
On the Incomplete Transition

Complexity of some Basic

Operations on Regular Languages

Eva Maia Nelma Moreira Rogério Reis
e-mail:{emaia,nam,rvr}@dcc.fc.up.pt

DCC-FC & CMUP, Universidade do Porto

Rua do Campo Alegre 1021, 4169-007 Porto, Portugal

Technical Report Series: DCC-2012-02

Version 1.3 March 2013

Old versions: 1.2 May 2012

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

On the Incomplete Transition Complexity of some Basic

Operations on Regular Languages

Eva Maia, Nelma Moreira, Rogério Reis

{emaia,nam,rvr}@dcc.fc.up.pt

March 15, 2013

Abstract

Y. Gao et al. studied for the first time the transition complexity of Boolean operations
on regular languages based on not necessarily complete DFAs. For the intersection and
the complementation, tight bounds were presented, but for the union operation the upper
and lower bounds differ by a factor of two. In this paper we continue this study by giving
tight upper bounds for the concatenation, the Kleene star and the reversal operations.
We also give a new tight upper bound for the transition complexity of the union, which
refutes the conjecture presented by Y. Gao et al..

1 Introduction

The descriptional complexity of regular languages has recently been extensively investigated.
For deterministic finite automata (DFA), the complexity measure usually studied is the
state complexity (number of states of the complete minimal DFA) [15, 16, 1, 8, 2, 17],
while for nondeterministic finite automata (NFA) both state and transition complexity were
considered [5, 12, 7, 9, 8], being this last one a more interesting measure. Considering
complete DFAs (when the transition function is total) it is obvious that the transition
complexity is the product of the alphabet size by the state complexity. But in many
applications where large alphabets need to be considered or, in general, when very sparse
transition functions take place, partial transition functions are very convenient. Examples
include lexical analysers, discrete event systems, or any application that uses dictionaries
where compact automaton representations are essential [11, 4, 3]. Thus, it makes sense
to study the transition complexity of regular languages based on not necessarily complete
DFAs.

Y. Gao et al. [6] studied for the first time the transition complexity of Boolean operations
on regular languages based on not necessarily complete DFAs. For the intersection and the
complementation, tight bounds were presented, but for the union operation the upper and
lower bounds differ by a factor of two. Nevertheless, they conjectured a tight upper bound
for this operation.

In this paper, we continue this study by extending the analysis to the concatenation, the
Kleene star and the reversal operations. For these operations tight upper bounds are given.
We also give a tight upper bound for the transition complexity of the union, which refutes
the conjecture presented by Y. Gao et al.. The same study was made for unary languages.
The algorithms and the witness language families used in this work, although new, are based
on the ones of Yu et al. [18] and several proofs required new techniques. In the Tables 1

2

and 2 (page 28) we summarize our results (in bold) as well as some known results for other
descriptional complexity measures.

2 Preliminaries

We recall some basic notions about finite automata and regular languages. For more details,
we refer the reader to the standard literature [10, 14, 13].

A deterministic finite automaton (DFA) is a five-tuple A = (Q,Σ, δ, q0, F) where Q is a
finite set of states, Σ is a finite input alphabet, q0 in Q is the initial state, F ⊆ Q is the set
of final states, and δ is the transition function mapping Q×Σ → Q. The transition function
can be extended to sets — 2Q × Σ → 2Q. A DFA is complete if the transition function (δ)
is total. In this paper we consider the DFAs to be not necessarily complete. For s ∈ Q and
τ ∈ Σ, if δ(s, τ) is defined we write δ(s, τ) ↓, and δ(s, τ) ↑, otherwise, and, when defining a
DFA, an assignment δ(s, τ) =↑ means that the transition is undefined.

The transition function is extended in the usual way to a function δ̂ : Q×Σ⋆ → Q. This
function can also be used in sets — δ̂ : 2Q ×Σ⋆ → 2Q. The language accepted by A is L(A)
= {w ∈ Σ⋆ | δ̂(q0, w) ∈ F}. Two DFAs are equivalent if they accept the same language.
For each regular language, considering a total transition function or not a total one, there
exists a unique minimal complete DFA with a least number of states. The left-quotient of
L ⊆ Σ⋆ by x ∈ Σ⋆ is DxL = {z | xz ∈ L}. The equivalence relation RL ⊆ Σ⋆ × Σ⋆ is
defined by (x, y) ∈ RL if and only if DxL = DyL. The Myhill-Nerode Theorem states that
a language L is regular if and only if RL has a finite number of equivalence classes, i.e.,
L has a finite number of left quotients. This number is equal to the number of states of
the minimal complete DFA. We can minimize a given DFA A if we calculate its quotient
automaton by the equivalence relation ≈. Minimal DFAs are unique up to isomorphism.
The state complexity, sc(L), of a regular language L is the number of states of the minimal
complete DFA of L. If the minimal DFA is not complete its number of states is the number
of left quotients minus one (the sink state is removed).

The incomplete state complexity of a regular language L (isc(L)) is the number of states
of the minimal DFA, not necessarily complete, that accepts L. Note that isc(L) is either
equal to sc(L) − 1 or to sc(L). The incomplete transition complexity, itc(L), of a regular
language L is the minimal number of transitions over all DFAs that accepts L. Whenever
the model is explicitly given we refer only to state or transition complexity, by omitting
the term incomplete1. When we talk about the minimal DFA, we refer the DFA with the
minimal number of states and transitions because we have the following result:

Proposition 1. The state-minimal DFA, not necessarily complete, which recognizes L has
the minimal number of transitions of any DFA that recognizes L.

Proof. Let A be a non-minimal initially connected DFA which recognizes L, and Am be
the minimal DFA that recognizes L. The quotient of A, A/ ≈, is isomorphic to Am. By
construction, we know that A/ ≈ has fewer transitions than A. Therefore Am has the
minimal number of transitions of any DFA (up to isomorphism) that recognizes L.

A transition labeled by τ ∈ Σ is named by τ -transition (represented by δ(s, τ), where
s ∈ Q) and the number of τ -transitions of a DFA A is denoted by t(τ,A). The τ -transition
complexity of L, itcτ (L) is the minimal number of τ -transitions of any DFA recognizing

1In [6] the author refer sc(L) and tc(L) instead of isc(L) and itc(L).

3

L. In [6, Lemma 2.1] it was showed that the minimal DFA accepting L has the minimal
number of τ -transitions of any DFA accepting L. From this and Proposition 1 follows that
itc(L) =

∑

τ∈Σ itcτ (L).

The state complexity of an operation on regular languages is the (worst-case) state
complexity of a language resulting from the operation, considered as a function of the state
complexities of the operands. The (worst-case) transition complexity of an operation is
defined in the same way. Usually an upper bound is obtained by providing an algorithm,
which given DFAs as operands, constructs a DFA that accepts the language resulting from
the referred operation. The number of states or transitions of the resulting DFA are upper
bounds for the state or the transition complexity of the operation, respectively. To prove that
an upper bound is tight, for each operand we can give a family of languages (parametrized by
the complexity measures), such that the resulting language achieves that upper bound. For
determining the transition complexity of a language operation, we also consider the following
measures and refined numbers of transitions. Given a DFA A = (Q,Σ, δ, q0, F) and τ ∈ Σ,
let f(A) = |F |, i(τ,A) be the number of τ -transitions leaving the initial state q0, u(τ,A) be
the number of states without τ -transitions, i.e. u(τ,A) = |Q| − t(τ,A), and ū(τ,A) be the
number of non-final states without τ -transitions. Whenever there is no ambiguity we omit
A from the above definitions. If t(τ,A) = |Q| we say that A is τ -complete, and τ -incomplete
otherwise. All the above measures, can be defined for a regular language L, considering the
measure values for its minimal DFA. Thus, we have, respectively, f(L), iτ (L), uτ (L), and
ūτ (L). We also prove that the upper bounds are maximal when f(L) is minimal.

3 Incomplete Transition Complexity of the Union

It was shown by Y. Gao et al. [6] that itc(L1∪L2) ≤ 2(itc(L1)itc(L2)+itc(L1)+itc(L2)). The
lower bound itc(L1)itc(L2) + itc(L1) + itc(L2)− 1 was given for particular ternary language
families which state complexities are relatively prime. The authors conjectured, also, that
itc(L1 ∪ L2) ≤ itc(L1)itc(L2) + itc(L1) + itc(L2), when itc(Li) ≥ 2, i = 1, 2.

In this section we present an upper bound for the state complexity and we give a new
upper bound for the transition complexity of the union of two regular languages. We also
present families of languages for which these upper bounds are reached, witnessing that these
bounds are tight.

3.1 An Upper Bound

In the following we describe the algorithm for the union of two DFAs that was presented
by Y. Gao et al. [6, Lemma 3.1.]. Let A = (Q,Σ, δA, q0, FA) and B = (P,Σ, δB , p0, FB)
be two DFAs (−1 /∈ Q and −1 /∈ P). Let C = (R,Σ, δC , r0, FC) be a new DFA with
R = (Q ∪ {−1}) × (P ∪ {−1}), r0 = (q0, p0), FC = (FA × (Q ∪ {−1})) ∪ ((P ∪ {−1})× FB)
and

δC((q
′
A, p

′
B), τ) =

(δA(q
′
A, τ), δB(p

′
B , τ)) if δA(q

′
A, τ) ↓ ∧ δB(p

′
B , τ) ↓,

(δA(q
′
A, τ),−1) if δA(q

′
A, τ) ↓ ∧ δB(p

′
B , τ) ↑,

(−1, δB(p
′
B , τ)) if δA(q

′
A, τ) ↑ ∧ δB(p

′
B , τ) ↓,

↑ otherwise,

where τ ∈ Σ, q′A ∈ Q ∪ {−1} and p′B ∈ P ∪ {−1}. Note that δA(−1, τ) and δB(−1, τ) are
always undefined, and the pair (−1,−1) never occurs in the image of δC . It is easy to see

4

that DFA C accepts the language L(A)∪L(B). We can determine the number of states and
transitions which are sufficient for any DFA C resulting from the previous algorithm:

Proposition 2 ([6]). For any m-state DFA A and any n-state DFA B, mn+m+ n states
are sufficient for a DFA accepting L(A) ∪ L(B).

Proof. Consider A = (Q,Σ, δA, q0, FA) with m states, B = (P,Σ, δB , p0, FB) with n states
and C = (R,Σ, δC , r0, FC), constructed with the algorithm above, such that L(C) = L(A)∪
L(B). The number of states in R is:

mn+m+ n

because R is a set of pairs (α, β) where α is a state in Q or −1 and β is a state in P or
−1; but α and β cannot be simultaneously −1. Thus R has mn+m+ n states because the
number of possible αs is m+ 1, the number of possible β is n + 1 and we need exclude the
pair (−1,−1). Therefore,

(m+ 1)(n + 1)− 1 =

= mn+m+ n+ 1− 1

= mn+m+ n

Proposition 3. For any regular languages L1 and L2 with isc(L1) = m and isc(L2) = n,
one has

itc(L1 ∪ L2) ≤ itc(L1)(1 + n) + itc(L2)(1 +m)−
∑

τ∈Σ

itcτ (L1)itcτ (L2).

Proof. Consider A = (Q,Σ, δA, q0, FA) with m states, B = (P,Σ, δB , p0, FB) with n states
and C = (R,Σ, δC , r0, FC), constructed with the algorithm above, such that L(C) = L(A)∪
L(B). We can count the number of transitions of DFA C in two ways:

1) If we use the Lemma 3.1 of Y. Gao et al. we know that for any τ ∈ Σ:

itcτ (L(A) ∪ L(B)) ≤ itcτ (L(A)).itcτ (L(B)) + itcτ (L(A))(1 + isc(L(B))− itcτ (L(B)))

+itcτ (L(B))(1 + isc(L(A))) − itcτ (L(A)))

But we also know that itc(L) =
∑

τ∈Σ itcτ (L). Thus,

5

itc(L(A) ∪ L(B)) ≤
∑

τ∈Σ

(itcτ (L(A)).itcτ (L(B)) + itcτ (L(A))(1 + isc(L(B))

−itcτ (L(B))) + itcτ (L(B))(1 + isc(L(A))) − itcτ (L(A)))

itc(L(A) ∪ L(B)) ≤
∑

τ∈Σ

itcτ (L(A)).itcτ (L(B)) +
∑

τ∈Σ

itcτ (L(A)) +
∑

τ∈Σ

itcτ (L(A))

isc(L(B))−
∑

τ∈Σ

itcτ (L(A))itcτ (L(B)) +
∑

τ∈Σ

itcτ (L(B)) +

∑

τ∈Σ

itcτ (L(B))isc(L(A))) −
∑

τ∈Σ

itcτ (L(B))itcτ (L(A)))

itc(L(A) ∪ L(B)) ≤
∑

τ∈Σ

itcτ (L(A)) +
∑

τ∈Σ

itcτ (L(A))isc(L(B)) +
∑

τ∈Σ

itcτ (L(B))

+
∑

τ∈Σ

itcτ (L(B))isc(L(A))) −
∑

τ∈Σ

itcτ (L(B))itcτ (L(A)))

itc(L(A) ∪ L(B)) ≤
∑

τ∈Σ

itcτ (L(A)) + isc(L(B))
∑

τ∈Σ

itcτ (L(A)) +
∑

τ∈Σ

itcτ (L(B))

+isc(L(A))
∑

τ∈Σ

itcτ (L(B))−
∑

τ∈Σ

itcτ (L(B))itcτ (L(A)))

But, itc(L(i)) =
∑

τ∈Σ itcτ (L(i)), i ∈ {A,B} and isc(L(A)) = m and isc(L(B)) = n.
Thus,

itc(L(A) ∪ L(B)) ≤ itc(L(A)) + isc(L(B))itc(L(A)) + itc(L(B)) + isc(L(A))itc(L(B))

−
∑

τ∈Σ

itcτ (L(B))itcτ (L(A)))

itc(L(A) ∪ L(B)) ≤ itc(L(A)) + n itc(L(A)) + itc(L(B)) +m itc(L(B))

−
∑

τ∈Σ

itcτ (L(B))itcτ (L(A)))

itc(L(A) ∪ L(B)) ≤ itc(L(A))(1 + n) + itc(L(B))(1 +m) (1)

−
∑

τ∈Σ

itcτ (L(B))itcτ (L(A)))

2) Consider the τ -transitions of the DFA A named by αi (1 ≤ i ≤ t(τ,A)) and the undefined
τ -transitions named by ᾱi (1 ≤ i ≤ u(τ,A) + 1). Consider also the τ -transitions of the
DFA B named by βj (1 ≤ j ≤ t(τ,B)) and the undefined τ -transitions named by β̄j
(1 ≤ j ≤ u(τ,B) + 1). We need to consider one more undefined transition in each DFA
which corresponds to the state −1 added to Q and P in the union algorithm, defined
in the previous section. Each of the τ -transitions of DFA C can only have one of the
following three forms:

• (αi, βj)

• (ᾱi, βj)

6

• (αi, β̄j)

Thus, the number of τ -transitions of the DFA C is:

t(τ,A)t(τ,B) + t(τ,A)(u(τ,B) + 1) + (u(τ,A) + 1)t(τ,B) (2)

because t(τ,A)t(τ,B) is the number of pairs of the form (αi, βj); t(τ,A)(u(τ,B) + 1) is
the number of pairs of the form (ᾱi, βj); and (u(τ,A) + 1)t(τ,B) is the number of pairs
of the form (αi, β̄j).

We know that u(τ,A) = m − t(τ,A) and u(τ,B) = n − t(τ,B), then the number of
τ -transitions is:

t(τ,A)t(τ,B) + t(τ,A)(n − t(τ,B) + 1) + t(τ,B)(m− t(τ,A) + 1)

Therefore the number of transitions of the DFA C is:

∑

τ∈Σ

t(τ,A)t(τ,B) + t(τ,A)(n − t(τ,B) + 1) + t(τ,B)(m− t(τ,A) + 1)

And if itcτ (L(A)) = t(τ,A) and itcτ (L(B)) = t(τ,B) this number is equal to (1).

3.1.1 More on Transition Complexity

We can use the unique representation of two DFAs A and B to obtain an upper bound for
the number of transitions of the DFA C accepting L(A)∪L(B). For that we do the cartesian
product of a special unique representation of A and a special unique representation of B; and
of this product we remove the pair (−1,−1). Then, the number of pairs we obtain as result
represents the upper bound for the number of transitions of the DFA C. In the following we
present the algorithm which compute this process.

1
2 def split_repr (r , n , k) :
3 d={}. fromkeys ([x for x in range (0 , k)] , [])
4 for i in range (0 , len (r)) :
5 p=i % k

6 d [p]=d [p]+ [r [i]]
7 return d

8
9

10 def prod_cart (s0 , s1) :
11 p=[]
12 for i in s0 . keys () :
13 l0=s0 [i]+[−1]
14 l1=s1 [i]+[−1]
15 p+=[(x , y) for x in l0 for y in l1 if x+y !=−2]
16 return p

17
18 s0=split_repr (r0 , n0 , k0)
19 s1=split_repr (r1 , n1 , k1)
20 p=prod_cart (s0 , s1)

7

The function split_repr splits the unique string representation into its projections. For ex-
ample, if we have the string [0,1,-1,-1,2,-1,-1,-1,-1], three states (n) and a three letter alphabet
(k), the function returns the dictionary {0 : [0,−1,−1], 1 : [1, 2,−1], 2 : [−1,−1,−1]}, where
the keys are the alphabet symbols and each value is a list of the correspondent projections.

The prod_cart function receives two dictionaries, as the previous one. We add −1 to each
list of the dictionaries; then we build a pair with the correspondent values of each dictionary,
if at least one of the projections is different to -1 (line 15). Thus we obtain a list with all
combinations of the projections.

With this algorithm, the number of pairs we obtain, for each projection(τ ∈ Σ), for two
DFAs A with m states and B with n states is:

• t(τ,A)t(τ,B)
number of pairs where both components of the pair is different of -1;

• t(τ,A).(n − t(τ) + 1, B)
number of pairs where the first component of the pair is different from −1 and the
second component is equal to −1.

• t(τ,B).(m− t(τ,A) + 1)
number of pairs where the first component of the pair is equal to −1 and the second
component is different from −1.

But this is the same we have in the proof of Lemma 3.1.in [6], and in the section above.

3.2 Worst-case Witnesses

In this section, we show that the upper bounds given in Proposition 2 and Proposition 3
are tight. We consider two cases, parameterized by the state complexities of the language
operands: m ≥ 2 and n ≥ 2; and m = 1 and n ≥ 2 (or vice versa). Note that in all that
follows we consider automaton families over a binary alphabet, Σ = {a, b}. Using Myhill-
Nerode theorem, it is easy to prove that these automata are minimal because all their states
correspond to different left quotients.

3.2.1 Case 1: m ≥ 2 and n ≥ 2.

Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . ,m − 1}, FA = {0}, δA(m − 1, a) = 0, and
δA(i, b) = i + 1, 0 ≤ i < m − 1; and B = (P,Σ, δB , 0, FB) with P = {0, . . . , n − 1},
FB = {n− 1}, δB(i, a) = i+1, 0 ≤ i < n− 1, and δB(i, b) = i, 0 ≤ i ≤ n− 1 (see Fig. 1 and
Fig. 2).

Proposition 4. DFA A is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, i 6= j. It is clear that
xbm−1−ia ∈ L(A) but ybm−1−ia /∈ L(A). Then x and y are in different left quotients induced
by L(A).

Proposition 5. DFA B is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, i 6= j. It is clear that
xan−1−i ∈ L(B) but yan−1−i /∈ L(B). Then x and y are in different left quotients induced
by L(B).

8

0 1 · · · m− 1b b b

a

Figure 1: DFA A with m states.

0 1 · · · n− 1

b

a

b

a a

b

Figure 2: DFA B with n states.

Proposition 6. For any integers m ≥ 2 and n ≥ 2, exist an m-state DFA A and an n-
state DFA B (Fig. 1 and Fig. 2) such that any DFA accepting L(A) ∪ L(B) needs at least
mn+m+ n states.

Proof. Consider the pairs (i, j) which represents the states of a DFA C, constructed with
the previous algorithm, accepting L(A) ∪ L(B). Then for each of these pairs (i, j) where
i ∈ {0, . . . ,m − 1,−1} and j ∈ {0, . . . , n − 1,−1} except the case when both, i and j, are
−1, there exists a word

w =

(bm−1a)jbi if i 6= −1 ∧ j 6= −1

(bm−1a)nbi if i 6= −1 ∧ j = −1

bmaj if i = −1 ∧ j 6= −1

which represents each state of C. Thus there are at least mn+m+ n distinct left quotients
(states).

Proposition 7. For any integers m ≥ 2 and n ≥ 2, exist an m-state DFA A with r = m
transitions and an n-state DFA B with s = 2n− 1 transitions (Fig. 1 and Fig. 2) such that
any DFA accepting L(A) ∪ L(B) has, at least, (r + 1)(s + 1) transitions.

Proof. Consider the DFA C constructed by the previous algorithm, such that L(C) = L(A)∪
L(B). This DFA is minimal and has mn + m + n states (Proposition 6). If we name the
defined and undefined transitions of the DFA A and B as in the case 2 of the proof of the
Proposition 3 then the DFA C has:

• mn+n−m+1 a-transitions because there exist n−1 a-transitions of the form (αi, βj);
2 a-transitions of the form (αi, β̄j); and m(n− 1) a-transitions of the form (ᾱi, βj).

• mn+m+n−1 b-transitions because there exist (m−1)n transitions of the form (αi, βj);
m− 1 b-transitions of the form (αi, β̄j); and 2n b-transitions of the form (ᾱi, βj).

Consequently,

mn+ n−m+ 1 +mn+m+ n− 1

= 2mn+ 2n

= 2(mn + n)

Thus, the DFA C has 2(mn + n) transitions.
As r = m and s = 2n− 1 ⇔ n = s+1

2 . Therefore,

2(mn + n)

= 2(r.
s + 1

2
+

s+ 1

2
)

= r.
s + 1

2
+ r + s+ 1

= (r + 1)(s + 1)

9

Thus, the DFA C has (r + 1)(s + 1) transitions.

The referred conjecture itc(L1 ∪ L2) ≤ itc(L1)itc(L2) + itc(L1) + itc(L2) fails for these
families because one has itc(L1 ∪ L2) = itc(L1)itc(L2) + itc(L1) + itc(L2) + 1. Note that
r = itc(L1) and s = itc(L2), thus (r+1)(s+1) = (itc(L1)+1)(itc(L2)+1) = itc(L1)itc(L2)+
itc(L1) + itc(L2) + 1.

Theorem 1. For any integers m ≥ 2 and n ≥ 2, exist an m-state DFA A with r = m
transitions and an n-state DFA B with s = 2n− 1 transitions such that any DFA accepting
L(A) ∪ L(B) needs, at least, mn+m+ n states and (r + 1)(s + 1) transitions.

3.2.2 Case 2: m = 1 and n ≥ 2.

Let A = (Q,Σ, δA, 0, FA) with Q = {0}, FA = {0}, δA(0, a) = 0, and consider the DFA B
defined in the previous case.

Proposition 8. For any integer n ≥ 2, exists an 1-state DFA A (defined above) and an
n-state DFA B (Fig. 2) such that any DFA accepting L(A) ∪ L(B) needs at least 2n + 1
states.

Proof. Consider the pairs (i, j) which represents the states of a DFA C, constructed by
the previous algorithm, accepting L(A) ∪ L(B). Then for each of these pairs (i, j) where
i ∈ {0,−1} and j ∈ {0, . . . , n − 1,−1} except the case when both, i and j, are −1, there
exists a word

w =

aj if i 6= −1 ∧ j 6= −1

baj if i = −1 ∧ j 6= −1

an if i 6= −1 ∧ j = −1

which represents each state of C. Thus there are at least 2n + 1 distinct states. Note
that there is only one pair such that i 6= −1 ∧ j = −1.

Proposition 9. For any integer n ≥ 2, exists an 1-state DFA A (defined above) with one
transition and an n-state DFA B (Fig. 2) with s = 2n − 1 transitions such that any DFA
accepting L(A) ∪ L(B) has, at least, 2(s + 1) transitions.

Proof. Consider the DFA C, constructed with the previous algorithm, such that L(C) =
L(A) ∪ L(B). If we name the defined and undefined transitions of the DFA A and B as in
the case 2 of the proof of the Proposition 3 then the DFA C has:

• 2n a-transitions because there exist n−1 a-transitions of the form (αi, βj) i = 1 and 1 ≤
j ≤ n − 1, where αi represents the a-transitions of DFA A and βj represents the a-
transitions of the DFA B; 2 a-transition of the form (αi, β̄j) 1 ≤ j ≤ 2 where β̄j
represents the undefined a-transitions of the DFA B; and n − 1 a-transitions of the
form (ᾱi, βj) i = 1 where ᾱi represents the a-undefined transition of the DFA A.

• 2n b-transitions because by this symbol only exist transitions of the form (ᾱ, βj) 1 ≤
j ≤ n where ᾱ represents the undefined b-transition of the DFA A and βj represents
the b-transitions of the DFA B.

10

Consequently,
2n+ 2n = 4n

Thus, the DFA C has 4n transitions. As r = 1 and s = 2n− 1 ⇔ n = s+1
2 . Therefore,

4n

= 4(
s+ 1

2
)

= 2(s+ 1)

Thus, the DFA D has 2(s+1) transitions. Note that r = 1, thus 2(s+1) = (r+1)(s+1).

Theorem 2. For any integer n ≥ 2, exists an 1-state DFA A with one transition and an
n-state DFA B with s = 2n − 1 transitions such that any DFA accepting L(A) ∪ L(B) has,
at least, 2n+ 1 states and 2(s + 1) transitions.

3.2.3 Example

The automata 3 and 4 are an example of the worst-case family for n = 2 and m = 2:

0 1
a

a, b

c c

Figure 3: Union: Example of DFA A with m=2

This DFA A is a-complete and c-complete (t(a,A) = 2, t(c,A) = 2); and it is b-incomplete
(t(b,A) = 1).

0 1
b

b

a a, c

Figure 4: Union: Example of DFA B with n=2

This DFA B is a-complete and b-complete (t(a,B) = 2, t(b,B) = 2); and it is c-
incomplete (t(c,B) = 1).

Consider the DFA C resulting of the union operation. If we calculate the number of
τ -transitions (τ ∈ Σ) using the above formula (2), we obtain:

t(a,C) = 2 ∗ 2 + 2 ∗ 1 + 1 ∗ 2 = 8
t(b, C) = 1 ∗ 2 + 1 ∗ 1 + 2 ∗ 2 = 7
t(c, C) = 2 ∗ 1 + 2 ∗ 2 + 1 ∗ 1 = 7
Thus, C has 22 transitions.
We can also use the Proposition 3 and we obtain

itc(L(C)) ≤ 5(1 + 2) + 5(1 + 2)− (2.2 + 1.2 + 2.1)

5.3 + 5.3 − (4 + 2 + 2)

22

The diagram 5 illustrates the DFA C resulting from the union operation:

This DFA C is a-complete (t(a,C) = 8); it is b-incomplete and c-incomplete - (t(b, C) =
7, t(c, C) = 7). As C is minimal we can say that itc(L(C)) = 22.

11

(0, 0) (1, 0)

(−1, 1)

(0,−1)

(0, 1)

(1,−1)

(−1, 0)

(1, 1)

a

b

c

b
a

c

b

a

a

b

a, b

b

a

ba, c

c

c

c

a

c

Figure 5: Union: DFA C resulting from the union operation

4 Incomplete Transition Complexity of the Concatenation

In this section we will show how many states and transitions are sufficient and necessary, in
the worst case, for a DFA to accept the concatenation of two DFAs.

4.1 An Upper Bound

The following algorithm computes a DFA for the concatenation of a DFA A = (Q,Σ, δA, q0, FA),
where −1 /∈ Q and |Q| = n, with a DFA B = (P,Σ, δB , p0, FB), where |P | = m . Let
C = (R,Σ, δC , r0, FC) be a new DFA with R = (Q ∪ {−1}) × 2P − FA × 2P−{p0}, r0 =
〈q0, ∅〉 if q0 /∈ FA or r0 = 〈q0, {p0}〉 if q0 ∈ FA, FC = {〈q, T 〉 ∈ R | T ∩ FB 6= ∅}, and
for a ∈ Σ, δC(〈q, T 〉, a) = 〈q′, T ′〉 with q′ = δA(q, a), if δA(q, a) ↓ or q′ = −1 otherwise, and
T ′ = δB(T, a) ∪ {p0} if q′ ∈ FA or T ′ = δB(T, a) otherwise.

Lemma 10. The extended transition function for the DFA C (δ̂C), resulting from the
algorithm above, is defined in the follwing way:

δ̂C(〈q, T 〉, ǫ) = ǫ

δ̂C(〈q, T 〉, w) =

〈δ̂A(q, w), δ̂B(T,w) ∪ {p0}〉 if δ̂A(q, w) ↓ ∧ δ̂A(q, w) ∈ FA

〈δ̂A(q, w), δ̂B(T,w)〉 if δ̂A(q, w) ↓ ∧ δ̂A(q, w) /∈ FA

〈−1, δ̂B(T,w)〉 if δ̂A(q, w) ↑ ∧ δ̂B(T,w) 6= ∅

↑ otherwise

Proof. If w = ǫ is trivial that δ̂C(〈q, T 〉, ǫ) = ǫ. Let us prove by induction on the size of word
w. If w = σ, σ ∈ Σ we have that:

δ̂C(〈q, T 〉, σ) = δC(〈q, T 〉, σ)

=

〈δA(q, σ), δB(T, σ) ∪ {p0}〉 if δA(q, σ) ↓ ∧ δA(q, σ) ∈ FA

〈δA(q, σ), δB(T, σ)〉 if δA(q, σ) ↓ ∧ δA(q, σ) /∈ FA

〈−1, δB(T, σ)〉 if δA(q, σ) ↑ ∧ δB(T, σ) 6= ∅

↑ otherwise

12

Assume that δ̂C(〈q, T 〉, w), w 6= ǫ, is defined as above and let us prove that the same
happens for δ̂C(〈q, T 〉, wσ).

δ̂C(〈q, T 〉, wσ) = δC(δ̂C(〈q, T 〉, w), σ)

=

δC(〈δ̂A(q, w), δ̂B(T,w) ∪ {p0}〉, σ) if δ̂A(q, w) ↓ ∧ δ̂A(q, w) ∈ FA

δC(〈δ̂A(q, w), δ̂B(T,w)〉, σ) if δ̂A(q, w) ↓ ∧ δ̂A(q, w) /∈ FA

δC(〈−1, δ̂B(T,w)〉, σ) if δ̂A(q, w) ↑ ∧ δ̂B(T,w) 6= ∅

↑ otherwise

=

〈δA(δ̂A(q, w), σ), δB (δ̂B(T,w) ∪ {p0}, σ) ∪ {p0}〉 if q′ ↓ ∧ q′ ∈ FA

〈δA(δ̂A(q, w), σ), δB (δ̂B(T,w), σ)〉 if q′ ↓ ∧ q′ /∈ FA

〈δA(−1, σ), δB(δ̂B(T,w), σ)〉 if q′ ↑ ∧ T ′ 6= ∅

↑ otherwise

where q′ = δA(δ̂A(q, w), σ) and T ′ = δB(δ̂B(T,w), σ).

=

〈δ̂A(q, wσ), δ̂B(T,wσ) ∪ δB({p0}) ∪ {p0}〉 if q′′ ↓ ∧ q′′ ∈ FA

〈δ̂A(q, wσ), δ̂B(T,wσ)〉 if q′′ ↓ ∧ q′′ /∈ FA

〈−1, δ̂B(T,wσ)〉 if q′′ ↑ ∧ T ′′ 6= ∅

↑ otherwise

where q′′ = δ̂A(q, wσ) and δ̂B(T,wσ).

Thus, the lemma holds.

Proposition 11. DFA C recognizes the language L(A)L(B).

Proof. We need to prove that if a word pertains to L(A)L(B) then the DFA C accepts the
word.

Consider w ∈ L(A)L(B) such that w = w′w′′, where w′ ∈ L(A) and w′′ ∈ L(B). Thus,

δ̂C(r
′
0, w) = δ̂C(r0, w

′w′′) =

= δ̂C(〈q0, T 〉, w
′w′′) =

= δ̂C(δ̂C(〈q0, T 〉, w
′), w′′) =

= δ̂C(〈q
′, T ′〉, w′′) =

where p0 ∈ T ′because q′ ∈ FA, by assumption.

As we know that p0 ∈ T ′ and w′′ ∈ L(B) we have that

= 〈q′′, T ′′〉

where pf ∈ T ′′ and pf ∈ FB .

Therefore, the word is accepted by the DFA C.
Let us prove that if the DFA C accepts a word then the word pertains to L(A)L(B).

If a word is accepted by the DFA C then exists a state 〈q, T 〉 ∈ R such that T ∩ FB 6= ∅,
which implies that T 6= ∅. As T 6= ∅ we know that exists a state 〈q′, T ′〉 ∈ R and w′ ∈ w
such that δ̂C(r0, w

′) = 〈q′, T ′〉 where q′ ∈ FA and p0 ∈ T ′ — w′ ∈ L(A). Thus, if w = w′w′′,
δ̂C(〈q

′, T ′〉, w′′) = 〈q, T 〉. As T ∩ FB 6= ∅, thus w′′ ∈ L(B). Therefore, w ∈ L(A)L(B).

13

The following results determine the number of states and transitions which are sufficient
for any DFA C resulting from the previous algorithm.

Proposition 12. For any m-state DFA A and any n-state DFA B, (m+1)2n−f(A)2n−1−1
states are sufficient for any DFA accepting L(A)L(B).

Proof. R is a set of pairs (α, β) where α is a state in Q or -1; and the β is a subset of P . R
does not contain the pairs in which α is a final state of A and the β does not contain the
initial state of B. Thus,

(1) (m+1)2n corresponds to the set of pairs such that the first component of each pair is a
state in Q or -1; and the second component is a subset of P .

(2) f(A)2n−1 corresponds to the pairs in which the first component is a final state of A and
the second component does not contain the initial state of B. This pairs are not in R
but they are counted in (1) and because of this we need to remove them.

(3) 1 corresponds to the pair (−1, ∅), which is not in R and because of this we also remove
it.

Therefore, the number of states is:

(m+ 1)2n − f(A)2n−1 − 1

Note that we don’t need to take in account the dead state of the DFA B, because it
corresponds to the empty set in the second component of the pair which is not relevant
in R.

Corollary 1. The formula in Proposition 12 is maximal when f(A) = 1.

Given an automaton A, the alphabet can be partitioned in two sets ΣA
c and ΣA

i such that
τ ∈ ΣA

c if A is τ -complete, or τ ∈ ΣA
i otherwise. In the same way, considering two automata

A and B, the alphabet can be divided into four disjoint sets Σci, Σcc, Σii and Σic. As before,
these notations can be extended to regular languages considering their minimal DFA.

Proposition 13. For any regular languages L1 and L2 with isc(L1) = m, isc(L2) = n,
uτ = uτ (L2), f = f(L1) and ūτ = ūτ (L1), one has

itc(L1L2) ≤ |Σ|(m+ 1)2n − |ΣL2

c |(f2n−1 + 1)−
∑

τ∈Σ
L2

i

(2uτ + f2itcτ (L2))−

−
∑

τ∈Σii

ūτ2
uτ −

∑

τ∈Σic

ūτ .

Proof. Let A and B be the minimal DFAs that recognize L1 and L2, respectively. Consider
the DFA C such that L(C) = L(A)L(B) and C is constructed using the algorithm described
above. We name the τ -transitions of A and B as in case 2 of the proof of the Proposition 3
with a slight modification: 1 ≤ j ≤ u(τ,B). The τ -transitions of C are pairs (θ, γ) where θ
is an αi or ᾱi, and γ is a set of βj or β̄j . By construction, C cannot have transitions where
θ is an ᾱi, and γ is a set with only β̄j , because these would correspond to pairs of undefined
transitions.

Let us count the number of τ -transitions of C. If τ ∈ Σci, the number of C τ -transitions
is (t(τ,A) + 1)2t(τ,B)+u(τ,B) − 2u(τ,B) − f(A)2t(τ,B). The number of θs is t(τ,A) + 1 and

14

the number of γs is 2t(τ,B)+u(τ,B). From the product we need to remove the 2u(τ,B) sets of
transitions of the form (v, ∅) where v corresponds to the undefined τ -transition leaving the
added state −1 of DFA A. If θ corresponds to a transition that leaves a final state of A, then
γ needs to include the initial state of the B. Thus we also remove the f(A)2t(τ,B) pairs. If
τ ∈ Σcc, C has (t(τ,A)+1)2t(τ,B)−1− f(A)2t(τ,B)−1 τ -transitions. In this case, u(τ,B) = 0.
The only pair we need to remove is (v, ∅) where v corresponds to the undefined τ -transition
leaving the added state −1 of DFA A. Analogously, if τ ∈ Σii, C has (t(τ,A) + u(τ,A) +
1)2t(τ,B)+u(τ,B) − (ū(τ,A) + 1)2u(τ,B) − f(A)2t(τ,B) τ -transitions. Finally, if τ ∈ Σic, C has

(t(τ,A) + u(τ,A) + 1)2t(τ,B) − (ū(τ,A) + 1)− f(A)2t(τ,B)−1 τ -transitions. In conclusion,

(m+ 1)2n − 2u(τ,B) − f(A)2t(τ,B) A τ -complete ∧B τ -incomplete

(m+ 1)2n − 1− f(A)2n−1 A τ -complete ∧B τ -complete

(m+ 1)2n − (ū(τ, A) + 1)2u(τ,B) − f(A)2t(τ,B) A τ -incomplete ∧B τ -incomplete

(m+ 1)2n − (ū(τ, A) + 1)− f(A)2n−1 A τ -incomplete ∧B τ -complete

(3)

Thus the incomplete transition complexity is:

itc(L1L2) ≤
∑

τ∈Σci

(m+ 1)2n − 2uτ − f2itcτ(L2) +
∑

τ∈Σcc

(m+ 1)2n − 1− f2n−1 +
∑

τ∈Σii

(m+ 1)2n − (ūτ + 1)2uτ − f2itcτ(L2) +
∑

τ∈Σic

(m+ 1)2n − (ūτ + 1)− f2n−1

If we simplify this inequality we obtain:

itc(L1L2) ≤ |Σci|(m+ 1)2n −
∑

τ∈Σci

(2uτ + f2itcτ(L2)) + |Σcc|((m+ 1)2n − (1 + f2n−1)) + |Σii|(m+ 1)2n

−
∑

τ∈Σii

((ūτ + 1)2uτ + f2itcτ (L2)) + |Σic|((m+ 1)2n − f2n−1 − 1)−
∑

τ∈Σic

ūτ

itc(L1L2) ≤ |Σ|(m+ 1)2n − |Σic|(f2
n−1 + 1)−

∑

τ∈Σci

(2uτ + f2itcτ (L2))−

|Σcc|(1 + f2n−1)−
∑

τ∈Σii

((ūτ + 1)2uτ + f2itcτ (L2))−
∑

τ∈Σic

ūτ

itc(L1L2) ≤ |Σ|(m+ 1)2n − |ΣL2

c |(f2n−1 + 1)−
∑

τ∈Σ
L2

i

(2uτ + f2itcτ (L2))−

−
∑

τ∈Σii

ūτ2
uτ −

∑

τ∈Σic

ūτ .

Thus the inequality in the proposition holds.

4.2 Worst-case Witnesses

The following results show that the complexity upper bounds found in Propositions 12 and
13 are tight. As in the previous section we need to consider three different cases, according
to the state and transition complexities of the operands. All following automaton families
have Σ = {a, b, c}. For these automata, it is easy to prove that they are minimal. It is
also possible to prove that there cannot exist binary language families that reach the upper
bounds.

15

4.2.1 Case 1: m ≥ 2 and n ≥ 2.

Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . ,m−1}, FA = {m−1}, and δA(i, a) = i+1 mod m,
if 0 ≤ i ≤ m − 1, δA(i, b) = 0, if 1 ≤ i ≤ m − 1, and δA(i, c) = i if 0 ≤ i ≤ m − 1; and
B = (P,Σ, δB , 0, FB) with P = {0, . . . , n − 1}, FB = {n − 1}, δB(i, a) = i if 0 ≤ i ≤ n − 1,
δB(i, b) = i+ 1 mod n, if 0 ≤ i ≤ n− 1, and δB(i, c) = 1, 1 ≤ i ≤ n− 1 (see Fig. 6).

(A) 0 1 2 · · · m− 1

c
a

c

b
a

c

b

a a

c

a, b

(B) 0 1 2 · · · n− 1

a

b

a, c
b

a

c
b b

a

b
c

Figure 6: DFA A with m states and DFA B with n states.

Proposition 14. DFA A is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, , i 6= j. It is clear that
xam−1−i ∈ L(A) but yam−1−i /∈ L(A). Then x and y are in different left quotients induced
by L(A).

Proposition 15. DFA B is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, , i 6= j. It is clear that
xbn−1−i ∈ L(B) but ybn−1−i /∈ L(B). Then x and y are in different different left quotients
induced by L(B).

Proposition 16. For any integers m ≥ 2 and n ≥ 2, exist an m-state DFA A and an n-state
DFA B such that any DFA accepting L(A)L(B) needs at least (m+ 1)2n − 2n−1 − 1 states.

Proof. (The proof follows the proof of the theorem 2.1 of [18]) Consider the DFA A and B
which are shown in Fig. 6. We can verify that

L(A) = {xy | x ∈ (c⋆a⋆{b})⋆, y ∈ {a, c} and #a(y) = m− 1 mod m}
and

L(B) ∩ {a, b}⋆ = {x ∈ {a, b}⋆ | #b(x) = (n− 1) mod n}
Let us consider the concatenation of L(A) and L(B), i.e., L(A)L(B).

Fact. For m ≥ 2, L(A) ∩ Σ⋆{b} = ∅, i.e. we never have a b at the end of a word which
is accepted by the DFA A.

From each x ∈ {a, b}⋆, we define

S(x) = {i | x = uv such that u ∈ L(A) and i = #b(v) mod n}

Consider x, y ∈ {a, b}⋆ such that S(x) 6= S(y). Let k ∈ S(x) − S(y) (or S(y) − S(x)).
Then it is clear that xbn−1−k ∈ L(A)L(B) but ybn−1−k /∈ L(A)L(B). Thus x and y are
in different left quotients induced by L(A)L(B).

For each x ∈ {a, b}⋆, define T (x) = max{|z|| x = yz and z ∈ a⋆}, i.e., T (x) is the highest
number of a’s at the end of a word x. Consider α, β ∈ {a, b}⋆ such that S(α) = S(β) and
T (α) > T (β) mod m. Let i = T (α) mod m and w = am−1−ibn−1. We want to prove that

16

αw ∈ L(A)L(B). We know that α ends with i a’s and i ≥ 1. Thus, to reach the final state of
the DFA A we only need to have more m−1−i a’s. The remaining word consists in n−1 b’s,
so it ends up in the final state of the DFA B. Therefore αw ∈ L(A)L(B). βw /∈ L(A)L(B)
because it have at least less one a than αw.

Notice that there does not exist a word w ∈ Σ⋆ such that 0 /∈ S(w) and T (w) = m− 1,
since the fact that T (w) = m − 1 guarantees that 0 /∈ S(w) because S(w) = {0 | w =
uv such that u ∈ L(A) and i = #b(v) mod n}, i.e., if w have m− 1 a’s at the end then it
not has b’s thus i=0.

For each subset s = {i1, . . . , it} of {0, . . . , n − 1}, where i1 > · · · > it, and an integer
j ∈ {0, . . . ,m− 1,−1} except the case when both 0 ∈ s and j = m− 1 are true and the case
when both s = ∅ and j = −1 are true, there exists a word

x =

{

am−1bi1 · · · am−1bitaj if j 6= −1

am−1bi1 · · · am−1bitbn if j = −1

such that S(x) = s and T (x) = j. Thus, there are at least (m+ 1)2n − 2n−1 − 1 distinct
left quotients.

Proposition 17. For any integers m ≥ 2 and n ≥ 2 exist an m-state DFA A with r = 3m−1
transitions and an n-state DFA B with s = 3n − 1 transitions (Fig. 6) such that any DFA

accepting L(A)L(B) has, at least, (r + 1)2
s+1
3 + 3.2

s−2
3 − 5 transitions.

Proof. Consider the DFA C such that L(C) = L(A)L(B), and, as in Proposition 13, the
transitions of C are pairs (θ, γ). Then, C has:

• (m+1)2n− 2n−1− 1, a-transitions. There are m+1 θs and 2n γs, from which we need
to remove the transition pair (−1, ∅). If θ is a transition which leaves a final state of
A, γ needs to include the transition that leaves the initial state of B. Thus, 2n−1 pairs
are removed.

• (m+ 1)2n − 2n−1 − 2, b-transitions. Here, the transition (θ̄, ∅) is removed.

• (m+ 1)2n − 2n−1 − 2, c-transitions. This is analogous to the previous cases.

Thus,

(m+ 1)2n − 2n−1 − 1 + (m+ 1)2n − 2n−1 − 2 + (m+ 1)2n − 2n−1 − 2

= 3m2n + 3.2n − 3.2n−1 − 5

= 3(m2n + 2n − 2n−1)− 5

= 3(m2n + 2n−1)− 5

Therefore the DFA C has 3(m2n +2n−1)− 5 transitions. As r = 3m− 1 ⇔ m = r+1
3 and

s = 3n− 1 ⇔ n = s+1
3 . Thus,

3.m2n + 3.2n−1 − 5

= 3(
r + 1

3
)2

s+1
3 + 3.2

s+1
3

−1 − 5

= (r + 1)2
s+1
3 + 3.2

s−2
3 − 5

Therefore the DFA C has (r + 1)2
s+1
3 + 3.2

s−2
3 − 5 transitions.

17

Theorem 3. For any integers m ≥ 2 and n ≥ 2 exist an m-state DFA A with r = 3m− 1
transitions and an n-state DFA B with s = 3n− 1 transitions such that any DFA accepting

L(A)L(B) has, at least, (m+1)2n− 2n−1− 1 states and (r+1)2
s+1
3 +3.2

s−2
3 − 5 transitions.

4.2.2 Case 2: m = 1 and n ≥ 2.

Let A = (Q,Σ, δA, 0, FA) with Q = {0}, FA = {0}, δA(0, b) = δA(0, c) = 0; and define
B = (P,Σ, δB , 0, FB) with P = {0, . . . , n − 1}, FB = {n − 1}, δB(i, a) = i if 0 ≤ i ≤ n − 1,
δB(i, b) = i + 1 mod n if 0 ≤ i ≤ n − 1, and δB(i, c) = i + 1 mod n, if 1 ≤ i ≤ n − 1 (see
Fig. 7).

(A) 0

b, c

(B) 0 1 · · · n− 1

a

b

a

b, c b, c

a

b, c

Figure 7: DFA A with 1 state and DFA B with n states.

Proposition 18. DFA A is minimal.

Proposition 19. DFA B is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, i 6= j. It is clear that
xbn−1−i ∈ L(B) but ybn−1−i /∈ L(B). Then x and y are in different left quotients induced
by L(B).

Proposition 20. For any integer n ≥ 2, exist a 1-state DFA A and an n-state DFA B such
that any DFA accepting L(A)L(B) needs at least 2n+1 − 2n−1 − 1 states.

Proof. Consider the DFA C = (R,Σ, δ, 0, F), constructed by the previous algorithm, such
that L(C) = L(A)L(B). The DFA A and the DFA B are defined in the beginning of
this section. One needs to prove that C is minimal, i.e. all states are reachable from the
initial state and are pairwise distinguishable. The DFA C has states (s, c) with s ∈ {−1, 0},
c = {i1, . . . , ik}, 1 ≤ k ≤ n, and i1 < · · · < ik. There are two kinds of states: final states
where ik = n− 1; and non-final states where ik 6= n− 1. Note that whenever s = 0, i1 = 0.

Let f be a final state of the form (s, c), where c = {i1, . . . , ik−1, n − 1} and c̄ = P \ c.
Let us construct a word w of size n, such that δ(0, w) = f . We will count the positions
(starting with zero) of the word w from the last to the first. If f has s = −1, w has an a
in the position i1; c’s in the positions j ∈ c̄ \ {i1 − 1} if i1 6= 0 or j ∈ c̄ otherwise; all the
other positions are b’s. For example, if n = 5, c = {4} and c̄ = {0, 1, 2, 3} then w = abccc.
If f has s = 0 the word has c’s in all positions ij − 1, 1 ≤ j ≤ k − 1 for all ij ∈ c̄; all the
other positions are b′s. For example, if c = {0, 4}, c̄ = {1, 2, 3} and n = 5 then w = bbccc.
Now, consider the non-final states p which have the same form (s, c), but ik 6= n − 1 and
c̄ = {0, . . . , n− 2}\ c. The word w for these two types of non-final states is constructed with
the same rules described above for final states.

It was proved that all states are reachable from initial state. Now let us prove that all
states are pairwise distinguishable. Final states are trivially distinguishable from non-final
states. We need to prove that states of the same kind are distinguishable. Consider x, y ∈ Σ⋆

such that δ̂(0, x) = q and δ̂(0, y) = p, q 6= p. Suppose that q and p are final. There are
three cases to consider. Let q = (0, {0, i2 , . . . , ik, n − 1}) and p = (0, {0, j2, . . . , jk′ , n − 1}).
Suppose k ≥ k′ and i ∈ {0, i2, . . . , ik, n−1}\{0, j2 , . . . , jk′ , n−1}. Then xcn−1−i ∈ L(C) but
ycn−1−i /∈ L(C). If q = (−1, {i1, . . . , ik, n−1}) and p = (−1, {j1, . . . , jk′ , n−1}), we can take

18

i as before and then xbn−1−i ∈ L(C) but ybn−1−i /∈ L(C). If q = (0, {0, i2, . . . , ik, n − 1})
and p = (−1, {j1, . . . , jk′ , n − 1}), then xcnbn−1 ∈ L(C) but ycnbn−1 /∈ L(C). Now suppose
that q and p are non-final. Let q = (0, {0, i2 , . . . , ik}) and p = (0, {0, j2, . . . , jk′}). Consider,
without lost of generality, k ≥ k′ and i ∈ {0, i2, . . . , ik} \ {0, j2, . . . , jk′}. It is clear that
xcn−1−i ∈ L(C) but ycn−1−i /∈ L(C). If q = (−1, {i1, . . . , ik}) and p = (−1, {j1, . . . , jk′}),
we can take i ∈ {i1, . . . , ik} \ {j1, . . . , jk′} and then xbn−1−i ∈ L(C) but ybn−1−i /∈ L(C ′).
Finally, if q = (0, {0, i2, . . . , ik}) and p = (−1, {j1, . . . , jk′}), clearly xcnbn−1 ∈ L(C) but
ycnbn−1 /∈ L(C). Thus C is minimal and has 2n+1 − 2n−1 − 1 states.

Thus we have 2n−2 + 2n−1 final states and 2n−2 + 2n−1 − 1 non-final states. Then

2n−2 + 2n−1 + 2n−2 + 2n−1 − 1 = 2n + 2n−1 − 1

= 2n−1(2 + 1)− 1

= 2n−1(22 − 1)− 1

= 2n+1 − 2n−1 − 1

Therefore, a DFA accepting L(A)L(B) needs at least 2n+1 − 2n−1 − 1 states.

Proposition 21. For any integer n ≥ 2, exist a 1-state DFA A (defined above) with 2
transitions and an n-state DFA (B Fig. 7). with s = 3n − 1 transitions such that any DFA

accepting L(A)L(B) has, at least, 3(2
s+4
3 − 2

s−2
3)− 4 transitions.

Theorem 4. For any integer n ≥ 2, exist a 1-state DFA A with 2 transitions and an n-state
DFA B with s = 3n − 1 transitions such that any DFA accepting L(A)L(B) has, at least,

2n+1 − 2n−1 − 1 states and 3(2
s+4
3 − 2

s−2
3)− 4 transitions.

(A) 0 1 2 · · · m− 1

a

b, c

a

b

a

b, c b, c

a

b, c

(B) 0

b, c

Figure 8: DFA A with m states and DFA B with 1 state.

4.2.3 Case 3: m ≥ 2 and n = 1.

Define A = (P,Σ, δA, 0, FA) with P = {0, . . . , n− 1}, FA = {m− 1}, δA(i,X) = i, if 0 ≤ i ≤
m−1, δA(i, b) = i+1 mod m, if 0 ≤ i ≤ m−1, δA(i, c) = i+1 mod m if i = 0 or 2 ≤ i ≤ m−1;
and B = (Q,Σ, δB , 0, FB) with Q = {0}, FB = {0}, and δB(0, b) = δB(0, c) = 0 (see Fig. 8).

Proposition 22. DFA A is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, i 6= j. xbn−1−i ∈ L(A) but
ybn−1−i /∈ L(A). Then x and y are in different left quotients induced by L(A).

Proposition 23. DFA B is minimal.

Proposition 24. For any integers m ≥ 2, there exists an m-state DFA A and a 1-state
DFA B such that any DFA accepting L(A)L(B) needs at least 2m states.

Proof. Consider the DFA C = (Q,Σ, δ, 0, F), constructed with the previous algorithm, such
that L(C) = L(A)L(B). The DFA A is represented in Fig. 8. By construction we know that
C have two kinds of p states:

19

• final states which are of the form (α, {0}) where α ∈ {0, . . . ,m− 1} or (−1, {0}).

• non-final states which are of the form (α, ∅) where α ∈ {0, . . . ,m− 2}.

For any state p we can find a word w for which δ(0, w) = p. If p is a final state of the
form (α, {0}) where α ∈ {0, . . . ,m − 1} then w = bm+x. In case p has the form (−1, {0})
then w = bm+1c. Finally, if p is a non-final state then w = bx.

Let us prove that the final states are distinguishable:

• The states of the form (α, {0}) where α ∈ {0, . . . ,m − 1} are not equivalent because
they correspond to the states of the DFA E which is minimal.x

• The state (−1, {0}) is not equivalent to the other final states because it is the only
state which is τ -incomplete.

Now, consider the non-final states (i, {0}), (j, {0}) and x, y ∈ Σ⋆ such that δ̂(0, α) =
(i, {0}) and δ̂(0, β) = (j, {0}). It is clear that xai+1bm−1−iai+1 ∈ L(A)L(B) but yai+1bm−1−iai+1 /∈
L(A)L(B). Then x and y are in different left quotients induced by L(A)L(B).

Thus, a DFA accepting L(A)L(B) needs at least 2m states.

Proposition 25. For any integer m ≥ 2 exists an m-state DFA A (Fig. 8). with r = 3m−1
transitions and an 1-state DFA B with 2 transitions such that any DFA accepting L(A)L(B)
has at least 2r transitions.

Proof. Similar to the proof of the Proposition 3.

Theorem 5. For any integer m ≥ 2 exists an m-state DFA A. with r = 3m− 1 transitions
and an 1-state DFA B with 2 transitions such that any DFA accepting L(A)L(B) has at least
2m states and 2r transitions.

4.2.4 Why |Σ|=3?

Let us show with an example why with a two letter alphabet we cannot build a DFA which
state complexity reaches the upper bound.

0

a

Figure 9: Concatenation: Example of DFA A with m = 1 and |k| = 2

0 1 2
a

a

a

bb

Figure 10: Concatenation: Example of DFA A with n=3 and —k—=2

The states of the DFA resulting of the concatenation operation are:

0. (0, {0})

1. (0, {0, 1})

2. (0, {0, 1, 2})

20

3. (−1, {1})

4. (−1, {1, 2})

5. (−1, {2})

The pairs considered in the upper bound and which do not appear are:

• (0, {0, 2}) because δ((0, {1}), τ) = (0, {0, 2}) but (0, {1}) can not appear because in the
first component we have the final state of DFA A and because of this we need to have
the initial state of DFA B in the second component.

• (−1{0, 1}), (−1{0, 2}), (−1{0}) and (−1{0, 1, 2}) can not appear because 0 can only
appear in the second position of the pair if 0 is also in the first position of the pair
because in the DFA B any transition goes to 0.

Because of this we need one more letter which guarantees the pairs that are missing.

4.2.5 Example

The automata in Fig. 11 and Fig. 12 are an example from the worst-case family, with n = 2
and m = 2:

0 1
a

a, b

c c

Figure 11: Concatenation: Example of DFA A with m=2

This DFA A is a-complete and c-complete (t(a,A) = 2, t(c,A) = 2); and it is b-incomplete
(t(b,A) = 1).

0 1
b

b

a a, c

Figure 12: Concatenation: Example of DFA B with n=2

This DFA B is a-complete and b-complete (t(a,B) = 2, t(b,B) = 2); and it is c-
incomplete (t(c,B) = 1). If we calculate the number of transitions using the above formula
(3) , we obtain:

t(a,C) = (2 + 1) ∗ 22 − 1− 1 ∗ 22−1 = 3 ∗ 4− 1− 2 = 12− 3 = 9
t(b, C) = (1 + 1 + 1) ∗ 22 − 2− 1 ∗ 22−1 = 3 ∗ 4− 2− 2 = 14− 4 = 8
t(c, C) = (2 + 1) ∗ 21+1 − 21 − 1 ∗ 21 = 3 ∗ 22 − 2− 2 = 14− 4 = 8

Thus, C has 25 transitions.
We can also use the Proposition 13 and we obtain:

itc(L(C)) ≤ 3.3.22 − 2.(1.21 + 1)− (21 + 1.21)− 1

36 − 11

25

21

The diagram 13 illustrates the DFA C resulting from the concatenation operation:

〈0, ∅〉 〈1, {0}〉 〈0, {0}〉 〈−1, {1}〉

〈0, {1}〉

〈1, {0, 1}〉

〈−1, {0}〉

〈0, {0, 1}〉 〈−1, {0, 1}〉

a
a

b
a

b

c

a

b
b

a, b

b

a

b

c

c

c c

c

a, c

c

a

a, b

Figure 13: Concatenation: DFA C resulting from the concatenation operation

This DFA is a-complete (t(a,C) = 9); it is b-incomplete and c-incomplete - (t(b, C) =
8, t(c, C) = 8). Thus, it has 25 transitions. As C is minimal we can say that itc(L(C)) = 25

5 Incomplete Transition Complexity of the Star

In this section we give a tight upper bound for the incomplete transition complexity of
the star operation. The incomplete state complexity of star coincides with the one in the
complete case.

5.1 An Upper Bound

Let A = (Q,Σ, δ, q0, F) be a DFA. Let F0 = F \ {q0} and suppose that l = |F0| ≥ 1.
If F = {q0}, then L(A)⋆ = L(A). The following algorithm obtains the kleene star of a
DFA A. Let A′ = (Q′,Σ, δ′, q′0, F

′) be a new DFA where q′0 /∈ Q is a new initial state,
Q′ = {q′0} ∪ {P | P ⊆ (Q \ F0) ∧ P 6= ∅} ∪ {P | P ⊆ Q ∧ q0 ∈ P ∧ P ∩ F0 6= ∅},
F ′ = {q′0} ∪ {R | R ⊆ Q ∧R ∩ F 6= ∅}, and for a ∈ Σ,

δ′(q′0, a) =

{δ(q0, a)} if δ(q0, a) ↓ ∧ δ(q0, a) /∈ F0,

{δ(q0, a), q0} if δ(q0, a) ↓ ∧ δ(q0, a) ∈ F0,

∅ if δ(q0, a) ↑ .

and

δ′(R, a) =

δ(R, a) if δ(R, a) ∩ F0 = ∅,

δ(R, a) ∪ {q0} if δ(R, a) ∩ F0 6= ∅,

∅ if δ(R, a) = ∅.

We can verify that DFA A′ recognizes the language L(A)⋆.
We can verify that

Proposition 26. DFA A′ recognizes the language L(A)⋆.

Proof. Let w be a word of the language L(A)⋆. We know that w = ε or ∃n ∈ N ∃ w1, . . . , wn ∈
L(A) such that w = w1w2 · · ·wn.

22

Let us prove by induction on the size of the word w — n. For w ∈ Σ⋆ we prove that if
w = w1 · · ·wn and wi ∈ (L(A)) then w ∈ L(A⋆)

If w = ε we have δ̂′(q′0, ε) = {q′0} which is a final state of A’. Thus, the word is accepted
by the DFA A′.

If n=1 then w ∈ L(A) and δ̂′(q′0, w) = {δ̂(q0, w), q0} because δ̂(q0, w) ∈ F , and thus
δ̂′(q′0, w) ∈ F ′.

Assume that ∀1 ≤ m ≤ n ∀w1, . . . , wm ∈ L(A) : w1 · · ·wm ∈ L(A′), and let us prove that
∀w1, . . . , wn ∈ L(A) : w1 · · ·wn ∈ L(A′). We know that δ̂′(q′0, w1) = {δ̂(q0, w1), q0} because
δ̂(q0, w1) ∈ F . Thus,

δ̂′(q′0, w) = δ̂′(q′0, w1 · · ·wn)

= δ̂′({δ̂(q0, w1), q0}, w2 · · ·wn)

= δ̂′({δ̂(q0, w1)}, w2 · · ·wn) ∪ δ̂′({q0}, w2 · · ·wn) ∈ L(A)

by induction hypothesis.

We proved that if the word w pertains to the language L(A)⋆ then the DFA A′ accepts
the word w.

We need to prove that all words accepted by A′ are words pertaining to L(A)⋆. A state
of the DFA A′ is final if and only if it includes a final state of A or it is q′0. A word is accepted
by the DFA A′ if its recognizing process ends in a final state. Let trace of execution be the
sequence of states for which a word w passes through during the recognizing process. Note
that the trace of execution can include many final states. Let us proceed by induction on
number (n) of final states in the trace of execution.

If n = 1 the process ends in the unique final state in the trace of execution, and thus the
word is accepted by the automaton A.

Assume that if the trace of execution has n− 1 final states then the word pertains to the
language L(A′), and let us prove that if the trace of execution has n final states in it, the
word also pertains to the language. Let w be the word w1 · · ·wn−1wn.

By induction hypothesis we know that w1 · · ·wn−1 pertains to L(A)⋆ and we also know
that wn pertains to L(A). But then it also pertains to L(A)⋆. Thus, w pertains to the
language.

The following results present upper bounds for the number of states and transitions for
any DFA A′ resulting from the algorithm described above.

Proposition 27. For any integer n ≥ 2 and any n-state DFA A, any DFA accepting L(A)⋆

needs at least 2n−1 + 2n−l−1 states.

Proof. Consider A = (Q,Σ, δ, q0, F) and A′ = (Q′,Σ, δ′, q′0, F
′) constructed by the previous

algorithm such that L(A′) = (L(A))⋆. Note that Q′ is defined as the union of 3 different
sets. Thus, the number of states in Q′ is:

2n−1 + 2n−l−1

The states generated by the second set of Q′ are the non-empty parts of Q disjoint from
F0. So in this set we have 2n−l − 1 states (we also remove the empty set).

The states in the third set of Q′ are the parts of Q that contains q0 and are non-disjoint
from F0. Those are at most (2l − 1)2n−l−1:

23

• 2l − 1 corresponds to the number of sets with only final states from which we exclude
the empty set because 2l takes it in account .

• 2n−l−1 corresponds to the number of sets with only non-final and non-initial states.

Therefore the number of states is:

1 + 2n−l − 1 + (2l − 1)2n−l−1 = 2n−l + (2l − 1)2n−l−1

= 2n−l + 2l2n−l−1 − 2n−l−1

= 2n−l + 2n−1 + 2n−l−1

= 2n−1 + 2n−l(1− 2−1)

= 2n−1 + 2n−l2−1

= 2n−1 + 2n−l−1

Corollary 2. The formula in Proposition 27 is maximal when l = 1.

Proposition 28. For any regular language L with isc(L) = n, iτ = iτ (L), and and ūτ =
ūτ (L), one has

itc(L⋆) ≤ |Σ|(2n−1 + 2n−l−1) +
∑

τ∈Σi

(iτ − 2ūτ)

Proof. To simplify the notation, we omit the A in the following measures t(τ,A), ū(τ,A),
u(τ,A) and i(τ,A). Consider the DFA A′ such that L(A′) = (L(A))⋆ and A′ is constructed
using the algorithm below.

Following the analyze done to the states, the set of τ -transitions of A′ is the disjoint
union of:

1. the set of τ -transitions leaving the initial state of A, iτ ;

2. The set of transitions that exclude the τ -transitions leaving the final states of A:

• if A is τ -complete, A′ has (2t(τ)−l) − 1 τ -transitions of this form: t(τ) − l is the
number of τ -transitions leaving the non-final states of A. Then (2t(τ)−l) − 1 is the
number of sets formed with this transitions without the empty set.

• if A is τ -incomplete, A′ has (2t(τ)−l+u(τ) − 2ū(τ)) τ -transitions of this form: t(τ) −
l + u(τ) is the number of τ -transitions leaving the non-final states of A. Then
(2t(τ)−l+u(τ) − 2ū(τ)) is the number of sets consisted of this transitions minus the
number of sets composed only of the undefined transitions.

3. The set of transitions which include the transitions leaving the final states of A and
the transitions leaving the non-final states of A. We not need to consider the transition
leaving the initial state of A because, by construction, we know that whenever a transition
of A′ includes a transition leaving a final state of A then that also includes the transition
leaving the initial state of A.

• if A is τ -complete, then A′ has (2l − 1).2t(τ)−l−1 τ -transitions of this form.

24

• if A is τ -incomplete, then A′ has (2l − 1).2t(τ)−l−1+u(τ) τ -transitions of this form.

In conclusion,

1. the number of τ -transitions of A′ if A is τ -complete is:

i(τ) + 2t(τ)−l − 1 + (2l − 1)(2t(τ)−l−1) =

= 2t(τ)−f(τ)−1 + 2t(τ)−1

= 2n−l−1 + 2n−1

2. the number of τ -transitions of A′ if A is τ -incomplete is:

i(τ) + (2t(τ)−l+u(τ))− 2ū(τ) + (2l − 1)2t(τ)−l−1+u(τ) =

= i(τ) + 2n−l − 2ū(τ) + 2n−1 − 2n−l−1

= i(τ) + 2n−1 − 2n−l−1 − 2ū(τ)

Therefore,

∑

τ∈Σc

(2n−l−1 + 2n−1) +
∑

τ∈Σi

(i(τ) + 2n−1 − 2n−l−1 − 2ū(τ))

=
∑

τ∈Σ

(2n−l−1 + 2n−1) +
∑

τ∈Σi

i(τ)−
∑

τ∈Σi

2ū(τ)

= |k|(2n−l−1 + 2n−1) +
∑

τ∈Σi

i(τ) −
∑

τ∈Σi

2ū(τ)

Note that if A′ is τ -complete then i(τ) is equal to 1, t(τ) is equal to n.

Thus, the inequality in the proposition holds.

5.2 Worst-case Witnesses

Let us present an automaton family for which the upper bounds in Proposition 27 and
Proposition 28 are reached. The following automaton family has Σ = {a, b}. Using Myhill-
Nerode theorem, it is easy to prove that these automata are minimal.

Define A = (Q,Σ, δA, 0, FA) with Q = {0, . . . , n−1}, FA = {n−1}, δA(i, a) = i+1 mod n
for 0 ≤ i ≤ n− 1, and δA(i, b) = i+ 1 mod n for 1 ≤ i ≤ n− 1 (see Fig.14).

0 1 n− 1· · ·a a, b a, b

a, b

Figure 14: DFA A with n states.

Proposition 29. DFA A is minimal.

Proof. Consider x, y ∈ Σ⋆ such that δ̂(0, x) = i and δ̂(0, y) = j, i, j ∈ [0, n − 1], i 6= j. It is
clear that xan−1−i ∈ L(A) but yan−1−i /∈ L(A). Then x and y are in different left quotients
induced by L(A).

Proposition 30. For any integer n ≥ 2, exists a n-state DFA A such that any DFA accepting
(L(A))⋆ needs at least 2n−1 + 2n−2 states.

25

Proof. (Similar to the proof of the Theorem 3.3 of [18]) For n = 2 it is clear that L = {w ∈
{a, b}⋆|#a(w) is odd} is accepted by a two-state DFA, and L⋆ = {ε}∩{w ∈ {a, b}⋆|#a(w) ≥
1} cannot be accepted with less than 3 states. For n > 2, we consider the automaton family
A which is shown in Fig. 14. We construct the DFA A′ = (Q′,Σ, δ′, F ′) from A exactly as
described in the algorithm above. We want to show that L(A′) = (L(A))⋆ and that A′ is
minimal. L(A′) = (L(A))⋆ is true by construction. To prove the minimality of A′ we need
to show that:

• every state is reachable from the start state. Because each state of A′ (q ∈ Q′) is a
subset of states of Q of A, we proceed by induction on the size (s) of this set of states
– |q|. If |q| = 1 we have:

q = {1} = δ′(q′0, a) (4)

q = {i} = δ′({i− 1}, a) for each 1 < i < n− 1. (5)

Note that we obtain q = {0} from δ′({n− 1, 0}, b), which has size 2, but we obtain the
state {n−1, 0} from δ′({n−2}, a) which is already considered in (5). Then we have all
states such that |q| = 1. Assume that if |q| < s then q is reachable, and let us prove that
if |q| = s then it is also reachable. Consider q where |q| = s. Let q = {i1, i2, . . . , is} such
that 0 ≤ i1 < i2 < · · · < is < n − 1 if n− 1 /∈ q, 0 = i1 < i2 < · · · < is−1 < is = n− 1
otherwise. There are three cases to consider:

(I) {n− 1, 0, i3, . . . , is} = δ′({n− 2, i3 − 1, . . . , is − 1}, a) where the state {n− 2, i3 −
1, . . . , is − 1} contains s− 1 states.

(II) {0, 1, i3, . . . , is} = δ′({n − 1, 0, i3 − 1, . . . , is − 1}, a) where state the state {n −
1, 0, i3 − 1, . . . , is − 1} is considered in case (I).

(III) {t, i2, . . . , is} = δ′({0, i2 − t, . . . , is − t}, at), t > 0, where and the state {0, i2 −
t, . . . , is − t} is considered in case (II).

• each state defines a different left quotients induced by L(A′).

Consider p, q ∈ Q′, p 6= q and i ∈ p− q. Then δ′(p, an−1−i) ∈ F ′ but δ′(q, an−1−i) /∈ F ′.

Proposition 31. For any integer n ≥ 2, exists an n-state DFA A (Fig. 14) with r = 2n− 1

transitions such that any DFA accepting L(A)⋆ has, at least, 2
r+1
2 + 2

r−1
2 − 2 transitions.

Proof. Consider the DFA A′ such that L(A′) = (L(A))⋆. The DFA A′ has:

• 2n−1 + 2n−2 a–transitions because i(a) = 1, 2n−1 − 1 a–transitions which corresponds
to case 2 of Proposition 28 and 2n−2 a–transitions which corresponds to case 3 of
Proposition 28.

• 2n−1−2+2n−2 b–transitions because it has 2n−2+1−2 b–transitions which corresponds
to case 2 of Proposition 28, and 2n−3+1 b–transitions which corresponds to case 3.

The family of automata A′ have 2n−1−2n−2+2n−1−2+2n−2 = 2n+2n−1−2 transitions.

As r = 2n− 1 ⇔ n = r+1
2 , thus

26

2n + 2n−1 − 2

= 2
r+1
2 + 2

r−1
2 − 2

Finally, the family of automata A′ have 2
r+1
2 + 2

r−1
2 − 2 transitions.

Theorem 6. For any integer n ≥ 2, exists an n-state DFA A with r = 2n − 1 transitions

such that any DFA accepting L(A)⋆ has, at least, 2n−1 + 2n−2 states and 2
r+1
2 + 2

r−1
2 − 2

transitions.

5.2.1 Example

The DFA A in Figure 15 is an example from the worst-case family, with n = 3:

0 1 2
a a, b

a, b
Figure 15: Star: Example of DFA A with n=3

This DFA A is a-complete (t(a) = 3); and it is b-incomplete (t(b) = 2).
Let us calculate the transition complexity of L(A)⋆ using the Proposition 31:

tc(L(A)⋆) ≤ 23−1(2−1 + 1) + 0− 23−1(21−2 − 2−1 − 1)

2 + 22 − 2 + 2 + 22

10

q′0 {1} {0, 2} {0}

{0, 1} {1, 2, 0}

a a, b

a

b

a

b

a

b

a
Figure 16: Star: DFA A′ resulting from the star operation

The diagram in Figure 16 shows the DFA resulting from the star operation. This DFA
is a-complete (t(a) = 6); it is b-incomplete b (t(b) = 4). Thus, it has 10 transitions. As it is
minimal we can say that itc(L(A)) = 10.

6 Incomplete Transition Complexity of the Reversal

It is known that the reversal of a complete DFA reaches upper bound 2n. This upper bound
occurs because of the subset construction which is implicit in the reversal operation. Because
of this the DFA resulting of the reversal has a state which corresponds to the ∅, which is a
dead state. Therefore, if we permit that the resulting automata is not complete the state
complexity is 2n − 1. Consequently the transition complexity is |k|(2n − 1).

Note that the worst case of the reversal operation is always the complete DFAs, because
if the DFA A has less transitions, then the DFA resulting of the reversal operation never has
more than 2n states.

27

Operation sc isc nsc

L1 ∪ L2 mn mn+m+ n m+ n+ 1

L1 ∩ L2 mn mn mn

LC n n+ 1 2n

L1L2 m2n − f12
n−1 (m+ 1)2n − f12

n−1 − 1 m+ n

L⋆ 2m−1 + 2m−l−1 2m−1 + 2m−l−1 m+ 1

LR 2m 2m − 1 m+ 1

Table 1: State Complexity.

7 Unary Languages

A DFA that accepts a unary language has a non-cyclic part (tail) and a cyclic part (loop).
Note that if the DFA is not complete it only has the tail and it represents a finite language.
Thus, the worst case state complexity of operations occurs when the DFA of the operands
are complete. In these languages the (incomplete) transition complexity coincide with the
(incomplete) state complexity.

The study for union and intersection was made by Y. Gao et al. [6] and it is similar for
the other operations studied in this article.

8 Final Remarks

It is known that considering complete DFAs the state complexity of the reversal operation
reaches the upper bound 2n, where n is the state complexity of the operand language. By
the subset construction, a (complete) DFA resulting from the reversal has a state which
corresponds to the ∅, which is a dead state. Therefore, if we remove that state the resulting
automaton is not complete and the incomplete state complexity is 2n − 1. Consequently the
transition complexity is |Σ|(2n − 1). Note that the worst case of the reversal operation is
when the operand is complete.

In this paper we presented tight upper bounds for the incomplete state and incomplete
transition complexities for the union, the concatenation, the Kleene star and the reversal of
regular languages, with |Σ| ≥ 2. Transition complexity bounds are expressed as functions of
several more fine-grained measures of the operands, such as the number of final states, the
number of undefined transitions or the number of transitions that leave initial state.

Table 1 and Table 2 summarize some of the results on state complexity and transition
complexity of basic operations on regular languages, respectively. In Table 1 we present
the state complexity, based on complete DFA (sc) [18], DFA (isc) (new results here pre-
sented and [6]); and NFAs (nsc) [7]. Nondeterministic transition complexity (ntc) of basic
operations on regular languages was studied by Domaratzki and Salomaa [5, 12]. They also
used refined number of transitions for computing the operational transition complexity. In
Table 2, s(L) is the minimal number of transitions leaving the initial state of any transition-
minimal NFA M accepting L, and fin(L) is the number of transitions entering the final states
of any transition-minimal NFA M accepting L. The upper bound for the nondeterministic
transition complexity of the complementation is not tight, and thus we inscribe the lower
and the upper bounds.

In the case of unary languages, if a DFA is not complete it represents a finite language.
Thus, the worst-case state complexity of operations occurs when the operand DFAs are

28

Operation itc ntc

L1 ∪ L2 itc(L1)(1 + n) + itc(L2)(1+m)−
∑

τ∈Σ itcτ (L2)itcτ (L1)
ntc(L1) + ntc(L2) +
s(L1) + s(L2)

L1 ∩ L2 itc(L1)itc(L2)
∑

τ∈Σ
ntcτ (L1)ntcτ (L2)

LC |Σ|(itc(L) + 2)
|Σ|2ntc(L)+1

2
ntc(L)

2
−2 − 1

L1L2 |Σ|(m+ 1)2n − |ΣL2
c |(f 2

n−1 + 1)−
∑

τ∈Σ
L2

i

(2uτ

+f 2
itcτ (L2))−

∑

τ∈Σii

ūτ2
uτ −

∑

τ∈Σic

ūτ

ntc(L1) + ntc(L2) +
fin(L1)

L⋆ |Σ|(2m−l−1 + 2m−1) +
∑

τ∈Σi

(iτ − 2ūτ) ntc(L) + fin(L)

LR |Σ|(2m − 1) ntc(L) + f(L)

Table 2: Transition Complexity.

complete. For these languages the (incomplete) transition complexity coincide with the
(incomplete) state complexity. The study for union and intersection was made by Y. Gao et
al. [6] and it is similar for the other operations studied in this article.

In future work we plan to extend this study to finite languages and to other regular
preserving operations. In order to understand the relevance of these partial transition
functions based models, some experimental as well as asymptotic study of the average size
of these models must be done.

Acknowledgements This, as many other subjects, was introduced to us by Sheng Yu.
He will be forever in our mind.

References

[1] Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009)

[2] Brzozowski, J.A.: Complexity in convex languages. In: Dediu, A.H., Fernau, H., Mart́ın-
Vide, C. (eds.) 4th LATA 2010 Proc. LNCS, vol. 6031, pp. 1–15. Springer (2010)

[3] Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer (2006)

[4] Daciuk, J., Weiss, D.: Smaller representation of finite state automata. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.M., Maurel, D. (eds.) 16th CIAA 2011 Proc.
LNCS, vol. 6807, pp. 118–129. Springer (2011)

[5] Domaratzki, M., Salomaa, K.: Transition complexity of language operations. Theor.
Comput. Sci. 387(2), 147–154 (2007)

[6] Gao, Y., Salomaa, K., Yu, S.: Transition complexity of incomplete DFAs. Fundam.
Inform. 110(1-4), 143–158 (2011)

[7] Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite
automata. In: Champarnaud, J.M., Maurel, D. (eds.) 7th CIAA 2002 Proc. LNCS, vol.
2608, pp. 148–157. Springer (2003)

29

[8] Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata.
In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) 3rd LATA 2009 Proc. LNCS,
vol. 5457, pp. 23–42. Springer (2009)

[9] Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20(4), 563–
580 (2009)

[10] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

[11] Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

[12] Salomaa, K.: Descriptional complexity of nondeterministic finite automata. In: Harju,
T., Karhumäki, J., Lepistö, A. (eds.) 11th Developments in Language Theory,
DTL’2007. LNCS, vol. 4588, pp. 31–35. Springer (2007)

[13] Shallit, J.: A Second Course in Formal Languages and Automata Theory. CUP (2008)

[14] Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, vol. 1, pp. 41–110. Springer (1997)

[15] Yu, S.: State complexity: Recent results and open problems. Fundam. Inform. 64(1-4),
471–480 (2005)

[16] Yu, S.: On the state complexity of combined operations. In: Ibarra, O.H., Yen, H.C.
(eds.) 11th CIAA 2006 Proc. LNCS, vol. 4094, pp. 11–22. Springer (2006)

[17] Yu, S., Gao, Y.: State complexity research and approximation. In: Mauri, G., Leporati,
A. (eds.) 15th DLT 2011 Proc. LNCS, vol. 6795, pp. 46–57. Springer (2011)

[18] Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on
regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

30

