
Problem D – Cultura Celular
This is an output-only problem.
Unlike the usual problems, where you read data and print output, in this problem you
must submit only a single text file.

On a Petri dish represented by an N × M grid, some cell
colonies are initially alive and others dead. Cells live and
reproduce according to the following iterative rule:

• At every generation (iteration) a dead cell becomes alive
if it has at least two orthogonally adjacent cells that were
alive in the previous generation (due to diffusion of nu-
trients and biochemical signals). More precisely, for ev-
ery dead cell we count how many of its four orthogonal
neighbors (up, down, left, right) were alive in the pre-
vious generation; if at least two of those neighbors are
alive, the cell becomes alive in the current generation.
An alive cell never dies.

• The process repeats until no more dead cells can be ac-
tivated, or until all cells on the dish are alive.

As a biologist you may artificially plant up to K additional cells at the beginning (you may not
remove any of the original live colonies). Your goal is to choose those up to K cells so that after
exactly X generations there is still at least one dead cell, but if the process continues to completion,
every cell of the grid will eventually become alive.

Example

Consider a dish with N = 3, M = 4 whose initially live cells are:

ONI’2025 Selection Contest
Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
(June 7th, 2025)



Suppose K = 3 and X = 2. If we plant three extra cells in the centre of the grid, the reproduction
process lasts exactly two generations, as illustrated below (green cells are those added in the current
generation; in the first image they are the three cells we planted):

Because by generation X = 2 all cells are alive, this solution is invalid. If instead we add the cells
shown below, the process takes three generations:

Since at generation X = 2 two cells are still dead, and at generation 3 all cells are alive, this
solution is valid.

Input Format

Each test case starts with four space-separated integers N M K X.

Next follow N lines with M characters each, describing the initial state of the Petri dish:

• # denotes an alive cell,

• . denotes a dead cell.

For the example above the input would be:

ONI’2025 Selection Contest
Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
(June 7th, 2025)



3 4 3 2

#.#

...

...

#.#

Test Cases

There are 7 test cases, each worth a fixed score (there are no partial scores inside a case). Treat
each test case individually—the cases are not arbitrary, and you should inspect and
exploit the structure of each one.

• Case 1: worth 10 points, inp1.txt;
Description: N = M = K = 20, X = 0.

• Case 2: worth 15 points, inp2.txt;
Description: N = 15, M = 35, K = 25, X = 0.

• Case 3: worth 15 points, inp3.txt;
Description: N = 30, M = 50, K = 38, X = 0.

• Case 4: worth 15 points, inp4.txt;
Description: N = 60, M = 80, K = 65, X = 0.

• Case 5: worth 15 points, inp5.txt;
Description: N = M = 16, K = 20, X = 100.

• Case 6: worth 15 points, inp6.txt;
Description: N = 20, M = 35, K = 40, X = 350.

• Case 7: worth 15 points, inp7.txt;
Description: N = 50, M = 80, K = 64, X = 2000.

If you prefer, you can download all cases here: tests.zip.

Output / Submission Format

You must submit a single .txt file (the extension matters!). The file must contain one grid per
test case, each with the exact dimensions of its test case, using # for live cells and . for dead cells.
You may not remove original live cells. You may plant at most K additional cells (i.e. change
up to K dots into hashes). Your result must satisfy the statement conditions: after exactly X
generations there is still at least one dead cell, but if the process is allowed to run to completion,
the entire dish eventually becomes alive.

Important notes:

ONI’2025 Selection Contest
Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
(June 7th, 2025)

http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp1.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp2.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp3.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp4.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp5.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp6.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/inp7.txt
http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/tests.zip


• If you have no solution for a test case, include the original grid.

• If any output grid is invalid—wrong size, invalid characters, etc.—the submission is judged
Wrong Answer and you receive 0 points for all test cases.

Sample Validator

To test your submission locally we provide a sample checker that follows the same rules: checker.cpp.

Compile the checker (e.g. g++ -o checker checker.cpp) and run it with the input file and the
output file produced by your submission: ./checker inpI.txt outI.txt

Here inpI.txt is one of the official inputs, and outI.txt is your corresponding output. The
checker prints “Correto” if your solution satisfies all conditions, or an error message describing the
issue found.

Tips for Generating the Output

Since you must create a .txt submission file, the terminal can be handy (this is optional—you
can create the file any way you like).

If running your program with command X (e.g. for C++: compile with g++ code.cpp then run
./a.out), you can redirect input from a file inp.txt and write output to out.txt via: X <

inp.txt > out.txt

It is convenient to generate one outI.txt per test case. To concatenate them into a single out.txt
for submission, you can use:

cat out1.txt > out.txt; cat out2.txt >> out.txt; cat out3.txt >> out.txt; cat out4.txt

>> out.txt; cat out5.txt >> out.txt; cat out6.txt >> out.txt; cat out7.txt >> out.txt

Organization High Patronage

Sponsors

ONI’2025 Selection Contest
Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
(June 7th, 2025)

http://mooshak.dcc.fc.up.pt/~oni-judge/s2025/D/checker.cpp

