
The inverse of the Ackermann function is primitive
recursive

Armando B. Matos

May 7, 2014

1 The Ackermann function and its inverse

The purpose of this personal note is to understand why the inverse of the
Ackermann function is primitive recursive; this is mentioned in [3, 2].

Definition 1

A(0, n) = n + 1 (1)
A(m + 1, 0) = A(m, 1) (2)

A(m + 1, n + 1) = A(m, A(m + 1, n)) (3)

The following table contains some values of A(m, n). The entries marked “. . . ”
correspond to very large integers.

m\n 0 1 2 3 4 5
0 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 5 7 9 11 13
3 5 13 29 61 125 253
4 13 65533

Some simple results about the Ackermann function

The following simple facts will be useful. They include Lemmas 2.11, 2.12, and
2.13 of [1]. The proofs are easy exercises of mathematical induction.

Lemma 1 For all m, n ∈ N

A(m, n) > m + n (4)
A(m, n) < A(m, n + 1) (5)
A(m, n) < A(m + 1, n) (6)

1

Proof. (4): Consider the values of A along the path (0, n)− (1, n)− . . .− (m, n).
We have A(0, n) = n + 1 and by (5) each step increases A by at least 1 (there
are m steps). It follows that A(m, n) ≥ m+n+1 from which the result follows.

(5): Induction on m. The case m = 0 is simple. Assume that A(m, n) <
A(m, n + 1). We have A(m + 1, x + 1) = A(m, A(m + 1, x)) > A(m + 1, x),
where an easy consequence of (4), namely A(m, n) > n), was used.

(6): Induction on m and n. The case m = 0 is simple. Assume A(m, n) <
A(m + 1, n). Then (case (2)): A(m + 1, 0) = A(m, 1) < A(m + 1, 1) = A(m +
2, 0). The new induction hypothesis is A(m + 1, n) < A(m + 2, n) and we
get A(m + 2, n + 2) = A(m + 1, A(m + 2, n)) > A(m + 1, A(m + 1, n)) >
A(m, A(m + 1, n)) = A(m + 1, n + 1). Property (5) was used. �

2 The graph of the Ackermann function is primitive
recursive

Theorem 1 The graph of the Ackermann function is primitive recursive.

Proof. Given x, y, and z to test if A(x, y) = z, we can ignore the arguments m
and n outside the rectangle 0 ≤ m ≤ z, 0 ≤ n ≤ z, as well as the values A(m, n)
greater than z, because, using Lemma 1:

1. If m > z, A(m, n) > z for every n.

2. If n > z, A(m, n) > z for every m.

3. If A(m, n) is used as argument of another computation of A (line (3) of
Definition 1, page 1), the “final result” will be greater than z.

The computation of A(m, n) is either

– Immediate, when m = 0: A(0, n) = n + 1.

– Dependent on A(m− 1, 1) when n = 0: A(m, 0) = A(m− 1, 1).

– Dependent on A(m− 1, w) with w = A(m, n− 1), when m, n ≥ 1.

Suppose that x, y, z are given and that we want an algorithm that outputs 1
if A(x, y) = z and 0 otherwise. Note that by line (4) of Lemma 1, if the answer
is z, that is if A(x, y) = z, we must have x ≤ z and y ≤ z.

Thus, the following algorithm computes the Ackermann graph. “?” denotes a
value greater than z; it can be ignored.

2

1. Input: x, y, z.

2. Output: 1 if A(x, y) = z, 0 if A(x, y) 6= z.

1. Compute A(m, n) inside the rectangle 0 ≤ m, n ≤ z.

(a) Compute and save A(0, 0), A(0, 1),. . . , A(0, z).
(b) Compute and save A(1, 0),. . . , A(z, 0).
(c) For m = 1, 2, . . . , z:

Compute and save A(m, 1), A(m, 2),..., A(m, z).

In computation above, if A(m, n) > z, mark the value of A(m, n)
as ?.
Comment. Using this order of computation, whenever we com-
pute A(m, n) (using the definition 1), every value of A that is
needed for that computation (rules (2) or (3) of Definition 1) is
already known. Thus, there are no “recursive calls”. �

2. Find if A(x, y) = z

(a) If x > z or y > z output 0 ((x, y, z) not in the graph)

(b) Otherwise search for a stored triple of the form (x, y, w) (in
particular we can have w = ?).

i. If w = z output 1 ((x, y, z) in the graph).

ii. If w 6= z output 0 ((x, y, z) not in the graph; this includes
of course the case w = ?).

�

Comment. This algorithm can easily be made primitive recursive if we use a
single integer M (the “memory”) to code all the triples (m, n, p) with A(m, n) =
p already computed. The total number of such triples is (z + 1)2 and each
occupies O(log(z)) bits. The insertion of a triple in M and the question “what
is the computed value of A(m, n)?” can be implemented in a primitive recursive
fashion. A value greater than z (? above) can be coded by 0, as A(m, n) is
never 0. �

Note. The proof above uses a bottom-up computation. If the inductive Defi-
nition 1 is directly used, it is possible to define a primitive recursive top-down
algorithm. �

3 The inverse of the Ackermann function is primitive
recursive

As the Ackermann function is not onto, its inverse is not total.

Theorem 2 Suppose that A(x, y) is an increasing function such that A(x, y) ≥
max(x, y). By Lemma 1 this holds for the Ackermann function. Then, if the
graph of A(x, y) is primitive recursive, the inverse function

3

Given z, output:

– (x, y) such that A(x, y) = z.
– NO if there is no such (x, y).

is also primitive recursive.

The reason is clear: it is enough to compute the graph of the Ackermann
function in the rectangle 0 ≤ m, n ≤ z, which, as shown in Section 2, can be
done in a primitive recursive way. Anyhow we present a proof below. Proof.

Input: z.
Output: (x, y) such that A(x, y) = z or NO if there is no such (x, y).
Compute (x, y, z) in the rectangle 0 ≤ x, y ≤ z.
for x = 0 to z{

for y = 0 to z{
if (x, y, z) is a computed triple,

output (x, y) and STOP;
}

}
output NO.

Notes. For some other other forms of inverse, such as A−1(z) def= {(x, y)|A(x, y) ≥
z and x + y is as small as possible} (this is a set) this result (that is, Theorem 2
above) is also true.
The key for the success of the inversion algorithm is the fact that any possible
inverse (x, y) of z satisfies x ≤ z and y ≤ z. For any other primitive recursive
function g with x ≤ g(z) and y ≤ g(z), such as g(z) = 22z

, the existence of the
inversion algorithm is also assured. �

�

Consider now the “diagonal” Ackermann function A′(m) def= A(m, m), which (I
think) is not PR, but has a PR inverse. It seems that we may conclude that
there are PR functions (as A′−1(m)) whose inverse (A′(m)) is not PR. . . but not
so fast! We have been dealing with “inverses” that are not the mathematical
inverse of a function and more care is needed – in particular, (A′−1)−1 6= A′.

References

[1] Cristian Calude. Theories of Computational Complexity. Elsevier, 1988.
Annals of Discrete Mathematics – Monograph 35.

[2] François G. Dorais. Inverse Ackermann – primitive recursive or not?,
September 2011.

[3] George Tourlakis. Ackermann’s function, 2008.

4

	The Ackermann function and its inverse
	The graph of the Ackermann function is primitive recursive
	The inverse of the Ackermann function is primitive recursive

