
On Supporting Parallelism in a Logic

Programming System

Vı́tor Santos Costa1

1CRACS and DCC-FCUP
Universidade do Porto

Portugal
vsc@dcc.fc.up.pt

Abstract. Logic Programming is a declarative approach to program-
ming where one can specify a problem in a high-level fashion. Several
major approaches to implicit and explicit parallelism have been pro-
posed for logic programming in Prolog. But, arguably, the last few years
have seen most interest in the explicit parallelization of Prolog.
With the advent of multi-core processors, parallelism is just available.
One boring, but useful approach, is bag-of-tasks parallelism. We believe
that the challenge facing parallel logic programming is to make all forms
of parallelism as boring as possible. To do so, we propose some principles
from our experience with previous work in Parallel Logic Programming,
discuss how much a Prolog system needs to be adapted to support these
principles, and present an application.

1 Introduction

Logic Programming is a declarative approach to programming where one can
specify a problem in a high-level fashion. Arguably, Prolog is the most popular
logic programming language. Early progress on Prolog compilation, leading to
the WAM abstract machine [44], showed Prolog to be useful in a wide variety
of practical applications. Prolog and Logic Programming have been widely used
ever since, in a surprising large number of diverse applications.

The high-level nature of Logic Programming has made Prolog a natural tar-
get for parallelization. Several major approaches have been proposed. In explicit

parallelism the programmer extends the language with a number of primitives
that enable the creation and management of separate tasks. In implicit paral-

lelism the Prolog system is largely responsible to detect and exploit the available
parallelism [16].

Implicit and explicit parallelism have been well studied in logic programming,
but, arguably, the last few years have seen most interest in explicit paralleliza-
tion. The field of Inductive Logic Programming (ILP), within Machine Learning,
has been an example motivation for some of this work. Systems such as April [14]
and distributed versions of Aleph [22] were designed to run on clusters and apply
MPI [4, 5] in a rather direct fashion. Thread libraries were used to parallelize
Aleph in a conventional shared-memory machine. Machine Learning in general



tends to generate computationally demanding tasks, and ILP is particular is
highly computationally demanding. In order to support this need, Prolog sys-
tems, such as Ciao and YAP, have been adapted to support bag of tasks style
execution so that they can exploit massive parallelism in grid systems [6, 12].

top - 16:48:38 up 43 days, 1:41, 1 user, load average: 4.00, 4.00, 4.00

Tasks: 139 total, 6 running, 133 sleeping, 0 stopped, 0 zombie

Cpu(s): 50.0% us, 0.0% sy, 0.0% ni, 50.0% id, 0.0% wa, 0.0% hi, 0.0% si

Mem: 16409824k total, 10484280k used, 5925544k free, 174136k buffers

Swap: 2040244k total, 0k used, 2040244k free, 7525096k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

19577 vitor 25 0 682m 522m 1560 R 100 3.3 19365:53 yap

19581 vitor 25 0 682m 522m 1560 R 100 3.3 19368:01 yap

19580 vitor 25 0 682m 522m 1560 R 100 3.3 19368:44 yap

19582 vitor 25 0 682m 522m 1560 R 100 3.3 19368:24 yap

Fig. 1. A Multi-Core in Action

The last few years have seen a major change in this picture. With multi-
core processors, parallelism is just available. Fig. 1 shows an example of usage
of a dual processor machine, with each CPU being four-core, for a total of eight
available cores. The machine is also used as a workstation, so only four cores are
being used for background tasks 1.

Arguably, such bag-of-tasks parallelism is just boring : there is hardly much
challenge in launching four processes and waiting for their outcome. But, it is
very useful, as one is, at least in principle, four times faster (and still has a useful
desktop machine), with very little work.

We believe that the challenge facing declarative programming, and we will
discuss logic programming here, is to make other forms of parallelism as boring
as possible. But to do so, some issues have to be debated first:

– Although there are good reasons to want newer languages, work such as
XSB-Prolog and Ciao has shown that incremental progress in current logic
programming language design is possible. This makes it the onus of the new
language designer(s) to prove that new wine is there, or in other words, that
their new approach is widely applicable.

– The last few years have shown the contrast between implicit and explicit
parallelism to be largely artificial. Explicit parallelism can be a useful build-
ing tool in creating higher-level parallel systems [7]. And implicit parallelism
benefits from annotations and other forms of user aid. One can therefore feel
rather confident in arguing that there is a continuum of alternatives, and
that ideally it should be possible for the programmer to move smoothly in
choosing the combination that better suits her or his needs.

1 unfortunately, this is not the author’s machine!



– Work such as KLIC [9] &-Prolog [19], Aurora [25], Muse [1], JAM [11],
Andorra-I [41], Penny [26], ACE [29, 28] and the DASWAM [42] addressed
research issues and advanced technology, resulting in sophisticated and pow-
erful systems. Which, unfortunately, have proven to be rather hard to main-
tain. This argues for simpler systems built from reusable-blocks, as in recent
work for Ciao [20] and, in a different context, ASP-Prolog [13].

– Logic Programming systems run user tasks, and therefore must interact with
the user’s environment. This often includes Input/Output and data-base op-
erations, which therefore may be key to efficient execution. It is arguably
the case that side-effects have been seen as an obstacle in the race for par-
allelism and either ignored or set aside [18, 21, 27, 17]. But it does not need
to be thus. A good example is data-base support for tabling, which is usu-
ally implemented by storing tabled solutions in tries. In this case, a parallel
implementation can understand the goal of a data-base operation, and ex-
ploit parallelism, with excellent results [33]. We believe that it is critical to
progress in this direction.

– At the end of the day, it will be the ability to actually run real applications
that will decide whether the work will be worthwhile. It has been argued
that parallel logic programming had no real applications. This is unfair, as
a number of applications have been developed: knowledge-based systems [2],
natural language processing [30], multimedia [34], and model checking [32].
More to the point, one can argue that such applications did not include
some of the major applications of LP and that they had to compete for
scarce parallel resources. As the latter problem transforms from a problem
into a motivation, research on the former becomes all the more important.

In a nutshell, we believe that this discussion distills itself into three simple
commandments:

– Thou shall use Modular System Construction, so that thou shall be able to
maintain and reuse thou code!

– Thou shall Provide High-Level Data Structures, so that the user needs shall
be apparent to thou!

– Though shall study and understand Real Applications, so that they shall be
the salt of thou work!

Can we apply those commandments in a principled way? We would like to
discuss the application of the three commandments but we will focus on the first
commandment in this work. We discuss how a specific Prolog system, the YAP
Prolog system [37], has been adapted to support parallelism. In a similar fashion
to other Prolog systems such as SICStus Prolog [3] and Ciao [20], YAP included
some support for shared-memory implicit parallelism, in this case or-parallelism.
Building on this support, it was possible to implement a thread library that
supports explicit parallelism. On a different vein, the system has also been used
for distributed programming and for grid style computation. We compare the
costs of the three approaches, and study how our simple commandments can be
obeyed, if at all.



2 The YAP Prolog System

The YAP Prolog system was originally developed by Lúıs Damas and Vı́tor
Santos Costa towards being a high-performance Prolog system [37]. The system
includes a number of components, described in Fig. 2. We distinguish three
particularly complex components: the abstract emulator (marked as red), the
compiler (marked as blue), and the memory management routines, including
the garbage collector (marked as gray). Edges show how components depend on
each-other.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

Fig. 2. The Structure of the YAP System

The core component of the system is a WAM abstract machine emulator [36].
Currently, the emulator implements close to 400 different instructions. The em-
ulator interacts directly with three key components:

1. The C-Glue provides the interface between the abstract engine and most
libraries. It relies on a a set of abstract types, such as Constant, Compound
Term, Term, Atom, Functor and a set of constructors and destructors. These
primitives are used by all components of the system.

2. The Atom-Table is organized as a hash-table and maintains all constants in
the system. As in traditional LISP systems [15], it is used as a starting point
for all other property lookup.

3. The Data-Base supports compiled code, both dynamic and static, and a
term database, accessed through the record family of built-ins. There are
also smaller data-bases: an operator data-base, and a small constant data-
base.

These components require dynamically allocated memory:

1. The Garbage Collector [8] and the closely-associated Stack Shifter can inter-
rupt the engine to compress stacks, clean up dead code, and expand memory
regions.



2. The Memory Allocator provides memory allocation and deallocation services
for the system. YAP includes three different allocators: (i) the original allo-
cator asks the system for a large chunk of memory, allocates big chunks for
the stacks, and manages the rest of memory with a greedy algorithm; (ii) the
default one allocates a huge chunk of memory and expands it dynamically,
but uses the Doug Lea allocator to manage memory [23]; (iii) last, YAP can
just use the standard library routines for memory allocation.
We have found out that the greedy allocator will not work well on large
applications. The Doug Lea allocator has allocator better performance, and
is in fact traditionally used by several system libraries.

The full functionality of the system requires extra modules:

1. Input/Output operations are obviously required for the system to be useful.
2. Term operations such as term comparison, are important in actual applica-

tions.
3. The Operating System interface allows access to a number of important

features. Access to the Dynamic Linker allows run-time extensibility.

Finally, the YAP compiler supports clause-level compilation and dynamic com-
pilation of indices [40].

3 Supporting Parallelism in YAP

Our first commandment says that one should be able to extend the system mod-
ularly. In other words, ideally we should implement parallelism by extending the
system with a new module, and would not need to rewrite code on the remain-
ing of the system. Unfortunately, and as often is the case, such a commandment
may be hard to obey. YAP is an ideal platform to study the problem as it has
been used to implement a large number of different approaches. Next, we discuss
some of these approaches: we shall start from the methodologies associated with
coarser grain-size.

Grid-Support With Condor YAP can be run in grid systems using two ap-
proaches: in the common as is approach the system is just transfered with-
out changes; otherwise, the system can be adapted to support libraries such
as condor [43]. The condor library is particularly interesting because it allows
“transparent” check-pointing and migration of jobs, which may become useful
as idle cores in networks of workstations become more and more available [12].
Fig. 3 shows where changes were necessary: notice that these changes correspond
support the universe condor environment on a circa 2004 version of condor.

The changes are required to operate under the more limited functionality
available in the condor universe. They essentially drop some of the memory man-
ager functionality, as YAP now has to use the standard library; drop dynamic
linking as condor requires static linking; and change some time and file access
primitives, again due to limitations in the condor programming environment.



EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

Fig. 3. The Structure of the YAP System with Condor support: square boxes corre-
spond to dropped functionality, round boxes correspond to changes

Arguably, such changes are mostly modular. On the other hand, they are
more about dropping modules than actually extending a system with new mod-
ules. In that sense, they can be seen as a minor, but necessary, sin.

Distributed Processing with MPI The YAP system includes support for two dif-
ferent MPI libraries: MPICH [4] and LAM [5]. The two interfaces were developed
independently but operate under similar principles. They provide a low-level
interface that allows one to use basic MPI functionality, while exporting and
importing Prolog terms as messages. The implementation is shown in Fig. 4.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

MPI

Fig. 4. The Structure of the YAP System with MPI support: the grey square box
corresponds to the new functionality

As the picture shows, both interfaces operate as a new module that links
to the system through the C-interface. The interfaces did not require changes



to Prolog, although they would benefit from functionality in the term libraries.
Arguably, such an implementation is not the most efficient, but it is the easier
to update and maintain, and follows perfectly our first commandment.

Threads The YAP system includes support for Posix p-threads in the style of
the SWI-Prolog thread library [45]. In this approach, threads run on separate
stacks but share access to the data-base. The implementation is presented in
Fig. 5.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

THREADS

Fig. 5. The Structure of the YAP System with thread support: the grey square box
corresponds to the new functionality, the round corner boxes correspond to significant
changes in the pre-existing code

As the picture shows, supporting threads requires major changes throughout
the system. Most of these changes have to do with the need to synchronize access
to the data-base and the Input/Output. In some more detail:

1. One needs a new module for threading. Notice that this module is now
plugged in more closely to the system, as communication is expected to be
quite more intensive.

2. One needs major changes to the Data-Base, due to the need to synchronize
access to dynamic structures, such as the index trees [40] and dynamic pred-
icates. Such data-structures are quite important in large programs. These
changes then ripple down to the garbage collector and to the emulator.

3. The memory allocator needs to support concurrency and multiple stacks. In
fact, the easiest solution is to rely on the system library, as for condor.

4. The Atom-Table needs to support concurrent access.

Most of the complexity stems from the concurrent accesses to the data-base.
The changes are quite intrusive and hard to debug, as it is often the case with



concurrent systems. Memory management is a second problem: threads require
extra memory to support locks, that depending on the grain size, may be quite
frequent. Note that several approaches are possible, ranging from a big central
lock to fine–grained access with specialized data-structures, such as read-write
locks. Supporting threads is therefore not modular, but we have been able to
provide most of the functionality in the non-threaded system (except for the
atom garbage collector). As threads may be used to build other primitives, they
may arguably be a necessary sin.

Native Or-Parallelism YAP includes code for a native implementation of three
different models of or-parallelism: COWL, stack-copying, and the Sparse Binding
Arrays [39]. The implementation is further complicated by the need to support
tabling [32]. Although the implementation is not currently being actively devel-
oped, it is still in the code. The implementation is presented in Fig. 3.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC ORP

Fig. 6. The Structure of the YAP System with native or-parallelism: the grey square
box corresponds to the new functionality, the round corner boxes correspond to signif-
icant changes in the pre-existing code

It should be clear that there is extensive overlap between native or-parallelism
and threads: this is because both implementations can perform concurrent access
to the data-base and concurrent I/O, although concurrent access in or-parallel
systems may be unnecessary if one requires a sequential order [18, 17]. Or-parallel
requires major changes to:

1. The memory allocator needs several low-level optimizations to support or-
parallelism, namely for stack-copying.

2. The emulator needs several new instructions to run or-parallelism. Further-
more, some useful invariants in the sequential system will now be broken.
The trailing mechanism is particularly affected.

The actual impact of these changes depends on the particular model, with the
process-based model of the COWL being the least intrusive [35] and the shared-



memory approach of the SBA being the most intrusive [10], as it requires to
share the stacks and to create private images. All the models do require new
instructions and major changes to key data-structures, such as choice-points.

3.1 Evaluation

Table 1 shows how pervasive the changes are in YAP’s C-code. We use Nuno
Fonseca’s LAM interface in this study. The first column shows the number of
define directives needed, and the second column shows how many files were
affected (out of a total of 104). The third column shows how much new code
was needed for the new functionality. Up to a third of all system files (including
most header files) need to be changed in some way to support threads or implicit
parallelism. The changes to support condor are much less extensive, and they
mostly have to with the need to support a different memory allocator. As ex-
pected, although or-parallelism requires more changes than threads, the changes
are largely on the same files. In fact, around 141 defines are shared between
or-parallelism and threads.

#define Files New Lines
needed Affected

CONDOR 3 (47) 3 0
MPI 0 0 1652
! THREADS 231 (47) 33 1280
ORP 680 33 4222

Table 1. Number of define used to separate parallelism specific code, number of files
where such defines were used and extra code needed (including comments). Changes
required to use the system allocator are in brackets.

It is unsurprising that implementing parallelism requires more extra code. Of
this code, about 300 lines of code implement a locking library which is shared
with the thread implementation. So the actual cost of writing the thread library
is under a thousand lines of code, mostly on packing and unpacking arguments
when calling p-thread functions. This is smaller than the MPI interface, as the
latter has to copy and receive terms from messages.

Is there a runtime cost for this functionality? Previous reports indicate costs
on the order of 5% for applications with SWI-Prolog [45], and with or-parallelism
in YAP [32]. An interesting worst possible situation is the case where almost
every operation needs to be protected by a lock. In order to study this setting,
we compare YAP without and with thread support on small, data-base intensive
examples. Our comparison was run on a dual-CPU machine, where each CPU
is a 4 core Intel(R) Xeon(R) CPU E5345 running at 2.33GHz. The machine has
16GB memory, and runs RedHat Entreprise Linux release 4 with kernel 2.6.9. We
use Yap-5.1.2 compiled for the x86 64 architecture. The machine was connected



to the network, and the file-system was NFS; the experiments were performed
through ssh access, the machine was otherwise idle. The tests are as follows:
(i) t1 accesses a dynamic predicate with a single fact; this requires holding a
lock: (ii) t2 asserts and retracts a dynamic predicate with a single fact; (iii)
t3 asserts a fact of the form t3(RandomNumber); (iv) t4 retracts a fact of the
form t4(RandomNumber); (v) t5 asserts a fact where the argument is a list of
length up to 10 and branching factor up to 500; (vi) t6 asserts a fact where the
argument is a list of length up to 10 and branching factor up to 2 (hence there
will be more repeated facts).

Results are shown in Table 2. We compare two versions with threads: in the
first version, threads are implemented using C-code from the Linux kernel that
uses hardware instruction. In the second version, we call the P-Thread routines.
The results show that there is indeed an overhead, that the overhead can be very
large if the application just updates the data-base, but that it tends to reduce as
operation cost increases. The results are also somewhat disappointing in that we
would expect locking on the P-Thread library to have substantially improved in
newer thread libraries. This does not seem to be the case: locking performance
is still very much under par.

t1 t2 t3 t4 t5 t6

NO-THREADS 11 642 298 792 1354 1379
THREADS-USER LOCKING 11 1144 480 1558 1520 1527
THREADS-PTHREAD LOCKING 25 1717 767 1851 2116 2163

Table 2. Running time for 500000 iterations of simple data-base access predicates,
using a native implementation, user code for locking, and the p-thread library locking
routines.

The results also show that locking can indeed decrease system performance.
The data-base is controlled by reader-writer locks, which are called at 263 points
in the code. Standard locks are called at 113 points in the code. Locking is
required whenever accessing a dynamic predicate. YAP does not need to lock
the indexing code for static procedures because it is write once [40].

3.2 Parallel Execution

The usefulness of the techniques discussed here clearly depends on how much
the underlying computer architecture can support them. To validate whether it
is worthwhile to exploit these machines, we experimented a number of simple
benchmarks on the multi-core machine. The 3 experiments include just accessing
a static and a dynamic fact, building a long list, and randomly accessing a
very large compound term through arg/3. Experiments are run in by executing

the same code at N threads: the only communication is when accessing the
read-lock that protects the dynamic predicate in the second experiment. All



other experiments have no synchronization within YAP. The ideal result would
be constant-time, and except for the second benchmark, slowdowns should be
caused by limitations in the multi-core architecture.

Cores 1 2 3 4 5 6 7 8

a(1) 1771 1780 1795 1794 1772 1793 1798 1833
a(1) (dynamic) 1635 1623 1636 1629 1617 1625 1623 1684

mklist(10000, ) 435 438 437 436 443 443 450 491
mklist(100000, ) 4540 4628 4660 4438 4737 5071 5970 6658
mklist(1000000, ) 473232 47605 47692 46674 50014 55351 62401 70228

arg(Rand,10000, ) 693 1523 6914 12885 13480 14469 14297 15235
arg(Rand,100000, ) 866 2765 7713 14108 15420 16646 16137 17245
arg(Rand,1000000, ) 1075 3203 7869 14688 16302 16978 17275 18469

Table 3. Running time in msec for 20,000,000 iterations of a simple query, for 200
iterations of the mklist/2 predicate, and for 2,000,000 random accesses to a large term.
Every thread repeats the original task, hence ideal performance would be constant time.

The results show a complex story. First, they show almost perfect parallelism
for the simple query: in this case, the cores can happily process away in their
local caches, and performance is excellent even when all cores are in use. Second,
they show that a limited amount of synchronization has no impact on system
performance: the static and dynamic versions of the code execute in much the
same way.

The results for mklist show excellent performance for the two list smaller
lists, with 160KB and 1600KB. Performance drops somewhat for larger number
of cores when we construct the 16MB list. In this case, we have a slowdown of
60% when the 8 cores construct the 8MB lists in parallel.

The arg/3 results were the most surprising. The simple benchmark was cho-
sen as an example of stressing the cache system. It does its task well. With two
cores, it is just faster to run the benchmarks sequentially than to run them in
the separate cores. The picture grows worse for 3 cores and for 4 cores: in fact,
adding the 4th core consistently halves performance! It is also interesting that
after 4 cores performance degrades more gracefully (maybe because contention is
now bad enough). The size of the term is not particularly important: the effects
are very clear with a 800KB terms, and there is only a small price to access an
80MB term.

4 Future Work

We started this work assuming that multi-cores will make parallel programming
boring, and hoping that parallel logic programming would follow. We will have to
wait: multi-core architectures are complex, with memory performance far more



critical than for traditional shared memory machines. Programming these ma-
chines may require understanding memory access patterns, admittedly a harder
task in the context of declarative languages.

This leads us to commandment number two: providing high-level data struc-
tures that are well understood and that can be profiled and analised with con-
fidence may be what makes parallel logic programming successful. And this in
turn leads to commandment number three, and to the question we should have
started from: what do logic programmers need?

There is not a single answer to this question. Our experience shows that
often people just want to run similar tasks. In this case, the question is “how
does Prolog access memory?”, and this is an hard problem by itself [24]. But, one
can go one step further by looking at actual applications. In the author’s case,
at the time of writing this paper, he was interested in two main applications in
the area of Statistical Relational Learning.

The Problog language combines logic with probabilities by saying that a
clause may be true [31]. The probability of a goal is evaluated by combining the
probabilities of all paths that prove the goal. This is very close to traditional
or-parallelism, except that successful (and interrupted) proofs must be stored
away. Doing this sequentially would kill parallelism, But there is no real reason
to do so. Solving this problem is thus a question of designing a data-structure
that can store proofs and that allows concurrent updates, such as, say, a trie [33]!

The CLP(BN ) language can be used to specify graphical models, such as
Hidden Markov Models [38]. One interesting query in these models is to find the
most likely explanation to a sequence of observations. The Viterbi algorithm is
the main tool for this task. The algorithm implements dynamic programming
and proceeds in two steps. Computation is dominated by the forward step where
it steps across all nodes in the graph following a dominance order. The first
CLP(BN ) implementation used constraints to represent the node, topologically
sorted them, and then run the algorithm. This was elegant, but expensive. A
recent implementation does not generate the nodes. Instead, it generates a set
of instructions describing the graph and applies them to every element in the
sequence. Even so, the application can take seconds for larger networks. The
application is an example of data-flow parallelism, but we have observed that
for large networks chunks tend to be somewhat independent, so sub-computation
can proceed in parallel as long as we have shared access to the state. Can we
exploit independent and-parallelism in this context?

It would be a mistake to ignore the huge amount of work in parallel logic
programming: much progress was made, and many lessons were learned. We
understand the main issues in implicit parallelism, and we know where the main
pitfalls wait for us. We should thus start from the lessons we learned. And we
should build something new, and better.

Acknowledgments

The author gratefully acknowledges the support of the project STAMPA, FCT
Project PTDC/EIA/67738/2006. The work has been partially supported by



funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC. The work was mo-
tivated by discussions at the CICLOPS07 pannel: the author thanks B. Demoen,
D. S. Warren, E. Pontelli, F. Silva, G. Gupta, I. Dutra, M. Hermenegildo, R.
Rocha, and S. Abreu for sharing their ideas.

References

1. K. A. M. Ali and R. Karlsson. The Muse approach to OR-Parallel Prolog. In-
ternational Journal of Parallel Programming, 19(2):129–162 (or 129–160??), Apr.
1990.

2. K. A. M. Ali and R. Karlsson. OR-Parallel Speedups in a Knowledge Based System:
on Muse and Aurora. In Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 739–745, ICOT, Japan, 1992. Association
for Computing Machinery.

3. J. Andersson, S. Andersson, K. Boortz, M. Carlsson, H. Nilsson, T. Sjoland, and
J. Widén. SICStus Prolog User’s Manual. Technical report, Swedish Institute of
Computer Science, November 1997. SICS Technical Report T93-01.

4. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. Mpich-v:
toward a scalable fault tolerant mpi for volatile nodes. In Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–18,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

5. G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for MPI.
In Proceedings of Supercomputing Symposium, pages 379–386, 1994.

6. M. Carro and M. Hermenegildo. Concurrency in Prolog Using Threads and a
Shared Database. In 1999 International Conference on Logic Programming, pages
320–334. MIT Press, Cambridge, MA, USA, November 1999.

7. A. Casas, M. Carro, and M. Hermenegildo. Towards High-Level Execution Primi-
tives for And-parallelism: Preliminary Results. In CICLOPS 2007: 7th Colloquium
on Implementation of Constraint and LOgic Programming Systems, pages 102–116,
Porto, 2007.

8. L. F. Castro and V. Santos Costa. Understanding Memory Management in Pro-
log Systems. In Proceedings of Logic Programming, 17th International Conference,
ICLP 2001, volume 2237 of Lecture Notes in Computer Science, pages 11–26, Pa-
phos, Cyprus, November 2001.

9. T. Chikayama, T. Fujise, and H. Yashiro. A portable and reasonably efficient
implementation of KL1. In D. S. Warren, editor, Proceedings of the Tenth Inter-
national Conference on Logic Programming, page 833, Budapest, Hungary, 1993.
The MIT Press.

10. M. E. Correia, F. Silva, and V. Santos Costa. The SBA: Exploiting orthogonality
in OR-AND Parallel Systems. In Proceedings of the 1997 International Logic Pro-
gramming Symposium, pages 117–131. MIT Press, October 1997. Also published as
Technical Report DCC-97-3, DCC - FC & LIACC, Universidade do Porto, April,
1997.

11. J. A. Crammond. The abstract machine and implementation of parallel parlog.
New Generation Computing, 10(4):385–422, 1992.

12. I. C. Dutra, D. Page, V. Santos Costa, J. W. Shavlik, and M. Waddell. Towards
automatic management of embarassingly parallel applications. In Proceedings of



Europar 2003, volume 2790 of Lecture Notes in Computer Science, pages 509–516,
Klagenfurt, Austria, August 2003. Springer Verlag.

13. O. El-Khatib, E. Pontelli, and T. C. Son. Integrating an answer set solver into
prolog: Asp-prolog. In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Logic Programming and Nonmonotonic Reasoning, 8th International Conference,
LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings, volume 3662 of
Lecture Notes in Computer Science, pages 399–404. Springer, 2005.

14. N. A. Fonseca, F. Silva, and R. Camacho. April - An Inductive Logic Program-
ming System. In F. M, V. W, K. B, and L. A, editors, Proceedings of the 10th
European Conference on Logics in Artificial Intelligence (JELIA06), volume 4160
of Lecture Notes in Artificial Intelligence, pages 481–484, Liverpool, September
2006. Springer-Verlag.

15. R. P. Gabriel. Performance and evaluation of Lisp systems. MIT Press, 1985.

16. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: A Survey. ACM Transactions on Programming Languages
and Systems, 23(4):1–131, 2001.

17. G. Gupta and V. Santos Costa. Cuts and Side-Effects in And-Or Parallel Prolog.
Journal of Logic Programming, 27(1):45–71, April 1996.

18. B. Hausman, A. Ciepielewski, and A. Calderwood. Cut and Side-Effects in Or-
Parallel Prolog. In International Conference on Fifth Generation Computer Sys-
tems 1988, pages 831–840. ICOT, 1988.

19. M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting
Independent And-Parallelism. New Generation Computing, 9(3,4):233–257, 1991.

20. M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and
the ciao system preprocessor). Sci. Comput. Program., 58(1-2):115–140, 2005.

21. L. V. Kalé, D. A. Padua, and D. C. Sehr. OR-Parallel execution of Prolog with
side effects. The Journal of Supercomputing, 1988.

22. S. T. Konstantopoulos. A data-parallel version of Aleph. In R. Camacho and
A. Srinivasan, editors, Proc. of the Workshop on Parallel and Distributed Comput-
ing for Machine Learning, ECML/PKDD 2003, 2003.

23. D. Lea. A Memory Allocator.

24. R. Lopes, L. F. Castro, and V. Santos Costa. From Simulation to Practice: Cache
Performance Study of a Prolog System. In ACM SIGPLAN Workshop on Memory
System Performance, Berlin, Germany, June 2002. SIGPLAN Notices vol 38(2),
February 2003, pages 56–64.

25. E. Lusk, R. Butler, T. Disz, R. Olson, R. A. Overbeek, R. Stevens, D. H. D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and
B. Hausman. The Aurora or-parallel Prolog system. New Generation Computing,
7(2,3):243–271, 1990.

26. J. Montelius and K. A. M. Ali. An And/Or-Parallel Implementation of AKL. New
Generation Computing, 14(1), 1996.

27. K. Muthukumar and M. V. Hermenegildo. Efficient Methods for Supporting Side
Effects in Independent And-parallelism and Their Backtracking Semantics. In
Proceedings of the Sixth International Conference on Logic Programming, pages
80–97. MIT Press, June 1989.

28. E. Pontelli and G. Gupta. Data and-parallel logic programming in &ace. In 7th
IEEE Symposium on Parallel and Distributed Processing. IEEE Computer Society,
1995.



29. E. Pontelli, G. Gupta, and M. V. Hermenegildo. &ACE: A High-Performance
Parallel Prolog System. In International Parallel Processing Symposium. IEEE
Computer Society Technical Committee on Parallel Processing, IEEE Computer
Society, April 1995.

30. E. Pontelli, G. Gupta, J. Wiebe, and D. Farwell. Natural language multiprocessing:
A case study. In AAAI/IAAI, pages 76–82, 1998.

31. L. D. Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In M. M. Veloso, editor, IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, January 6-12, 2007, pages 2462–2467, 2007.

32. R. Rocha, F. Silva, and V. S. Costa. On Applying Or-Parallelism and Tabling to
Logic Programs. Theory and Practice of Logic Programming Systems, 5(1-2):161–
205, 2005.

33. R. Rocha, F. Silva, and V. Santos Costa. Achieving Scalability in Parallel Tabled
Logic Programs. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium (IPPDPS02), Fort Lauderdale, Florida, USA, April 2002.

34. S. W. Ryan and A. K. Bansal. A scalable distributed multimedia knowledge re-
trieval system on a cluster of heterogeneous high performance architectures. In-
ternational Journal on Artificial Intelligence Tools, 9(3):343–367, 2000.

35. V. Santos Costa. Cowl: Copy-on-write for logic programs. In Proceedings of the
IPPS/SPDP99, pages 720–727. IEEE Computer Press, May 1999.

36. V. Santos Costa. Optimising bytecode emulation for prolog. In LNCS 1702, Pro-
ceedings of PPDP’99, pages 261–267. Springer-Verlag, September 1999.

37. V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP User’s Manual, 2002.
http://www.ncc.up.pt/˜vsc/Yap.

38. V. Santos Costa, C. D. Page, and J. Cussens. Probabilistic Inductive Logic Pro-
gramming, chapter CLP(BN ): Constraint Logic Programming for Probabilisti c
Knowledge. Springer-Verlag, 2007. (to appear).

39. V. Santos Costa, R. Rocha, and F. Silva. Novel Models for Or-Parallel Logic
Programs: A Performance Analysis. In Proceedings of EuroPar2000, LNCS 1900,
pages 744–753, September 2000.

40. V. Santos Costa, K. Sagonas, and R. Lopes. Demand-driven indexing of prolog
clauses. In V. Dahl and I. Niemelä, editors, Proceedings of the 23rd International
Conference on Logic Programming, volume 4670 of Lecture Notes in Computer
Science, pages 305–409. Springer, 2007.

41. V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-Parallelism. In Third ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming PPOPP,
pages 83–93. ACM press, April 1991. SIGPLAN Notices vol 26(7), July 1991.

42. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming, 29(1–3), 1996.

43. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

44. D. H. D. Warren. Applied Logic—Its Use and Implementation as a Programming
Tool. PhD thesis, Edinburgh University, 1977. Available as Technical Note 290,
SRI International.

45. J. Wielemaker. Native preemptive threads in swi-prolog. In C. Palamidessi, edi-
tor, Logic Programming, 19th International Conference, ICLP 2003, Mumbai, In-
dia, December 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in Computer
Science, pages 331–345. Springer, 2003.


