
Testing the equivalence of regular

expressions

Marco Almeida Nelma Moreira Rogério Reis

Technical Report Series: DCC-2007-07

Version 1.1 January 2008

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Testing the equivalence of regular expressions

Marco Almeida Nelma Moreira Rogério Reis
{mfa,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

October 2007

Abstract

Antimirov and Mosses presented a rewrite system for deciding the equivalence of
two (extended) regular expressions and argued that this method could lead to a better
average-case algorithm than those based on the comparison of the equivalent minimal
DFAs. In this paper we present a functional approach of a variant of that method,
prove its correctness and give some experimental comparative results. Although being a
refutation method, our preliminary results lead to the conclusion that indeed this method
is feasible and it is, almost always, faster than the classical methods.

Keywords regular languages, regular expressions, derivatives, regular expression compar-
ison, minimal automata

1 Introduction

Regular expressions have many applications as a good notation for regular languages. But
for its manipulation, however, finite automata are normally used, because the methods for
dealing with automata are usually considered much more efficient. Examples of this attitude
are the decision if a word belongs to the language represented by a regular expression or if two
regular expressions represent the same language (i.e. if they are equivalent). The problem
of deciding whether two regular expressions are equivalent is PSPACE-complete [SM73].
This problem is normally solved by transforming each regular expression to equivalent
nondeterministic finite automata; convert those automata into equivalent deterministic ones,
and finally minimise both deterministic finite automata, and determine if the resulting
automata are isomorphic.

Antimirov and Mosses [AM94] presented a rewrite system for deciding the equivalence
of two extended regular expressions (i.e. with intersection) based on a new complete
axiomatization of the extended algebra of regular sets. This axiomatization, or other classical
complete axiomatizations of the algebra of regular sets, can be used to construct an algorithm
for deciding the equivalence of two regular expressions, but normally deduction systems
are quite inefficient. That rewrite system is a refutation method that normalises regular
expressions in such way that testing their equivalence corresponds to an iterated process of
testing the equivalence of their derivatives. Termination is ensured because the considered
set of derivatives is finite and possible cycles are detected using memoisation. Antimirov
and Mosses suggested that their method could lead to a better average-case algorithm than

3

those based on the comparison of the equivalent minimal deterministic finite automata. In
this paper we present a functional approach of a variant of that method, prove its correctness
and give some experimental comparative results. Although being a refutation method, our
preliminary results lead to the conclusion that indeed this method is feasible and it is, almost
always, faster than the other classical methods.

2 Preliminaries

We recall here some definitions and facts concerning regular languages, regular expressions
and finite automata. For further details we refer the reader to the works of Hopcroft et.al

[HMU00], Kozen [Koz97] and Kuich and Salomaa [KS86].

2.1 Regular languages

Let Σ be a nonempty finite (or countably infinite) set. We call this set an alphabet and say
that its elements are letters or symbols. A word over an alphabet Σ is a finite sequence of
zero or more symbols of Σ. The string with zero symbols is called empty word and we denote
it by ǫ. Thus,

ǫ, 0, 011, 0000, 1101,

are words of the alphabet Σ = {0, 1}. The set of all words over an alphabet Σ is denoted by
Σ⋆.

If w0 and w1 are words over an alphabet Σ, then their concatenation w0 · w1 is also a
word over Σ. We define the concatenation by the creation of a new word w, which is formed
by appending all the symbols of w1 to w0. It is clear that the concatenation is an associative
operation and that ǫ is an identity with respect to this operation: ǫ · w = w · ǫ = w. We
usually omit ·, the concatenation operator. Given a word w and any natural number i, wi

means the word obtained by concatenating i copies of w. Naturally, w0 denotes the empty
word ǫ.

By length of a word w we mean the number of symbols in w when each symbol is counted
as many times as it occurs. We denote the length of a word w by |w|, and |ǫ| = 0.

Any subset of Σ⋆ is called a language. Because languages are sets, we may consider
Boolean operations. The sum or union of two languages L1 and L2 is denoted by L1 + L2

and their intersection by L1 ∩L2. The complement of a language L, with respect to the set
Σ⋆, is denoted by L, and we can combine these operations in order to have the difference of
two languages as follows:

L1 − L2 = L1 ∩ L2.

All of these operations have the expected set theoretical meanings:

L1 + L2 = {w | w ∈ L1 ∪ L2};

L1 ∩ L2 = {w | w ∈ L1 ∩ L2};

L = Σ⋆ − L.

Just like with words, we can consider the concatenation of two languages L1 and L2. It is
denoted L1 · L2 (although, again, sometimes we omit the operator ·) and defined to be the
language

L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

4

Also, Li, for i ≥ 0, is meaningful for a language L. We define L0 to be the language of the
empty word, Lǫ = {ǫ}, and Li to be i ≥ 1 concatenations of L. Being a set, we also accept a
language to be empty, i.e., a language with no words, denoted L∅. Having no words, L∅ = ∅.
Note that the languages L∅ and Lǫ are the zero and the identity elements with respect to
the concatenation, respectively.

The concatenation closure (or iteration) of a language L, written L⋆, is the sum of all
the powers of L:

L⋆ =
∞

∑

i=0

Li.

The star operator ⋆ is also called Kleene star. In the same way, the concatenation closure is
sometimes also referred to as the Kleene closure.

Some subsets of Σ⋆ are called regular languages. These languages correspond to sets
of cardinality less or equal to one and closed under union, concatenation, and Kleene star
operations, which can be defined with regular expressions.

Definition 1 (Regular expression) A regular expression over an alphabet Σ is induc-
tively defined by:

• ∅ and ǫ are regular expressions;

• each a ∈ Σ is a regular expression;

• if α and β are regular expressions, then so it is the disjunction (α+ β);

• if α and β are regular expressions, then so it is the concatenation (α · β);

• if α is a regular expression, then so it is the Kleene closure (α⋆).

Definition 2 (Language of a regular expression) The language defined by a regular
expression α, denoted L(α), is defined in the following way:

• L(∅) = ∅ and L(ǫ) = {ǫ};

• L(a) = {a}, for a ∈ Σ;

• L((α + β)) = L(α) ∪ L(β);

• L((α · β)) = L(α) · L(β);

• L((α⋆)) = L(α)⋆.

We say that two regular expressions α and β are equivalent, and write α ∼ β, if they
represent the same language, i.e., L(α) = L(β).

2.1.1 Monoids, semirings, and Kleene algebras

A monoid consists of a set M , an associative binary operation • on M , and a neutral
element e such that e • a = a • e = a for every a ∈ M . Usually, the binary operation —
sometimes called product — is omitted and we simply write ea = ae = a. A monoid is called
commutative if and only if a • b = b • a for all a, b ∈ M . The free monoid S⋆, generated by
a nonempty countable set S contains all the finite words

a1 · · · an, ai ∈ S

5

as its elements. We call semiring to a structure 〈S,⊕, •, 0, 1〉, where S is a set and ⊕, • are
two binary operations, called addition and multiplication, such that:

〈S,⊕, 0〉 is a commutative monoid,

〈S, •, 1〉 is a monoid,

a • (b⊕ c) = a • b⊕ a • c the multiplication distributes over addition,

(a⊕ b) • c = a • c⊕ b • c

0 • a = a • 0 = 0 0 annihilates the multiplication.

If we take a semiring and add a unary operation ∗ which complies with certain axioms, we
get what is called a Kleene algebra.

2.1.2 Axioms system

We will now introduce an axiom system for regular expressions:

α+ ∅ ∼ α, (A1)

α+ α ∼ α, (A2)

α+ β ∼ β + α, (A3)

α+ (β + γ) ∼ (α+ β) + γ, (A4)

ǫ · α ∼ α, (A5)

∅ · α ∼ ∅, (A6)

α(βγ) ∼ (αβ)γ, (A7)

α(β + γ) ∼ αβ + αγ, (A8)

(α+ β)γ ∼ αγ + βγ, (A9)

α⋆ ∼ ǫ+ αα⋆, (A10)

α⋆ ∼ (ǫ+ α)⋆. (A11)

This is essentially Salomaa’s [Sal66] axiom system F1, which includes the following two rules
of inference:

• Substitution
γ′ ∼ γ[α/β], α ∼ β, γ ∼ δ

γ′ ∼ δ, γ′ ∼ γ
(R1)

• Solution of equations

α ∼ αβ + γ, ǫ /∈ L(β)

α ∼ β⋆γ
(R2)

We use ǫ instead of ∅⋆, but ∅⋆ ∼ ǫ may actually be derived with the following sequence
of equations:

∅⋆ ∼ ǫ+ ∅⋆ · ∅ by Axiom A10; (1)

∼ ǫ+ ∅ by Equation 3; (2)

∼ ǫ by Axiom A1.

6

The step from 1 to 2 is possible because ∅ · α ∼ α · ∅ ∼ ∅, as can be shown from Axiom A6

and the following equalities:

α · ∅ ∼ α · ∅ + ∅ by Axiom A1;

∼ α · (∅ · ∅) + ∅ by Axiom A6;

∼ (α · ∅) · ∅ + ∅ by Axiom A7;

∼ ∅ · ∅⋆ by the inference rule R2;

∼ ∅ by Axiom A6.

(3)

The disjunction of regular expressions is associative, commutative and idempotent (Ax-
ioms A4, A3 and A2, respectively). The concatenation is associative (Axiom A7), and
the star is idempotent (Lemma 1). We call these ACI properties and, when referring
to an arbitrary regular expression, unless stated otherwise, we will always be considering
the regular operations modulo these properties. This means, for example, that we do not
distinguish the following regular expressions:

(α+ (β⋆)⋆) + γ(α′β′) + α,

α+ (β⋆ + (γα′)β′ + α),

α+ β⋆ + γα′β′.

In order to resolve ambiguity in less clear situations, we assign precedence to the opera-
tors. For example,

α+ βγ

could be interpreted as either

α+ (βγ) or (α+ β)γ,

which are not equivalent. We adopt the convention that the concatenation operator · has
higher precedence than the disjunction operator +. In the same way, we assign the star
operator ⋆ higher precedence than · or +.

Lemma 1 The Kleene star is idempotent, i.e., α⋆ ∼ (α⋆)⋆.

Proof By definition, L((α⋆)⋆) = (L(α)⋆)⋆. The language (L(α)⋆)⋆ is the set of all words
created by concatenating words of the language L(α)⋆. But the words of L(α)⋆ are themselves
composed of words from L(α). Thus, every word in (L(α)⋆)⋆ is also a concatenation of words
from L(α) and is therefore in the language of L(α)⋆.

Let us now consider the set RE of all the regular expressions, and the regular operations
·, +, and ⋆. Clearly, both 〈RE, ·, ǫ〉 and 〈RE,+, ∅〉 are monoids:

(αβ)γ = α(βγ) (α+ β) + γ = α+ (β + γ) the operations are associative,

αβ ∈ RE α+ β ∈ RE the set is closed under the operations,

ǫα = αǫ = α ∅ + α = α+ ∅ = α has an identity,

for α, β, γ ∈ RE. These two monoids of regular expressions form the semiring 〈RE,+, ·, ∅, ǫ〉.
The regular expressions set RE, with the regular operations ·, +, ⋆, the Axioms A1–A11,
and the inference rules R1 and R2, form a Kleene algebra.

7

2.2 Definitions and notation

We will now introduce some definitions and notation not usually found in the common
bibliography.

Definition 3 (Size of a regular expression) Let the ordinary length, denoted by |α|, be
the measure for the size of a regular expression α. This measure counts the total number
of symbols in the regular expression, including parentheses and operators. The regular
expression (a+ b)⋆(a+ ǫ), for example, has size 11.

There are other possible measures, but, because we will only be considering irreducible
regular expressions (as defined bellow), there will be no syntactic redundancy and this one
is enough.

Definition 4 (Uncollapsible regular expression) We say that a regular expression α is
uncollapsible if none of the following conditions hold:

• α contains the proper sub-expression ∅, and |α| > 1;

• α contains a sub-expression of the form βγ or γβ where L(β) = {ǫ};

• α contains a sub-expression of the form β + γ where L(β) = {ǫ} and ǫ ∈ L(γ).

Definition 5 (Irreducible regular expression) We say α is an irreducible regular ex-
pression if α is uncollapsible and both of the following conditions are true:

• α does not contain superfluous parentheses;

• α does not contain a sub-expression of the form β⋆⋆

.

Whenever using the term regular expression we will be referring to irreducible regular
expressions.

Definition 6 (Languages containing the empty word) A regular expression α possesses
the empty word property (e.w.p.) [Sal69] if and only if one of the following conditions holds:

• α = ǫ;

• α = β⋆ (where β is an arbitrary r.e.);

• α is a disjunction of regular expressions, one of which possesses the e.w.p.;

• α is a concatenation of regular expressions, all of which possess the e.w.p..

This is the same as saying that α possesses the e.w.p. if and only if ǫ ∈ L(α).

Definition 7 (Constant part of a regular expression) We say that the constant part
of a regular expression α is ǫ if α has the e.w.p. property, and ∅ otherwise.

Definition 8 (Linear regular expression) A regular expression α is linear if it is gener-
ated by the following context free grammar, where A is the initial symbol:

A→ C | C · B | A+A

B → C | B +B | B · B | B⋆

C → a ∈ Σ

(G1)

8

This means that α has the form a1α1 + · · · + anαn for ai ∈ Σ.
We say that an expression a · α has head a and tail α. We use head(α) and tail(α) to

denote, respectively, the multiset of all heads and the multiset of all tails in α. The set of
all the linear regular expressions is denoted by RElin.

Definition 9 (Deterministic linear regular expression) A linear regular expression α
is deterministic if each element in head(α) occurs exactly once. We denote the set of all
deterministic linear regular expressions by REdet.

Definition 10 (Pre-linear regular expression) We call pre-linear to a regular expres-
sion generated by following context free grammar with initial symbol A′:

A′ → ∅ | D

D → A | D · B | D +D

A→ C | C · B | A+A

B → C | B +B | B ·B | B⋆

C → a ∈ Σ

(G2)

Simply stated, a pre-linear regular expression is either ∅, an already linear r.e. or a
disjunction of concatenations where the first argument of each concatenation is a linear
regular expression. Just like with linear regular expressions, we say that a ·α has head a and
tail α. The set of all the linear regular expressions is denoted by REplin.

Definition 11 (Similar regular expressions) Two regular expressions are similar [Brz64]
if one can be transformed to the other using only the Axioms A2, A3, and A4. When not
similar, the regular expressions are called dissimilar.

Definition 12 (Derivative of a regular expression — with respect to a symbol) The
derivative [Brz64] of a regular expression α with respect to a symbol a ∈ Σ, denoted a−1(α),
is recursively defined on the structure of α as follows:

a−1(∅) = ∅;

a−1(ǫ) = ∅;

a−1(α) =

{

ǫ if α = a;

∅ if α 6= a ;

a−1(α+ β) = a−1(α) + a−1(β);

a−1(αβ) = a−1(α)β + const(α)a−1(β);

a−1(α⋆) = a−1(α)α⋆.

where α, β are arbitrary, not necessarily irreducible, regular expressions.
In the particular case of a deterministic linear regular expression, the calculation of the

derivative with respect to a symbol a can be simplified as follows:

a−1(α) =

β if a · β is a sub-expression of α;

ǫ if α = a;

∅ otherwise.

9

Definition 13 (Derivative of a regular expression — with respect to a word) The
derivative [Brz64] of a regular expression α (not necessarily irreducible) with respect to the
word w ∈ Σ⋆, denoted w−1(α), is found recursively in the structure of w:

ǫ−1(α) = α;

w−1(α) = (u · a)−1(α) = a−1(u−1(α)).

3 Regular expressions equivalency

The classical approach to the problem of comparing two regular expressions α and β, i.e.,
deciding if L(α) = L(β), typically consists on:

1. obtain non-deterministic finite automata, Nα and Nβ, which accept the same language
as α and β, respectively;

2. convert the non-deterministic automata to equivalent deterministic ones, Dα ≡ Nα

and Dβ ≡ Nβ;

3. minimise both Dα and Dβ .

Because, for a given regular language, the minimal automaton is unique up to isomor-
phism, Dα and Dβ can be compared using a canonical representation [RMA05], and thus
check if L(α) = L(β).

In this section, we present a method for verifying the equivalence of two regular expres-
sions that does not require the minimisation process. This method is a variant of the rewrite
system presented by Antimirov and Mosses[AM94], which provides an algebraic calculus for
testing the equivalence of two regular expressions avoiding the construction of the canonical
minimal automata. The main difference of our method from Antimirov and Mosses’s rewrite
system is that our method is based on a functional approach and we consider the regular
expressions to be irreducible and thus take all operations modulo ACI. We do not consider
extended regular expressions (with intersection), as was the case in Antimirov and Mosses’s
rewrite system.

3.1 Auxiliary functions

We start by exposing some auxiliary functions that will be used in the definition of the
main function, equiv, which performs the actual comparison of the languages defined by
two regular expressions.

We will define and prove the correctness of the functions that compute both the constant
and the deterministic linear part of any regular expression. We will also show that every
regular expression α can be written in the form

const(α) + det(lin(α))

where const(α) and det(lin(α)) denote the constant and the deterministic linear part of
α, respectively.

Let a ∈ Σ, and α, β, γ be arbitrary regular expressions. We define the functions const
and lin as follows:

10

const : RE → {∅, ǫ} lin : RE → RElin ∪ {∅}

const(α) =

{

ǫ if ǫ ∈ L(α);

∅ otherwise.
lin = lin2 ◦ lin1 .

Where

lin1 : RE → REplin

lin1(∅) = ∅;

lin1(ǫ) = ∅;

lin1(a) = a;

lin1(α+ β) = lin1(α) + lin1(β);

lin1(α
⋆) = lin1(α) · α⋆;

lin1(a · α) = a · α;

lin1((α+ β) · γ) = lin1(α · γ) + lin1(β · γ);

lin1(α
⋆ · β) = lin1(α) · α⋆ · β + lin1(β).

lin2 : REplin → RElin ∪ {∅}

lin2(α+ β) = lin2(α) + lin2(β);

lin2((α+ β) · γ) = lin2(α · γ) + lin2(β · γ);

lin2(α) = α.

We also define the function det, which takes a linear regular expression α as argument and
returns a deterministic linear regular expression β, such that L(α) = L(β), in the following
way:

det : RElin ∪ {∅} → REdet ∪ {∅}

det(a · α+ a · β + γ) = det(a · (α+ β) + γ);

det(a · α+ a · β) = a · (α+ β);

det(a · α+ a) = a · (α+ ǫ);

det(α) = α.

These functions implement Antimirov and Mosses’s LF rewrite system. Function lin1

corresponds to function f which, contrary to what is claimed by Antimirov and Mosses,
returns a pre-linear regular expression, not a linear one.

It is easy to see that const(α) returns the constant part of the regular expression α.

Lemma 2 The function lin1 is well defined.

Proof Let a ∈ Σ and α, β, γ be arbitrary regular expressions.

11

It is clear that for ∅, ǫ, and a ∈ Σ, that the function lin1 is well defined. By induction
on the structure of a regular expression we can also conclude that for α = β+ γ and α = β⋆

the function lin1 is well defined. We need only to show that lin1(α) is also well defined when
α is a concatenation of regular expressions. These are all the possible cases:

∅ · α; (4)

α · ∅; (5)

ǫ · α; (6)

α · ǫ; (7)

a · α; (8)

(α+ β) · γ; (9)

α⋆ · β. (10)

Because we are dealing with irreducible regular expressions modulo ACI, ∅·α ∼ α ·∅ ∼ ∅
and lin1(∅) is well defined. For the same reason, ǫ · α ∼ α · ǫ ∼ α, so we do not have to
consider concatenations with the empty word ǫ. This leaves us with the cases 8, 9, and 10,
all of which are explicitly considered.

Lemma 3 Given an arbitrary regular expression α, lin1(α) is a pre-linear regular expression.

Proof A regular expression is pre-linear if it is generated by the context free grammar G2.
We will show that for an arbitrary r.e. α, lin1(α) ∈ L(G2). The proof follows by induction
on the structure of α.

Base:

lin1(∅) = ∅;

lin1(ǫ) = ∅;

lin1(a) = a, a ∈ Σ;

Every one of these regular expressions is clearly generated by the grammar G2.

Induction:

• lin1(a · α) = a · α

By induction hypothesis lin1(α) ∈ L(G2), and clearly a ·α is generated by the grammar
G2;

• lin1(α+ β) = lin1(α) + lin1(β)

By induction hypothesis, both lin1(α) ∈ L(G2) and lin1(β) ∈ L(G2). The disjunction
of two pre-linear regular expressions is derived by the production D → D+D, therefore
lin1(α+ β) ∈ L(G2);

• lin1((α+ β) · γ) = lin1(α · γ) + lin1(β · γ)

By induction hypothesis, lin1(α · γ) ∈ L(G2) and lin1(β · γ) ∈ L(G2). Again, the
disjunction of two pre-linear regular expressions is also a pre-linear regular expression;

12

• lin1(α
⋆ · β) = lin1(α) · α⋆ · β + lin1(β)

By induction hypothesis, both lin1(α) and lin1(β) are generated by G2. The concate-
nation lin1(α) ·α⋆ ·β is clearly pre-linear and may be generated by the rule D → D ·B.
Just like with the previous cases, the disjunction of two pre-linear regular expressions
is also a pre-linear regular expression and therefore lin1(α

⋆ · β) ∈ L(G2);

• lin1(α
⋆) = lin1(α) · α⋆

By induction hypothesis, lin1(α) ∈ L(G2). Using the production D → D · B we can
derive lin1(α) · α⋆, so lin1(α

⋆) ∈ L(G2).

Lemma 4 Given an arbitrary regular expression α, lin(α) returns either a linear r.e., or the
empty language ∅.

Proof The function lin is defined as the composition of lin1 with lin2, and we have already
seen that, for any r.e. α, the function lin1(α) returns a pre-linear regular expression. We
have to show that, given a pre-linear regular expression α′ ∈ L(G2), either lin2(α

′) = ∅ or
lin2(α

′) ∈ L(G1). The proof follows by induction on the structure of α′. Let a ∈ Σ.

Base:

• lin2(∅) = ∅;

• lin2(a) = a;

• lin2(α) = α, if α is already linear, i.e. α ∈ L(G1);

Induction:

• lin2(α + β) = lin2(α) + lin2(β) Note that if α + β ∈ L(G2) then α, β ∈ L(G2). Then,
by induction hypothesis, both lin2(α) ∈ L(G1) and lin2(β) ∈ L(G1). The disjunction
of two linear regular expressions is also linear, and generated by the rule A → A + A
of the grammar G1.

• lin2((α+ β) · γ) = lin2(α · γ) + lin2(β · γ)

Note that α ·γ and β ·γ are pre-linear. Then, by induction hypothesis, both lin2(α ·γ) ∈
L(G1) and lin2(β · γ) ∈ L(G1). As we have already seen, the disjunction of two linear
regular expression is also a linear regular expression, and so, lin2((α+ β) · γ) ∈ L(G1).

Lemma 5 Given a linear regular expression α, det(α) will return a deterministic linear
regular expression.

Proof We have to show that, for any given linear regular expression α, head(det(α)) does
not have repeated elements. Without loss of generality (we can repeat the process for each
symbol), let us consider only one alphabet symbol a ∈ Σ.

When there is only one sub-expression of the form a ·α′ in α, det(α) = α and, considering
only the symbol a, there will be no repeated elements in head(det(α)). With two sub-
expressions of the same form, we will have that either det(α) = a·(β+γ) or det(α) = a·(β+ǫ)
and again, considering only the symbol a, head(det(α)) will have no repeated elements.

13

Now, suppose that there are n sub-expressions with prefix a. By definition, det(α) will
use the distributive property, reduce the number of sub-expressions of the form a ·α′ to n−1,
and apply itself again. After n − 1 applications of det(α), the resulting regular expression
β will have only one element of the form a · α′, and there will not be repeated elements in
head(β).

Lemma 6 For every regular expression α ∈ RElin ∪ {∅} we have that

α ∼ det(α).

The proof follows by induction on the number of operators in α.

Proof If α ∈ RElin, α is generated by the grammar G1 and has one of the following forms:

a0,

a0 · α0 + · · · + an · αn,

where ai ∈ Σ, and αi ∈ RE. We have the following base cases:

∅ ∼ det(∅) = ∅;

a0 ∼ det(a0) = a0;

a0α0 ∼ det(a0α0) = a0α0;

a0α0 + a0 ∼ det(a0α0 + a0) = a0(α0 + ǫ);

a0α0 + a0α1 ∼ det(a0α0 + a0α1) = a0(α0 + α1).

Let α ∈ RElin have n operators and suppose, by induction hypothesis, that for every linear
regular expression β with n− 1 or less operators,

β ∼ det(β),

i.e., L(β) = L(det(β)).

det(α) = det(a0α0 + a0α1 + γ)

= det(a0(α0 + α1) + γ)

By induction hypothesis,

L(a0(α0 + α1) + γ) = L(det(a0(α0 + α1) + γ)).

As
L(a0α0 + a0α1 + γ) = L(a0(α0 + α1) + γ),

we have that
L(a0α0 + a0α1 + γ) = L(det(a0(α0 + α1) + γ)),

i.e.,
a0α0 + a0α1 + γ ∼ det(a0(α0 + α1) + γ).

Lemma 7 For every regular expression α ∈ REplin we have that

α ∼ lin2(α).

The proof follows by induction on the number of operators in α.

14

Proof If α ∈ REplin, then α ∈ L(G2).We have the following base cases:

∅ ∼ lin2(∅) = ∅;

a ∼ lin2(a) = a;

a · α ∼ lin2(a · α) = a · α.

Let α be a r.e. with n operators and suppose, by induction hypothesis, that for every regular
expression β with n− 1 or less operators

β ∼ lin2(β).

We have the following cases:

• α = β + γ

lin2(β + γ) = lin2(β) + lin2(γ) by definition,

= β + γ by induction hypothesis.

• α = (β + γ) · ψ, and β is linear

lin2((β + γ) · ψ) = β · ψ + lin2(γ · ψ) by definition,

= β · ψ + γ · ψ by induction hypothesis,

= (β + γ) · ψ by Axiom A9.

• α = (β + γ) · ψ, and β is pre-linear

lin2((β + γ) · ψ) = lin2(β · ψ) + lin2(γ · ψ) by definition,

= β · ψ + γ · ψ by induction hypothesis,

= (β + γ) · ψ by Axiom A9.

Lemma 8 Let α be an arbitrary regular expression. We have that

L(lin(α)) =

{

L(α) if ǫ /∈ L(α);

L(α) − {ǫ} if ǫ ∈ L(α).

That is, the application of the function lin will remove the empty word from the language
defined by α.

Proof Because lin = lin2 ◦ lin1 and α ∼ lin2(α), cf. Lemma 7, we need only to consider
the application of lin1. Without lost of generality, we are going to prove that L(lin1(α)) =
L(α)− {ǫ}. The proof follows by induction on the number of operators of α. Let a ∈ Σ and
α, β, γ ∈ RE.

Base:

• L(lin1(∅)) = ∅ = L(∅) − {ǫ};

• L(lin1(ǫ)) = ∅ = L(ǫ) − {ǫ};

• L(lin1(a)) = {a} = L(a) − {ǫ};

15

Induction:

• lin1(a · α)

L(lin1(a · α)) = L(a · α)

= L(a · α) − {ǫ};

• lin1(α+ β)

L(lin1(α+ β)) = L(lin1(α) + lin1(β))

= L(lin1(α)) ∪ L(lin1(β))

= L(α) − {ǫ} ∪ L(β) − {ǫ}

= (L(α) ∪ L(β)) − {ǫ}

= L(α+ β) − {ǫ};

• lin1((α+ β) · γ)

L(lin1((α + β) · γ) = L(lin1(α · γ) + lin1(β · γ))

= L(lin1(α · γ)) ∪ L(lin1(β · γ))

= L(α · γ) − {ǫ} ∪ L(β · γ) − {ǫ}

= (L(α · γ) ∪ L(β · γ)) − {ǫ}

= L(α · γ + β · γ) − {ǫ}

= L((α + β) · γ) − {ǫ};

• lin1(α
⋆)

L(lin1(α
⋆)) = L(lin1(α) · α⋆)

= L(lina(α)) · L(α⋆)

= (L(α) − {ǫ}) · L(α⋆)

= (L(α) ∩ {ǫ}) · L(α⋆)

= L(α · α⋆) ∩ {ǫ} · L(α⋆)

= L(α · α⋆) ∩ {ǫ}

= (L(α · α⋆) ∩ {ǫ}) ∪ ({ǫ} ∩ {ǫ})

= (L(α · α⋆) ∪ {ǫ}) ∩ {ǫ}

= L(α · α⋆) − {ǫ}

= L(α⋆) − {ǫ};

16

• lin1(α
⋆ · β)

L(lin1(α
⋆ · β)) = L(lin1(α) · α⋆ · β + lin1(β))

= L(lin1(α) · α⋆ · β) ∪ L(lin1(β))

= L(lin1(α)) · L(α⋆ · β) ∪ L(lin1(β))

= (L(α) − {ǫ}) · L(α⋆ · β) ∪ (L(β) − {ǫ})

= (L(α) ∩ {ǫ}) · L(α⋆ · β) ∪ (L(β) ∩ {ǫ})

= (L(α) · L(α⋆ · β) ∩ {ǫ} · L(α⋆ · β)) ∪ (L(β) ∩ {ǫ})

= (L(α) · L(α⋆ · β) ∩ {ǫ}) ∪ (L(β) ∩ {ǫ})

= (L(α) · L(α⋆) · L(β) ∩ {ǫ}) ∪ (L(β) ∩ {ǫ})

= (L(α) · L(α⋆) · L(β) ∪ L(β)) ∩ {ǫ}

= (L(α) · L(α⋆) ∪ {ǫ}) · L(β) ∩ {ǫ}

= L(α · α⋆ + ǫ) · L(β) ∩ {ǫ}

= L(α⋆) · L(β) ∩ {ǫ}

= L(α⋆ · β) ∩ {ǫ}

= L(α⋆ · β) − {ǫ}.

Theorem 1 For any regular expression α,

α ∼ const(α) + lin(α) and α ∼ const(α) + det(lin(α)).

Proof There are two cases to consider.

1. If ǫ ∈ L(α):

L(const(α) + lin(α)) = L(const(α)) ∪ L(lin(α)) by Definition 2

= L(ǫ) ∪ L(lin(α)) ǫ ∈ L(α)

= {ǫ} ∪ (L(α) − {ǫ}) by Lemma 8

= L(α)

2. If ǫ /∈ L(α):

L(const(α) + lin(α)) = L(const(α)) ∪ L(lin(α)) by Definition 2

= L(∅) ∪ L(lin(α)) ǫ /∈ L(α)

= ∅ ∪ L(lin(α)) by Definition 2

= L(α) − {ǫ} by Lemma 8

= L(α) ǫ /∈ L(α)

As the definition of the function det does not change the language defined by its argument,
cf. Lemma 6, it is clear that L(det(lin(α))) = L(lin(α)). So, if α ∼ const(α) + lin(α), we
also have that α ∼ const(α) + det(lin(α)).

17

Lemma 9 If a and α ∈ RE, then a−1(α) = a−1(lin1(α)).

Proof The proof follows by induction on the number of operators in the expressions.

Base:

a−1(∅) = ∅, a−1(lin1(∅)) = a−1(∅) = ∅;

a−1(ǫ) = ∅, a−1(lin1(ǫ)) = a−1(∅) = ∅;

a−1(b) =

{

ǫ if a = b ,

∅ if a 6= b ;
a−1(lin1(b)) = a−1(b) =

{

ǫ if a = b ,

∅ if a 6= b ;

Induction:

• Disjunction:

a−1(α+ β)

= a−1(α) + a−1(β)

= a−1(lin1(α)) + a−1(lin1(β))

= a−1(lin1(α) + lin1(β))

= a−1(lin1(α+ β)).

(11)

• Star closure:

a−1(α⋆)

= a−1(α) · α⋆

= a−1(lin1(α)) · α⋆

= a−1(lin1(α)) · α⋆ + ∅ · α⋆

= a−1(lin1(α)) · α⋆ + const(lin1(α)) · α⋆

= a−1(lin1(α) · α⋆)

= a−1(lin1(α
⋆)).

(12)

18

• As for the concatenation, there are three cases to consider:

a−1(a · β) = a−1(lin1(a · β));

a−1((α + β) · γ) = a−1(α · γ + β · γ)

= a−1(α · γ) + a−1(β · γ)

= a−1(lin1(α · γ)) + a−1(lin1(β · γ))

= a−1(lin1(α · γ) + lin1(β · γ))

= a−1(lin1(α · γ + β · γ))

= a−1(lin1(α+ β) · γ);

a−1(α⋆ · β) = a−1(α⋆) · β + const(α⋆) · a−1(β)

= a−1(α) · α⋆ · β + ǫ · a−1(β)

= a−1(α) · α⋆ · β + a−1(β)

= a−1(lin1(α)) · α⋆ · β + a−1(lin1(β))

= a−1(lin1(α)) · α⋆ · β + ∅ · α⋆ · a−1(β) + a−1(lin1(β))

= a−1(lin1(α)) · α⋆ · β + const(lin1(α)) · α⋆ · a−1(β) + a−1(lin1(β))

= a−1(lin1(α) · α⋆ · β) + a−1(lin1(β))

= a−1(lin1(α) · α⋆ · β + lin1(β))

= a−1(lin1(α
⋆ · β))

(13)

Theorem 2 Let a ∈ Σ and α ∈ RE. The following equality holds:

a−1(α) = a−1(det(lin(α))).

Proof For every regular expression α, it is clear that

L(det(lin(α))) = L(lin(α)) = L(lin1(α)). (14)

By Lemma 9 we have that

a−1(α) ∼ a−1(lin1(α)). (15)

So, by equations 14 and 15

a−1(α) ∼ a−1(lin1(α)) ∼ a−1(lin(α)) ∼ a−1(det(lin(α))).

3.2 Core functions

We will now present the two main functions of the comparison process. The first one,
derivatives, computes the set of the derivatives of a pair of deterministic linear regular
expressions or ∅ (α, β), with respect to { a | a ∈ head(α)∪head(β) }. It is defined as follows.

derivatives : REdet ∪ {∅} ×REdet ∪ {∅} → P(RE ×RE)

derivatives(∅, ∅) = {};

derivatives(α, β) = { (a−1(α), a−1(β)) | a ∈ head(α) ∪ head(β) }.

(16)

19

The equiv function, applies the method to two regular expressions α and β, returning
True if and only if α ∼ β. It is defined in the following way:

equiv : P(RE2) × P(RE2) → {True, False}

equiv(∅,H) = True;

equiv({(α, β)} ∪ S,H) =

{

False if const(a) 6= const(b);

equiv(S ∪ S′,H ′) otherwise;

(17)

where

α′ = det(lin(α));

β′ = det(lin(β));

S′ = { p | p ∈ derivatives(α′, β′), p /∈ H ′ };

H ′ = { (α, β) } ∪H.

Theorem 3 The function equiv is terminating

Proof It is clear that the function terminates when its first argument, the set S, is empty.
Each call to the function will remove one element from S, and append the set of the

derivatives which have not yet been calculated, S′. By Theorem 2, we know that the
linearisation process does not affect the derivation process. This sequence of derivatives
with respect to a symbol is equivalent to a single derivative with respect to a word w ∈ Σ⋆,
cf. Definition 13. Brzozowski [Brz64] showed that every regular expression α has a finite
number of dissimilar derivatives with respect to any word w. Because all operations are
performed modulo ACI, we consider only dissimilar regular expressions, and, from a given
point on, S∪S′ = S. As each call to equiv will remove one element from S, eventually S = ∅
and the function terminates.

Lemma 10 Let α and β be either deterministic linear regular expressions or ∅.

α ∼ β ⇒ α′ ∼ β′, ∀(α′, β′) ∈ derivatives(α, β) (18)

Proof If

α = β = ∅, derivatives(α, β) ={};

α = β = a, derivatives(α, β) ={(ǫ, ǫ)}. (for a ∈ Σ)

Otherwise, let α = a1α1 + · · ·+ aiαn and let β = a1β1 + · · ·+ amβm. Note that we must
have m = n. Suppose that there exists j ∈ [1, n] such that αj 6∼ βj . Then α 6∼ β. Absurd.

Lemma 11 Given two regular expressions, α and β, such that α ∼ β,

equiv({(α, β)}, ∅) = True.

Proof If α = β = ∅,

equiv({(∅, ∅)},H) = equiv(∅,H ∪ {(∅, ∅)})

= True.

If α ∼ β we know, by Lemma 10, that

const(α′) = const(β′) ∀(α′, β′) ∈ derivatives(α, β)

and thus, the call to equiv(α, β, ∅) will never return False.

20

Lemma 12 Given two regular expressions, α and β, such that α ≁ β,

equiv({(α, β)}, ∅) = False.

Proof If α ≁ β, either

∃w ∈ L(α) : w−1(β) 6= ǫ or ∃w ∈ L(β) : w−1(α) 6= ǫ.

Without loss of generality, suppose the first case is true. As Brzozowski [Brz64] shows, if
w ∈ L(α), w−1(α) = ǫ. By definition of derivative, for any word w′ such that |w′| > |w|,
w′−1(α) = ∅. Moreover, if w−1(β) 6= ǫ there will be some word wv such that wv ∈ L(β) and
|wv| > |w|. Under these conditions we have that

(wv)−1(α) = ∅

(wv)−1(β) = ǫ

}

const((wv)−1(α)) 6= const((wv)−1(β)),

and equiv({((wv)−1(α), (wv)−1(β))} ∪ S,H) = False.

Theorem 4 The function call equiv({(α, β)}, ∅) returns True if and only if L(α) = L(β)

Proof By direct application of Lemmas 11 and 12.

4 Representation and implementation of regular expressions

As already stated, throughout this paper, we always consider irreducible regular expressions
modulo ACI, i.e., associativity of the concatenation and disjunction, commutativity of the
disjunction, and idempotence of both disjunction and star operations. For each operation,
we used a data structure that enforces the ACI properties and simplifies the algorithms used
to assure that the regular expressions are kept irreducible. Disjunctions are represented as a
set of regular expressions. Concatenated regular expressions are kept in an ordered list. The
idempotence of the Kleene star is assured by not allowing double-starred regular expressions.

4.1 Disjunctions

A disjunction is represented as a set of regular expressions. This gives us a natural way to
enforce the ACI properties:

• associativity : there is no pairwise association of any two arguments, so (α+ β) + γ =
α+ (β + γ);

• commutativity : by definition of set, the order of the elements is irrelevant, so α+ β =
β + α;

• idempotence: also by definition of set, there are no repeated elements, so α+ α = α.

As for making a disjunction irreducible, there are only two conditions that must hold:

• the sub-expression ∅ may not occur;

• if any of the arguments possesses the e.w.p., the empty word ǫ is not allowed as a
sub-expression.

Again, the set representation yields a linear algorithm to keep any disjunction irreducible.
As an example, consider the regular expression α+ ∅+β⋆γ+α+ ǫ. It would be represented
by the set

{ǫ, α, β⋆γ}.

21

4.2 Concatenation

Concatenations of regular expressions are kept in an ordered list. This allows us to take
advantage of the associative property and easily apply transformations to any pair of adjacent
regular expressions. This representation also simplifies the following transformations:

α · ǫ→ α,

ǫ · α→ α,

α · ∅ → ∅,

∅ · α→ ∅,

which are necessary to make the regular expressions irreducible, as we can simply go through
the list and remove each occurrence of ǫ. If the ∅ r.e. if found, we simply return it as the
equivalent irreducible regular expression. Consider the following examples:

α · ǫ · β → [α, β];

α · ∅ · β → ∅.

α · β⋆ · γ → [α, β⋆, γ].

4.3 Kleene star

As for the Kleene star, we use a class to represent the ⋆ operator.

In order to keep it irreducible, the constructor of the class does not create regular
expressions of the form α⋆⋆. This is done by checking if the r.e. passed as an argument
is already of the same type. If this is the case, only the argument is kept, thus avoiding the
double star.

We also added two simplifications to the star operator representation:

∅⋆ → ǫ;

ǫ⋆ → ǫ.

Although these are not necessary to make the regular expressions irreducible, they may allow
for significant simplifications which can be very useful to the system described in the Section
3.

5 Experimental results

We now present some experimental results. These are the running times of two methods for
checking the equivalence of regular expressions. One uses the equivalent minimal DFA, the
other is the direct regular expression comparison method, as described on Section 3. All tests
were performed on batches of 10.000 pairs of randomly generated regular expressions, and the
running times do not include the time necessary to parse each regular expression. Each batch
contains regular expressions of size 10, 50, or 100, with either 2, 5, or 10 symbols. For the
uniform generation of random regular expressions we implemented the method propposed
by Mairson [Mai94] for the generation of context-free languages defined by unambiguous
grammars. We used the grammar of almost irreducible regular expressions presented by
Shallit [Sha04].

22

5.1 Results

The equivalence of each pair of regular expressions was tested using both the classical
approach and the direct comparison method. We used Thompson’s algorithm to obtain
the NFAs from the regular expressions, and the well-known subset construction to make
each NFA deterministic. As for the DFA minimisation process, we applied two different
algorithms: Hopcroft and Brzozowski’s. On one hand, Hopcroft’s algorithm has the best
known worst-case running time complexity analysis, O(kn log(n)). On the other, it is pointed
out by Almeida et. al [AMR07] that when minimising NFAs, Brzozowski’s algorithm has a
better practical performance. As for the direct comparison method, we compared both the
original rewriting system (AM) and our variant of the algorithm (equiv).

2 symbols

0
1
2
3
4

�
�
�

10
�
�
�
�
�
�

50
�
�
�
�
�
�
�
�
�

100
size

time - log(s)

2 symbols (equal r.e.)

0
1
2
3
4

�
�
�

10
�
�
�
�
�
�

50
�
�
�
�
�
�
�
�
�

100
size

time - log(s)

5 symbols

0
1
2
3
4

�
�
�
�

10
�
�
�
�
�
�

50
�
�
�
�
�
�
�
�

100
size

time - log(s)

5 symbols (equal r.e.)

0
1
2
3
4

�
�
�
�

10
�
�
�
�
�
�

50
�
�
�
�
�
�
�
�

100
size

time - log(s)

10 symbols

0
1
2
3
4

�
�
�
�

10
�
�
�
�
�
�
�

50
�
�
�
�
�
�
�
�
�

100
size

time - log(s)

10 symbols (equal r.e.)

0
1
2
3
4

�
�
�
�

10
�
�
�
�
�
�
�

50
�
�
�
�
�
�
�
�
�

100
size

time - log(s)

a) b)

�
���
��

Hopcroft Brzozowski AM equiv

Figure 1: Running times of three different methods for checking the equivalence of regular
expressions. a) 10.000 pairs of random r.e.; b) 10.000 pairs of syntactically equal random
r.e.. The missing column corresponds to a larger than reasonable observed runtime.

As shown in Figure 1 (a), the direct method is always the fastest. Note also that
Hopcroft’s algorithm never achieves shorter running times than Brzozowki’s. Because both
Antimirov and Mosses’s algorithm and our variation try to compute a refutation, we per-
formed a set of tests for the worst case scenario of these methods: to test the equivalence
of two syntactically equal regular expressions. Again, we used batches of 10, 000 pairs of
regular expressions. Except for the samples of regular expressions with size 50 or 100, and
an alphabet with 2 symbols, the direct regular expression comparison method is still the

23

fastest. The results are presented on Figure 1 (b).

5.2 More experimental data

Considering the somewhat surprising results of the previous tests, we analysed the time
spent on each step of both methods, i.e., on the construction of the NFAs (NFA), the
determinisation process (DFA), and the minimisation algorithms (mDFA). The running
time for each of these steps is presented on Table 1. It is clear that, asymptotically, the
bottleneck is the minimisation algorithm, which always takes over 50% of the total amount
of time when the size of the regular expressions and/or the alphabet grows.

k = 2 n = 10 n = 50 n = 100

|Q| time (s) |Q| time (s) |Q| time (s)

NFA (18.35, 18.34) 14.73 (83.85, 83.90) 212.66 (165.60, 165.69) 563.94
DFA (6.52, 6.55) 8.40 (33.85, 33.96) 119.60 (114.68, 114.20) 659.03

mDFA (6.43, 6.45) 10.01 (26.18, 26.24) 212.84 (74.79, 74.20) 7680.89

k = 5 n = 10 n = 50

|Q| time (s) |Q| time (s)

NFA (19.53, 19.54) 18.30 (90.30, 90.32) 262.11
DFA (8.59, 8.60) 11.71 (34.88, 34.91) 71.60

mDFA (8.41, 8.42) 27.50 (29.87, 29.89) 417.59

k = 10 n = 10 n = 50

|Q| time (s) |Q| time (s)

NFA (19.85, 19.85) 21.01 (93.98, 93.93) 311.22
DFA (9.51, 9.51) 13.80 (39.96, 39.95) 84.67

mDFA (9.51, 9.52) 43.79 (35.38, 35.38) 1013.45

Table 1: Running times for each step of the r.e. comparison processes.

k = 2 k = 5 k = 10

n = 10 n = 50 n = 100 n = 10 n = 50 n = 10 n = 50

AM 3.00 3.87 4.30 5.78 4.50 8.13 13.57
equiv 2.73 3.60 4.01 9.53 7.35 6.46 10.67

Table 2: Average number of functions calls to both AM and equiv.

We also collected some statistical data about the average behaviour of the algorithms.
Table 1 shows the average number of states for the NFAs built from the regular expressions
and the average number of states of the equivalent DFAs. The average number of recursive
calls to the equiv function on both Antimirov and Mosses’s algorithm and our own imple-
mentation is presented on Table 2. The values are similar, so the difference on the running
time of the algorithms can not be justified by the number of function calls. The average
number of states produced by the Thompson construction is quite large and not close to
the resulting equivalent DFA. To ensure the fairness of the comparison for the methods
using NFAs, we tried two other algorithms for computing NFAs from regular expressions.

24

Glushkov’s method [Glu61, Yu97], and the one that produces the “follow NFA” of a given
regular expression, as described by Ilie and Yu [IY03]. This statistical data is given on
Table 3.

k = 2 n = 10 n = 50 n = 100
Alg. |Q| |δ| time (s) |Q| |δ| time (s) |Q| |δ| time (s)

Thompson 18.35 17.46 8.79 83.82 82.90 110.47 165.72 164.80 411.42
Glushkov 7.45 7.37 4.48 29.45 35.96 33.83 57.05 72.90 98.02
Follow 5.91 6.10 26.75 20.30 25.36 813.64 35.93 46.52 5135.32

k = 5 n = 10 n = 50 n = 100
Alg. |Q| |δ| time (s) |Q| |δ| time (s) |Q| |δ| time (s)

Thompson 19.54 18.60 10.79 90.38 89.42 133.31 178.38 177.42 484.02
Glushkov 8.91 9.19 5.16 36.53 45.83 36.18 70.98 93.55 101.55
Follow 7.54 7.98 41.71 28.63 35.80 1723.54 53.15 68.55 12413.52

k = 10 n = 10 n = 50 n = 100
Alg. |Q| |δ| time (s) |Q| |δ| time (s) |Q| |δ| time (s)

Thompson 19.85 18.90 11.69 94.03 93.05 153.43 185.64 184.66 554.47
Glushkov 9.65 9.70 5.34 40.88 48.03 36.84 79.64 97.13 101.14
Follow 8.60 8.72 51.99 34.67 40.48 2585.59 66.18 78.84 21086.45

Table 3: Running time, average number of states and transitions for three types of NFA
obtained from random expressions.

Glushkov’s algorithm is always the fastest, and produces quite small NFAs, both in terms
of number of states and transitions. As expected, the NFAs produced with Thompson’s
algorithm are the ones with the higher number of states.

25

6 Conclusions

We presented method for testing the equivalence of two regular expressions based on a rewrite
system presented by Antimirov and Mosses. The method attempts to refute the equivalence
by finding a pair of derivatives that disagree in their constant parts. Experimental results
point to a good average-case performance for this method, even when using with equivalent
regular expressions. Given the spread of dual-cores and grid computer systems, a parallel
execution of the classic method and our direct comparison method can lead to an optimized
framework for testing r.e. equivalence.

A better theoretical understanding of relationships between the two approaches would
be helpful towards the characterization of their average-case complexity. Antimirov [Ant96]
introduced the notion of partial derivatives of a regular expression α, and proved that its
cardinality is bounded by the number of alphabetic symbols that occur in α. The set of the
partial derivatives can be used to construct a small NFA equivalent to α. We would like to
improve our method using that idea.

References

[AM94] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions. In
G. Rozenberg and A. Salomaa, editors, Developments in Language Theory, pages
195 – 209. World Scientific, 1994.

[AMR07] M. Almeida, N. Moreira, and R. Reis. On the performance of automata
minimization algorithms. Technical Report DCC-2007-03, DCC - FC & LIACC,
Universidade do Porto, June 2007.

[Ant96] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci., 155(2):291–319, 1996.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. Journal of the Association

for Computing Machinery, 11(4):481–494, October 1964.

[Glu61] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–
53, 1961.

[HMU00] J. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison Wesley, 2000.

[IY03] L. Ilie and S. Yu. Follow automata. Inf. Comput., 186(1):140–162, 2003.

[Koz97] D. C. Kozen. Automata and Computability. Undergrad. Texts in Computer
Science. Springer-Verlag, 1997.

[KS86] W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5. Springer–
Verlag, 1986.

[Mai94] H. G. Mairson. Generating words in a context-free language uniformly at random.
Information Processing Letters, 49:95–99, 1994.

[RMA05] R. Reis, N. Moreira, and M. Almeida. On the representation of finite automata.
In C. Mereghetti, B. Palano, G. Pighizzini, and D.Wotschke, editors, Proc. of

DCFS’05, pages 269–276, Como, Italy, 2005.

26

[Sal66] A. Salomaa. Two complete axiom systems for the algebra of regular events. Journal

of the Association for Computing Machinery, 13(1):158–169, January 1966.

[Sal69] A. Salomaa. Theory of Automata, volume 100. Pergamon Press, first edition,
1969.

[Sha04] J. Shallit. Regular expressions, enumeration and state complexity. Invited talk at
CIAA 2004, 9th International Conference on Implementation and Application of
Automata, 2004.

[SM73] L.J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Conf. Record of 5th Annual ACM Symposium on Theory

of Computing, Austin, Texas, USA, pages 1–9. ACM, 1973.

[Yu97] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 1. Springer-Verlag, 1997.

27

