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Abstract. This paper discusses the design of YapDss, an or-parallel
Prolog system for distributed memory parallel machines, such as the
Beowulf PC clusters. The system builds on the work of YapOr, an
or-parallel system for shared memory machines, and uses the distributed
stack splitting binding model to represent computation state and work
sharing among the computational workers. A new variant scheme of
stack splitting, the diagonal splitting, is proposed and implemented.
This scheme includes efficient algorithms to balance work load among
computing workers, to determine the bottommost common node
between two workers, and to calculate exactly the work load of one
worker. An initial evaluation of the system shows that it is able to
achieve very good speedups on a Beowulf PC cluster.

Keywords: Parallel Logic Programming, Or-Parallelism, Stack Split-
ting.

1 Introduction

Prolog is arguably the most popular Logic Programming language used by re-
searchers in the areas of Artificial Intelligence (AI), such as machine learning
and natural language processing. For most of the AI applications, performance
is a fundamental issue, and therefore the ability to speedup Prolog execution is a
relevant research topic. The development of parallel Prolog systems have further
contributed to excel performance. These systems exploit implicit parallelism in-
herent to the language and therefore do not impose extra work to application
developers.

There are two main sources of implicit parallelism in logic programs, or-
parallelism and and-parallelism. Or-parallelism arises from the parallel execu-
tion of multiple clauses capable of solving a goal, that is from exploring the
non-determinism present in logic programs. And-parallelism arises from the par-
allel execution of multiple subgoals in a clause body. Of interest to us here is
the implementation of or-parallelism. One basic problem with implementing or-
parallelism is how to represent, efficiently, the multiple bindings for the same
variable produced by the parallel execution of the alternative matching clauses.
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Two of the most prominent binding models that have been proposed, binding ar-
rays and environment copying, have been efficiently used in the implementation
of Or-Parallel Prolog systems on, mostly, shared memory platforms (SMP) [10,
1,12,13]. Other proposals have also been put forward addressing the other major
type of parallel architectures - distributed memory platforms (DMP), also known
as massively parallel processors [3,15,16].

In this paper we are concerned with the implementation of an Or-Parallel
Prolog system, the YapDss, for a new type of DMP, namely Beowulf PC clusters.
These systems are built from off-the-shelf components and have turned into a
viable high-performance, low-cost, scalable, and standardized alternative to the
traditional parallel architectures. We take an approach similar to PALS [16], that
is we use stack splitting [8] as the main technique to exploit or-parallelism. Stack
splitting is a refined version of the environment copying model that is particularly
suited for distributed architectures. Environment copying allows computational
agents (or workers, or engines, or processors or processes) to share work by copy-
ing the state of one busy worker (with unexplored work) to another idle worker.
This operation requires further synchronization among the workers to avoid re-
dundant work. Stack splitting introduces a heuristic that when sharing work, the
sharing worker completely divides its remaining work with the requesting worker.
The splitting is in such a way that both workers will proceed, each executing its
branch of the computation, without any need for further synchronization.

Substantial differences between YapDss and PALS resulted in several con-
tributions from our design. The YapDss system builds from a previous efficient
Or-Parallel Prolog system, the YapOr [12], based on the environment copying
model and the Yap Prolog compiler [14]. YapDss implements a variant stack
splitting scheme, the diagonal splitting, different from PALS’s vertical splitting
scheme [16], which, in our view achieves a better work load balance among the
computing workers. It uses a simple, yet very efficient, scheme to determine the
bottommost common node between the branches of two workers. The work load
of a worker is calculated exactly; it is not an estimate. YapDss implements a
number of scheduling strategies without having to resort to explicit messages
to propagate system work load to workers. Performance analysis showed that
YapDss is able to achieve very good performance on a number of common bench-
mark programs.

The remainder of the paper is organized as follows. First, we introduce the
general concepts of environment copying and stack splitting. Next, we describe
the diagonal splitting scheme and discuss the major implementation issues in
YapDss. We then present an initial performance analysis for a common set of
benchmarks. Last, we advance some conclusions and further work.

2 The Multiple Environments Representation Problem

Intuitively, or-parallelism seems simple to implement as the various alternative
branches of the search tree are independent of each other. However, parallel
execution can result in several conflicting bindings for shared variables. The
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environments of alternative branches have to be organized in such a way that
conflicting bindings can be easily discernible. A binding of a variable is said to
be conditional if the variable was created before the last choice point, otherwise
it is said unconditional. The main problem in the management of multiple en-
vironments is that of efficiently representing and accessing conditional bindings,
since unconditional bindings can be treated as in normal sequential execution.

2.1 Environment Copying

Essentially, the multiple binding representation problem is solved by devising
a mechanism where each branch has some private area where it stores its con-
ditional bindings. A number of approaches have been proposed to tackle this
problem [7]. Arguably, environment copying is the most efficient way to maintain
or-parallel environments. Copying was made popular by the Muse or-parallel sys-
tem [1], a system derived from an early release of SICStus Prolog. Muse showed
excellent performance results [2] and in contrast to other approaches, it also
showed low overhead over the corresponding sequential system. Most modern
parallel logic programming systems, including SICStus Prolog [6], ECLiPSe [17],
and Yap [12] use copying as a solution to the multiple bindings problem.

In the environment copying model each worker maintains its own copy of
the environment, but in an identical address space, that is, each worker allocates
their data areas starting at the same logical addresses. An idle worker gets work
from a busy worker, by copying all the stacks from the sharing worker. Copying
of stacks is made efficient through the technique of incremental copying. The
idea of incremental copying is based on the fact that the idle worker could have
already traversed a part of the search tree that is common to the sharing worker,
and thus it does not need to copy this part of stacks. Furthermore, copying of
stacks is done from the logical addresses of the sharing worker to exactly the same
logical addresses of the idle worker, which therefore avoids potential relocation
of address values.

As a result of copying, each worker can carry out execution exactly like
a sequential system, requiring very little synchronization with other workers.
When a variable is bound, the binding is stored in the private environment of the
worker doing the binding, without causing binding conflicts. Synchronization is
only needed to guarantee that no two workers explore the same alternative from
a shared choice point. Each shared choice point is thus associated with a new
data structure, the shared frame, that is used to guarantee mutual exclusion when
accessing the untried alternatives in such choice points. This works well on SMP,
where mutual exclusion is implemented using locks. However, mutual exclusion
for shared data structures on DMP leads to frequent exchange of messages, which
can be a considerable source of overhead and bottleneck.

Nevertheless the shared nature of choice points, environment copying has
been recognized as one of the best approaches to support or-parallelism in DMP
platforms [5,4,3]. This is because, at least all the other data structures, such as
the environment, the heap and the trail do not require synchronization. More-
over, practice has showed that the best policy to dispatch work for or-parallel
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execution is scheduling on bottommost choice points. The bottommost policy
turns public the whole private region of a worker when it shares work. This
maximizes the amount of shared work and possibly avoids that the requesting
worker runs out of work too early and therefore invokes the scheduler too often.
This is especially important for an environment copying approach because it
minimizes the potential number of copying operations.

2.2 Stack Splitting

In order to avoid shared frames, while keeping stack copying with scheduling on
bottommost choice points, Gupta and Pontelli proposed a novel technique, called
stack splitting [8], to ensure that no two workers can pick the same alternative
from shared choice points. The basic idea is to split untried alternatives between
the workers sharing a choice point. The splitting should be in such a way that
each private copy of the choice point in a worker’s environment has its own un-
tried alternatives. Several schemes for splitting the set of untried alternatives in
shared choice points can be adopted. Figure 1 illustrates three different splitting
schemes, that we name horizontal, vertical and diagonal splitting. Other schemes
are still possible.

(i) P is busy and Q is idle (ii) P and Q after horizontal splitting
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Fig. 1. Splitting of choice points
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In horizontal splitting, the untried alternatives in each choice point are al-
ternatively split between the requesting worker Q and the sharing worker P . In
vertical splitting, each worker is given all the untried alternatives in alternate
choice points, starting from worker P with its current choice point. By observing
the figure, it is clear that horizontal and vertical splitting may lead to unbalanced
partitioning of the set of untried alternatives between the workers. Despite this
fact, the PALS system [16] showed good results by adopting vertical splitting to
implement or-parallelism in DMP.

Diagonal splitting uses a more elaborated scheme to achieve a precise parti-
tioning of the set of untried alternatives. It is a kind of mixed approach between
horizontal and vertical splitting, the set of untried alternatives in all choice points
are alternatively split between both workers. When a first choice point with odd
number of untried alternatives (say 2n + 1) appears, one worker (say Q, the one
that starts the partitioning) is given n + 1 alternatives and the other (say P ) is
given n. The workers then alternate and, in the upper choice point, P starts the
partitioning. When more choice points with an odd number of untried alterna-
tives appear, the split process is repeated. At the end, Q and P may have the
same number of untried alternatives or, in the worst case, Q may have one more
alternative than P .

As a result of applying stack splitting, synchronization through shared frames
disappears, environments become completely independent of each other and
workers can execute exactly like sequential systems. Workers only communicate
when sharing work or when detecting termination. This makes stack splitting
highly suitable for distributed execution.

3 The YapDss System

YapDss is an or-parallel Prolog system that implements stack splitting to ex-
ploit or-parallelism in DMP. As previous systems, YapDss uses a multi-sequential
approach [10] to represent computation state and work sharing among the com-
putational workers. Distributed execution of a program is performed by a set of
workers, that are expected to spend most of their time performing useful work.
When they have no more alternatives to try, workers search for work from fel-
low workers. YapDss uses a bottommost policy to dispatch work for or-parallel
execution. Work is shared through copying of the execution stacks and diagonal
splitting is used to split the available work. Communication among the workers
is done using explicit message passing via the LAM implementation [9] of the
MPI standard. Our initial implementation does not support cuts or side-effects.

3.1 Splitting Work

A fundamental task when sharing work is to decide which untried alternatives
each worker is assigned to. As we have already mentioned, YapDss uses the
diagonal scheme to split work among workers. In order to implement that scheme
and thus avoid the execution of possible duplicate alternatives, we extended
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choice points with an extra field, the CP OFFSET. This field marks the offset of
the next untried alternative belonging to the choice point. When allocating a
choice point, CP OFFSET is initialized with a value of 1, meaning that the next
alternative to be taken is the next alternative in the list of untried alternatives.
This is the usual behavior that we expect for private choice points.

With this mechanism, we can easily implement the splitting process when
sharing work. We simply need to double the value of the CP OFFSET field of each
shared choice point. This corresponds to alternatively split the set of previous
available alternatives in the choice point. To better understand this mechanism,
we next illustrate in Fig. 2 a situation where a worker P shares a private choice
point with two different workers, first with worker X and later with worker Y .

P Local Space X Local Space

CP_OFFSET= 2

CP_ALT= a2

...

CP_OFFSET= 2

CP_ALT= a3

...

P Local Space

CP_OFFSET= 1

CP_ALT= a2

...

(i) P with private choice point

(ii) P sharing work with X

P Local Space Y Local Space

CP_OFFSET= 4

CP_ALT= a4

...

CP_OFFSET= 4

CP_ALT= a2

...

(ii) P sharing work with Y

a2 a3 a4 a5 a6

a3 a5a2 a4 a6

a4 a2 a6

Fig. 2. Using an offset to split work

Initially, in Fig. 2(i), we have P with a private choice point with five untried
alternatives: a2, a3, a4, a5 and a6. CP OFFSET is 1 and CP ALT, which holds the
reference to the next untried alternative to be taken, refers a2. If backtracking
occurs, P will successively try each of the five available alternatives. After loading
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an alternative for execution, P updates CP ALT to refer to the next one. Because
CP OFFSET is 1, the next alternative to be taken is the next one in the list.

Moving to Fig. 2(ii), consider that P shares its private choice point with X.
This can be done by doubling the value in the CP OFFSET field of the choice point.
Moreover, to avoid that both workers execute the same alternatives, the worker
that do not start the partitioning of alternatives (please refer to the previous
section), X in the figure, updates the CP ALT field of its choice point to refer to
the next available alternative. With this scenario, when backtracking, P will take
alternatives a2, a4 and a6 and X will take alternatives a3 and a5. This happens
because they will use the offset 2 to calculate the next reference to be stored in
CP ALT. Finally, in Fig. 2(iii), P shares the choice point with another worker, Y .
The value in CP OFFSET is doubled again and P is the worker that updates the
CP ALT field of its choice point. Within this new scenario, when backtracking, P
will take alternative a4 and Y will take alternatives a2 and a6.

When sharing work, we need to know if the number of available alternatives
in a choice point is odd or even in order to decide which worker starts the parti-
tioning in the upper choice point. Note that this is not a problem for horizontal
or vertical splitting because that kind of information is not needed. A possibility
is to follow the list of available alternatives and count its number, but obviously
this is not an efficient mechanism. YapDss uses a different approach, it takes
advantage of the compiler. All the first instructions that represent the WAM
compiled code of a given alternative were extended to include two extra fields
in a common predefined position. We will use the names REM ALT and NEXT ALT
to refer to these fields. Figure 3 shows an example for a predicate with four
alternatives: alt 1, alt 2, alt 3 and alt 4.

code code code

inst_1

alt_2

3

code

inst_2

alt_3

2

inst_3

alt_4

1

inst_4

NULL

0

alt_1

Predicate
Compiled Code REM_ALT

NEXT_ALT

Fig. 3. Compiled code for a predicate in YapDss

The REM ALT field gives the number of remaining alternatives starting from
the current alternative. As we will see next, this allows us to solve the problem
of deciding which worker starts the partitioning in a shared choice point. This
field was inherited from YapOr.

The NEXT ALT field is an explicit reference to the compiled code of the next
alternative. Note that most of the first instructions that represent the WAM
compiled code of a given alternative already contain a reference to the compiled
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code of the next alternative. The problem is that such references are not po-
sitioned in a common predefined position for all instructions. Thus, for these
instructions, instead of introducing an extra field we simply make the position
uniform. This is extremely important because, when updating the CP ALT field
in a shared choice point (see Fig. 4), we can navigate through the alternatives
by simply using the NEXT ALT field, and therefore avoid testing the kind of in-
structions they hold to correctly follow the reference to the next alternative.

update_alternative(choice point CP) {
offset = CP_OFFSET(CP)
next_alt = CP_ALT(CP)
if (offset > REM_ALT(next_alt))
next_alt = NULL

else
while (offset--)
next_alt = NEXT_ALT(next_alt)

CP_ALT(CP) = next_alt
}

Fig. 4. Pseudo-code for updating the CP ALT field in a choice point

The CP ALT field is updated when a worker backtracks to a choice point to
take the next untried alternative or when a worker splits work during the sharing
work process. Figure 5 shows the pseudo-code for diagonal splitting. Note that
the two workers involved in a sharing operation execute the splitting procedure.

Fig. 5. Pseudo-code for splitting work using the diagonal scheme

3.2 Finding the Bottommost Common Node

The main goal of sharing work is to position the workers involved in the operation
at the same node of the search tree, leaving them with the same computational
state. For an environment copying approach, this is accomplished by copying the
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execution stacks between workers, which may include transferring large amounts
of data. This poses a major overhead to stack copying based systems. In partic-
ular, for DMP implementations, it can be even more expensive because copying
is done through message passing.

To minimize this source of overhead, Ali and Karlsson devised a technique,
called incremental copying [1], that enables the receiving worker to keep the part
of its state that is consistent with that of the giving worker. Only the differences
are copied, which permits to reduce considerably the amount of data transferred
between workers. However, to successfully implement incremental copying, we
need a mechanism that allows us to quickly find the bottommost common node
between two workers. For SMP, this is achieved by using the shared frames to
store additional information about the workers sharing a choice point [1]. For
DMP, we do not have shared data structures where to store that information.
To overcome this limitation, in [16], Villaverde and colleagues devised a labeling
mechanism to uniquely identify the original source of each choice point (the
worker which created it). By comparing private labels from different workers
they detect common choice points.

In YapDss we take a similar but simpler approach. We used a private branch
array to uniquely represent the position of each worker in the search tree. The
depth of a choice point along a branch identifies its offset in the branch array.
The alternative taken in a choice point defines its value in the branch array. By
comparing the branch array of two workers we can easily find the bottommost
common node.

Initially, the branch array is empty. When a new choice point is allocated, the
top position of the array is marked with the number corresponding to the first
alternative to be executed. We take advantage of the REM ALT field to number the
alternatives. For example, consider allocating a choice point for the predicate in
Fig. 3, the branch array will be initialized with 3 (the REM ALT value of the first
alternative). When a worker backtracks, the corresponding entry in the branch
array is updated with the new REM ALT value of the next available alternative.
Figure 6 shows an example. For simplicity, it considers that all choice points in
the figure correspond to predicates with four alternatives, as illustrated in Fig. 3.

Worker P is executing on branch < a3 : b1 : c2 : d1 > and worker Q is
executing on branch < a3 : b3 : c4 >. Their branch arrays are respectively
< 1 : 3 : 2 : 3 > and < 1 : 1 : 0 >, which differ in the second entry. We
can therefore conclude that the two topmost choice points are common to both
workers. They have the same computational state until the bottommost common
choice point, and differ bellow such choice point, P is executing alternative
b1 and Q is executing alternative b3. With the branch array data structure,
implementing incremental copying for DMP can now be easily done. Moreover,
as it uniquely represents the position of each worker in the search tree, we argue
that it has good properties that we can take advantage of to extend YapDss to
support cuts and side-effects.
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Fig. 6. Using the branch array to find the bottommost common node

3.3 Sharing Work

The sharing work process takes place when an idle worker Q makes a sharing
request to a busy worker P and receives a positive answer. In YapDss, the pro-
cess is as follows. When requesting work, Q sends a message to P that includes
its branch array. If P decides to share work with Q, it compares its branch array
against the one received from Q in order to find the bottommost common choice
point. P then applies incremental copying to compute the stack segments to be
copied to Q. It packs all the information in a message and sends it back to Q. If
receiving a positive answer, Q copies the stack segments in the message to the
proper space in its execution stacks. Meanwhile, P splits the available alterna-
tives in the choice points shared with Q using diagonal splitting. After finishing
copying, Q also performs diagonal splitting. While doing diagonal splitting, both
workers also update their branch arrays. As an optimization, P can avoid storing
its private choice points in the branch array until sharing them.

Note that to fully synchronize the computational state between the two work-
ers, worker Q further needs to install from P the conditional bindings made to
variables belonging to the common segments. To solve that, when packing the
answering message, P also includes a buffer with all these conditional variables
along with their bindings so that Q can update them.

Another point of interest, is how the receiving worker Q can obtain access
to the untried alternatives in the choice points of P that are common to both
workers [16]. Consider, for example, the situation in Fig. 6. Assuming that P
shares work with Q, it will send to Q the stack segments corresponding to its
current branch starting from the bottommost common node, that is, branch
< b1 : c2 : d1 >. Therefore, Q will not be able to access the available alternatives
b2 and b4 in the bottommost choice point because the CP ALT field in its choice
point is NULL. This can be solved by having P to include in the answering message
all the CP ALT fields with available alternatives between the bottommost choice
point and the root node [16]. YapDss still does not supports this optimization.
Currently, to share untried alternatives from common choice points, P has to
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explicitly include such segments in the answering message as if they were not
common.

3.4 Scheduling

The scheduler is the system component that is responsible for distributing the
available work between the various workers. The scheduler must arrange the
workers in the search tree in such a way that the total execution time will be
the least possible. The scheduler must also minimize the overheads present in
synchronization and communication operations such as requesting work, sharing
nodes, copying parts of the stacks, splitting work and detecting termination.

An optimal strategy would be to select the busy worker that simultaneously
holds the highest work load and that is nearest to the idle worker. The work load
is a measure of the amount of untried alternatives. Being near corresponds to the
closest position in the search tree. This strategy maximizes the amount of shared
work and minimizes the stacks parts to be copied. Nevertheless, selecting such
a worker requires having precise information about the position and work load
of all workers. For a DMP based system, maintaining this information requires
considerable communications during execution. We thus have a contradiction,
to minimize overheads we need more communications. One reasonable solution
is to find a compromise between the scheduler efficiency and its overheads. We
use a simple but effective strategy to implement scheduling in YapDss.

Each worker holds a private load register, as a measure of the exact number of
private untried alternatives in its current branch. To compute this exact number
we take again advantage of the CP OFFSET and REM ALT fields. The load register
is updated in three different situations: when allocating a new choice point, it is
incremented by the number of untried alternatives left in the choice point; when
backtracking, it is decremented by one unit; and when splitting work, it can be
incremented (if receiving work) or decremented (if giving work) by the number
of alternatives being split.

Besides, each worker holds a private load vector as a measure of the estimated
work load of each fellow worker. The load vector is updated in two situations:
when sharing work and when receiving a termination token. YapDss does not
introduce specific messages to explicitly ask for work load information from a
worker, and instead it extends the existing messages to include that information.
A trivial case occurs when a worker receives a sharing request, a zero work load
can be automatically inferred for the requesting worker. When sharing work, the
answering message is extended to include the work load of the giving worker.
When detecting termination, the termination tokens are extended to include the
work load of all workers in the system.

Termination detection is done using a simple algorithm from [11]. When an
idle worker Q suspects that all the other workers are idle too, it initializes a
termination token with its work load (zero in this case) and sends it to the next
worker on rank. When receiving a token, a worker updates its load vector with
the load information already in the token, includes its work load and sends it to
the next worker on rank. The process repeats until reaching the initial worker
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Q. If, when reaching Q, the token is clean (zero load for all workers) then Q
broadcasts a termination message. Otherwise, Q simply updates its load vector
and starts scheduling for a busy worker.

When scheduling for a busy worker, we follow the following strategies. By
default, an idle worker Q tries to request work from the last worker, say L, which
has shared work with it in order to minimize the potential stacks parts to be
copied. However, if the work load for L in Q’s load vector is less than a threshold
value LOAD BALANCE (6 in our implementation), a different strategy is used, Q
starts searching its load vector for the worker with the greatest work load to
request work from it (note that L can be the selected worker).

When a worker P receives a sharing request, it may accept or refuse the
request. If its current work load is less than LOAD BALANCE, it replies with a neg-
ative answer. Otherwise, it accepts the sharing request and, by default, performs
stack splitting until the bottommost common node N . However, if the available
work in the branch until node N is less than LOAD BALANCE, it may extend the
splitting branch to include common choice points (please refer to the last para-
graph in section 3.3). In both cases (negative or positive answers), P includes
in the answering message its current work load. If receiving a negative answer,
Q updates its load vector with the value for P and starts searching for the next
worker with the greatest work load. Meanwhile, if Q finds that all entries in its
load vector are zero, it initializes a termination token.

4 Initial Performance Evaluation

The evaluation of the first implementation of YapDss was performed on a low-
cost PC cluster with 4 dual Pentium II nodes interconnected by Myrinet-SAN
switches. The benchmark programs are standard and commonly used to assess
other parallel Prolog systems. All benchmarks find all solutions for the problem.
We measured the timings and speedups for each benchmark and analyzed some
parallel activities to identify potential sources of overhead.

To put the performance results in perspective we first evaluate how YapDss
compares against the Yap Prolog engine. Table 1 shows the base running times,
in seconds, for Yap and YapDss (configured with one worker) for the set of
benchmark programs. In parentheses, it shows YapDss’s overhead over Yap run-
ning times. The results indicate that YapDss is on average 16% slower than Yap.
YapDss overheads mainly result from handling the work load register, the branch
array, and from testing operations that check for termination tokens or sharing
request messages.

Table 2 presents the performance of YapDss with multiple workers. It shows
the running times, in seconds, for the set of benchmark programs, with speedups
relative to the one worker case given in parentheses. The running times corre-
spond to the best times obtained in a set of 5 runs. The variation between runs
was not significant.

The results show that YapDss is quite efficient in exploiting or-parallelism,
giving effective speedups over execution with just one worker. The quality of
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Table 1. Running times for Yap and YapDss with one worker

Programs Yap YapDss
nsort 188.50 218.68(1.16)
queens12 65.03 72.80(1.12)
puzzle4x4 54.61 67.91(1.24)
magic 29.31 30.90(1.05)
cubes7 1.26 1.31(1.05)
ham 0.23 0.30(1.32)
Average (1.16)

Table 2. Running times and speedups for YapDss with multiple workers

Number of Workers
Programs 2 4 6 8
queens12 38.93(1.99) 19.63(3.94) 13.36(5.80) 10.12(7.66)
nsort 124.24(1.98) 63.14(3.90) 42.44(5.80) 33.06(7.45)
puzzle4x4 34.00(1.99) 17.34(3.91) 11.83(5.73) 9.41(7.20)
magic 15.50(1.99) 7.88(3.92) 5.58(5.53) 4.38(7.05)
cubes7 0.67(1.96) 0.40(3.26) 0.33(3.90) 0.23(4.80)
ham 0.17(1.75) 0.10(2.81) 0.09(3.13) 0.10(2.95)
Average (1.94) (3.62) (4.98) (6.19)

the speedups achieved depends significantly on the amount of parallelism in
the program being executed. The programs in the first group, queens12, nsort,
puzzle4x4 and magic, have rather large search spaces, and are therefore amenable
to the execution of coarse-grained tasks. This group shows very good speedups
up to 8 workers. The speedups are still reasonably good for the second group,
programs cubes7 and ham, given that they have smaller grain tasks.

We next examine the main activities that take place during parallel execution
in order to determine which of them are causing a decrease in performance. The
activities traced are:

Prolog: percentage of total running time spent in Prolog execution and in han-
dling the work load register and branch array.

Search: percentage of total running time spent searching for a busy worker and
in processing sharing and termination messages.

Sharing: percentage of total running time spent in the sharing work process.
Reqs Acp: total number of sharing request messages accepted.
Reqs Ref: total number of sharing request messages refused.
Recv Load: total number of untried alternatives received from busy workers

during splitting.

Table 3 shows the results obtained with 2, 4 and 8 workers in each activity
for two of the benchmark programs, one from each class of parallelism.

The results show that when we increase the number of workers, the percent-
age of total running time spent on the Prolog activity tends to decrease and be
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Table 3. Workers activities during execution

Activities
Programs Prolog Search Sharing Reqs Acp Reqs Ref Recv Load
queens12
2 workers 99% 0% 1% 8 3 296
4 workers 98% 1% 1% 99 208 3568
8 workers 93% 6% 1% 160 6630 5592
ham
2 workers 80% 19% 1% 6 3 64
4 workers 53% 45% 2% 15 87 135
8 workers 25% 74% 1% 18 346 195

moved to the Search activity. This happens because the competition for finding
work leads workers to get smaller tasks. This can be observed by the increase
in the Recv Load parameter. If workers get smaller tasks, they tend to search
for work more frequently. This can be observed by the increase in the Reqs Acp
and Reqs Ref parameters. The time spent in the Sharing activity is almost con-
stant, suggesting that the splitting process is not a major problem for YapDss
performance.

5 Concluding Remarks

In this paper we proposed a new variant scheme of the stack splitting scheme, the
diagonal splitting, and described its implementation in the YapDss or-parallel
Prolog system. This scheme includes efficient algorithms to balance work load
among computing workers, to determine the bottommost common node between
two workers, and to calculate exactly the work load of one worker.

YapDss showed good sequential and parallel performance on a set of standard
benchmark programs, running on a PC cluster parallel architecture. It was able
to achieve excellent speedups for applications with coarse-grained parallelism
and quite good results globally. This may be a result of the low communication
overheads imposed by the scheduling schemes implemented.

Future work include more detailed system evaluation and performance tun-
ing, in particular we intend to evaluate the system on a recently built PC cluster
with 4 dual AMD XP 2000+ nodes, with 2 GBytes of main memory per node,
interconnected by Giga-Ethernet switches. We also plan to extend YapDss to
better support all builtins, support speculative execution with cuts, and inte-
grate the system in the Yap distribution.
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