
1

Analysis of a simple reversible language (previous version of TCS 290 3,

2003)

Armando B. Matos a ∗

aDCC-FC & LIACC, Universidade do Porto

Rua do Campo Alegre 823, 4150-180 Porto, Portugal

Very simple reversible programming languages can be useful for the study of reversible

transformations. For this purpose we characterise the language SRL, a simple reversible

language, and analyse its properties. The language SRL is similar to the “loop” languages

that have been used by several authors to characterise the set of primitive recursive func-

tions. In a sense, the class of SRL-definable transformations is the image of the class

of primitive recursive functions in the “reversible world”. There are however important

differences: SRL has domain Z instead of N, programs written in SRL are always re-

versible. The reversibility of linear homogeneous SRL programs is related to the fact that

the corresponding set of matrices has the algebraic structure of a group. We show that

such programs implement exactly the linear transformations belonging to the group of

integer positive modular matrices, while in ESRL, an extended version of SRL, the set of

transformations that can be implemented by linear homogeneous programs corresponds

exactly the group of integer modular matrices.

Keywords. Loop languages, group of modular matrices, reversibility.

∗The work presented in this paper has been partially supported by funds granted to LIACC through

the Programa de Financiamento Plurianual, Fundao para a Cincia e Tecnologia, Programa POSI and

Programa PRAXIS

2

1. Introduction

In this paper we study the properties of a very simple reversible programming language,

similar to the LOOP(N) language which has been used by several authors ([9, 10, 13, 11])

to characterise the class of primitive recursive functions.

Commonly used languages are not reversible; for instance, any language containing

the assignment instruction is not reversible. In a general purpose language irreversible

computations can be simulated by reversible computations at the cost of extra space and

time ([1, 7]).

Here we use another approach and restrict ourselves to programming languages that

are inherently reversible: for any program P there is a program P−1 such that the com-

position P ; P−1 is the identity. The program P−1 is called the reverse (or inverse) of P .

A very simple algorithm transforms P into P−1.

These languages are usually quite restricted but have the advantage that it is immediate

to define the reverse of a program; a program and its reverse typically run in exactly the

same time and uses exactly the same amount of memory2, hence, in these languages,

one-way functions, a basic ingredient of modern public key cryptography, do not exist.

This paper is organised as follows. After some preliminaries in Section 2, we define

in Section 3 SRL(Z), a simple reversible language. Then we present in Section 4 several

examples3. Programs where the maximum nesting of “for” loops is 1 are called linear.

In Section 5 we study in detail these programs and show that a linear transformation

is implementable in SRL(Z) iff the associated matrix is positive modular (Theorem 1).

It is also shown (Theorem 2) that it is decidable whether two linear SRL programs are

equivalent. For ESRL, an extended version of SRL, all modular matrix transformations

can be implemented (Section 6). A SRL(Z) program can be seen as a parametric trans-

formation as well as a numeric computation. Finally in Section 7 we summarise the main

contributions of this work and mention some areas for future research.

2Reversible Turing machines (introduced by Lecerf [6] and independently later by Bennett [1, 2], see

also the formalisation in [8]) can be considered languages of this kind.
3All the examples presented in this paper have been tested by a simulator written in Prolog.

3

2. Preliminaries

N, Z, R and C denote respectively the set of nonnegative integers, the set of integers,

the set of real numbers and the set of complex numbers. The determinant of a square

matrix M is denoted by |M |. Following [4] we say that an integer square matrix is

modular if its determinant is ±1 and positive modular if its determinant is 1. Integer

matrices have were studied by several authors since about 1860. It is well known that,

for each n > 0, the following sets have the algebraic structure of a group relatively to

the operation of matrix multiplication: the set of unitary (complex) matrices, the set of

regular (nonsingular) real matrices, the set of integer positive modular matrices, the set

of integer modular matrices, the set of permutation matrices, the set of even permutation

matrices. It follows for instance that the inverse of an integer positive modular is still an

integer matrix with determinant 1.

We will study register languages. The initial and final (after the execution of a program)

values of the register number i will be respectively denoted by ri and ri
′; lowercase letters a,

b,. . . , r, s will also be used to denote registers. The vector of registers used by a program is

denoted by R and the transformation corresponding to a program P is also denoted by P ,

so that P (R) is the transformed vector of registers. The assignment of an expression E to

register r is denoted by r ← E. The reverse (or inverse) of a program P is P−1; the identity

(or null program) is denoted by iD. I1; I2 and In denote respectively the composition of

instruction I1 with instruction I2 and the composition of n (identical) instructions I. Two

programs are equivalent, P ≡ Q, if the register transformation associated with P and Q

are identical, that is P (R) = Q(R).

3. The languages LOOP(N) and SRL(Z)

The class of primitive recursive functions has been characterised by several authors as

the set of functions that can be implemented in an appropriate programming language,

see for instance the languages used for that purpose in [9, 10, 13, 11]. All these languages

are equivalent; in particular they only include loop instructions such that the number of

repetitions of the corresponding block of code is fixed in advance; this implies in particular

that every program halts, so that every function that can be defined in those languages

4

is total; of course, not every total function is primitive recursive; in fact, by an easy and

well known diagonalisation argument we can show that no finitely described model of

computation can define exactly the class of total functions. We will begin by defining

LOOP(N), a very small such language. Later we define and study SRL(Z) (simple re-

versible language), a reversible language very similar to LOOP(N). They will turn out to

have very different properties.

3.1. The language LOOP(N)

Let us briefly characterise the LOOP(N) language. The memory is an unbounded set

of registers capable of storing an arbitrary non-negative integer. Thus the domain is N.

Registers r1 . . . rk are the input arguments, the register r0 is the output. Every non input

register is assumed to contain 0 at the beginning of the computation. The instructions

are: “INC r” (increment register r by one), “DEC r” (decrement register r by one, using

the convention 0 − 1 = 0), “FOR r {P}” (execute r times the LOOP program P which

can not change r).

Clearly every function implemented by a LOOP(N) program is total. In fact, as already

mentioned, the class of functions that can be programmed in the language LOOP(N) is

exactly the class of primitive recursive functions. The LOOP(N) language is not reversible:

if after the execution of the instruction “DEC r”, the register r contains 0, we cannot deduce

the initial value of r (it can be either 0 or 1).

3.2. SRL(Z): a simple reversible language

In this paper we study SRL(Z), a reversible language similar to LOOP(N). Our lan-

guage differs from LOOP(N) in two main aspects: (i) each register can contain an arbitrary

(possibly negative) integer, that is, the domain is Z and (ii) nothing is assumed about the

initial contents of the registers. These design decisions have to do with the reversibility

of the language; in particular, if immediately after the execution of a program P (with-

out changing any register), the reverse program P−1 is executed, the memory contents is

exactly as in the beginning, P ; P−1(R) = R.

Henceforth we assume that the domain of the two languages is known and write LOOP

and SRL instead of LOOP(N) and SRL(Z) respectively. We now describe the syntax and

5

semantics of SRL. Then we show that every program in SRL can be reversed by a very

simple procedure.

The domain is the set Z of integers. The memory consists of registers r0, r1. . .

A SRL program is a finite sequence of instructions of the form:

Increment: INC ri. Semantics: ri ← ri + 1.

Decrement: DEC ri. Semantics: ri ← ri − 1.

Loop: FOR ri {P}. Semantics: If ri ≥ 0, the SRL program P is executed ri times;

If ri < 0, the SRL program P is executed −ri times4. The value of ri cannot be changed

by the instruction; it can only appear in P as the register of a nested FOR.

Composition: If P1 and P2 are programs, P1;P2 is also a program.

The reverse P−1 of a program P is defined inductively as follows: (i) the reverse of “INC

ri” is “DEC ri”, (ii) the reverse of “DEC ri” is “INC ri”, (iii) the reverse of “FOR ri {P}” is

“FOR ri {P−1}”, (iv) the reverse of “P1;P2” is “P2
−1;P1

−1”. Using the semantics of SRL

it easy to see that P−1 is in fact the reverse of P , that is, for every program P we have

P ;P−1 = P−1;P = iD.

We will also use the language ESRL(Z), extended an extended version of SRL(Z): there

is an additional instruction that changes the sign of a register, “r ← −r”. It is clear that

the language ESRL(Z) is also reversible, the reverse of an instruction “r ← −r” being

itself.

3.3. On the relationship between primitive recursive functions and functions

implementable in SRL

The languages LOOP and SRL are very similar so that we expect that the classes of

primitive recursive and SRL-definable functions may have interesting similarities. There

are however important differences: (i) the domains are different (N and Z respectively),

(ii) PR functions are usually not reversible, (iii) a “SRL-definable function” should be

seen not as a function but rather as a register transformations, being similar to a gate as

used for instance in quantum computation (which are also reversible). Obviously no one

4This corresponds to the following interpretation which is crucial for the reversibility of a SRL program:

if n < 0, executing n times a certain program is the same thing as executing −n times the reverse of the

program.

6

of the classes includes the other. However there may be interesting properties relating

relating the two classes but as far as we know, that relationship has not yet been studied

in detail5.

4. Some programs in SRL

We now consider a few examples of programs in SRL showing that functions like the

sum, difference and product can be easily implemented if we assume that the initial

values of all auxiliary registers (used, non-input registers) is 0. However, in general, SRL

computations should rather be seen as register transformations.

Example 1 The following program computes a+ b: FOR b {INC a}; the transformation

is a′ = a+ b, b′ = b. Linear computations may be represented by matrices (most programs

do not correspond to linear transformations). For this case, the matrix is

 1 1

0 1

. The

reverse of this program can be found by two methods: by reversing the program or by finding

the inverse matrix: FOR b {DEC a}; the corresponding transformation is a′ = a−b, b′ = b

and the matrix is

 1 −1

0 1

.

Example 2 The product of a and b can be computed by the following program if we assume

that the initial values of c and d are 0: FOR a {FOR b {INC c}}; the transformation is

a′ = a, b′ = b, c′ = c+ ab. The reverse program is “FOR a {FOR b {DEC c}}”:

a x // a x // a

b
y // b

y // b

c
z+xy // c+ ab

z−xy // (c+ ab)− ab = c

Example 3 It is possible to swap the values in registers a and b using an additional

variable c:

FOR a {INC c}; FOR c {DEC a}; FOR b {INC a}; FOR a {DEC b};

FOR c {INC b}; FOR b {DEC c}; FOR c {DEC a}; FOR c {INC b;INC b}

5As an example of a property relating the two languages, it is not difficult to see that SRL computations

can be simulated in LOOP using the following bijection f : Z→ N: f(n) = n if n ≥ 0 and f(n) = −2n−1

otherwise. This corresponds to a (somewhat contrived) reversible sub-language of LOOP that simulates

reversible computations in the domain Z.

7

The transformation is a′ = b, b′ = a, c′ = −c corresponding to the matrix

0 1 0

1 0 0

0 0 1

. The

values of a and b were swapped; however c changed sign. It is also possible to swap two

disjoint pairs of registers. However, swapping only a pair of registers (without changing

any other) is not possible.

5. Linear programs

In the previous Section (see Example 3) we mentioned that it is not possible to swap

the values of two registers without changing other registers – for instance swapping two

other registers or changing the sign of another. We will now show that this inability has

a reason: a single swap (or a single change of sign) is not possible with a linear SRL

program. This follows from Theorem 1, the main result of this paper, which characterises

the set of transformations that can be implemented by a linear SRL program.

A SRL program is linear if every instruction has one of the following forms: “INC a”,

“DEC a”, “FOR a {INC b}” and “FOR a {DEC b}”. An equivalent definition is: a pro-

gram is linear if the FOR loops cannot be nested.

A ESRL program is linear if every instruction has one of the following forms: “INC a”,

“DEC a”, “a ← −a”, “FOR a {INC b}” and “FOR a {DEC b}”. Notice that the instruc-

tions of the form “FORa {b← −b}” are not allowed.

5.1. Transformations that can be implemented by linear SRL programs

We will prove that linear SRL programs implement exactly linear transformations cor-

responding to positive modular matrices. We begin with a few Lemmas. The proof of the

first three is easy and is not given.

Lemma 1 Let r1,. . . , rn be the register used by a linear SRL program P . The transfor-

mation associated with P is linear, that is it has the form ri = tijrj +ci (i = 1, 2,. . . , n)

where all ti,j and ci are integers.

Denote by R and R′ respectively the column vectors [r1 · · · rn]t and [r′1 · · · r′n]t. Pro-

gram P implements a transformation R′ = TPR + C. We say that a transformation

8

f(R) = TPR+ C is feasible if it corresponds to some linear SRL program.

Lemma 2 If the transformation f(R) = TPR + C is feasible, then for every other con-

stant column matrix C ′, the transformation f(R) = TPR+ C ′ is also feasible.

Lemma 3 If a transformation is feasible, there is a program P that implements it and

has all FOR instructions at the beginning and all INC and DEC instructions at the end.

Lemma 4 If a linear program only has at the outermost level FOR instructions, the cor-

responding transformation is homogeneous.

In view of Lemmas 2 and 4 we will discuss only linear programs having only FOR instruc-

tions at the outermost level. Let us call homogeneous to these programs.

Lemma 5 The transformation matrix associated with an homogeneous linear program is

positive modular.

Proof. Easy from the fact that the matrices associated with “FOR a {INC b}” and

“FOR a {DEC b}” are respectively

 1 0

1 1

 and

 1 0

−1 1

. Both have determinant 1. �

Recall example 3. Swapping two registers and changing the sign of a register correspond

respectively to the matrices

 0 1

1 0

 and [−1]. In both cases the determinant is -1; in

view of Lemma 5 linear programs cannot implement these transformations.

We will now see that the converse of Lemma 5 is also true as expressed in the following

result whose first part is proved in Appendix A (the proof for the equivalence between

ESRL and modular transformations is similar).

Theorem 1 The set of functions implementable by linear SRL programs is exactly the set

of linear transformations f(R) = MR+C where M is positive modular. The set of func-

tions implementable by linear ESRL programs is exactly the set of linear transformations

f(R) = MR+ C where M is modular.

5.2. The equivalence of linear SRL programs is decidable

An important question related to SRL programs is whether it is decidable if two pro-

grams implement the same transformation. For linear SRL programs the answer is yes;

this is similar to the case of LOOP programs ([9]).

9

Theorem 2 It is decidable whether two linear SRL programs implement the same register

transformation.

Proof. Let P and P ′ be two linear SRL programs, let R be the column vector of the set

of registers used in either P or P ′; denote by MR+ C and M ′R+ C ′ the corresponding

transformations; use Lemma 3 to obtain equivalent programs where all FOR instructions

are at the beginning. The matrices M and M ′ can be computed as the product of the

matrices corresponding to the FOR instructions and the independent coefficient column

matrices C and C ′ are easily obtained as explained in the proof of Lemma 2. Clearly the

programs P and P ′ are equivalent if M = M ′ and C = C ′. �

6. Some notes on SRL programs and group theory

In this Section we consider again general, not necessarily linear, SRL programs. Recall

the definition of SRL program equivalence given in Section 2. Let us denote by [P]

the equivalence class associated with program P . Consider the set P of those classes

of equivalence. We first define an algebraic structure (P ,�) where “�” denotes the

composition of transformations (not the composition of programs) and show that it is a

group.

If C1 = [P] and C2 = [Q] are two equivalence classes, then define C1�C2 = [P ;Q]. The

operation “�” is associative due to the associativity of program composition. Let I = [iD]

be the identity class. For each program P there is a reverse program P−1 such that

[P ;P−1] = [iD].

For linear homogeneous programs P using no more than the first n registers, the group

G1 = (P ,�) is isomorphic to the group of n × n positive modular matrices with the

operation of matrix multiplication (in particular, it is well known that the inverse of

such a matrix still has determinant 1 and all its entries are integer). For ESRL, linear

homogeneous programs P we have the following result whose proof is similar to the proof

of Theorem 1 given in Appendix A.

Theorem 3 The set of transformations implemented by linear homogeneous ESRL pro-

grams is isomorphic to the group of modular n× n matrices.

10

A permutation of the registers is a particular case of a linear homogeneous transformation.

For SRL we get a group isomorphic to the group of n×n even permutation matrices and

for ESRL we get a group isomorphic to the group of all n× n permutation matrices.

More generally, consider a class of total reversible programs and say that two total

programs P and P ′ are equivalent and write P ≡ P ′ if they change the memory in the

same way (all inputs are parametric, the programs are executed with no “preparation”

of the register contents). In any such reversible programming language the classes of the

equivalence relation “≡” have the algebraic structure of a group.

7. Conclusions and future work

We have defined SRL, a simple reversible language with domain Z and studied the

algebraic transformations that can be implemented with the linear part of his language.

We have shown that linear SRL programs implement exactly the linear transforma-

tions MR + C where M is positive modular. This implies that not all linear reversible

transformations of the registers are possible in linear SRL; in ESRL, the extended version

of SRL, all linear transformations AR+ C where A is modular are possible.

General SRL programs implement a much richer class of reversible transformations.

In this case, and as far as we know, no detailed study has yet been done. Thus many

problems remain open; it would be for instance interesting to characterise the class of

transformations that can be implemented with general SRL and ESRL programs (includ-

ing the hierarchy corresponding to the bounding of the maximum nesting of FOR loops)

and to relate the classes of SRL- and ESRL-definable functions with the class of primitive

recursive functions.

REFERENCES

1. Charles H. Bennett, Logical reversibility of computation, IBM Journal of Research and

Development, 6, pp 525–532, 1973.

2. Charles H. Bennett, The thermodynamics of computation – a review, International

Journal of Theoretical Physics, 21, pp 905–940, 1982.

3. David Deutsch, Quantum theory, the Church-Turing principle, and the universal quan-

11

tum computer, In Proceedings of the Royal Society of London, 400, pp 97–117, Lon-

don, 1985.

4. Loo Keng Hua, Introduction to Number Theory, Springer-Verlag, 1982.

5. Richard E. Korf, Inversion of applicative programs, Proceedings of the IJCAI 1981,

pp 1007–1009.

6. Y. Lecerf, Machines de Turing reversibles. Recursive insolubilit en n ∈ N de l’quation

u = θn ou θ est un isomorphisme de codes, Comptes Rendus, 257, pp 2597–2600,

1963.

7. Ming Li and John Tromp and Paul Vitnyi, Reversible simulation of irreversible com-

putation, Physica D, 120, pp 168–176, 1998.

8. Armando B. Matos, A Turing machine model suitable for the characterisation of de-

terminism and reversibility, LIACC & Departamento de Cincia de Computadores,

FCUP, 1999.

9. A. R. Meyer and D. M. Ritchie, The complexity of loop programs, Proceedings of 22nd

National Conference of the ACM, pp 465–469, 1967.

10. A. R. Meyer and D. M. Ritchie, Computational complexity and program structure,

IBM Research Report RC 1817, 1967.

11. R. Sommerhalder and S.C. van Westrhenen, The Theory of Computability: Programs,

Machines, Effectiveness and Feasibility, Addison Wesley, International Computer Sci-

ence Series, 1988,

12. T. Toffoli and Norman Margolus, Invertible cellular automata: a review, Physica D

45, pp 229–253, 1993.

13. D. Tsichritzis, The equivalence problem of simple programs, Journal of the ACM, 17

(4), pp 729–738, 1970.

A. Appendix: proof of Theorem 1

One of the directions of Theorem 1 is given by Lemma 5. So we have only to prove that

every homogeneous transformation with determinant 1 can be implemented in SRL. In

this Appendix by program and transformation we mean respectively a linear homogeneous

program and a linear homogeneous transformation. By triangular matrix we mean a lower

12

(or upper) triangular square matrix, that is, a square containing only zeros to the right

and above (or to the left and below) of the main diagonal.

A.1. A schema of the proof

Let M be a given positive modular matrix and let P be a program that implements M ;

at this stage we do not know whether P exists; we will prove that it does.

In A.4 we will show how to define for every M a SRL program P ′ and a matrix Mt such

that, if P exists, Mt, the matrix associated with “P ;P ′”, is triangular; in a diagram:

M → Mt, P
′.

In A.5 we prove that every positive modular triangular matrix can be implemented in

SRL. Thus Mt is implemented by some (known) program D.

Let M ′ be the matrix associated with P ′. From M we can get M ′ and then Mt such

that M ′M = Mt (recall6 thatM ′M corresponds to P ; P ′); the matrices M ′ and Mt can

be implemented in SRL respectively by the programs P ′ and T ; so M = M ′−1Mt can

also be implemented in SRL namely by the program P = T ; P ′−1 which of course, is

also positive modular. Before presenting the details of the proof, we give in A.2 a simple

example which may be helpful.

The construction described in this proof can be seen as a definition of a program in

SRL whose inverse transforms a given integer matrix (with determinant 1) into integer

Hermite normal form, by a series of elementary transformations, see for instance [4].

A.2. A simple example of the proof construction

Let us define a program that implements the modular matrix

 3 5

1 2

 that corresponds

to the register transformation a′ = 3a+5b, b′ = a+2b. We can triangularise the matrix M

by the following sequence of transformations: (i) subtract line 2 from line 1, (ii) subtract

6The usual conventions for function composition and program concatenation are opposite, that is, if f

and g are functions and P and Q are programs, then fg (function composition) means “f after g”

while P ; Q (program concatenation) means “Q after P”. Then, if the register transformation associated

with P and Q are respectively fP and fQ, the transformation associated with P ; Q if fQfP .

13

line 2 from line 1, (iii) subtract line 1 from line 2: 3 5

1 2

→
 2 3

1 2

→
 1 1

1 2

→
 1 1

0 1

Subtracting line 2 from line 1 corresponds to

FOR b { DEC a } ↔

 1 −1

0 1

 ↔

 a′ = a− b

b′ = b

and similarly for the operation “subtract line 1 from line 2”.

Thus we have P ′ =

1︷ ︸︸ ︷
FOR b { DEC a };

2︷ ︸︸ ︷
FOR b { DEC a };

3︷ ︸︸ ︷
FOR a { DEC b }; . In A.4 it is

explained a general algorithm to get P ′ from M . The transformation corresponding to P ′

is the product (in reverse order) of the matrices correspondint to its 3 parts:

M ′ =

3︷ ︸︸ ︷ 1 0

−1 1

×
2︷ ︸︸ ︷ 1 −1

0 1

×
1︷ ︸︸ ︷ 1 −1

0 1

 =

 1 −2

−1 3

It can be verified that M ′M is in fact triangular

M ′M = Mt =

 1 −2

−1 3

×
 3 5

1 2

 =

 1 1

0 1

and easily implemented by a SRL program, as explained in A.5: T = FOR b { INC a }. No-

tice that P ′−1 =

3′︷ ︸︸ ︷
FOR a { INC b };

2′︷ ︸︸ ︷
FOR b { INC a };

1′︷ ︸︸ ︷
FOR b { INC a }; thus we get the de-

sired program, P = T ; P ′−1: FOR b { INC a } FOR a { INC b } FOR b { INC a } FOR b { INC a }
which implements the unimodular matrix M as can be easily verified by considering in

sequence the transformation of the registers a and b by each of the 4 lines of the previous

program: a′ = a+ b, b′ = a′+ b = a+2b, a′′ = a′+ b′ = 2a+3b and a′′′ = a′′+ b′ = 3a+5b,

which is the desired transformation (where a′′′ and b′ are the transformed values of re-

spectively a and b).

A.3. Proof: Preliminaries

To prove the following result it is enought to consider the composition:

{c↔ d; a′ ← −a}; {c↔ d; b′ ← −b} (see Example 3).

14

Lemma 6 Let a and b be two distinct registers. The transformation a′ = −a, b′ = −b

can be implemented in SRL.

Lemma 7 Let M be the transformation matrix that corresponds to a linear homogeneous

SRL program. If we replace in M a line by the sum of itself with another line, the resulting

matrix can also be implemented in SRL. If we replace in M a line by the difference between

itself and another line, the resulting matrix can also be implemented in SRL.

Proof. Suppose that P implements a linear homogeneous transformation which is,

for registers a and b, the following a′ = Σma,iri, b
′ = Σmb,iri. If after P we add the

instruction “FOR b {INC a}”, we get a program that implements the transformation a′′ =

Σ(ma,i + Σmb,i)ri, b
′′ = Σmb,iri. The matrix that corresponds to this transformation can

be obtained by replacing in M the a-line by the sum of a-line with b-line. The other

case (difference of two lines) is similar, just put instead the instruction “FOR b {DEC a}”

after P . �

A.4. Proof: finding a SRL program that triangularises a transformation

We now show that, if there is a program P that implements the matrix M , there is

also a program P ′ such that P ; P ′ implements a triangular matrix Mt. This program P ′

and the diagonal matrix Mt are the output of an algorithm which is described below. It

should be noted that such an algorithm is not intended to be written in SRL. It is just a

method to find P ′ and Mt from M .

Given M , the program P ′ will be defined as a finite sequence of identical sections, each

transforming the corresponding matrix so as to make an entry equal to zero.

The method is now described. Let M be an n × n integer matrix with entry mi,j on

line i, column j. In the following algorithm the sentence “make the entry m··· = 0”

corresponds to the algorithm “make zero” described below.

Algorithm triangularise(M):

for i = n downto 0

for j = 0 to i-1

Use lines i and j to make the entry mj,i = 0

15

Lines of the matrix will be added or subtracted as described by the following algorithm

in order to get b = 0. The elements a and b correspond in algorithm “triangularise”

respectively to the diagonal element element di = mi,i and to the element mj,i.

Algorithm make zero(a, b)

while a 6= 0 ∧ b 6= 0

reduce |a| or |b| by subtracting or adding

one of the numbers a, b to the other

if a = 0, make a← b; b← 0

The additions and subtractions of numbers will in fact correspond to additions and sub-

tractions of the corresponding matrix lines.It is easy to see that this program always halts.

In terms of the matrix the last line of the algorithm, “a ← b; b ← 0” corresponds to:

(i) Sum the b-line to the a-line, (ii) Subtract a-line from the b-line.

Example of Algorithm make zero for the initial values: a = 6, b = 2:

Step: 1 2 3 4 5 6

a 6 4 2 0 2 2

b 2 2 2 2 2 0

From Lemma 7 we know that we can implement in SRL the operations of adding one

line to another and subtracting one line from another. The following result follows.

Lemma 8 If M is the matrix corresponding to the linear homogeneous transformation

implemented by a program P , there is a program P ′ such that the matrix corresponding

to the composition P ; P ′ is triangular.

A.5. Proof: Triangular matrices with determinant 1 can be implemented in

SRL

We now show that if the matrix of a transformation is triangular and has determinant

one, the transformation can be implemented in SRL. Let M be a triangular matrix; as the

determinant is 1, all the elements in the main diagonal are either 1 or -1 and the number

of negative elements is even. We will now show through an example how to implement

such a triangular matrix in SRL.

16

Consider the transformation a′ = a, b′ = 2a−b, c′ = −a+3b−c. The diagonal elements

are 1, -1, -1. In order to remove the negative diagonal elements (there is an even number

of them) we use Lemma 6 to get a program P that changes the sign of b and c (it uses but

does not modify some auxiliary registers). We now have to implement the transformation

a′ = a, b′ = −2a + b, c′ = a− 3b + c. In general, using Lemma 6 an appropriate number

of times, we get a matrix having only 1’s on the main diagonal.

A transformation corresponding to a triangular matrix can be easily implemented in

SRL as shown for the example:

FOR a {DEC b; DEC b} % b’ = -2a + b

FOR b {DEC c; DEC c; DEC c} % c’ = 6a -3b + c

FOR a {DEC c; DEC c; DEC c; DEC c; DEC c} % c’ = a -3b + c

