
Parallel Logic Programming Systems on ScalableArchitectures�V��tor Santos Costay, Ricardo Bianchini, and Inês de Castro DutraDepartment of Systems Engineering and Computer ScienceFederal University of Rio de Janeiro, Rio de Janeiro, Brazile-mail: fvitor,ricardo,inesg@cos.ufrj.brAbstractParallel logic programming (PLP) systems are sophisticated examples of symbolic com-puting systems. They address problems such as dynamic memory allocation, scheduling ir-regular execution patterns, and managing di�erent types of implicit parallelism. Most PLPsystems have been developed for bus-based shared-memory architectures. The complexityof PLP systems and the large amount of data they process raises the question of whetherlogic programming systems can still obtain good performance on scalable architectures, suchas distributed shared-memory systems.In this work we use execution-driven simulation of a DASH-like architecture to investi-gate the access patterns and caching behaviour exhibited by a parallel logic programmingsystem, Andorra-I. We �rst show that, without modi�cations, the system obtains reasonableperformance, but that it does not scale well. By studying the behaviour of the major datastructures in Andorra-I in detail, we conclude that this result is largely a consequence ofthe scheduling and work manipulation implementation used in the system. Our detailedanalysis exposes several opportunities for improvements to Andorra-I, such as changing thelayout of certain data structures. Based on the analysis of the caching behaviour of allAndorra-I data structures we optimised the Andorra-I code using 5 di�erent techniques. Wepresent the isolated and combined performance improvements provided by these optimisa-tions. Our results show that the techniques provide signi�cant performance improvements,leading to the conclusion that the system can and should perform well on modern scalablemultiprocessors. Moreover, since Andorra-I shares its main data-structures with other PLPsystems, we further conclude that the methodology and techniques used in our work cangreatly bene�t most PLP systems.1 IntroductionParallel logic programming (PLP) systems are sophisticated examples of symbolic com-puting systems. They address problems such as dynamic memory allocation, schedulingirregular execution patterns, and managing di�erent types of implicit parallelism. In fact,one of the most important advantages of logic programming is the availability of severalforms of implicit parallelism that can be naturally exploited on shared-memory multipro-cessors. These forms include: or-parallelism, as exploited in the systems Aurora [20] andMuse [3]; independent and-parallelism, as in &-Prolog [14] and &-ACE [13]; dependent and-parallelism, as in Parlog's JAM [9], KLIC [30], and DASWAM [27, 28]; data-parallelism, asin Reform Prolog [6]; and combined and{or parallelism, as in Andorra-I [26] and Penny [21].�This work was sponsored by CNPq, Brazilian Research Council.yOn leave from the Universidade do Porto, Portugal.1



All these systems have been able to obtain good performance on bus-based systems, suchas the Sequent Symmetry multiprocessors [19].The complexity of PLP systems and the large amount of data they process raises thequestion of whether logic programming systems can still obtain good performance on scal-able architectures, such as distributed shared-memory systems (DASH [18], Alewife [1],Exemplar [8] or Origin [17]). In distributed shared-memory systems, performance dependsheavily on the read miss rates and may be limited by the communication overhead causedby coherence messages needed to maintain local copies of shared data consistent.Sharing in parallel logic programming systems occurs under several circumstances. Theuse of logical variables for communication in dependent and-parallel applications, for in-stance, is an example of producer{consumer sharing of data, where the processor that in-stantiates a logical variable is the writer and the processors that consult the binding thereaders.A second major form of sharing, migratory sharing, arises from synchronisation betweenprocessors. Synchronisation occurs in tasks such as fetching work from other processors,and on being the leftmost goal or branch to execute cuts or side-e�ects. As an example,because of the high cost of suspending and restarting processes, it is very common that idleprocessors will be cycling through shared data structures searching for work. A processorthat produces a piece of work writes to one of these data structures, which later will be readand then modi�ed by one of the idle processors.In this work we experiment with a sophisticated PLP system, Andorra-I [26], that exploitsboth dependent and-parallelism and or-parallelism. Andorra-I is one of the most sophisti-cated PLP systems that have been built to date. Original work with Andorra-I obtainedgood performance on the Sequent Symmetry, but our initial experience with Andorra-I run-ning on modern multiprocessors demonstrates indeed that scalability su�ers greatly on thesearchitectures [24].This paper addresses the question of whether the poor scalability of Andorra-I is inherentto the complex structure of PLP systems or can be improved through careful analysis andtuning. In order to answer this question, we analyse the caching behaviour of all Andorra-Idata areas when applied to several di�erent logic programs. The analysis pinpoints theareas that are responsible for most misses and the main sources for these misses. Basedon this analysis we remove the main performance limiting factors in Andorra-I through aset of optimisations that did not require a redesign of the system. More speci�cally, weoptimise Andorra-I using 5 di�erent techniques: trimming of shared variables, data layoutmodi�cation, privatisation of shared data structures, lock distribution, and elimination oflocking in scheduling.We present the isolated and combined performance improvements provided by the opti-misations on a simulated DASH-like multiprocessor with up to 24 processors. In isolation,shared variable trimming and the modi�cation of the data layout produced the greatestimprovements. The improvements achieved when all optimisation techniques are combinedare substantial. A few of our programs approach linear speedups as a consequence of ourmodi�cations. In fact, for one program the speedup of the modi�ed Andorra-I is a factor of 3higher than that of the original version of the system on 24 processors. Our main conclusionis then that, even though Andorra-I is indeed complex and irregular, it can and should scalewell on modern scalable multiprocessors.This conclusion can be extrapolated to several other PLP systems, since they share mostof Andorra-I's data structures. More speci�cally, single processor execution in Andorra-2



I is based on Warren's WAM [33, 2], the abstract machine of most other sequential andPLP systems. Thus, Andorra-I's major abstract machine data structures can be foundin these systems. Parallel execution in Andorra-I applies the implementation technologydeveloped for or-parallel systems such as Aurora [20], and for and-parallel systems such asPARLOG [9]. Thus, Andorra-I's major parallelism-related data structures can be found inthese PLP systems. Results obtained from Andorra-I are therefore of immediate interest tomost PLP systems, making Andorra-I the most interesting system for studies such as ours.Our approach contrasts with previous studies of the performance of parallel logic pro-gramming systems. Tick and Hermenegildo [31] studied caching behaviour of independentand-parallelism in bus-based multiprocessors. Other researchers have studied the perfor-mance of parallel logic programming systems on scalable architectures, such as the DDM [23].Our previous work investigated the impact of di�erent cache coherence protocols [24, 25],and the impact of di�erent architectural parameters such as cache sizes and cache blocksizes on the Andorra-I system [29].The remainder of the paper is organised as follows. Section 2 presents the methodologyused to obtain our results. We describe the Andorra-I PLP system, the simulator we usedto perform the experiments, and how Andorra-I was ported to the simulator. In Section 3we analyse in detail the initial speedup performance of each application we consider. Sec-tion 4 introduces the major optimisations and discusses their individual contribution. Wepresent the performance of the optimised system in Section 5. Finally, Section 6 draws ourconclusions and suggests future work.2 MethodologyIn this section we detail the methodology used in our experiments. The experiments con-sisted of the simulation of the parallel execution of Andorra-I, compiled for the MIPS archi-tecture [16].2.1 Multiprocessor SimulationWe use a detailed on-line, execution-driven simulator that simulates a 24-node, DASH-like [18], directly-connected multiprocessor. Each node of the simulated machine containsa single processor, a write bu�er, cache memory, local memory, a full-map directory, and anetwork interface. The simulator was developed at the University of Rochester and uses theMINT front-end [32] (developed by Veenstra and Fowler) to simulate the MIPS architecture,and a back-end [7] (developed by Bianchini, Kontothanassis, and Veenstra) to simulate thememory and interconnection systems.In our simulated machine, each processor has a 128-KB direct-mapped data cache with64-byte cache blocks. All instructions and read hits are assumed to take 1 cycle. Readmisses stall the processor until the read request is satis�ed. Writes go into a 16-entry writebu�er and take 1 cycle, unless the write bu�er is full, in which case the processor stalls untilan entry becomes free. Reads are allowed to bypass writes that are queued in the writebu�ers. Shared data are interleaved across the memories at the block level.A memory bus clocked at half of the speed of the processor connects the main componentsof each machine node. A new bus operation can start every 34 processor cycles. A memorymodule can provide the �rst word of a cache line 20 processor cycles after the request isissued. The other words are delivered at 2 cycles/word bandwidth.3



The interconnection network is a bi-directional wormhole-routed mesh, with dimension-ordered routing. The network clock speed is the same as the processor clock speed. Switchnodes introduce a 4-cycle delay to the header of each message. Network paths are 16-bitwide, which matches the memory bandwidth. In these networks contention for links andbu�ers is captured at the source and destination of messages.All hardware characteristics mentioned above are common in actual modern parallelarchitectures.In order to keep caches coherent we used a write-invalidate (WI) protocol [12]. In theWI protocol, whenever a processor writes a data item, copies of the cache block containingthe item in other processors' caches are invalidated. If one of the invalidated processors laterrequires the same item, it will have to fetch it from the writer's cache. Our WI protocolkeeps caches coherent using the DASH protocol with release consistency [18].2.2 Andorra-IThe Andorra-I parallel logic programming system is based on the Basic Andorra Model [35].The system was developed at the University of Bristol by Beaumont, Dutra, Santos Costa,Yang, and Warren [26, 36]. To the best of the authors' knowledge, Andorra-I was the �rstparallel logic programming system that exploited both and- and or-parallelism, and yetcould run real-world applications with signi�cant parallel performance.Andorra-I employs a very interesting method for exploiting and-parallelism in logic pro-grams, namely to execute determinate goals �rst and concurrently, where determinate goalsare the ones that match at most one clause in a program. Thus, Andorra-I exploits de-terminate dependent and-parallelism. Eager execution of determinate goals can result ina reduced search space, because unnecessary choicepoints are eliminated. The Andorra-Isystem also exploits or-parallelism that arises from the non-determinate goals. Its imple-mentation is inuenced by JAM [10] when exploiting and-parallelism, and by Aurora [20]when exploiting or-parallelism.The Andorra-I system consists of several components. The preprocessor is responsiblefor compiling the program and for the sequencing information necessary to maintain thecorrect execution of Prolog programs. The engine is responsible for the execution of theAndorra-I programs. The two schedulers manage and- and or-work. The recon�gurer allowsworkers to migrate between teams to �nd better sources of work.A processing element that performs computation in Andorra-I is called a worker. Inpractice, each worker corresponds to a separate processor. Andorra-I is designed in such away that workers are classi�ed into masters and slaves. One master and zero or more slavesform a team. Each master in a team is responsible for creating a new choicepoint, whileslaves are managed and synchronised by their master. Workers in a team cooperate witheach other in order to share available and-work. Di�erent teams of workers cooperate toshare or-work. Note that workers arranged in teams share the same set of data structuresused in a given branch of the search tree.Most of the execution time of workers should be spent executing engine code [37], i.e.,performing reductions. Andorra-I is designed in such a way that data corresponding toeach worker is as local as possible, so that each worker tries to �nd its own work withoutinterfering with others. Scheduling in Andorra-I is demand-driven, that is, whenever aworker runs out of work, it enters a scheduler to �nd another piece of available work.The or-scheduler is responsible for �nding or-work, i.e., an unexplored alternative in the4



or-tree. Our experiments used the Bristol or-scheduler [5], originally developed for Aurora.The and-scheduler is responsible for �nding eligible and-work, which corresponds to agoal in the run queue (list of goals not yet executed) of a worker in the same team. Eachworker in a team keeps a run queue of goals. This run queue of goals has two pointers.The pointer to the head of the queue is only used by the owner. The pointer to the tail ofthe queue is used by other workers to \steal" goals when their own run queues are empty.If all the run queues are empty, the slaves wait either until some other worker (in ourimplementation, the master) creates more work in its run queue or until the master detectsthat there are no more determinate goals to be reduced and it is time to create a choicepoint.Finally, the recon�gurer [11] is responsible for arranging the workers into teams in a waythat allows both and- and or-parallelism to be freely exploited when they are available.2.3 The MIPS PortIn order to use Andorra-I with the simulator we needed to port the system to the MIPSarchitecture. We used the FSF's gcc 2.7.2 C compiler and binutils-2.6 assembler andlinker under a Solaris 2.5 environments as cross development tools for this purpose. Andorra-I was compiled with -O2.Most of the port was straightforward. The only di�culties arose with shared memoryallocation and locking. For shared memory allocation we use the shmalloc library supportedby MINT. For locking in modern MIPS machines, we would use the ll, sc, and syncmachineinstructions [16] to implement locks and atomic operations. Unfortunately, these instructionsare not yet supported by the back-end. The alternative is to use the lock library routines,as implemented by the simulator, which allow us to control the synchronisation overhead.In our simulations, these routines were implemented as atomic instructions.To ensure correct execution under the release consistency model, we guarantee that allaccesses to shared data are surrounded by lock and unlock operations. The only exceptionto this rule is the detection of the end of the determinate phase. Here we maintainedthe original protocol because any action after detection requires the slaves to grab a lockpreviously released by the master.3 Analysing the Caching Behaviour of Andorra-IThe major goal of our work was to determine which factors a�ect caching in Andorra-I, asthis is one of the most important requirements for obtaining good performance in parallelsystems. A parallel logic programming system includes several shared data structures, whoseimportance depends on the type and amount of parallelism available in the application. Our�rst goal was therefore to classify them and study their individual contributions to the overallcaching behaviour.3.1 Data Areas in Andorra-IAndorra-I combines the techniques used to implement parallel committed-choice systems [9]and the techniques used to implement or-parallel systems [20], themselves based on sequen-tial Prolog [33]. The shared memory areas that implement the functionality of Andorra-Ican be classi�ed as: 5



� Or-Scheduler Data Structures. The Bristol Or-scheduler uses three di�erent datastructures: a set of �elds on each choice-point, and two data structures with globalvariables. One of the two latter structures is shared by every worker, and the other isreplicated by every worker. We grouped these data structures into a single area.� Worker Data Structures. These include a copy of the abstract machine registers,the variables used to synchronise within a team, and the run-queues for each worker.Most accesses to these data structures occur when performing and-scheduling, that iswhen fetching work from other workers in a team, or when synchronising workers in ateam.� Lock Array. The lock array is used to establish a mapping between a shared memoryposition (such as a variable in the heap) and a lock. It is used whenever we need tolock a variable. This area is required because the simulator does not implement theMIPS instructions to synchronise access to shared memory. We therefore use hashingto a lock array as the mechanism to guarantee synchronisation.� Code Space. The code space includes the compiled code for every procedure. Duringexecution of the benchmarks it is read-only, but it could be updated by programs thatperform assert or record.� Heap Space. As in other Prolog systems, this space stores structured terms andvariables. It grows during forward execution, and contracts during backtracking.� Goal Frame Space. This data area stores goal frames, which consist of the goal'sarguments, multi-assignment variables used to link the goal frames, and several control�elds. The engine tries to reuse goal frames during forward execution.� Choicepoint Stack. Choicepoints include pointers to the top of stacks, and ags thatare updated as processors move around searching for work. Di�erently from Prolog,no arguments need to be stored. Note that as we backtrack and move forward, thesame choice point stack space may be used several times for di�erent choicepoints.� Trail Stack. The trail stack records any conditional binding to logical or multi-assignment variables (used in the implementation of Andorra-I [37]). It can be con-sidered as an extension of a choicepoint that records non-determinate bindings and isonly important in applications with or-parallelism.� Binding Arrays. They are used to implement the SRI model [34] for or-parallelism,by storing conditional bindings. They should be private in or-parallel applications,and almost never written in and-parallel-only applications. Even during an execu-tion without choice points (a determinate execution), Andorra-I will access this datastructure to verify whether variables have conditional bindings.� Miscellaneous Shared Variables. This area includes the shared I/O data struc-tures, such as open stream descriptors. It also includes information on the clausescompiled into the system, and pointers to the determinacy and non-determinacy code.A set of ags and counters is globally manipulated by the system. This area alsoincludes the data structures used by the recon�gurer.We instrumented the simulator to report data separately on each region. We then ranthe applications to collect statistics for each data area in turn.6



3.2 Workload and Original PerformanceThe benchmarks we used in this work are applications representing predominantly and-parallelism, predominantly or-parallelism, and both and- and or-parallelism. We next discussapplication performance for the original Andorra-I. Note that our results correspond to the�rst run of an application; results would be somewhat better for other runs.
5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash

Figure 1: Speedups for bt-cluster 5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash

Figure 2: Speedups for tspAnd-Parallel Applications. We use two example and-parallel applications, the cluster-ing algorithm for network management from British Telecom, bt-cluster, and a programto calculate approximate solutions to the traveling salesperson problem, tsp. The clusteringprogram receives a set of points in a three dimensional space and groups these points intoclusters. Basically, three points belong to the same cluster if the distance between them issmaller than a certain limit. And-parallelism in this case naturally stems from running thecalculations for each point in parallel. The test program uses a cluster of 400 points as inputdata. This program has very good and-parallelism, and, being completely determinate, noor-parallelism. The traveling salesperson program is based on a Reform Prolog [6] bench-mark that �nds an approximate solution for the TSP problem in a graph with 24 nodes.To obtain best performance, the Andorra-I team rewrote the original applications to makethem determinate-only computations.Figure 1 shows the bt-cluster speedups for the simulated architecture as compared toan idealised shared-memory machine, where data items can always be found in cache. Theidealised curve shows that the application has excellent and-parallelism and can achievealmost linear speedups up to twenty four processors. Unfortunately, performance for theDASH-likemachine is barely acceptable. The DASH curve starts with an e�ciency of 85% for7



2 processors. E�ciency smoothly decreases as the number of processors increases, reaching70% for 16 processors. E�ciency is less than 50% for 24 processors. Figure 2 shows that thetsp application achieves worse speedups than bt-cluster on a modern multiprocessor. Themaximum speedup actually decreases for 24 processors, whereas the ideal machine wouldachieve a speedup of 20 for 24 processors.Figure 3 illustrates the number and sources of cache misses per data area in the bt clusterapplication running on 16 processors as a representative example. The �gure shows thatthe overall miss rate of bt-cluster is dominated by true and false sharing misses from theWorker and Misc areas. This suggests that the system could be much improved by reducingfalse sharing and studying activity in the Worker and Misc areas.
OrS

ch

W
or

ke
r

Lo
ck

s
Cod

e
Hea

p
Goa

ls

Cho
ice

P
Tra

il
BA

Misc
0

40000

80000

120000

160000

200000

240000

BT−CLUSTER
Number of cache misses

Cold 
Eviction �
True Sharing
False sharing

Figure 3: Misses by data area forbt-cluster OrS
ch

W
or

ke
r

Lo
ck

s
Cod

e
Hea

p
Goa

ls

Cho
ice

P
Tra

il
BA

Misc
0

3000

6000

9000

12000

15000

CHAT80
Number of cache misses

Cold 
Eviction �
True Sharing
False sharing

Figure 4: Misses by data area for chat80Or-Parallel Applications. We use two or-parallel applications. Our �rst application,chat80, is an example from the well-known natural language question-answering systemchat-80, written at the University of Edinburgh by Pereira and Warren. This version ofchat-80 operates on the domain of world geography. The program chat80 makes queries tothe chat-80 database. This is a small scale benchmark with good or-parallelism, and it hasbeen traditionally used as one of the or-parallel benchmarks for both the Aurora and Musesystems. The second application, fp, is an example query for a knowledge-based system forthe automatic generation of oor plans. This application should at least in principle havesigni�cant or-parallelism. Figure 5 shows the speedups for the chat80 application from 1to 24 processors. These speedups are very similar to those obtained by Andorra-I on theSequent Symmetry architecture. In contrast, the DASH curve reaches a maximum speedupof 4.2 for 16 processors. Figure 6 shows the speedups for the fp application. The theoretical8



5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash

Figure 5: Speedups for chat80 5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash

Figure 6: Speedups for fpspeedup is very good, in fact quite close to linear, in sharp contrast to the actual speedupfor the DASH-like machine. Figure 4 shows the number and source of misses for chat80running on 16 processors, again as an example of this type of application. Note that chat80does not have enough parallelism to feed 16 processors, suggesting that most sharing missesshould result from or-parallel scheduling areas, OrSch and ChoiceP. Indeed, the �gure showsthat these areas are responsible for a large number of sharing misses, but the areas causingthe most misses are Worker and Misc as in the and-parallel applications, indicating againthat these two areas should be optimised.Note also the large number of eviction misses in the Trail. The trail is used to storeconditional bindings, and is used in backtracking and when searching for work. The highnumber of misses in this area indicates that workers often go here, and suggests work is�ne-grained.And/Or-Parallel Application. As an example of and/or application we used a programto generate naval ight allocations, based on a system developed by Software Sciences andthe University of Leeds for the Royal Navy. It is an example of a real-life resource allocationproblem. The program allocates airborne resources (such as aircraft) whilst taking intoaccount a number of constraints. The problem is solved by using the technique of activeconstraints as �rst implemented for Pandora [4]. In this technique, the co-routining inherentto the Andorra model is used to activate constraints as soon as possible. The program hasboth or-parallelism, arising from the di�erent possible choices, and and-parallelism, arisingfrom the parallel evaluation of di�erent constraints. To test the program, we ask it toschedule 11 aircrafts, 36 crew members and 10 ights. The degree of and- and or-parallelismin this program varies according to the queries, but this query gives rise to more and-parallelism than or-parallelism. The system uses the recon�gurer to dynamically adapt to9



the available sources of parallelism.Figure 7 shows the speedups for pan2. The idealised curve shows that the applicationhas less parallelism than all other applications; the ideal speedup does not even reach 12on 24 processors. When run on the DASH simulator, pan2 exhibits unacceptable speedupsfor all numbers of processors; speedup starts out at about 1.8 for 2 processors and slowlyimproves to a maximum of only 4.8 for 24 processors. Figure 8 shows the distribution ofcache misses by the di�erent Andorra-I data areas for 16 processors. In this case, the Workerarea clearly dominates, since the contribution from the Misc area is not as signi�cant asin the and-parallel benchmarks. Note that there is more true than false sharing activity inWorker. The true sharing probably results from idle processors looking for work.
5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash

Figure 7: Speedups for pan2 OrS
ch

W
or

ke
r

Lo
ck

s
Cod

e
Hea

p
Goa

ls

Cho
ice

P
Tra

il
BA

Misc
0

20000

40000

60000

80000

100000

120000

140000

PAN2
Number of cache misses

Cold 
Eviction �
True Sharing
False sharing

Figure 8: Misses by data area for pan24 Optimisation Techniques and PerformanceThe previous analysis suggests that relatively high miss rates may be causing the poorscalability of Andorra-I. It is interesting to note that most misses come from �xed layoutareas, such as Worker and Misc, and not from the execution stacks, as one would assume.We next discuss how several optimisations can be applied to the system, particularly inorder to improve the utilisation of the Worker and Misc areas. The �rst two optimisationswere prompted by our simulation-based analysis of caching behaviour, and they are theones that give the best improvement. The other three were based on our original intuitionsregarding the system, and were the ones we would have performed �rst without simulationdata. We studied performance for three applications, bt-cluster, chat80 and pan2.10



In the remainder of this section, we study the impact of each of the techniques studiedwhen applied in isolation.Variable Trimming. In this technique we investigate the areas that have unexepectedsharing, and try to eliminate this sharing if possible. For two of our applications, the Miscarea gave a surprisingly signi�cant contribution to the number of misses. The area is mostlywritten at the beginning of the execution to set up execution parameters. During executionit is used by the recon�gurer and to keep reduction and failure counters. By investigatingeach component in the area, we detected that the counters were the major source of misses.As they are only used for research and debugging purposes, we were able to eliminate themfrom the Andorra-I code.Figure 9 shows the result of this optimisation for three benchmarks, bt-cluster, chat80and pan2. The �gure plots the variation in speedup as a function of the number of processors.The results show that chat80 bene�ts the most from this optimisation. This is because thefailure counter is never updated by and-parallel applications, but often updated by thisor-parallel application. The optimisation does not impact the and-parallel benchmarks asmuch, leading to less than 10% speedup improvements.
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

5 10 15 20

S
p
e
e
d
u
p
 
I
m
p
r
o
v
e
m
e
n
t

Number of Processors

chat80
bt-cluster

pan2

Figure 9: Impact of Counter EliminationOptimisations 0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

5 10 15 20

S
p
e
e
d
u
p
 
I
m
p
r
o
v
e
m
e
n
t

Number of Processors

chat80
bt-cluster

pan2

Figure 10: Impact of Data Layout Optimi-sationsData Layout Modi�cation. Figure 10 shows the impact of the data layout modi�cationson the speedup of our applications. The bt-cluster and chat80 applications bene�t themost from this optimisation. Note that, on machine con�gurations of up to 16 processors,chat80 bene�ts from this optimisation more than bt-cluster does, suggesting that thefalse sharing was having a big negative impact on this application until its lack of enoughparallelism started to take over. On the largest machine con�guration however, the optimi-sation actually becomes more bene�cial to bt-cluster, an and-parallel application with amuch greater amount of parallelism.The pan2 application bene�ts only slightly from this optimisation. Note that we againhave a slowdown, now for 4 processors, probably because of slightly di�erent scheduling.11



All benchmarks but pan2 exhibit a high false sharing rate, showing a need for thistechnique. On 16 processors, 15% of the misses in pan2 are false sharing misses, whereas inthe other applications false sharing causes between 40% (chat80) and 51% (bt-cluster) ofall misses. These results suggest that improving false sharing is of paramount importance.According to our detailed analysis of caching behaviour, false sharing misses are concentratedin the Worker, OrSch, ChoiceP and BA areas, besides the Misc area optimised by the previoustechnique.The Worker and OrSch data areas are allocated statically. This indicates that we cane�ectively reduce false sharing. We applied two common techniques to tackle false sharing,padding between �elds that belonged to di�erent workers or that were logically independent,and �eld reordering to separate �elds that were physically close but logically distinct. Al-though these are well-known techniques, padding required careful analysis, as it increaseseviction misses signi�cantly. The �eld reordering technique was not easily applied either, asthe relationships between �elds are quite complex.Padding may lead to serious performance degradation for the dynamic data areas, suchas ChoiceP and BA. This restricted our options for layout modi�cation to just �eld reorderingfor these areas. The BA area was the target of one �nal data layout modi�cation, since theanalysis of cache behaviour surprised us with a high number of false sharing misses in thisarea for chat80. Further investigation showed that this was a memory allocation problem.The engines' top of stacks were being shmalloc'ed separately and appeared as part of the BAarea in the analysis. This increased sharing misses in the area and was especially bad for theor-parallel applications, as di�erent processor's top of stacks would end up in the same cacheline. We addressed the problem by moving these pointers into the Worker area, where theylogically belong. Our results show that the bt-cluster and chat80 applications bene�t themost from this optimisation; speedup improvements can be as signi�cant as 60%. In contrast,the pan2 application achieves improvements of less than 10% from this optimisation.Privatisation of Shared Variables. This technique reduces the number of shared mem-ory accesses by making local copies in each node of the machine. In the best case, the sharedvariables are read-only and hence local copies can actually be allocated in private memory.The high number of references to Worker suggested that privatisation could be applied there.In fact, Andorra-I did already use private copies of the variables in Worker and there waslittle room for improvement. The Locks and Code data areas are the major candidates toprivatisation in Andorra-I. The Locks area only includes pointers to the actual locks, is thusread-only during execution, and can be easily privatised. Another area that is also read-onlyduring parallel execution of our benchmarks is Code. Unfortunately, logic programs in gen-eral can change the database and, therefore, update Code, making privatisation complex. Inthe port of the related logic programming system Aurora to the Buttery, an early scalablemachine, it was necessary to privatise the Code area to obtain good performance [22].Figure 11 shows the impact of privatisation on the speedup of Andorra-I. The �gureshows that privatisation improves speedups by up to 10% at most and that the impact ofthis optimisation decreases as the number of processors increases.Lock Distribution. This technique was considered to reduce contention on accesses tological variables, and-scheduling, or-scheduling, and stack management. The original im-plementation used a single array of locks to implement these operations. In the worst case,several workers would contend for the same lock causing contention. To improve scalabil-ity, we implemented di�erent lock data structures for di�erent purposes. We expected best12



0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

5 10 15 20

S
p
e
e
d
u
p
 
I
m
p
r
o
v
e
m
e
n
t

Number of Processors

chat80
bt-cluster

pan2

Figure 11: Impact of Privatisation Optimi-sations 0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

5 10 15 20

S
p
e
e
d
u
p
 
I
m
p
r
o
v
e
m
e
n
t

Number of Processors

chat80
bt-cluster

pan2

Figure 12: Impact of Lock Distribution Op-timisationsresults for or-parallel applications, as the optimisation prevents di�erent teams from con-tending on accesses to logical variables. The cost of this optimisation is that, if the arrays oflocks are shared, there will be more expensive remote cache misses. Our results show thatthe bt-cluster and chat80 applications bene�t somewhat from this optimisation, but thatthe pan2 application already exhibited a signi�cant number of misses in the Locks area andsu�ers a slowdown.Figure 12 shows the impact of lock distribution in the absence of data privatisation.The bt-cluster and chat80 applications bene�t somewhat from this optimisation. Onthe other hand, the pan2 application already had signi�cant misses from the Locks area.Increasing the number of shared locks also increases the number of remote misses and leadsto worse speedups on 16 and 24 processors. Note that the number of misses would not haveincreased, if this optimisation had been applied together with privatisation. Section 5 willpresent results for the combination of these two optimisations.Elimination of Locking in Scheduling. This technique improves performance in bench-marks with signi�cant and-parallelism by testing whether there is available work, beforeactually locking the work queue. This modi�cation is equivalent to replacing a test and setlock with a test and test and set lock. This optimisation provides a small speedup improve-ment for pan2, as it avoids locking when there is no and-work.For bt-cluster the technique does not improve speedups as this application exhibitsenough and-work to keep processors busy. chat80 is not a�ected by this optimisation as ithas or-parallelism only.Figure 13 shows the variations in speedup entailed by this optimisation. The �gure showsthat the locking elimination has no impact on the or-parallel benchmark, chat80, as thisapplication never uses the and-scheduler. The optimisation does not improve the speedupof bt-cluster either, since this application has plenty of and-work to keep processors busy.Finally, locking elimination provides a small increase in speedup for pan2, as it avoids lockingwhen there is no and-work. 13



0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

5 10 15 20
S
p
e
e
d
u
p
 
I
m
p
r
o
v
e
m
e
n
t

Number of Processors

chat80
bt-cluster

pan2

Figure 13: Impact of Scheduling Optimisations5 Combined Performance of Optimisation TechniquesWe next discuss the overall system performance with all optimisations combined. We com-pare speedups against the idealised and original results. The idealised speedups wererecalculated for the new version of Andorra-I, but, as it is shown in the �gures, the opti-misations did not have any signi�cant impact for the idealised machine. Figures 14 and15 show the speedups for the two and-parallel applications running on top of the modi�edAndorra-I system. The maximum speedup for bt-cluster jumped from 12 to 20, whereasthe maximum speedup for tsp jumped from 6.3 to 19. This indicates that the realisticmachine is now able to exploit the available parallelism more fully. The explanation for thebetter speedups is a signi�cant decrease in miss rates. For bt-cluster, the new version ofAndorra-I exhibits a miss rate of only 0.6% for 16 processors, versus the 1.6% of the previousversion. In the case of tsp, the optimisations decreased the miss rate from 3% to 1.2% againon 16 processors.Figure 16 shows the number and source of misses for bt-cluster on 16 processors. Notethat the �gure keeps the same Y-axis as in Figure 3 to simplify comparisons against thecache behaviour of the original version of Andorra-I. The �gure shows that the number ofmisses in the Worker area was reduced by a factor of 4, while the number of misses in theMisc area was reduced by an order of magnitude. The �gure also shows that there is stillsigni�cant true sharing in Worker, but false sharing is much less signi�cant. The number ofmisses from Misc is now almost irrelevant.The or-parallel benchmarks also show remarkable improvements due to the combinationof the optimisation techniques we applied. Figure 18 shows the speedups for chat80 andFigure 19 shows the speedups for fp. The maximum speedup for chat80 almost doublesfrom one version of the system to the other. Note that speedups for the optimised systemstill atten out on 16 processors, but at a much better e�ciency. The other benchmark,fp, displays our most impressive result. The speedup for 24 processors jumps from 6.2 withthe original Andorra-I system to 20 when all our optimisations are applied. This result14



5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash (optimised)
dash (initial)

Figure 14: Speedups for bt-cluster 5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash (optimised)

dash (initial)

Figure 15: Speedups for tsp
OrS

ch

W
or

ke
r

Lo
ck

s
Cod

e
Hea

p
Goa

ls

Cho
ice

P
Tra

il
BA

Misc
0

40000

80000

120000

160000

200000

240000

BT−CLUSTER
Number of Cache Misses

Cold 
Eviction �
True Sharing
False sharing

Figure 16: Misses by data area forbt-cluster OrS
ch

W
or

ke
r

Lo
ck

s
Cod

e
Hea

p
Goa

ls

Cho
ice

P
Tra

il
BA

Misc
0

3000

6000

9000

12000

15000

CHAT80
Number of cache misses

Cold 
Eviction �
True Sharing
False sharing

Figure 17: Misses by data area for chat8015



5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash (optimised)
dash (initial)

Figure 18: Speedups for chat80 5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash (optimised)

dash (initial)

Figure 19: Speedups for fprepresents more than a three-fold improvement. Figure 17 shows the distribution of missesfor chat80 with 16 processors. The �gure demonstrates that the number of misses in theWorker and Misc areas was reduced by an order of magnitude. The large number of evictionand cold start misses in the Code area remains however. Sharing misses are now concentratedin the OrSch and ChoiceP areas, as they should.Figure 20 shows the speedups of the new version of Andorra-I for the pan2 benchmark.In this case, the improvement resulting from our optimisations was quite small. Figure 21shows the cache miss distribution for the optimised Andorra-I. The main source of misseswas true sharing originating from the Worker region. A more detailed analysis proved thatthese misses originate from lack of work. Workers are searching each other's queues andgenerating misses. We are investigating more sophisticated scheduling strategies to addressthis problem.6 Conclusions and Future WorkAndorra-I is an example of an and/or-parallel system originally designed for traditionalbus-based shared-memory architectures. We have demonstrated that the system can alsoachieve good performance on scalable shared-memory systems. The key to these results wasthe extensive data available from detailed simulations of Andorra-I. The data we obtainedfrom these simulations showed that signi�cant performance improvements can be accruedwithout restructuring the system. Instead, performance can be dramatically improved byfocusing on accesses to shared data. Our study concentrated on Andorra-I, but it can bedirectly extrapolated to several other PLP systems, since they share most of Andorra-I'sdata structures.We believe there is potential for improving the performance of PLP systems even further.16



5

10

15

20

5 10 15 20

S
p
e
e
d
u
p

Number of Processors

idealised
dash (optimised)
dash (initial)

Figure 20: Speedups for pan2 OrS
ch

W
or

ke
r

Lo
ck

s
Cod

e
Hea

p
Goa

ls

Cho
ice

P
Tra

il
BA

Misc
0

20000

40000

60000

80000

100000

120000

140000

PAN2
Number of cache misses

Cold 
Eviction �
True Sharing
False sharing

Figure 21: Misses by data area for pan2To prove so will require more radical changes to data structures within Andorra-I itself, asthe system was simply not designed for such large numbers of processors. In addition tomaking these changes, we are also interested in evaluating the performance of other parallellogic programming systems, such as the ones that exploit independent and-parallelism, onscalable architectures.AcknowledgementsThe authors would like to thank Leonidas Kontothanassis and Jack Veenstra for their helpwith the simulation infrastructure used in this paper. The authors would also like to thankRong Yang, Tony Beaumont, D. H. D. Warren for their work in Andorra-I that made thiswork possible. V��tor Santos Costa would like to thank the University of Porto for grantinghis period of leave to perform this work, and also would like to thank support from thePROLOPPE and MELODIA projects. Inês Dutra would like to thank the APPELO project.References[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B. Lim, K. Mackenzie,and D. Yeung. The MIT Alewife Machine: Architectureand Performance. In 22nd Annual InternationalSymposium on Computer Architecture (ISCA'95), June 1995.[2] Hassan A��t-Kaci. Warren's Abstract Machine | A Tutorial Reconstruction. MIT Press, 1991.[3] Khayri A. M. Ali and Roland Karlsson. The Muse Or-parallel Prolog Model and its Performance.In Proceedings of the 1990 North American Conference on Logic Programming, pages 757{776. MITPress, October 1990. 17



[4] Reem Bahgat. Solving Resource Allocation Problems in Pandora. Technical report, Imperial College,Department of Computing, 1990.[5] Anthony Beaumont, S. Muthu Raman, and P�eter Szeredi. Flexible Scheduling of Or-Parallelism inAurora: The Bristol Scheduler. In Aarts, E. H. L. and van Leeuwen, J. and Rem, M., editor, PARLE91:Conference on Parallel Architectures and Languages Europe, volume 2, pages 403{420. Springer Verlag,June 1991. Lecture Notes in Computer Science 506.[6] Johan Bevemyr, Thomas Lindgren, and Hakan Millroth. Reform Prolog: The Language and its Im-plementation. In Proceedings of the Tenth International Conference on Logic Programming, pages283{298. MIT Press, June 1993.[7] R. Bianchini and L. I. Kontothanassis. Algorithms for Categorizing Multiprocessor CommunicationUnder Invalidateand Update-BasedCoherenceProtocols. In Proceedings of the 28th Annual SimulationSymposium, April 1995.[8] Convex Computer Corp. Convex Exemplar Architecture, November 1993.[9] J. A. Crammond. Implementation of Committed Choice Logic Languages on Shared Memory Multi-processors. PhD thesis, Heriot-Watt University, Edinburgh, May 1988. Research Report PAR 88/4,Dept. of Computing, Imperial College, London.[10] J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. Technical report,Dept. of Computing, Imperial College, London, June 1990.[11] I. C. Dutra. Strategies for Scheduling And- and Or-Work in Parallel Logic Programming Systems. InProceedings of the 1994 International Logic Programming Symposium, pages 289{304.MIT Press, 1994.Also available as technical report CSTR-94-09, from the Department of Computer Science, Universityof Bristol, England.[12] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Tra�c. In Proceedings of the10th International Symposium on Computer Architecture, pages 124{131, 1983.[13] Gopal Gupta, Enrico Pontelli, and Manuel Hermenegildo. &ACE: A High Performance Parallel PrologSystem. In Proceedings of the First International Symposium on Parallel Symbolic Computation,PASCO'94, 1994.[14] M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-Parallelism. In Proceedings of the Seventh International Conference on Logic Programming, pages253{268. MIT Press, June 1990.[15] Markus Hitz and Erich Kaltofen, editors. Proceedings of the Second International Symposium onParallel Symbolic Computation, PASCO'97, July 1997.[16] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.[17] J. Laudon and D. Lenoski. The SGI Origin: A CC-NUMA Highly Scalable Server. In Proceedings ofthe 24th Annual International Symposium on Computer Architecture, pages 241{251, June 1997.[18] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based CacheCoherence Protocol for the DASH Multiprocessor. Proceedings of the 17th ISCA, pages 148{159, May1990.[19] T. Lovett and S. Thakkar. The Symmetry Multiprocessor System. In International Conference ofParallel Processing, pages 303{310, 1988. University Park, Pennsylvania.[20] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora Or-parallel Prolog System. NewGeneration Computing, 7(2,3):243{271, 1990.[21] Johan Montelius. Penny, A Parallel Implementation of AKL. In ILPS'94 Post-Conference Workshopin Design and Implementation of Parallel Logic Programming Systems, Ithaca, NY, USA, November1994.[22] Shyam Mudambi. Performances of aurora on NUMA machines. In Proceedings of the Eighth Interna-tional Conference on Logic Programming, pages 793{806. MIT Press, June 1991.[23] S. Raina, D. H. D. Warren, and J. Cownie. Parallel Prolog on a Scalable Multiprocessor. In PeterKacsuk and Michael J. Wise, editors, Implementations of Distributed Prolog, pages 27{44. Wiley, 1992.[24] V. Santos Costa, R. Bianchini, and I. C. Dutra. Evaluating the Impact of Coherence Protocols onParallel Logic Programming Systems. In Proceedings of the 5th EUROMICRO Workshop on Par-allel and Distributed Processing, pages 376{381, 1997. Also available as technical report ES-389/96,COPPE/Systems Engineering, May, 1996. 18



[25] V. Santos Costa, R. Bianchini, and I. C. Dutra. Parallel Logic Programming Systems on ScalableMultiprocessors. InProceedings of the 2nd International Symposium on Parallel Symbolic Computation,PASCO'97 [15], pages 58{67, July 1997.[26] V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I:A Parallel Prolog Systemthat TransparentlyExploits both And- and Or-Parallelism. In Third ACM SIGPLAN Symposium on Principles & Practiceof Parallel Programming, pages 83{93. ACM press, April 1991. SIGPLAN Notices vol 26(7), July 1991.[27] Kish Shen. Initial Results from the Parallel Implementation of DASWAM. In Michael Maher, editor,Proceedings of the 1996 Joint International Conference and Symposium on Logic Programming. TheMIT Press, 1996.[28] Kish Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. J. of Logic Prog.,29(1{3), 1996.[29] M�arcio G. Silva, I. C. Dutra, Ricardo Bianchini, and V��tor Santos Costa. The Inuence of ComputerArchitectural Parameters on Parallel Logic Programming Systems. In Workshop on Practical Aspectsof Declarative Languages (PADL99), January 1999. Also available as Technical Report ES/477-98,COPPE Systems Engineering, Sep/98.[30] T. Chikayama, T. and Fujise, and H. Yashiro. A Portable and Reasonably E�cient Implementation ofKL1. In Proceedings of the Eleventh International Conference on Logic Programming, June 1993.[31] Evan Tick. Memory Performance of Prolog Architectures. Kluwer Academic Publishers, Norwell, MA02061, 1987.[32] J. E. Veenstra and R. J. Fowler. MINT: A Front End for E�cient Simulation of Shared-Memory Mul-tiprocessors. In Proceedings of the 2nd International Workshop on Modeling, Analysis and Simulationof Computer and Telecommunication Systems (MASCOTS '94), 1994.[33] David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International, 1983.[34] David H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog|Abstract Design and Im-plementation Issues. In Proceedings of the 1987 International Logic Programming Symposium, pages92{102, 1987.[35] David H. D. Warren. The Andorra model. Presented at Gigalips Project workshop, University ofManchester, March 1988.[36] Rong Yang, Tony Beaumont, Inês Dutra, V��tor Santos Costa, and David H. D. Warren. Performance ofthe Compiler-Based Andorra-I System. In Proceedings of the Tenth International Conference on LogicProgramming, pages 150{166. MIT Press, June 1993.[37] Rong Yang, V��tor Santos Costa, and David H. D. Warren. The Andorra-I Engine: A parallel imple-mentation of the Basic Andorra model. In Proceedings of the Eighth International Conference on LogicProgramming, pages 825{839. MIT Press, 1991.
19


