Parallel Logic Programming Systems on Scalable
Architectures®

Vitor Santos Costal, Ricardo Bianchini, and Inés de Castro Dutra

Department of Systems Engineering and Computer Science
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: {vitor,ricardo,ines}@cos.ufrj.br

Abstract

Parallel logic programming (PLP) systems are sophisticated examples of symbolic com-
puting systems. They address problems such as dynamic memory allocation, scheduling ir-
regular execution patterns, and managing different types of implicit parallelism. Most PLP
systems have been developed for bus-based shared-memory architectures. The complexity
of PLP systems and the large amount of data they process raises the question of whether
logic programming systems can still obtain good performance on scalable architectures, such
as distributed shared-memory systems.

In this work we use execution-driven simulation of a DASH-like architecture to investi-
gate the access patterns and caching behaviour exhibited by a parallel logic programming
system, Andorra-1. We first show that, without modifications, the system obtains reasonable
performance, but that it does not scale well. By studying the behaviour of the major data
structures in Andorra-I in detail, we conclude that this result is largely a consequence of
the scheduling and work manipulation implementation used in the system. Our detailed
analysis exposes several opportunities for improvements to Andorra-I, such as changing the
layout of certain data structures. Based on the analysis of the caching behaviour of all
Andorra-I data structures we optimised the Andorra-I code using 5 different techniques. We
present the isolated and combined performance improvements provided by these optimisa-
tions. Qur results show that the techniques provide significant performance improvements,
leading to the conclusion that the system can and should perform well on modern scalable
multiprocessors. Moreover, since Andorra-I shares its main data-structures with other PLP
systems; we further conclude that the methodology and techniques used in our work can
greatly benefit most PLP systems.

1 Introduction

Parallel logic programming (PLP) systems are sophisticated examples of symbolic com-
puting systems. They address problems such as dynamic memory allocation, scheduling
irregular execution patterns, and managing different types of implicit parallelism. In fact,
one of the most important advantages of logic programming is the availability of several
forms of implicit parallelism that can be naturally exploited on shared-memory multipro-
cessors. These forms include: or-parallelism, as exploited in the systems Aurora [20] and
Muse [3]; independent and-parallelism, as in &-Prolog [14] and &-ACE [13]; dependent and-
parallelism, as in Parlog’s JAM [9], KLIC [30], and DASWAM [27, 28]; data-parallelism, as
in Reform Prolog [6]; and combined and-or parallelism, as in Andorra-I [26] and Penny [21].

*This work was sponsored by CNPq, Brazilian Research Council.
tOn leave from the Universidade do Porto, Portugal.

All these systems have been able to obtain good performance on bus-based systems, such
as the Sequent Symmetry multiprocessors [19].

The complexity of PLP systems and the large amount of data they process raises the
question of whether logic programming systems can still obtain good performance on scal-
able architectures, such as distributed shared-memory systems (DASH [18], Alewife [1],
Exemplar [8] or Origin [17]). In distributed shared-memory systems, performance depends
heavily on the read miss rates and may be limited by the communication overhead caused
by coherence messages needed to maintain local copies of shared data consistent.

Sharing in parallel logic programming systems occurs under several circumstances. The
use of logical variables for communication in dependent and-parallel applications, for in-
stance, is an example of producer—consumer sharing of data, where the processor that in-
stantiates a logical variable is the writer and the processors that consult the binding the
readers.

A second major form of sharing, migratory sharing, arises from synchronisation between
processors. Synchronisation occurs in tasks such as fetching work from other processors,
and on being the leftmost goal or branch to execute cuts or side-effects. As an example,
because of the high cost of suspending and restarting processes, it is very common that idle
processors will be cycling through shared data structures searching for work. A processor
that produces a piece of work writes to one of these data structures, which later will be read
and then modified by one of the idle processors.

In this work we experiment with a sophisticated PLP system, Andorra-I [26], that exploits
both dependent and-parallelism and or-parallelism. Andorra-I is one of the most sophisti-
cated PLP systems that have been built to date. Original work with Andorra-I obtained
good performance on the Sequent Symmetry, but our initial experience with Andorra-I run-
ning on modern multiprocessors demonstrates indeed that scalability suffers greatly on these
architectures [24].

This paper addresses the question of whether the poor scalability of Andorra-I is inherent
to the complex structure of PLP systems or can be improved through careful analysis and
tuning. In order to answer this question, we analyse the caching behaviour of all Andorra-1
data areas when applied to several different logic programs. The analysis pinpoints the
areas that are responsible for most misses and the main sources for these misses. Based
on this analysis we remove the main performance limiting factors in Andorra-I through a
set of optimisations that did not require a redesign of the system. More specifically, we
optimise Andorra-I using 5 different techniques: trimming of shared variables, data layout
modification, privatisation of shared data structures, lock distribution, and elimination of
locking in scheduling.

We present the i1solated and combined performance improvements provided by the opti-
misations on a simulated DASH-like multiprocessor with up to 24 processors. In isolation,
shared variable trimming and the modification of the data layout produced the greatest
improvements. The improvements achieved when all optimisation techniques are combined
are substantial. A few of our programs approach linear speedups as a consequence of our
modifications. In fact, for one program the speedup of the modified Andorra-I is a factor of 3
higher than that of the original version of the system on 24 processors. Our main conclusion
is then that, even though Andorra-I is indeed complex and irregular, it can and should scale
well on modern scalable multiprocessors.

This conclusion can be extrapolated to several other PLP systems, since they share most
of Andorra-I’s data structures. More specifically, single processor execution in Andorra-

I is based on Warren’s WAM [33, 2], the abstract machine of most other sequential and
PLP systems. Thus, Andorra-I’s major abstract machine data structures can be found
in these systems. Parallel execution in Andorra-I applies the implementation technology
developed for or-parallel systems such as Aurora [20], and for and-parallel systems such as
PARLOG [9]. Thus, Andorra-I’s major parallelism-related data structures can be found in
these PLP systems. Results obtained from Andorra-I are therefore of immediate interest to
most PLP systems, making Andorra-I the most interesting system for studies such as ours.

Our approach contrasts with previous studies of the performance of parallel logic pro-
gramming systems. Tick and Hermenegildo [31] studied caching behaviour of independent
and-parallelism in bus-based multiprocessors. Other researchers have studied the perfor-
mance of parallel logic programming systems on scalable architectures, such as the DDM [23].
Our previous work investigated the impact of different cache coherence protocols [24, 25],
and the impact of different architectural parameters such as cache sizes and cache block
sizes on the Andorra-T system [29].

The remainder of the paper is organised as follows. Section 2 presents the methodology
used to obtain our results. We describe the Andorra-I PLP system, the simulator we used
to perform the experiments, and how Andorra-I was ported to the simulator. In Section 3
we analyse in detail the initial speedup performance of each application we consider. Sec-
tion 4 introduces the major optimisations and discusses their individual contribution. We
present the performance of the optimised system in Section 5. Finally, Section 6 draws our
conclusions and suggests future work.

2 Methodology

In this section we detail the methodology used in our experiments. The experiments con-
sisted of the simulation of the parallel execution of Andorra-I, compiled for the MIPS archi-
tecture [16].

2.1 Multiprocessor Simulation

We use a detailed on-line, execution-driven simulator that simulates a 24-node, DASH-
like [18], directly-connected multiprocessor. Each node of the simulated machine contains
a single processor, a write buffer, cache memory, local memory, a full-map directory, and a
network interface. The simulator was developed at the University of Rochester and uses the
MINT front-end [32] (developed by Veenstra and Fowler) to simulate the MIPS architecture,
and a back-end [7] (developed by Bianchini, Kontothanassis, and Veenstra) to simulate the
memory and interconnection systems.

In our simulated machine, each processor has a 128-KB direct-mapped data cache with
64-byte cache blocks. All instructions and read hits are assumed to take 1 cycle. Read
misses stall the processor until the read request is satisfied. Writes go into a 16-entry write
buffer and take 1 cycle, unless the write buffer is full, in which case the processor stalls until
an entry becomes free. Reads are allowed to bypass writes that are queued in the write
buffers. Shared data are interleaved across the memories at the block level.

A memory bus clocked at half of the speed of the processor connects the main components
of each machine node. A new bus operation can start every 34 processor cycles. A memory
module can provide the first word of a cache line 20 processor cycles after the request is
issued. The other words are delivered at 2 cycles/word bandwidth.

The interconnection network is a bi-directional wormhole-routed mesh, with dimension-
ordered routing. The network clock speed is the same as the processor clock speed. Switch
nodes introduce a 4-cycle delay to the header of each message. Network paths are 16-bit
wide, which matches the memory bandwidth. In these networks contention for links and
buffers is captured at the source and destination of messages.

All hardware characteristics mentioned above are common in actual modern parallel
architectures.

In order to keep caches coherent we used a write-invalidate (WT) protocol [12]. In the
WI protocol, whenever a processor writes a data item, copies of the cache block containing
the item in other processors’ caches are invalidated. If one of the invalidated processors later
requires the same item, it will have to fetch it from the writer’s cache. Our WI protocol
keeps caches coherent using the DASH protocol with release consistency [18].

2.2 Andorra-1

The Andorra-I parallel logic programming system is based on the Basic Andorra Model [35].
The system was developed at the University of Bristol by Beaumont, Dutra, Santos Costa,
Yang, and Warren [26, 36]. To the best of the authors’ knowledge, Andorra-I was the first
parallel logic programming system that exploited both and- and or-parallelism, and yet
could run real-world applications with significant parallel performance.

Andorra-I employs a very interesting method for exploiting and-parallelism in logic pro-
grams, namely to execute determinate goals first and concurrently, where determinate goals
are the ones that match at most one clause in a program. Thus, Andorra-1 exploits de-
terminate dependent and-parallelism. Eager execution of determinate goals can result in
a reduced search space, because unnecessary choicepoints are eliminated. The Andorra-I
system also exploits or-parallelism that arises from the non-determinate goals. Its imple-
mentation is influenced by JAM [10] when exploiting and-parallelism, and by Aurora [20]
when exploiting or-parallelism.

The Andorra-I system consists of several components. The preprocessor is responsible
for compiling the program and for the sequencing information necessary to maintain the
correct execution of Prolog programs. The engine is responsible for the execution of the
Andorra-I programs. The two schedulers manage and- and or-work. The reconfigurer allows
workers to migrate between teams to find better sources of work.

A processing element that performs computation in Andorra-1 is called a worker. In
practice, each worker corresponds to a separate processor. Andorra-I is designed in such a
way that workers are classified into masters and slaves. One master and zero or more slaves
form a team. Each master in a team is responsible for creating a new choicepoint, while
slaves are managed and synchronised by their master. Workers in a team cooperate with
each other in order to share available and-work. Different teams of workers cooperate to
share or-work. Note that workers arranged in teams share the same set of data structures
used in a given branch of the search tree.

Most of the execution time of workers should be spent executing engine code [37], i.e.,
performing reductions. Andorra-I is designed in such a way that data corresponding to
each worker is as local as possible, so that each worker tries to find its own work without
interfering with others. Scheduling in Andorra-I is demand-driven, that is, whenever a
worker runs out of work, it enters a scheduler to find another piece of available work.

The or-scheduler is responsible for finding or-work, i.e., an unexplored alternative in the

or-tree. Our experiments used the Bristol or-scheduler [5], originally developed for Aurora.
The and-scheduler is responsible for finding eligible and-work, which corresponds to a
goal in the run queue (list of goals not yet executed) of a worker in the same team. Each
worker in a team keeps a run queue of goals. This run queue of goals has two pointers.
The pointer to the head of the queue is only used by the owner. The pointer to the tail of
the queue is used by other workers to “steal” goals when their own run queues are empty.
If all the run queues are empty, the slaves wait either until some other worker (in our
implementation, the master) creates more work in its run queue or until the master detects
that there are no more determinate goals to be reduced and it is time to create a choicepoint.
Finally, the reconfigurer [11] is responsible for arranging the workers into teams in a way
that allows both and- and or-parallelism to be freely exploited when they are available.

2.3 The MIPS Port

In order to use Andorra-I with the simulator we needed to port the system to the MIPS
architecture. We used the FSF’s gcc 2.7.2 C compiler and binutils-2.6 assembler and
linker under a Solaris 2.5 environments as cross development tools for this purpose. Andorra-
I was compiled with -02.

Most of the port was straightforward. The only difficulties arose with shared memory
allocation and locking. For shared memory allocation we use the shmalloc library supported
by MINT. For locking in modern MIPS machines, we would use the 11, sc, and sync machine
instructions [16] to implement locks and atomic operations. Unfortunately, these instructions
are not yet supported by the back-end. The alternative is to use the lock library routines,
as implemented by the simulator, which allow us to control the synchronisation overhead.
In our simulations, these routines were implemented as atomic instructions.

To ensure correct execution under the release consistency model, we guarantee that all
accesses to shared data are surrounded by lock and unlock operations. The only exception
to this rule is the detection of the end of the determinate phase. Here we maintained
the original protocol because any action after detection requires the slaves to grab a lock
previously released by the master.

3 Analysing the Caching Behaviour of Andorra-I

The major goal of our work was to determine which factors affect caching in Andorra-I, as
this is one of the most important requirements for obtaining good performance in parallel
systems. A parallel logic programmingsystem includes several shared data structures, whose
importance depends on the type and amount of parallelism available in the application. Qur
first goal was therefore to classify them and study their individual contributions to the overall
caching behaviour.

3.1 Data Areas in Andorra-1

Andorra-T combines the techniques used to implement parallel committed-choice systems [9]
and the techniques used to implement or-parallel systems [20], themselves based on sequen-
tial Prolog [33]. The shared memory areas that implement the functionality of Andorra-I
can be classified as:

e Or-Scheduler Data Structures. The Bristol Or-scheduler uses three different data
structures: a set of fields on each choice-point, and two data structures with global
variables. One of the two latter structures is shared by every worker, and the other is
replicated by every worker. We grouped these data structures into a single area.

e Worker Data Structures. These include a copy of the abstract machine registers,
the variables used to synchronise within a team, and the run-queues for each worker.
Most accesses to these data structures occur when performing and-scheduling, that is
when fetching work from other workers in a team, or when synchronising workers in a
team.

e Lock Array. The lock array is used to establish a mapping between a shared memory
position (such as a variable in the heap) and a lock. Tt is used whenever we need to
lock a variable. This area is required because the simulator does not implement the
MIPS instructions to synchronise access to shared memory. We therefore use hashing
to a lock array as the mechanism to guarantee synchronisation.

e Code Space. The code space includes the compiled code for every procedure. During
execution of the benchmarks it is read-only, but it could be updated by programs that
perform assert or record.

e Heap Space. As in other Prolog systems, this space stores structured terms and
variables. It grows during forward execution, and contracts during backtracking.

e Goal Frame Space. This data area stores goal frames, which consist of the goal’s
arguments, multi-assignment variables used to link the goal frames, and several control
fields. The engine tries to reuse goal frames during forward execution.

e Choicepoint Stack. Choicepoints include pointers to the top of stacks, and flags that
are updated as processors move around searching for work. Differently from Prolog,
no arguments need to be stored. Note that as we backtrack and move forward, the
same choice point stack space may be used several times for different choicepoints.

e Trail Stack. The trail stack records any conditional binding to logical or multi-
assignment variables (used in the implementation of Andorra-I [37]). It can be con-
sidered as an extension of a choicepoint that records non-determinate bindings and is
only important in applications with or-parallelism.

¢ Binding Arrays. They are used to implement the SRI model [34] for or-parallelism,
by storing conditional bindings. They should be private in or-parallel applications,
and almost never written in and-parallel-only applications. Even during an execu-
tion without choice points (a determinate execution), Andorra-I will access this data
structure to verify whether variables have conditional bindings.

e Miscellaneous Shared Variables. This area includes the shared I/O data struc-
tures, such as open stream descriptors. It also includes information on the clauses
compiled into the system, and pointers to the determinacy and non-determinacy code.
A set of flags and counters is globally manipulated by the system. This area also
includes the data structures used by the reconfigurer.

We instrumented the simulator to report data separately on each region. We then ran
the applications to collect statistics for each data area in turn.

3.2 Workload and Original Performance

The benchmarks we used in this work are applications representing predominantly and-
parallelism, predominantly or-parallelism, and both and- and or-parallelism. We next discuss
application performance for the original Andorra-I. Note that our results correspond to the
first run of an application; results would be somewhat better for other runs.

i deal i sed —— i deal i sed ——
20 dash -+ 20 dash -+
215 515
© ©
[0} [0}
) [N R— b}
@ 10 : & 10
5 5 . SR —
5 10 15 20 5 10 15 20
Nurmber of Processors Nurmber of Processors
Figure 1: Speedups for bt-cluster Figure 2: Speedups for tsp

And-Parallel Applications. We use two example and-parallel applications, the cluster-
ing algorithm for network management from British Telecom, bt-cluster, and a program
to calculate approximate solutions to the traveling salesperson problem, tsp. The clustering
program receives a set of points in a three dimensional space and groups these points into
clusters. Basically, three points belong to the same cluster if the distance between them is
smaller than a certain limit. And-parallelism in this case naturally stems from running the
calculations for each point in parallel. The test program uses a cluster of 400 points as input
data. This program has very good and-parallelism, and, being completely determinate, no
or-parallelism. The traveling salesperson program is based on a Reform Prolog [6] bench-
mark that finds an approximate solution for the TSP problem in a graph with 24 nodes.
To obtain best performance, the Andorra-I team rewrote the original applications to make
them determinate-only computations.

Figure 1 shows the bt-cluster speedups for the simulated architecture as compared to
an idealised shared-memory machine, where data items can always be found in cache. The
idealised curve shows that the application has excellent and-parallelism and can achieve
almost linear speedups up to twenty four processors. Unfortunately, performance for the
DASH-like machine is barely acceptable. The DASH curve starts with an efficiency of 85% for

2 processors. Efficiency smoothly decreases as the number of processors increases, reaching
70% for 16 processors. Efficiency is less than 50% for 24 processors. Figure 2 shows that the
tsp application achieves worse speedups than bt-cluster on a modern multiprocessor. The
maximum speedup actually decreases for 24 processors, whereas the ideal machine would
achieve a speedup of 20 for 24 processors.

Figure 3 illustrates the number and sources of cache misses per data area in the bt _cluster
application running on 16 processors as a representative example. The figure shows that
the overall miss rate of bt-cluster is dominated by true and false sharing misses from the
Worker and Misc areas. This suggests that the system could be much improved by reducing
false sharing and studying activity in the Worker and Misc areas.

BT-CLUSTER CHATS0

Number of cache misses Number of cache misses
240000

15000
Cold Cold
200000 Eviction 4 Eviction
True Shari_ng 12000 F True Sharing N
False sharing False sharing
160000 7
9000 1
120000
80000 6000 1 |
40000 3000 m
0 p— . l
L @& @ ¥ S ¥ K > Y 0
) RS 5 J & & & S ¥ < N
o O IO AN O N @& ¥ R PR D o &
N x§ & @0& S & & o‘\&& AN

Figure 3: Misses by data area for

bt—cluster Figure 4: Misses by data area for chat80

Or-Parallel Applications. We use two or-parallel applications. Our first application,
chat80, is an example from the well-known natural language question-answering system
chat-80, written at the University of Edinburgh by Pereira and Warren. This version of
chat-80 operates on the domain of world geography. The program chat80 makes queries to
the chat-80 database. This is a small scale benchmark with good or-parallelism, and it has
been traditionally used as one of the or-parallel benchmarks for both the Aurora and Muse
systems. The second application, £p, is an example query for a knowledge-based system for
the automatic generation of floor plans. This application should at least in principle have
significant or-parallelism. Figure 5 shows the speedups for the chat80 application from 1
to 24 processors. These speedups are very similar to those obtained by Andorra-I on the
Sequent Symmetry architecture. In contrast, the DASH curve reaches a maximum speedup
of 4.2 for 16 processors. Figure 6 shows the speedups for the £p application. The theoretical

i deal i sed —— i deal i sed ——
20 dash -+ 20 dash -+

215 515

© ©

(0] (0]

]]

& 10 & 10

5 e 5 +
5 10 15 20 5 10 15 20
Nurmber of Processors Nurmber of Processors
Figure 5: Speedups for chat80 Figure 6: Speedups for fp

speedup is very good, in fact quite close to linear, in sharp contrast to the actual speedup
for the DASH-like machine. Figure 4 shows the number and source of misses for chat80
running on 16 processors, again as an example of this type of application. Note that chat80
does not have enough parallelism to feed 16 processors, suggesting that most sharing misses
should result from or-parallel scheduling areas, OrSch and ChoiceP. Indeed, the figure shows
that these areas are responsible for a large number of sharing misses, but the areas causing
the most misses are Worker and Misc as in the and-parallel applications, indicating again
that these two areas should be optimised.

Note also the large number of eviction misses in the Trail. The trail is used to store
conditional bindings, and is used in backtracking and when searching for work. The high
number of misses in this area indicates that workers often go here, and suggests work is
fine-grained.

And/Or-Parallel Application. As an example of and/or application we used a program
to generate naval flight allocations, based on a system developed by Software Sciences and
the University of Leeds for the Royal Navy. It is an example of a real-life resource allocation
problem. The program allocates airborne resources (such as aircraft) whilst taking into
account a number of constraints. The problem is solved by using the technique of active
constraints as first implemented for Pandora [4]. In this technique, the co-routining inherent
to the Andorra model is used to activate constraints as soon as possible. The program has
both or-parallelism, arising from the different possible choices, and and-parallelism, arising
from the parallel evaluation of different constraints. To test the program, we ask it to
schedule 11 aircrafts, 36 crew members and 10 flights. The degree of and- and or-parallelism
in this program varies according to the queries, but this query gives rise to more and-
parallelism than or-parallelism. The system uses the reconfigurer to dynamically adapt to

the available sources of parallelism.

Figure 7 shows the speedups for pan2. The idealised curve shows that the application
has less parallelism than all other applications; the ideal speedup does not even reach 12
on 24 processors. When run on the DASH simulator, pan2 exhibits unacceptable speedups
for all numbers of processors; speedup starts out at about 1.8 for 2 processors and slowly
improves to a maximum of only 4.8 for 24 processors. Figure 8 shows the distribution of
cache misses by the different Andorra-I data areas for 16 processors. In this case, the Worker
area clearly dominates, since the contribution from the Misc area is not as significant as
in the and-parallel benchmarks. Note that there 1s more true than false sharing activity in
Worker. The true sharing probably results from idle processors looking for work.

PAN2
Number of cache misses
140000
i deal i sed —— Cold
dash - 120000 Eviction 1
20
True Sharing
100000 + False sharing i
215 80000 1
o
1}
2] 60000 |- |
o
n 10
40000 - J
s N S s 20000 | H |
7 e —
X A & @ Q \& Q N oY)
5 10 15 20 O&Q $0¢é—® \9(‘}‘ (,06 & & ‘\6& S AR
Nunber of Processors ©
Figure 7: Speedups for pan2 Figure 8: Misses by data area for pan2

4 Optimisation Techniques and Performance

The previous analysis suggests that relatively high miss rates may be causing the poor
scalability of Andorra-I. It is interesting to note that most misses come from fixed layout
areas, such as Worker and Misc, and not from the execution stacks, as one would assume.

We next discuss how several optimisations can be applied to the system, particularly in
order to improve the utilisation of the Worker and Misc areas. The first two optimisations
were prompted by our simulation-based analysis of caching behaviour, and they are the
ones that give the best improvement. The other three were based on our original intuitions
regarding the system, and were the ones we would have performed first without simulation
data. We studied performance for three applications, bt-cluster, chat80 and pan2.

10

In the remainder of this section, we study the impact of each of the techniques studied
when applied in 1solation.

Variable Trimmaing. In this technique we investigate the areas that have unexepected
sharing, and try to eliminate this sharing if possible. For two of our applications, the Misc
area gave a surprisingly significant contribution to the number of misses. The area is mostly
written at the beginning of the execution to set up execution parameters. During execution
it 1s used by the reconfigurer and to keep reduction and failure counters. By investigating
each component in the area, we detected that the counters were the major source of misses.
As they are only used for research and debugging purposes, we were able to eliminate them
from the Andorra-I code.

Figure 9 shows the result of this optimisation for three benchmarks, bt-cluster, chat80
and pan2. The figure plots the variation in speedup as a function of the number of processors.
The results show that chat80 benefits the most from this optimisation. This is because the
failure counter is never updated by and-parallel applications, but often updated by this
or-parallel application. The optimisation does not impact the and-parallel benchmarks as
much, leading to less than 10% speedup improvements.

1.35 1.7
chat 80 —— chat 80 ——
= 1.3 I bt-cluster —— 2 1.6 bt - ¢l ust er
£1.25 panz = g 15 panz -
(0] (0]
3 1.2 / 3 1.4
£1.15 / g 13 /
2 1.1 / e 2 1.2
3 AT - b o
81'05 v - 9 1.1 -
U & g0
0.95 e 0.9
5 10 15 20 5 10 15 20
Nunber of Processors Nunber of Processors

Figure 9: Impact of Counter Elimination Figure 10: Impact of Data Layout Optimi-
Optimisations sations

Data Layout Modification. Figure 10 shows the impact of the data layout modifications
on the speedup of our applications. The bt-cluster and chat80 applications benefit the
most from this optimisation. Note that, on machine configurations of up to 16 processors,
chat80 benefits from this optimisation more than bt-cluster does, suggesting that the
false sharing was having a big negative impact on this application until its lack of enough
parallelism started to take over. On the largest machine configuration however, the optimi-
sation actually becomes more beneficial to bt-cluster, an and-parallel application with a
much greater amount of parallelism.

The pan2 application benefits only slightly from this optimisation. Note that we again
have a slowdown, now for 4 processors, probably because of slightly different scheduling.

11

All benchmarks but pan2 exhibit a high false sharing rate, showing a need for this
technique. On 16 processors, 15% of the misses in pan2 are false sharing misses, whereas in
the other applications false sharing causes between 40% (chat80) and 51% (bt-cluster) of
all misses. These results suggest that improving false sharing is of paramount importance.
According to our detailed analysis of caching behaviour, false sharing misses are concentrated
in the Worker, OrSch, ChoiceP and BA areas, besides the Misc area optimised by the previous
technique.

The Worker and OrSch data areas are allocated statically. This indicates that we can
effectively reduce false sharing. We applied two common techniques to tackle false sharing,
padding between fields that belonged to different workers or that were logically independent,
and field reordering to separate fields that were physically close but logically distinct. Al-
though these are well-known techniques, padding required careful analysis, as it increases
eviction misses significantly. The field reordering technique was not easily applied either, as
the relationships between fields are quite complex.

Padding may lead to serious performance degradation for the dynamic data areas, such
as ChoiceP and BA. This restricted our options for layout modification to just field reordering
for these areas. The BA area was the target of one final data layout modification, since the
analysis of cache behaviour surprised us with a high number of false sharing misses in this
area for chat80. Further investigation showed that this was a memory allocation problem.
The engines’ top of stacks were being shmalloc’ed separately and appeared as part of the BA
area in the analysis. This increased sharing misses in the area and was especially bad for the
or-parallel applications, as different processor’s top of stacks would end up in the same cache
line. We addressed the problem by moving these pointers into the Worker area, where they
logically belong. Our results show that the bt-cluster and chat80 applications benefit the
most from this optimisation; speedup improvements can be as significant as 60%. In contrast,
the pan2 application achieves improvements of less than 10% from this optimisation.

Privatisation of Shared Variables. This technique reduces the number of shared mem-
ory accesses by making local copies in each node of the machine. In the best case, the shared
variables are read-only and hence local copies can actually be allocated in private memory.
The high number of references to Worker suggested that privatisation could be applied there.
In fact, Andorra-I did already use private copies of the variables in Worker and there was
little room for improvement. The Locks and Code data areas are the major candidates to
privatisation in Andorra-I. The Locks area only includes pointers to the actual locks, is thus
read-only during execution, and can be easily privatised. Another area that is also read-only
during parallel execution of our benchmarks is Code. Unfortunately, logic programs in gen-
eral can change the database and, therefore, update Code, making privatisation complex. In
the port of the related logic programming system Aurora to the Butterfly, an early scalable
machine, it was necessary to privatise the Code area to obtain good performance [22].

Figure 11 shows the impact of privatisation on the speedup of Andorra-I. The figure
shows that privatisation improves speedups by up to 10% at most and that the impact of
this optimisation decreases as the number of processors increases.

Lock Distribution. This technique was considered to reduce contention on accesses to
logical variables, and-scheduling, or-scheduling, and stack management. The original im-
plementation used a single array of locks to implement these operations. In the worst case,
several workers would contend for the same lock causing contention. To improve scalabil-
ity, we implemented different lock data structures for different purposes. We expected best

12

1.12 1.12
. L IchaE 80 —— 1.1 chat80 ——
c 1.1 bt=cluster - = /\ bt-cluster -+
£ o8 / pan2 -e=-- € 1.08 /\ pan2 s
s R/ 21.06 / \ o
= 1.06 N . e =1 04 1%/ 7
—1.04 —102¢ \/
Q o B .
s s)
31.02 2
o © 0.98
F 1 &
- 0. 96
0.98 8 0.94
5 10 15 20 5 10 15 20
Nunber of Processors Nunber of Processors

Figure 11: Impact of Privatisation Optimi- Figure 12: Impact of Lock Distribution Op-
sations timisations

results for or-parallel applications, as the optimisation prevents different teams from con-
tending on accesses to logical variables. The cost of this optimisation is that, if the arrays of
locks are shared, there will be more expensive remote cache misses. Our results show that
the bt-cluster and chat80 applications benefit somewhat from this optimisation, but that
the pan2 application already exhibited a significant number of misses in the Locks area and
suffers a slowdown.

Figure 12 shows the impact of lock distribution in the absence of data privatisation.
The bt-cluster and chat80 applications benefit somewhat from this optimisation. On
the other hand, the pan2 application already had significant misses from the Locks area.
Increasing the number of shared locks also increases the number of remote misses and leads
to worse speedups on 16 and 24 processors. Note that the number of misses would not have
increased, if this optimisation had been applied together with privatisation. Section 5 will
present results for the combination of these two optimisations.

Elimination of Locking tn Scheduling. This technique improves performance in bench-
marks with significant and-parallelism by testing whether there 1s available work, before
actually locking the work queue. This modification is equivalent to replacing a test_and_set
lock with a test_and_test_and_set lock. This optimisation provides a small speedup improve-
ment for pan2, as it avoids locking when there is no and-work.

For bt-cluster the technique does not improve speedups as this application exhibits
enough and-work to keep processors busy. chat80 is not affected by this optimisation as it
has or-parallelism only.

Figure 13 shows the variations in speedup entailed by this optimisation. The figure shows
that the locking elimination has no impact on the or-parallel benchmark, chat80, as this
application never uses the and-scheduler. The optimisation does not improve the speedup
of bt-cluster either, since this application has plenty of and-work to keep processors busy.
Finally, locking elimination provides a small increase in speedup for pan2, as it avoids locking
when there is no and-work.

13

1.04
chat 80 ———

El.OS bt-cluster =+
g 5. _-opan2 e
o 1.02
> -
2101 e
g s
= 1)
= ¥
20.99
=3
» 0.98

0.97

5 10 15 20

Nunber of Processors

Figure 13: Impact of Scheduling Optimisations

5 Combined Performance of Optimisation Techniques

We next discuss the overall system performance with all optimisations combined. We com-
pare speedups against the idealised and original results. The idealised speedups were
recalculated for the new version of Andorra-I, but, as it is shown in the figures, the opti-
misations did not have any significant impact for the idealised machine. Figures 14 and
15 show the speedups for the two and-parallel applications running on top of the modified
Andorra-I system. The maximum speedup for bt-cluster jumped from 12 to 20, whereas
the maximum speedup for tsp jumped from 6.3 to 19. This indicates that the realistic
machine is now able to exploit the available parallelism more fully. The explanation for the
better speedups is a significant decrease in miss rates. For bt-cluster, the new version of
Andorra-I exhibits a miss rate of only 0.6% for 16 processors, versus the 1.6% of the previous
version. In the case of tsp, the optimisations decreased the miss rate from 3% to 1.2% again
on 16 processors.

Figure 16 shows the number and source of misses for bt-cluster on 16 processors. Note
that the figure keeps the same Y-axis as in Figure 3 to simplify comparisons against the
cache behaviour of the original version of Andorra-I. The figure shows that the number of
misses in the Worker area was reduced by a factor of 4, while the number of misses in the
Misc area was reduced by an order of magnitude. The figure also shows that there is still
significant true sharing in Worker, but false sharing is much less significant. The number of
misses from Misc is now almost irrelevant.

The or-parallel benchmarks also show remarkable improvements due to the combination
of the optimisation techniques we applied. Figure 18 shows the speedups for chat80 and
Figure 19 shows the speedups for £fp. The maximum speedup for chat80 almost doubles
from one version of the system to the other. Note that speedups for the optimised system
still flatten out on 16 processors, but at a much better efficiency. The other benchmark,
Ip, displays our most impressive result. The speedup for 24 processors jumps from 6.2 with
the original Andorra-I system to 20 when all our optimisations are applied. This result

14

i deal i sed —— i deal i sed ——
20 dash. . (optim.sed). -+ 20 dash. . (optim.sed). -
dash (initial) —=— dash (initial) —=—
515 215
S S
)) P
9] o 9]
@ 10 : @ 10
5 P 5 e
5 10 15 20 5 10 15 20
Nurber of Processors Nurber of Processors
Figure 14: Speedups for bt-cluster Figure 15: Speedups for tsp
BT-CLUSTER CHATS0
Number of Cache Misses Number of cache misses
240000 15000
Cold
200000 |- Evicton 1 E\‘I’i'gﬂon
Ti Shari L . 4
rasogang| | s
160000 1
9000 | 1
120000 T 1
80000 | 6000 i
40000 D 4 3000 4
0 ml_. = -
o 0& Oe}f’ o°® ng’ Oofo \oe? ,\@\ ®e° 0 . o
N O& R
Figure 16: Misses by data area for))
Figure 17: Misses by data area for chat80
bt-cluster

15

i deal i sed —— i deal i sed ——
20 dash. . (optim.sed). -+ 20 dash.(optim.sed). -+
dash (initial) = dash (initial) =
215 215
© © -
]]
() ()
& 10 & 10
5 - i =] 5 / = -
5 10 15 20 5 10 15 20
Nunmber of Processors Nunmber of Processors
Figure 18: Speedups for chat80 Figure 19: Speedups for fp

represents more than a three-fold improvement. Figure 17 shows the distribution of misses
for chat80 with 16 processors. The figure demonstrates that the number of misses in the
Worker and Misc areas was reduced by an order of magnitude. The large number of eviction
and cold start misses in the Code area remains however. Sharing misses are now concentrated
in the OrSch and ChoiceP areas, as they should.

Figure 20 shows the speedups of the new version of Andorra-I for the pan2 benchmark.
In this case, the improvement resulting from our optimisations was quite small. Figure 21
shows the cache miss distribution for the optimised Andorra-I. The main source of misses
was true sharing originating from the Worker region. A more detailed analysis proved that
these misses originate from lack of work. Workers are searching each other’s queues and
generating misses. We are investigating more sophisticated scheduling strategies to address
this problem.

6 Conclusions and Future Work

Andorra-T is an example of an and/or-parallel system originally designed for traditional
bus-based shared-memory architectures. We have demonstrated that the system can also
achieve good performance on scalable shared-memory systems. The key to these results was
the extensive data available from detailed simulations of Andorra-I. The data we obtained
from these simulations showed that significant performance improvements can be accrued
without restructuring the system. Instead, performance can be dramatically improved by
focusing on accesses to shared data. Our study concentrated on Andorra-I, but it can be
directly extrapolated to several other PLP systems, since they share most of Andorra-I’s
data structures.

We believe there is potential for improving the performance of PLP systems even further.

16

PAN2

Number of cache misses

140000
i deal i sed —— 120000 | Cold i
20 dash. . (optim.sed). -+ Eviction
dash (initial) = True Sharing
100000 + False sharing i
o
> 15 80000 - |
o
o
60000]
o
o 10 1
40000 |
5 s e =TI 20000 | H |
P :
,<’fmf‘/ -
& I e -
X & @ @ L o K NP S
5 10 15 20 O@" $0¢e— & ooé o & ‘\6& P
e

Nurmber of Processors

Figure 20: Speedups for pan2 Figure 21: Misses by data area for pan2

To prove so will require more radical changes to data structures within Andorra-I itself, as
the system was simply not designed for such large numbers of processors. In addition to
making these changes, we are also interested in evaluating the performance of other parallel
logic programming systems, such as the ones that exploit independent and-parallelism, on
scalable architectures.

Acknowledgements

The authors would like to thank Leonidas Kontothanassis and Jack Veenstra for their help
with the simulation infrastructure used in this paper. The authors would also like to thank
Rong Yang, Tony Beaumont, D. H. D. Warren for their work in Andorra-I that made this
work possible. Vitor Santos Costa would like to thank the University of Porto for granting
his period of leave to perform this work, and also would like to thank support from the
PROLOPPE and MELODIA projects. Ines Dutra would like to thank the APPELQO project.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B. Lim, K. Mackenzie,
and D. Yeung. The MIT Alewife Machine: Architecture and Performance. In 22nd Annual International
Symposium on Computer Architecture (ISCA’95), June 1995.

[2] Hassan Ait-Kaci. Warren’s Abstract Machine — A Tutorial Reconstruction. MIT Press, 1991.

[3] Khayri A. M. Ali and Roland Karlsson. The Muse Or-parallel Prolog Model and its Performance.
In Proceedings of the 1990 North American Conference on Logic Programming, pages 757-776. MIT
Press, October 1990.

17

(4]

10]

(11]

(12]

(13]

(14]

(19]
(20]

(21]

(22]
(23]

(24]

Reem Bahgat. Solving Resource Allocation Problems in Pandora. Technical report, Imperial College,
Department of Computing, 1990.

Anthony Beaumont, S. Muthu Raman, and Péter Szeredi. Flexible Scheduling of Or-Parallelism in
Aurora: The Bristol Scheduler. In Aarts, E. H. L. and van Leeuwen, J. and Rem, M., editor, PARLFE9J1:
Conference on Parallel Architectures and Languages Europe, volume 2, pages 403—420. Springer Verlag,
June 1991. Lecture Notes in Computer Science 506.

Johan Bevemyr, Thomas Lindgren, and Hakan Millroth. Reform Prolog: The Language and its Im-
plementation. In Proceedings of the Tenth International Conference on Logic Programming, pages
283-298. MIT Press, June 1993.

R. Bianchini and L. I. Kontothanassis. Algorithms for Categorizing Multiprocessor Communication
Under Invalidate and Update-Based Coherence Protocols. In Proceedings of the 28th Annual Simulation
Symposium, April 1995.

Convex Computer Corp. Conver Exemplar Architecture, November 1993.

J. A. Crammond. Implementation of Committed Choice Logic Languages on Shared Memory Multi-
processors. PhD thesis, Heriot-Watt University, Edinburgh, May 1988. Research Report PAR 88/4,
Dept. of Computing, Imperial College, London.

J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. Technical report,
Dept. of Computing, Imperial College, London, June 1990.

I. C. Dutra. Strategies for Scheduling And- and Or-Work in Parallel Logic Programming Systems. In
Proceedings of the 1994 International Logic Programming Symposium, pages 289-304. MIT Press, 1994.
Also available as technical report CSTR-94-09, from the Department of Computer Science, University
of Bristol, England.

James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In Proceedings of the
10th International Symposium on Computer Architecture, pages 124-131, 1983.

Gopal Gupta, Enrico Pontelli, and Manuel Hermenegildo. & ACE: A High Performance Parallel Prolog
System. In Proceedings of the First International Symposium on Parallel Symbolic Computation,

PASCO’94, 1994.

M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-
Parallelism. In Proceedings of the Seventh International Conference on Logic Programming, pages
253-268. MIT Press, June 1990.

Markus Hitz and Erich Kaltofen, editors. Proceedings of the Second International Symposium on
Parallel Symbolic Computation, PASCO’97, July 1997.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

J. Laudon and D. Lenoski. The SGI Origin: A CC-NUMA Highly Scalable Server. In Proceedings of
the 24th Annual International Sympostum on Computer Architecture, pages 241-251, June 1997.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor. Proceedings of the 17th ISCA, pages 148-159, May
1990.

T. Lovett and S. Thakkar. The Symmetry Multiprocessor System. In International Conference of
Parallel Processing, pages 303—310, 1988. University Park, Pennsylvania.

Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora Or-parallel Prolog System. New
Generation Computing, 7(2,3):243-271, 1990.

Johan Montelius. Penny, A Parallel Implementation of AKL. In ILPS’94 Post-Conference Workshop
in Design and Implementation of Parallel Logic Programming Systems, Ithaca, NY, USA, November
1994.

Shyam Mudambi. Performances of aurora on NUMA machines. In Proceedings of the Eighth Interna-
tional Conference on Logic Programming, pages 793—-806. MIT Press, June 1991.

S. Raina, D. H. D. Warren, and J. Cownie. Parallel Prolog on a Scalable Multiprocessor. In Peter
Kacsuk and Michael J. Wise, editors, Implementations of Distributed Prolog, pages 27—-44. Wiley, 1992.

V. Santos Costa, R. Bianchini, and I. C. Dutra. Evaluating the Impact of Coherence Protocols on
Parallel Logic Programming Systems. In Proceedings of the 5th EUROMICRO Workshop on Par-
allel and Distributed Processing, pages 376-381, 1997. Also available as technical report ES-389/96,
COPPE/Systems Engineering, May, 1996.

18

(23]

26]

(28]

(29]

(30]
(31]

(32]

V. Santos Costa, R. Bianchini, and I. C. Dutra. Parallel Logic Programming Systems on Scalable
Multiprocessors. In Proceedings of the 2nd International Symposium on Parallel Symbolic Computation,
PASCO’97 [15], pages 58-67, July 1997.

V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that Transparently
Exploits both And- and Or-Parallelism. In Third ACM SIGPLAN Symposium on Principles € Practice
of Parallel Programming, pages 83-93. ACM press, April 1991. SIGPLAN Notices vol 26(7), July 1991.

Kish Shen. Initial Results from the Parallel Implementation of DASWAM. In Michael Maher, editor,
Proceedings of the 1996 Joint International Conference and Symposium on Logic Programmaing. The
MIT Press, 1996.

Kish Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. J. of Logic Prog.,
29(1-3), 1996.

Marcio G. Silva, I. C. Dutra, Ricardo Bianchini, and Vitor Santos Costa. The Influence of Computer
Architectural Parameters on Parallel Logic Programming Systems. In Workshop on Practical Aspects
of Declarative Languages (PADLY9), January 1999. Also available as Technical Report ES/477-98,
COPPE Systems Engineering, Sep/98.

T. Chikayama, T. and Fujise, and H. Yashiro. A Portable and Reasonably Efficient Implementation of
KL1. In Proceedings of the Eleventh International Conference on Logic Programming, June 1993.

Evan Tick. Memory Performance of Prolog Architectures. Kluwer Academic Publishers, Norwell, MA
02061, 1987.

J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Simulation of Shared-Memory Mul-
tiprocessors. In Proceedings of the 2nd International Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS 94), 1994.

David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International, 1983.
David H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog—Abstract Design and Im-

plementation Issues. In Proceedings of the 1987 International Logic Programming Symposium, pages
92-102, 1987.

David H. D. Warren. The Andorra model. Presented at Gigalips Project workshop, University of
Manchester, March 1988.

Rong Yang, Tony Beaumont, Inés Dutra, Vitor Santos Costa, and David H. D. Warren. Performance of
the Compiler-Based Andorra-I System. In Proceedings of the Tenth International Conference on Logic
Programming, pages 150-166. MIT Press, June 1993.

Rong Yang, Vitor Santos Costa, and David H. D. Warren. The Andorra-I Engine: A parallel imple-
mentation of the Basic Andorra model. In Proceedings of the Eighth International Conference on Logic
Programming, pages 825—-839. MIT Press, 1991.

19

