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Cezar Câmpeanu1, Nelma Moreira2, Rogério Reis2
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Abstract. In this paper we investigate from a statistical point of view the expected
compression ratio between the size of a minimal Deterministic Finite Cover Automaton (DFCA)
and the size of the minimal corresponding Determinitic Finite Automaton (DFA). Using sound
statistical methods, we extend the experimental study done in [16], thus obtaining a much
better picture of the compression power of DFCAs. We compute the expected ratio for the
family of all finite languages, but also for various subfamilies of finite languages, such as prefix,
suffix-free languages prefix and suffix closed languages, or (un)balanced languages. We also give
an example of a family for which the expected compression ratio is very high.

1 Introduction

Since the first publication on cover automata [4], there have been many questions about the
compression ratio that these devices are able to produce, compared to minimal Deterministic Finite
Automata (DFA). In [16], this subject has been studied and we have examples of families of languages
producing an amazing compression, but also languages that have almost no compression.

In this study we give a better insight of the problem, analyzing the whole set of finite languages
over a binary alphabet. However, we expect that the same results are valid for any given alphabet with
more than two letters. First we give two enumerations of finite languages over the binary alphabet.
Because of the combinatorial nature of these sets it is impractical to perform tests over all its elements.
That being we provide a uniform random generator for finite languages parametrized by the length
of the longest word they accept. Also, we adapt the uniform random generator for various families
of finite languages. Thus, we obtain the expected compression ratio of minimal deterministic cover
automata (DFCA) to minimal DFA for various subclasses of finite languages, such as:

1. prefix -free,
2. suffix-free,
3. prefix-closed,
4. suffix-closed, and
5. balanced and unbalanced languages.

The paper is organized as follows: we start by giving some notations, we continue introducing two
enumerations of finite languages, then we describe uniform random generators for finite languages
using tries. Section 5 presents the experimental results obtained.

In Section 6, we present a class of finite languages having a compression ratio greater or equal to
a given natural number. We prove that for every language is this family of finite languages we have
a compression ratio bigger than a given constant, and at the end of the paper, we summarize our
conclusions in Section 7.

2 Preliminaries

The finite languages used in applications are generally very large, and their representation by
deterministic finite automata (DFA) need thousands or even millions of states. In [3,4], deterministic
finite cover automata (DFCA) are introduced as an alternative representation of finite languages.



We assume the reader to be familiar with the basics in automata theory as contained in [9,18]. In
this paper we include some basic definitions and results for cover automata [3,4,5] to keep the paper
self-contained.

We denote the number of elements of a finite set T by #T and an alphabet, i.e., a finite non-empty
set, by Σ. A word w = w1 . . . wn, wi ∈ Σ, 1 ≤ i ≤ n, is an element of the free monoid Σ∗ and its
length is |w| = n; the empty string is the word with no letters and is denoted by ε, |ε| = 0.

The set of all words of length k over the alphabet Σ is denoted by Σk. The length of the longest
word that belongs to a language L ⊆ Σ⋆ is called the rank of L.

A deterministic finite automaton (shortly, a DFA) A is a quintuple A = (Q,Σ, δ, q0, F ), where:

– Q is the finite set of states;
– Σ is the input alphabet;
– δ : Q×Σ −→ Q is the state transition function;
– q0 ∈ Q is the starting state, and
– F ⊆ Q is the set of final states.

The size of a DFA is the number of states of the DFA.
A cover automaton for a language L with words of length less than or equal to l is a DFA A

accepting a cover language L′, i.e., a language with the property that L′ ∩Σ≤l = L. Thus, a word w
is in L if and only if it is accepted by A (as a DFA), and its length is less than or equal to l; in other
words, a DFCA will accept a language, which may be potentially infinite, that “covers” the initial
language. It is obvious that any DFA for a finite language L is also a DFCA, thus the number of
states of a minimal DFCA for a finite language L is always smaller than the size of the minimal DFA
for L. The state complexity of a language is the size of the minimal DFA accepting the language.

Several minimization algorithms for DFCAs have been developed in the past ten years [3,2,15,10],
the best one having an O(n log n) time complexity.

It is important to note that there is more than one minimal deterministic finite cover automaton
for a given finite language L, but all of them have the same number of states.

3 Enumeration of Finite Languages

We start our study by enumerating finite languages.
Let string(n) be the n-th string over Σ in quasi-lexicographical order, e.g., in case of a binary

alphabet Σ = {a, b}, that is
string(0) = ε,
string(1) = a, string(2) = b,
string(3) = aa, string(4) = ab, string(5) = ba, string(6) = bb,
string(7) = aaa, string(8) = aab, string(9) = aba,
string(10) = abb,string(11) = baa, string(12) = bab, string(13) = bba , string(14) = bbb,
string(15) = aaaa,. . . ,
string(2n − 1) = a . . . a

︸ ︷︷ ︸

n

, string(2n) = a . . . a
︸ ︷︷ ︸

n−1

b, . . . , string(2n+1 − 2) = b . . . b
︸ ︷︷ ︸

n

.

In general, string(n) = string(c02
0 + c12

1 + . . . cm2m), where

m∑

i=0

ci2
i = n, thus m = min{u |

2u+1 > n}.
We establish the following one to one correspondence between binary strings with no leading zeros

and finite languages:
if L = {string(i1), . . . , string(in)}, where 0 ≤ i1 < in, then the binary string defined by its digits

digit(x) =

{
1 if x = ij for some 1 ≤ j ≤ n
0 otherwise,

can be used to encode L. Thus, we establish a complete enumeration of finite languages using
binary representation of natural numbers.



For example, the language {ε, a, abb} over Σ = {a, b} can be encoded by:

abb aba aab aaa bb ba ab aa b a ε
1 0 0 0 0 0 0 0 0 1 1

i.e., by 10000000011.
In other words, string(n) ∈ L, iff the n-th bit of the number representing L is 1.

Definition 1. [12] Let D = {w0, w1, w2, . . .} be an infinite language , e.g., to be used for describing
objects, the words are listed in order. The redundancy of D is the function

ρD(n) = |wn| − (⌊logk n⌋+ 1),

where k is the alphabet size.
The quantity ρD(n) is the number of extra digits required to denote the n-th object using the string

wn ∈ D, instead of using the standard digital representation of the number n with no leading zeros.

Our encoding for finite languages is optimal according to this definition, since it is a bijection
between finite languages and binary strings (natural numbers written in base 2).

For a prefix-free language L, if a word w is in the language, then any prefix of w, as well as
any word of the form wu, is not in L. Translating this in terms of the enumerating function string,
we observe that if w = string(n) ∈ L, then string(2n + 1) /∈ L and string(2n + 2) /∈ L, since
string(2n + 1) = string(n)a and string(2n + 2) = string(n)b. Of course, we have to exclude the
prefixes of the current word string(n), i.e., v = string((⌊(n+ 1)/2⌋)− 1) = string(⌊(n− 1)/2⌋) /∈ L
(w = va or w = vb).

Example 1. If bb = string(6) ∈ L, then string(2 · 6 + 1), string(2 · 6 + 2) /∈ L, i.e., string(13) = bba,
and string(14) = bbb are not in the language L.

Indeed, we can reiterate this condition and get that string(2 · 13+ 1), string(2 · 13+ 2), string(2 ·
14+1), string(2 · 14+2) /∈ L, i.e., string(27), string(28), string(29), string(30) /∈ L, i.e., string(2(2 ·
6 + 1) + 1), string(2(2 · 6 + 1) + 2), string(2(2 · 6 + 2) + 1), string(2(2 · 6 + 2) + 2) /∈ L.

For prefix-closed languages is exactly the opposite case, if string(2n+1) ∈ L, then string(n) ∈ L;
also, if string(2n+2) ∈ L, then string(n) ∈ L. Thus, if string(n) ∈ L, then string((⌊(n+1)/2⌋)−1) =
string(⌊(n− 1)/2⌋) ∈ L.

For suffix-free languages, if string(n) ∈ L, and |string(n)| = m, then string(n+ k2m) /∈ L.
Also, if string(n) ∈ L, and |string(n)| = m, string(n− 2m) /∈ L. Thus, string(n− 2m − 2m−1 −

. . .− 2m−k) /∈ L, for all 1 ≤ k ≤ m.
Balanced languages are those for which ||w|a − |w|b| ≤ 1.
Therefore, for a string of length n, we must have ⌈n

2 ⌉ 1’s and ⌊n
2 ⌋ 0’s or ⌈n

2 ⌉ 0’s and ⌊n
2 ⌋ 1’s, that

is
2 · n!

n

2
!(l−n

2
)! if n is odd and · n!

(n

2
!)2 if n is even.

For balanced languages, we may use a different enumeration based on the Parikh function: first,
we order strings over Σ by length, then by the number of occurences of b, then lexicographically.

Consequently, we obtain the following enumeration:
ε, a, b, aa, ab, ba, bb,aaa, aab, aba, baa, abb, bab, bba, bbb, aaaa, aaab, aaba, abaa, baaa, aabb, abab,

abba, baab, baba, bbaa, abbb, babb, bbab, bbba, bbbb.
Recall that a finite language is represented by a natural number, where its binary representation

is the characteristic vector for the above enumeration.
We can see that the following numbers represent balanced words: 0, 1, 2, 4, 5, 7 . . . , 14, 22 . . . , 27 .

Thus, for any words of length l, among all 2l, they are 2 · l!
l

2
!(l− l

2
)!

if l is odd, and · l!
( l

2
!)2

if l is even,

balanced words, and they are exactly the ones in the middle of the interval.
Our infinite language used to encode all finite languages is exactly the set of digital representations

of all nonnegative integers, so the redundancy of that encoding is zero and, therefore, this encoding
is also optimal.



4 Trie Uniform Random Generation

As it is evident from the previous section, the number of finite languages with a given rank l grows
exponentially. Indeed, the number of non-empty finite languages over an alphabet Σ and of a given

rank l > 0 is
∏l−1

i=0 2
#Σi

(2#Σl

− 1). For #Σ = 2, we have 22
l−1(22

l

− 1), and the first values are
6, 120, 32640, 2147450880, 9223372034707292160, . . . (it is sequence A040996 in Sloane’ OEIS [17]).
Thus, even considering small ranks, the exact enumeration of all languages is impractical. Statistically
accurated results can be obtained if uniformly random samples are considered. As the probability
of any individual member of the universe being selected is exactly the same as any other individual
member, a uniform random generator produces a true, unbiased, random sample.

Considering the language enumerations presented in Section 3 suitable integer uniform random
generators can be defined to generate finite binary languages. However, because we want to have
the languages readly represented by a DFA we will consider yet another representation for finite
languages.

Every non-empty finite language L can be represented by a trie [13]. A trie is a tree-shaped
complete DFA where the initial state is the root of the tree and from each state the transitions from
each different letter goes to different states. Thus, the number of final states corresponds exactly to
the number of words in L. For example the language L = {ε, a, bb, aab, abb} can be represented by
the following trie:

a

b

a

b

a

b

a

b

a

b

a

b

a

b

There is a straightforward bijection between the tries over a binary alphabet and the finite
languages as enumerated in Section 3. For instance, the trie above corresponds to the string
1101000011.

We now describe trie uniform random generators for finite languages and for each of the subfamilies
considered in Section 3.

Each random generator generates languages of a given rank l > 0 ensuring (or not) that at least one
word of length l occurs in the language. Although in Section 3 only binary alphabets were considered
the uniform random generators will apply to languages over an alphabet of any size #Σ > 0. We
note that as we are not constrained to generate objects of a fixed size, all these generators are
relatively simple. Also, we do not need to consider general techniques based on the recursive method
for decomposable structures or on the enumeration of context-free languages [7,14,11].

A general uniform random generator for finite languages of rank l > 0 can easily be implemented

using a depth-first construction of its trie. Each state has a probability of
1

2
of being final, and at

least a leaf has to be final.
A random generator for a subfamily of finite languages has to reflect the subfamily properties.

The following subfamilies were considered: prefix-free, prefix-closed, suffix-free, suffix-closed, balanced
and unbalanced.



A uniform random generator for prefix-free languages has to ensure that if a state is final all its
descendants are non final (so the trie can be pruned at that state). A suffix-free random generator
can be obtained considering the reversal languages.

A uniform random generator for prefix-closed languages has to ensure that if a state is final all its
ascendants are final. Again, a suffix-closed random generator can be obtained considering the reversal
languages.

For balanced languages, the random generator has an extra data structure that keeps the number
of occurrences of letters in each path along the trie. This information is used for allowing or not a
state to be final. The same data structure is used for unbalanced languages. We define a unbalanced
language as one where the ratio of the number of occurrences of one letter to the number of occurrences
of all the others is greater or equal than a certain value r > 1. In this case, the ratio r must also be
considered by the generator.

All these generators were implemented within the FAdo system [6] and are available in version
0.9.3 or later.

5 Experimental Results

The main goal of this paper is the study of the compression ratio of DFCAs to minimal DFAs based
on statistical methods. We consider sets of finite languages by rank. For each class of finite languages
(of a given rank) we uniform random generated samples of 10, 000 tries. The size of each sample is
sufficient to ensure the statistical significance with a 95% confidence level within a 1% error margin.
It is calculated with the formula n = ( z

2ǫ )
2, where z is obtained from the normal distribution table

such that P (−z < Z < z)) = γ, ǫ is the error margin, and γ is the desired confidence level.
We used the FAdo and the Grail+ [8] symbolic computation systems. The FAdo system provides an

interface to Grail+ that allows the easily call of Grail+ commands and the conversion between several
finite automata representations. For each generated finite language the minimal DFA and a minimal
DFCA were computed, and their size ratio compared. The minimal DFCA was computed using the
Grail+ command fmtofcm2 that implements the algorithm described in [2]. All other algorithms used
were implemented in FAdo.

Figures 1–4 summarize the results obtained. The experiments were performed for languages with
rank (i.e. the length of the longest word) l between 3 and 13. Figure 1 presents the compression ratio
of DFCAs for general finite languages, as well as the maximum and minimum compression observed.
These results are quite surprising. The compression ratio, on average, seems to diminish very quickly
for relatively small ranks (l ≤ 13). However, for ranks between 7 and 11 higher compressions are
obtained. To see if some values were very far from the average we calculated the standard deviation
of the samples. As Figure 2 shows that is not the case: the standard deviation is in general very small.

Figure 3 presents the compression ratio for free and closed languages. The results for both prefix
and suffix languages were the same so we only show the values for prefix ones. The compression ratio
for free languages is slightly better than for closed languages. Again the low compression ratio was
not excepted. Note that it is easy to find “fix”-free(-closed) for which the compression by DFCAs is
very high (for instance, the family

∑

1<i≤m aib, for m > 1).
Finally, in Figure 4 we present the results for balanced and unbalanced languages. In general

the behaviour of the compression ratio for these languages is near the one for general languages.
For balanced languages with odd ranks the compression ratio outperforms the general case. For
unbalanced as the ratio gets high the behaviour of the compression rate approaches the general case.

6 High Compression Languages

Let L be an infinite language recognized by a DFA A with n states and l ∈ N be such that l > c · n,
and for the language Ll = L∩Σ≤l we have that Ll∩Σ

l 6= ∅, for some c ∈ N, c > 1. Then Ll = L∩Σ≤l

is a finite language for which L is a cover language. The language Ll contains a word of length l,
thus the minimal DFA recognizing L needs at least l+ 1 states. Since A is a cover automaton for Ll
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Fig. 1: Maximum, average and minimum gain of DFCAs for general finite languages

it follows that a minimal deterministic cover automaton for Ll has at most n states, therefore the
compression ratio is at least c.

This very simple result proves that there is a very big family of languages for which we can obtain
arbitrary large compression ratios, in spite of the fact that in general we do not obtain big compression
ratios.

We conducted the following experiment:

1. We uniformly random choose cyclic DFA’s (recognizing infinite languages) with n states.
2. Then compute the minimal DFA and minimal DFCA for Ll and determine the compression ratio.

For the random generation of DFAs we used the generator implemented in FAdo and described
in [1]. As before we considered samples of 10, 000 DFAs. The tests considered DFAs over a binary
alphabet with n = 10 and n = 20, and 1 ≤ c ≤ 5. The average size of minimal DFCAs was 9.8 and
19.82, respectively. The size of the minimal DFAs depend on the value of l. For n = 20, for instance
their average values are between 288.7 and 1845.5, for 20 ≤ l ≤ 100. Figure 5 shows the compression
ratios, that indeed are very high.

7 Conclusions

We did extensive experiments using combined software FAdo and Grail+ to obtain a complete
statistical analysis of the expected compression ratio between the size of the minimal DFA and
the size of a corresponding minimal DFCA.

The results show us with a error margin of 1%, that for binary languages, the expected reduction
in the number of states is negligible. However, we give a very big class of languages, where the
compression ratio can be arbitrary large. This yields to the conclusion that using a statistical analysis
approach is not enough to say that DFCAs are in general not smaller than DFAs with respect to state
complexity, for most cases, but we should be aware that there exist important classes of languages
where the compression can be significant and we should investigate these classes in more detail.

It would be interesting to study the same problem from the topological point of view, for example,
to check the density of the languages having no compression. Another approach is to study the
problem using the measure theory, to determine the size of the set of incompressible languages, or of
the languages where the compression ratio is in a given interval.
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2. Câmpeanu, C., Păun, A., and Yu, S. An efficient algorithm for constructing minimal cover automata
for finite languages. Int. J. Found. Comput. Sci. 13, 1 (2002), 83–97.
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15. Păun, A., Sântean, N., and Yu, S. An O(n2) algorithm for constructing minimal cover automata for
finite languages. In CIAA’00 (2000), pp. 243–251.

16. Sântean, N. Towards a minimal representation for finite languages: Theory and practice. Master’s
thesis, Department of Computer Science, The University of Western Ontario, 2000.

17. The On-line Encyclopedia of Integer Sequences.
http://oeis.org/, Access date:1.03.2011.

18. Yu, S. Regular languages. In Handbook of formal languages, vol. 1. Springer-Verlag, New York, NY,
USA, 1997, pp. 41–110.



3 4 5 6 7 8 9 10 11 12

15

20

25

30

general

unbalanced ratio 2

unbalanced ratio 3

balanced

Fig. 4: Compression ratio for balanced and unbalanced finite languages

10 20 30 40 50

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

20 30 40 50 60 70 80 90 100

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Fig. 5: Compression ratio for L(A)l with n = 10 (left) and n = 20 (right), and l = nc, for 1 ≤ c ≤ 5.


	Expected Compression Ratio for DFCA: experimental average case analysis
	Cezar Câmpeanu, Nelma Moreira, Rogério Reis ccampeanu@upei.ca, {nam,rvr}@dcc.fc.up.pt

