=b, X=/=a ? ;

Z = c,
Y=/=a, X=/=a ? ;

no

[15] contains another example showing how a constructive answer (�T X �� s�T �)
is provided for the negation of an undefined goal in Prolog:

p(X):- X = s(T), q(T).

q(T):- q(T).

r(X):- cneg(p(X)).

?- r(X).

X=/=s(fA(_A)) ?

yes

Notice that if we would ask for a second answer, then it will loop according to the
Prolog resolution. An example with an infinite number of solutions is more interesting.

positive(0).
positive(s(X)):-

positive(X).

?- cneg(positive(X)).

X=/=s(fA(_A)), X=/=0 ? ;
X = s(_A),
(_A=/=s(fA(_B)), _A=/=0) ? ;
X = s(s(_A)),
(_A=/=s(fA(_B)), _A=/=0) ? ;
X = s(s(s(_A))),
(_A=/=s(fA(_B)), _A=/=0) ?
yes

4.2 Implementation measures

We have firstly measured the execution times in milliseconds for the above examples
when using negation as failure (na f�1) and constructive negation (cneg�1). A ‘-’ in a
cell means that negation as failure is not applicable. All measurements were made using
Ciao Prolog3 1.5 on a Pentium II at 350 MHz. The results are shown in Table 1. We
have added a first column with the runtime of the evaluation of the positive goal that is
negated in the other columns and a last column with the ratio that measures the speedup
of the naf technique w.r.t. constructive negation.

Using naf instead of cneg results in small ratios around 1.06 on average for ground
calls with few recursive calls. So, the possible slow-down for constructive negation is
not so high as we might expect for these examples. Furthermore, the results are rather

3 The negation system is coded as a library module (“package” [3]), which includes the respec-
tive syntactic and semantic extensions (i.e. Ciao’s attributed variables). Such extensions apply
locally within each module which uses this negation library.

goals Goal naf(Goal) cneg(Goal) ratio
boole(1) 2049 2099 2069 0.98
boole(8) 2070 2170 2590 1.19
positive(s(s(s(s(s(s(0)))))) 2079 1600 2159 1.3
positive(s(s(s(s(s(0)))))) 2079 2139 2060 0.96
greater(s(s(s(0))),s(0)) 2110 2099 2100 1.00
greater(s(0),s(s(s(0)))) 2119 2129 2089 0.98

average 1.06

positive(500000) 2930 2949 41929 14.21
positive(1000000) 3820 3689 81840 22.18
greater(500000,500000) 3200 3339 22370 7.70

average 14.69

boole(X) 2080 - 3109
positive(X) 2020 - 7189
greater(s(s(s(0))),X) 2099 - 6990
greater(X,Y) 7040 - 7519
queens(s(s(0)),Qs) 6939 - 9119

Table 1. Runtime comparation

similar. But the same goals with data that involve many recursive calls yield ratios near
14.69 on average w.r.t naf, increasing exponentially with the number of recursive calls.
There are, of course, many goals that cannot be negated using the naf technique and
that are solved using constructive negation.

5 Conclusion and Future Work

After running some preliminary experiments with the constructive negation technique
following Chan’s description, we realized that the algorithm needed some additional
explanations and modifications.

Having given a detailed specification of algorithm in a detailed way we proceed to
provide a real, complete and consistent implementation. The result, we have reported
are very encouraging, because we have proved that it is possible to extend Prolog with
a constructive negation module relatively inexpensively. Nevertheless, it is quite impor-
tant to address possible optimizations, and we are working to improve the efficiency of
the implementation. These include a more accurate selection of the frontier based on
the demanded form of argument in the vein of [9]). Other future work is to incorporate
our algorithm at the WAM machine level.

In any case, we will probably not be able to provide an efficient enough implemen-
tation of constructive negation, because the algorithm is inherently inefficient. This is
why we do not intend to use it either for all cases of negation or for negating goals
directly.

Our goal is to design and implement a practical negation operator and incorporate
it into a Prolog compiler. In [10, 11] we systematically studied what we understood to

be the most interesting existing proposals: negation as failure (naf) [6], use of delays to
apply naf securely [12], intensional negation [1, 2], and constructive negation [4, 5, 7,
14, 15]. As none of them can satisfy our requirements of completeness and efficiency,
we propose to use a combination of these techniques, where the information from static
program analyzers could be used to reduce the cost of selecting techniques [11]. So, in
many cases, we avoid the inefficiency of constructive negation. However, we still need
it because it is the only method that is sound and complete for all kinds of goal. For
example, looking at the goals in Table 1, the strategy will obtain all ground negation
using the naf technique and would only use constructive negation for the goals with
variables where it is impossible to use naf .

We are testing the implementation and trying to improve the code, and our intention
is to include it in the next version of Ciao Prolog 4.

References

1. R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of logic pro-
grams. LNCS, 250:96–110, 1987.

2. R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. A transformational approach to
negation in logic programming. JLP, 8(3):201–228, 1990.

3. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In CL2000, number
1861 in LNAI, pages 131–148. Springer-Verlag, July 2000.

4. D. Chan. Constructive negation based on the complete database. In Proc. Int. Conference on
LP’88, pages 111–125. The MIT Press, 1988.

5. D. Chan. An extension of constructive negation and its application in coroutining. In Proc.
NACLP’89, pages 477–493. The MIT Press, 1989.

6. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
pages 293–322, New York, NY, 1978. Plenum Press.

7. W. Drabent. What is a failure? An approach to constructive negation. Acta Informatica.,
33:27–59, 1995.

8. K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289–308,
1987.

9. J. J. Moreno-Navarro. Extending constructive negation for partial functions in lazy
narrowing-based languages. ELP, 1996.

10. S. Muñoz and J. J. Moreno-Navarro. How to incorporate negation in a prolog compiler. In
E. Pontelli and V. Santos Costa, editors, 2nd International Workshop PADL’2000, volume
1753 of LNCS, pages 124–140, Boston, MA (USA), 2000. Springer-Verlag.

11. S. Muñoz, J. J. Moreno-Navarro, and M. Hermenegildo. Efficient negation using abstract
interpretation. In R. Nieuwenhuis and A. Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence and Reasoning, number 2250 in LNAI, pages 485–494, La Habana (Cuba),
2001. LPAR 2001.

12. L. Naish. Negation and control in Prolog. Number 238 in Lecture Notes in Computer
Science. Springer-Verlag, New York, 1986.

13. J. R. Shoenfield. Mathematical Logic. Association for Symbolic Logic, 1967.
14. P. Stuckey. Constructive negation for constraint logic programming. In Proc. IEEE Symp.

on Logic in Computer Science, volume 660. IEEE Comp. Soc. Press, 1991.
15. P. Stuckey. Negation and constraint logic programming. In Information and Computation,

volume 118(1), pages 12–33, 1995.

4 http://www.clip.dia.fi.upm.es/Software

