The inverse of the Ackermann function is primitive recursive

Armando B. Matos

May 7, 2014

1 The Ackermann function and its inverse

The purpose of this personal note is to understand why the inverse of the Ackermann function is primitive recursive; this is mentioned in [3, 2].

Definition 1

$$
\begin{align*}
A(0, n) & =n+1 \tag{1}\\
A(m+1,0) & =A(m, 1) \tag{2}\\
A(m+1, n+1) & =A(m, A(m+1, n)) \tag{3}
\end{align*}
$$

The following table contains some values of $A(m, n)$. The entries marked "..." correspond to very large integers.

$m \backslash n$	0	1	2	3	4	5
0	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	5	7	9	11	13
3	5	13	29	61	125	253
4	13	65533	\ldots	\cdots	\cdots	\cdots

Some simple results about the Ackermann function

The following simple facts will be useful. They include Lemmas 2.11, 2.12, and 2.13 of [1]. The proofs are easy exercises of mathematical induction.

Lemma 1 For all $m, n \in \mathbb{N}$

$$
\begin{align*}
& A(m, n)>m+n \tag{4}\\
& A(m, n)<A(m, n+1) \tag{5}\\
& A(m, n)<A(m+1, n) \tag{6}
\end{align*}
$$

Proof. (4): Consider the values of A along the path $(0, n)-(1, n)-\ldots-(m, n)$. We have $A(0, n)=n+1$ and by (5) each step increases A by at least 1 (there are m steps). It follows that $A(m, n) \geq m+n+1$ from which the result follows.
(5): Induction on m. The case $m=0$ is simple. Assume that $A(m, n)<$ $A(m, n+1)$. We have $A(m+1, x+1)=A(m, A(m+1, x))>A(m+1, x)$, where an easy consequence of (4), namely $A(m, n)>n)$, was used.
(6): Induction on m and n. The case $m=0$ is simple. Assume $A(m, n)<$ $A(m+1, n)$. Then (case (2)): $A(m+1,0)=A(m, 1)<A(m+1,1)=A(m+$ $2,0)$. The new induction hypothesis is $A(m+1, n)<A(m+2, n)$ and we get $A(m+2, n+2)=A(m+1, A(m+2, n))>A(m+1, A(m+1, n))>$ $A(m, A(m+1, n))=A(m+1, n+1)$. Property (5) was used.

2 The graph of the Ackermann function is primitive recursive

Theorem 1 The graph of the Ackermann function is primitive recursive.

Proof. Given x, y, and z to test if $A(x, y)=z$, we can ignore the arguments m and n outside the rectangle $0 \leq m \leq z, 0 \leq n \leq z$, as well as the values $A(m, n)$ greater than z, because, using Lemma 1:

1. If $m>z, A(m, n)>z$ for every n.
2. If $n>z, A(m, n)>z$ for every m.
3. If $A(m, n)$ is used as argument of another computation of A (line (3) of Definition 1, page 1), the "final result" will be greater than z.

The computation of $A(m, n)$ is either

- Immediate, when $m=0: A(0, n)=n+1$.
- Dependent on $A(m-1,1)$ when $n=0: A(m, 0)=A(m-1,1)$.
- Dependent on $A(m-1, w)$ with $w=A(m, n-1)$, when $m, n \geq 1$.

Suppose that x, y, z are given and that we want an algorithm that outputs 1 if $A(x, y)=z$ and 0 otherwise. Note that by line (4) of Lemma 1, if the answer is z, that is if $A(x, y)=z$, we must have $x \leq z$ and $y \leq z$.
Thus, the following algorithm computes the Ackermann graph. "*" denotes a value greater than z; it can be ignored.

1. Input: x, y, z.
2. Output: 1 if $A(x, y)=z, 0$ if $A(x, y) \neq z$.
3. Compute $A(m, n)$ inside the rectangle $0 \leq m, n \leq z$.
(a) Compute and save $A(0,0), A(0,1), \ldots, A(0, z)$.
(b) Compute and save $A(1,0), \ldots, A(z, 0)$.
(c) For $m=1,2, \ldots, z$:

Compute and save $A(m, 1), A(m, 2), \ldots, A(m, z)$.
In computation above, if $A(m, n)>z$, mark the value of $A(m, n)$ as \star.
Comment. Using this order of computation, whenever we compute $A(m, n)$ (using the definition 1), every value of A that is needed for that computation (rules (2) or (3) of Definition 1) is already known. Thus, there are no "recursive calls".
2. Find if $A(x, y)=z$
(a) If $x>z$ or $y>z$ output $0((x, y, z)$ not in the graph)
(b) Otherwise search for a stored triple of the form (x, y, w) (in particular we can have $w=\star$).
i. If $w=z$ output $1((x, y, z)$ in the graph $)$.
ii. If $w \neq z$ output $0((x, y, z)$ not in the graph; this includes of course the case $w=\star$).

Comment. This algorithm can easily be made primitive recursive if we use a single integer M (the "memory") to code all the triples (m, n, p) with $A(m, n)=$ p already computed. The total number of such triples is $(z+1)^{2}$ and each occupies $O(\log (z))$ bits. The insertion of a triple in M and the question "what is the computed value of $A(m, n)$?" can be implemented in a primitive recursive fashion. A value greater than z (\star above) can be coded by 0 , as $A(m, n)$ is never 0 .

Note. The proof above uses a bottom-up computation. If the inductive Definition 1 is directly used, it is possible to define a primitive recursive top-down algorithm.

3 The inverse of the Ackermann function is primitive recursive

As the Ackermann function is not onto, its inverse is not total.
Theorem 2 Suppose that $A(x, y)$ is an increasing function such that $A(x, y) \geq$ $\max (x, y)$. By Lemma 1 this holds for the Ackermann function. Then, if the graph of $A(x, y)$ is primitive recursive, the inverse function

Given z, output:

- (x, y) such that $A(x, y)=z$.
- NO if there is no such (x, y).
is also primitive recursive.
The reason is clear: it is enough to compute the graph of the Ackermann function in the rectangle $0 \leq m, n \leq z$, which, as shown in Section 2, can be done in a primitive recursive way. Anyhow we present a proof below. Proof.

```
Input: \(z\).
Output: \((x, y)\) such that \(A(x, y)=z\) or NO if there is no such \((x, y)\).
Compute \((x, y, z)\) in the rectangle \(0 \leq x, y \leq z\).
for \(x=0\) to \(z\{\)
    for \(y=0\) to \(z\{\)
        if \((x, y, z)\) is a computed triple,
        output ( \(x, y\) ) and STOP;
    \}
\}
output NO.
```

Notes. For some other other forms of inverse, such as $A^{-1}(z) \stackrel{\text { def }}{=}\{(x, y) \mid A(x, y) \geq$ z and $x+y$ is as small as possible (this is a set) this result (that is, Theorem 2 above) is also true.
The key for the success of the inversion algorithm is the fact that any possible inverse (x, y) of z satisfies $x \leq z$ and $y \leq z$. For any other primitive recursive function g with $x \leq g(z)$ and $y \leq g(z)$, such as $g(z)=2^{2^{z}}$, the existence of the inversion algorithm is also assured.

Consider now the "diagonal" Ackermann function $A^{\prime}(m) \stackrel{\text { def }}{=} A(m, m)$, which (I think) is not PR, but has a PR inverse. It seems that we may conclude that there are PR functions (as $\left.A^{\prime-1}(m)\right)$ whose inverse $\left(A^{\prime}(m)\right)$ is not PR. . . but not so fast! We have been dealing with "inverses" that are not the mathematical inverse of a function and more care is needed - in particular, $\left(A^{\prime-1}\right)^{-1} \neq A^{\prime}$.

References

[1] Cristian Calude. Theories of Computational Complexity. Elsevier, 1988. Annals of Discrete Mathematics - Monograph 35.
[2] François G. Dorais. Inverse Ackermann - primitive recursive or not?, September 2011.
[3] George Tourlakis. Ackermann's function, 2008.

