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1 Abstract

Finite automata public-key cryptosystems rely upon characterizations of some types of

invertible finite automata, and methods of obtain them as well as their respective inverses.

In this paper we provide a much needed clarification of Tao’s formalization and basic results

on the subject, as well as a new condition for a linear finite automata with memory to be

weakly invertible with delay τ . This last result, employing an approach with formal series,

uses the Smith’s normal form of a polynomial matrix. The proof of the results presented

here provides a new way to construct an inverse with delay τ of an invertible linear finite

automata.

2 Introduction

In 1985 by R. Tao and S. Chen, in [TC85], introduced a public-key crypto-system based

on finite automata. Their basic idea was to use invertible automata for which explicit

inverses are known, but such that an inverse of the composition of the two automata was

computationally unfeasible to compute. Later on some weakness where found on this system,

and some slightly more sofisticated ones were proposed [TC86, Gao94, BI95, RT97, TC97].

These systems are ultimately based on some results used to characterize invertible linear

finite automata, and, specially, some techniques to compute an invertible linear automata

together with one of its inverses [Tao73]. These techniques were then extended to some other

kinds of automata [CT92, TC95, TC00].

In this report, after introducing the basic concepts about finite automata, we describe the

several types of invertible automata studied by R. Tao. We then focus our attention on linear

automata, and we use formal power series to characterize invertible linear finite automata.

3 Basic concepts on automata and invertible automata

As usual, for a finite set X, we denote by Xn the set of words of length n, with n ∈ N0, and

X0 = {ε}, where ε denotes the empty word. We will also use X∗ = ∪n≥0X
n, the set of all

finite words, and Xω will denote the set of infinite words.

Definition 3.1. A finite automata is a quintuple 〈X,Y, S, δ, λ〉, where:

• X is a nonempty finite set called the input alphabet of the finite automaton;
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• Y is a nonempty finite set called the output alphabet of the finite automaton;

• S is a nonempty finite set called the set of states of the finite automaton;

• δ is a function from S × X to S called the state transition function of the finite

automaton;

• λ is a function from S ×X to Y called the output function.

Let M = 〈X,Y, S, δ, λ〉 be a finite automaton. The state transition function δ and the output

function λ can be extended to words, i.e. elements of X∗, recursively, as follows:

δ(s, ε) = s

δ(s, x0x1 . . . xn) = δ(δ(s, x0), x1x2 . . . xn)

λ(s, ε) = ε

λ(s, x0x1 . . . xn) = λ(δ(s, x0), x1x2 . . . xn),

where s ∈ S, n ∈ N and x0x1 · · ·xn ∈ Xn+1. In an analogous way, λ may be extended to Xω.

From these definitions it follows that one has, for all s ∈ S, α ∈ X∗, and for all β ∈ X∗∪Xω,

λ(s, αβ) = λ(s, α) λ(δ(s, α), β). (1)

An important class of finite automata, providing an infinite number of examples, is given by

the following:

Definition 3.2. Let f : Xh+1 × Y k −→ Y , with h, k ∈ N, and X,Y two nonempty finite

sets. The finite automaton with (h, k)-order memory determined by f is the automaton

Mf =
〈

X,Y,Xh × Y k, δf , λf

〉

defined by:

λf (< x1x2 . . . xh, y1y2 . . . yk >, x) = f(x1x2 . . . xhx, y1y2 . . . yk) =: y,

δf (< x1x2 . . . xh, y1y2 . . . yk >, x) = < x2 . . . xhx, y2 . . . yky >,

for all y1 . . . yk ∈ Y k and x0x1 . . . xhx ∈ Xh+1. When k = 0, Mf is called the finite

automaton with h-order input memory determined by f .When h = 0, Mf is called the

finite automaton with k-order output memory determined by f . And, we will say that a

finite automaton M is a finite automaton with (h, k)-order memory if M = Mf for some

function f : Xh+1 × Y k −→ Y .
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A central notion, essential for cryptographic purposes, is the notion of invertibility. We start

with a concept related to the determination of the inputs by the outputs.

Definition 3.3. A finite automaton M = 〈X,Y, S, δ, λ〉 is said to be invertible with delay

τ , where τ ∈ N0, if ∀s, s
′ ∈ S, ∀x, x′ ∈ X, ∀α, α′ ∈ Xτ ,

λ(s, xα) = λ(s′, x′α′) =⇒ x = x′

That is, for any s ∈ S and α ∈ Xτ , x can be uniquely determined by λ(s, xα).

Invertible automata should have inverses of some sort. The following definition introduces

the apropriate concept, that we will see is closely related to the previous one.

Definition 3.4. Let M = 〈X,Y, S, δ, λ〉, M ′ = 〈Y,X, S′, δ′, λ′〉 be two finite automata. A

pair of states (s′, s) ∈ S′×S is said to be a match pair with delay τ if the following condition

holds

∀α ∈ Xω, ∃γ ∈ Xτ : λ′(s′, λ(s, α)) = γα .

Remark: In the previous definition one may replace Xω by X∗, but then one must take

into account that on the right one only gets the first |α| − τ characters of α.

Proposition 3.5. If (s′, s) is a match pair with delay τ and β = λ(s, α) for some α ∈ X∗,

then (δ′(s′, β), δ(s, α)) is also a match pair with delay τ .

Proof. Assume that (s′, s) is a match pair with delay τ , and let β = λ(s, α) for some α ∈ X∗.

Let α′ ∈ Xω. By (1), one has:

λ′
(

s′, λ(s, αα′)
)

= λ′
(

s′, β λ(δ(s, α), α′)
)

= λ′(s′, β) λ′(δ(s′, β), λ(δ(s, α), α′)).

Since (s′, s) is a match pair with delay τ , ∃α1 ∈ Xτ such that λ′(s′, λ(s, αα′)) = α1αα
′.

Therefore, α1αα
′ = γα′, where γ ∈ Xτ+|α|.

But, λ′(s′, β) ∈ X |α|. So, λ′(δ(s′, λ(s, α), λ(δ(s, α), α′)) = φα′, for some φ ∈ Xτ . That is,

(δ(s′, β), δ(s, α)) is a match pair with delay τ .

Definition 3.6. M ′ is called an inverse with delay τ of M , if ∀s ∈ S and ∀s′ ∈ S′, (s′, s)

is a match pair with delay τ . M ′ is called an inverse with delay τ , if M ′ is an inverse with

delay τ of some finite automaton. M ′ is called an inverse, if M ′ is an inverse with delay τ ,

for some τ .
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Part of the important role of the automata determined by a function as defined above, in

definition 3.2, is revealed by the following result.

Theorem 3.7. If M is invertible with delay τ , then there exists a finite automaton with

τ -order input memory Mf that is an inverse with delay τ of M .

Proof. Suppose that M = 〈X,Y, S, δ, λ〉 is invertible automaton with delay τ . Then ∀s ∈

S, ∀x ∈ X, ∀α ∈ Xτ , x can be uniquely determined by the value of λ(s, xα). Let f : Y τ+1 −→

X be the function defined in the following way: if ∃s ∈ S, ∃x ∈ X, ∃α ∈ Xτ : y0y1 . . . yτ =

λ(s, xα), then f is defined at y0y1 . . . yτ by f(y0y1 . . . yτ ) = x; otherwise one defines f

arbitrarily. Let Mf = 〈Y,X, Y τ , δf , λf 〉 be the finite automaton with τ -order input memory

determined by f . To prove the claimed result, one must show that, for all y1 . . . yτ ∈ Y τ , for

all s ∈ S and for all α = x0x1x1 · · · ∈ Xω, there exists an γ ∈ Xτ , such that

λf (y1 . . . yτ , λ(s, α)) = γα.

Putting:

s0 = s, si+1 = δ(si, xi),

zi = λ(si, xi),

αi = xixi+1xi+2 . . .

x′i = f(yi . . . yτz0 . . . zi−1)

γ = x′1x
′
2 . . . x

′
τ ,

one has that λ(s, α) = z0z1z2 . . . , and (1) yields

λf (y1 . . . yτ , λ(s, α)) = λf (y1 . . . yτ , z0) λf (y2 . . . yτz0, λ(s1, α1))

= x′1 λf (y2 . . . yτz0, λ(s1, α1))

= x′1x
′
2 λf (y3 . . . yτz0z1, λ(s2, α2))

= . . .

= x′1x
′
2 . . . x

′
τ λf (z0z1 . . . zτ−1, λ(sτ , ατ ))

= γ λf (z0z1 . . . zτ−1, zτ )λf (z1z1 . . . zτ , λ(sτ+1, ατ+1))

= . . .

= γ f(z0z1 . . . zτ−1zτ )f(z1z2 . . . zτzτ+1) . . .
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But zizi+1 . . . zi+τ = λ(si, xixi+1 . . . xi+τ ), and therefore it follows from the definition of f

that f(zizi+1 . . . zi+τ ) = xi, which finishes the proof.

It immediately follows that

Corollary 3.8. M is invertible with delay τ if and only if there exists a finite automaton

M ′ such that M ′ is an inverse with delay τ of M .

A weaker form of invertibility is described in the following definition.

Definition 3.9. A finite automaton M = 〈X,Y, S, δ, λ〉 is said to be weakly invertible with

delay τ , with τ ∈ N0, if

∀s ∈ S, ∀x0 . . . xτ , x
′
0 . . . xτ ∈ Xτ+1, λ(s, x0 . . . xτ ) = λ(s, x′0 . . . x

′
τ ) =⇒ x0 = x′0.

That is, for any s ∈ S, and any xi ∈ X, with i ∈ {0, 1, . . . , τ}, x0 can be uniquely determined

by s and λ(s, x0x1 . . . xτ ).

Definition 3.10. Let M =< X,Y, S, δ, λ > and M ′ =< X,Y, S′, δ′, λ′ > be two finite

automata. M ′ is called a weak inverse with delay τ of M , if ∀s ∈ S, ∃s′ ∈ S such that (s′, s)

is a match pair with delay τ . M ′ is called a weak inverse with delay τ , if M ′ is a weak

inverse with delay τ of some finite automaton. M ′ is called a weak inverse, if M ′ is a weak

inverse with delay τ for some τ .

For weakly invertible automata a result entirely similar to theorem 3.7 and its corollary can

be stated. In particular, one has:

Theorem 3.11. M is weakly invertible with delay τ if and only if there exists a finite

automaton M ′ such that M ′ is a weak inverse with delay τ of M .

Proof. See [Tao09].

4 Invertibility with delay τ of linear finite automata

Definition 4.1. If X,Y and S are vector spaces over a field F, then a finite automaton

M = 〈X,Y, S, δ, λ〉 is said to be linear over F when both δ : S ×X → S and λ : S ×X → Y

are linear maps.
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If X,Y and S have dimensions l, m and n, respectively, then

δ(s, x) = As+Bx,

λ(s, x) = Cs+Dx,

for some n × n matrix A, n × l matrix B, m × n matrix C, and m × l matrix D, and

where s ∈ S, x ∈ X. The matrices A,B,C,D are called the structural matrices of the finite

automaton, and l,m, n are called structural parameters of the finite automaton.

Let M = 〈X,Y, S, δ, λ〉 be a linear finite automaton over a finite field F, with structure

matrices A, B, C, D. For any s0 ∈ S and x0x1 · · · ∈ Xω, let:

st+1 = Ast +Bxt, t = 0, 1, . . . (2)

and

yt = Cst +Dxt, t = 0, 1, . . . (3)

where A ∈ Mn×n, B ∈ Mn×ℓ, C ∈ Mm×n, and D ∈ Mm×ℓ.

The following result is presented in [Tao73] without proof, and in [Tao09] with a proof by

induction. Here we present a more conceptual proof using formal series, that can be seen as

a preliminary to the approach that will be presented in section 5.

Theorem 4.2. For all t ≥ 0 one has, for all s0 ∈ S and x0x1 . . . xt ∈ Xt+1,

st = Ats0 +
t−1
∑

i=0

At−1−iBxi, (4)

and

yt = CAts0 +

t
∑

i=0

Ht−ixi, (5)

where H0 = D, Hj = CAj−1B, j > 0.

Proof. Multiplying both sides of equation (2) by zt+1, and adding all the equations, for t ≥ 0,

in the ring of formal series F[[z]], one obtains:

∑

t≥0

st+1z
t+1 =

∑

t≥0

Astz
t+1 +

∑

t≥0

Bxtz
t+1,

or
∑

t≥0

stz
t − s0 = z

∑

t≥0

Astz
t + z

∑

t≥0

Bxtz
t,
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which yields

(I −Az)S(z) = s0 + zBX(z),

where S(z) =
∑

t≥0 stz
t, and X(z) =

∑

t≥0 xtz
t.

Since 1−Az is invertible in F[[z]], and (1−Az)−1 =
∑

n≥0A
nzn, one gets:

S(z) =
∑

n≥0

Ans0z
n +

∑

n≥0

AnBX(z)zn+1,

which gives (4).

Now, if one multiplies both sides of equation (3) by zt, and adds all the equations, for t ≥ 0,

in the ring of formal series F[[z]], one obtains:

Y (z) = C S(z) +DX(z).

Substituing S(z) on this equation, one gets:

Y (z) = C





∑

n≥0

Ans0z
n +

∑

n≥0

AnBX(z)zn+1



+DX(z),

which is equivalent to:

Y (z) = C
∑

n≥0

Ans0z
n +



C
∑

n≥0

AnBzn+1 +D



X(z).

This proves the validity of (5).

We can rewrite equation (5) as:

Yt = GtVt,

where, using AT to denote the transpose of a matrix A,

Yt = [yt, . . . , y1, y0]
T , Vt = [xt, . . . , x0, s0]

T

and

Gt =























H0 H1 · · · Ht−1 Ht CAt

0 H0 · · · Ht−2 Ht−1 CAt−1

...
...

...
...

...

0 0 · · · H0 H1 CA

0 0 · · · 0 H0 C























.
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Set Jt = [Ht Ht−1 · · · H0]
T , and set

Kt =























H0 H1 · · · Ht−1 CAt

0 H0 · · · Ht−2 CAt−1

...
...

...
...

0 0 · · · H0 CA

0 0 · · · 0 C























.

The following result gives a condition for a linear finite automaton to be invertible with delay

τ ∈ N0. This result appears in [Tao73, Tao09], without proof.

Theorem 4.3. M is invertible with delay τ if and only if

rank(Gτ ) = rank(Kτ ) + ℓ.

Proof. In what follows, we will denote the space generated by the columns of a matrix A by

< A >. The present result can be shown by proving the following equivalences:

M invertible with delay τ ⇐⇒
(A)

∀Vτ ∈ Xτ+1 × S GτVτ = 0 =⇒ x0 = 0

⇐⇒
(B)

dim(< Jτ >) = ℓ ∧ < Jτ > ∩ < Kτ >= 0

⇐⇒
(C)

rank(Gτ ) = rank(Kτ ) + ℓ.

The first equivalence is immediate from definition 3.3, and the fact that here λ(s0, x0x1 . . . xt)

is essentially equal to GtVt.

Now, let us prove the only if part of equivalence (B). Assume that GτVτ = 0, and that

dim(< Jτ >) = ℓ and < Jτ > ∩ < Kτ >= 0. One has,

GτVτ = 0 ⇐⇒ Kτ [xτ xτ−1 · · · x1 s0]
T = −Jτ [x0] ,

Since, < Jτ > ∩ < Kτ >= 0, that gives:

Kτ [xτ xτ−1 · · · x1 s0]
T = 0 ∧ Jτ [x0] = 0,

and from dim(< Jτ >) = ℓ, one obtains x0 = 0.

To prove the if part of equivalence (B), one proves that

dim(< Jτ >) 6= ℓ ∨ < Jτ > ∩ < Kτ > 6= 0 =⇒ ∃Vτ GτVτ = 0 ∧ x0 6= 0.

First, let us assume that dim(< Jτ >) 6= ℓ, that is,

∃x0 6= 0 : Jτ [x0] = 0.

9



This implies

∃Vτ = [0 · · · 0 x0 0]
T : GτVτ = 0 ∧ x0 6= 0.

Now, let us assume that < Jτ > ∩ < Kτ > 6= 0. This implies that

∃ [xt · · · x1 s0]
T 6= 0, x0 6= 0 : Kτ [xt · · · x1 s0]

T = Jτx0

which yields Vτ = [xt · · · x1 (−x0) s0]
T with GτVτ = 0 ∧ x0 6= 0.

To prove the only if part of the last equivalence, suppose that rank(Gτ ) = ℓ + rank(Kτ ).

Since < Gτ >=< Jτ > ∪ < Kτ >, and Jτ ∈ Mm(τ+1)×l, one has rank(Jτ ) = ℓ. Conse-

quently, < Jτ > ∩ < Kτ >= 0.

Finally, to deal with the if part of the last equivalence, assume that one has dim(< Jτ >) = ℓ,

< Jτ > ∩ < Kτ >= 0, and that < Gτ > = < Jτ > ∪ < Kτ > . Then,

dim(< Gτ >) = dim(< Jτ >) + dim(< Kτ >),

and therefore,

rank(Gτ ) = ℓ+ rank(Kτ ).

There is an analogous condition for a linear finite automaton to be weakly invertible with

delay τ . Let, Xt = [xt xt−1 · · · x0]
T ,

K ′
t =























H0 H1 · · · Ht−1

0 H0 · · · Ht−2

...
...

...

0 0 · · · H0

0 0 · · · 0























, and G′
t =























H0 H1 · · · Ht−1 Ht

0 H0 · · · Ht−2 Ht−1

...
...

...
...

0 0 · · · H0 H1

0 0 · · · 0 H0























.

One then has

Theorem 4.4. M is weakly invertible with delay τ if and only if

rank(G′
τ ) = rank(K ′

τ ) + ℓ.
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5 An approach envolving formal series

Let M be a linear finite automata over a unitary ring R defined by:

yt+τ =
τ−1
∑

i=0

ai yt+i +
τ
∑

j=0

bj xt+j (t ≥ 0) (6)

where ai, bj ∈ R, for i ∈ {0, · · · , τ − 1} and j ∈ {0, · · · , τ}.

If one multiplies (6) by zt+τ , and adds all the equations, for t ≥ 0, in the ring of formal

series R[[z]], one obtains:

∑

t≥0

yt+τ z
t+τ =

∑

t≥0





τ−1
∑

i=0

ai yt+i +
τ
∑

j=0

bj xt+j



 zt+τ

=
τ−1
∑

i=0

ai
∑

t≥0

yt+i z
t+τ +

τ
∑

j=0

bj
∑

t≥0

xt+j z
t+τ

=
τ−1
∑

i=0

ai z
τ−i
∑

t≥0

yt+i z
t+i +

τ
∑

j=0

bj z
τ−j

∑

t≥0

xt+j z
t+j

Then,

∑

t≥0

yt z
t −

τ−1
∑

k=0

yk z
k =

=
τ−1
∑

i=0

ai z
τ−i





∑

t≥0

yt z
t −

i−1
∑

k=0

yk z
k



+
τ
∑

j=0

bj z
τ−j





∑

t≥0

xt z
t −

j−1
∑

k=0

xk z
k



 .

Letting,

f(z) = 1−
τ−1
∑

i=0

ai z
τ−i, Y (z) =

∑

t≥0 yt z
t,

g(z) =
τ
∑

j=0

bj z
τ−j , X(z) =

∑

t≥0 xt z
t,

r(z) =

τ−1
∑

k=0

yk z
k −

τ−1
∑

i=0

ai z
τ−i

(

i−1
∑

k=0

yk z
k

)

−

τ
∑

j=0

bj z
τ−j

(

j−1
∑

k=0

xk z
k

)

,

we can rewrite the equality above as follows:

f(z)Y (z)− g(z)X(z) = r(z). (7)
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Note that f(0) = 1, and that the polynomial r(z) depends on the initial state of the

automaton (cf. definition 3.2).

Remark: It is easy to see that, conversely, an equation of this form defines a linear

automaton, for any f(z), g(z) ∈ R[z] with f(0) = 1, and where r(z) denotes a polynomial

which varies with the initial values of the input and of the output, and whose degree is less

than the maximum of the degrees of f and g.

Theorem 5.1. Let R be an unitary ring. A linear automaton given by fY − gX = r with

f, g, r ∈ R[z] and f(0) = 1 satisfies an equation of the form aY − zτX = b, for some

a, b ∈ R[z], if and only if

∃h ∈ R[z] : hg = zτ . (8)

Proof. The if part is straightforward: one just needs to take a = hf and b = hr. To prove

the only if part, assume that an automaton given by fY − gX = r with f, g, r ∈ R[z] and

f(0) = 1 satisfies an equation of the form aY − zτX = b, for some a, b ∈ R[z].

Since f(0) = 1, f has an inverse, f−1 ∈ R[[z]], and from fY − gX = r one obtains Y =

f−1r + f−1gX. Substituing in the second equation, one gets:

(af−1g − zτ )X = b− af−1r.

Since one may freely choose the initial state and the input sequence, taking the initial state

as being 0, and a non-zero input sequence X =
∑

t≥τ xt z
t, one obtains

(af−1g − zτ )X = 0.

Consequently,

af−1g = zτ .

It then follows that af−1r = b, which means that

af−1r ∈ R[z],

for all possible polynomials r(z). Choosing, as we may, the initial values such that yτ−1 = 1

and all other zero, so that r(z) = zτ−1, one sees that one must have af−1 ∈ R[z]. Therefore,

∃h ∈ R[z] : hg = zτ ,

which finishes the proof.
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In what follows, we denote by M(R) the set of all matrices, of any dimensions, over the ring

R.

Lema 5.2. Let F be a field, and G ∈ M(F[z]). Then,

∃H ∈ M(F[z]) : HG = zτI ⇐⇒ d | zτ ,

where d is the elementary divisor with the highest degree of G in Smith’s normal form1, and

I is the appropriate identity matrix.

Proof. Let G ∈ M(F[z]). Since F[z] is a principal ideal domain, there exist U, V ∈ M(F[z]),

matrices with the appropriate dimensions, such that D = UGV is the Smith’s normal form

of G. One then has,

∃H ∈ M(F[z]) : HG = zτI ⇐⇒ ∃H ∈ M(F[z]) : HU−1UGV = zτV

⇐⇒ ∃H ∈ M(F[z]) : HU−1D = V zτ

⇐⇒ ∃H ∈ M(F[z]) : V −1HU−1D = zτ

⇐⇒ ∃H = (hij)i,j ∈ M(F[z]) : HD = zτ

⇐⇒ ∀i,j ∃hi,j ∈ F[z] :











hij = 0, if i 6= j

hiidi = zτ ,

⇐⇒ d | zτ ,

where di are the elementary divisors of G, and d is the one with the highest degree.

Since a matrix polynomial g ∈ M(F)[z] is essentially the same thing as a polynomial matrix,

from the above results one gets:

Theorem 5.3. Let F be a field. An automaton given by fY − gX = r with f, g, r ∈ F[z] and

f(0) = 1 satisfies an equation of the form aY − zτX = b, for some a, b ∈ F[z], if and only if

d | zτ , (9)

where d is the elementary divisor with the highest degree of G, and G is the polynomial

matrix that corresponds to g.

Corollary 5.4. Let M be an automaton given by the equation fY −gX = r with f, g, r ∈ F[z]

and f(0) = 1, where F is any field. If the greatest elementary divisor of g divides zτ , for

some τ ∈ N, then M is weakly invertible with delay τ .

1For more on Smith’s normal form, see [New72].
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6 Conclusion

The techniques to construct an invertible finite automaton and find one of its inverses have

two fundamental applications: they are used to construct the pairs of keys necessary for en-

cryption, decryption and signature, and also can be used to attack the existent cryptographic

systems based on finite automata.

The approach presented on section 5 gives a condition to verify if a linear finite automaton

with memory is weakly invertible with delay τ , using the Smith’s normal form of a polynomial

matrix. The results therein shown can also be used to construct an inverse with delay τ of

an invertible automaton. Since there are algorithms that compute the Smith’s normal form

of polynomial matrices on deterministic polynomial time [Vil95], those results seem very

promising for cryptographic uses.
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