Iterative Induction d Logic Programs

An appoach to logic program synthesis from incompl ete spedfi cations

Alipio Mario Guedes Jorge

Tese submetida para obtencéo

do grau de Doutor em Ciéncia de Computadores

Departamento de Ciéncia de Computadores

Faauldade de Ciéncias da Universidade do Porto

January 1998

To my Parents.

To my Wife.

Acknowledgements

My supervisor, Pavel Brazlil, has been an unlimited source of encouragement,

enthusiasm and petience Thanks for his valuable comments, suggestions and gudance.

My colleagues in LIACC provided an excdlent working atmosphere, with relaxing
bresks whenever necessary. Speda thanks to those in NIAAD (the madine leaning
group), particularly to the ones who share the office with me: Jodo Gama and Luis

Torgo.

I must thank the Portuguese agency JNICT (Programa Ciéncia, grant BD/132791/1A
and PRAXIS XXI, grant BD/328594) for the financial support without which this work
would have not been possble. | also thank MLNet, ILPNet, Faauldade de Economia da
U. Porto, and the Japanese agency Il SF, which made possble my participation in several

international scientific events.

Thanks to al my friends (I fortunately have agood colledion of them) for all the good
moments, dinners, parties, weekends, etc. Spedal thanks to those more diredly involved

with my work: Mario Florido and Paulo Azevedo.
Thanks to my family, for their support and care (I have agrea family too).

Spedal thanks to my wife, Xinha, for her love and companion, and to my baby-daughter

Carolinafor giving me peacéul nights snce she was 3 months old.

Thanks to my parents, for their love, support and encouragement ever since

Contents

1. INTRODUGCTIONttt ettt e e et e e et s et ea e aanea e eeaneaennaas 1
11 o YNy T PP 3
12 IMAIN CONTRIBUTIONS. .. cccevttrtttussseeeeeeeeeeeeeeeeessnnnse s s s s e e e eeeeeeeneeeeeensnraennaeeeeeeeeeeeeeeeennnnnnes 4
121 B0 SR T o 1¥ o (Y= 3T 1 o= 5
122 [EratiVEINOUCTION. ... rreeeee e e 6
123 Integrity constraints andthe Monte Carlo method...............cccoeiiiiiiicei e, 8
13 OVERVIEW OF THE THESI S+ttt ittt e e eeeeeeeeessnnesmnssss s s s e e e e eeeeeeeennnnnnnnsss s s s e e e e e e e eeeennnnnnnnnnneen o 8
2. PROGRAM DEVELOPMENT ...ttt ee e e e e e e e e e e 11
21 [N 20 5110 T N PPN 11
2.2 AUTOMATIC PROGRAMMING . .1t eeeeettnttiias s s e e e e teeeeeeeeeeesnsnna s s s e e e e s aaeee e e e e ennnnn e n e e e e eeeeeeees 12
23 CASE TOOLS . e tttteeeeeittt sttt et ettt et e et e e e ettt et rr e e e e e e e e e e e e e e e 13
24 FORMAL METHODStuiiiiiiiiiii ettt r e e e s s s e e s e e s e aaa e e ees 14
25 PROGRAM SYNTHESIS ..ttt e e eeeeeeeeeeensiesmnss s s s e e e e et e e e eeessnsnmnn s e e e e e et e e e e e e en e s 15
251 LOGIC Program SYNtNESIS. ...uuu i eiiiiii e e e ee e e e e e e e e e e et e e e aaaaas 16
25.2 Program synthesis from eXamples...........uveiiiiiiiiii e e 17
26 OTHER RELEVANT TOPICS +ttttttuuteeeeeeeeeeeeeanrennssssee s saaeeeeeeeeeeeessnennnnsssessseeeeeeeeeeennnnrennnnnes 19
27 SUMMARY L.ttt ettt et e ettt et e e e e e oo ettt e e ettt e n e e e e et e e e et e e e e e e 20
3. INDUCTIVE LOGIC PROGRAMM ING .. .ottt 23
31 [N 20 5110 T N PPN 23
32 LOGIC PROGRAMS.....ciiitiiie ittt ettt e e s e e e aa s e e s e e b s e e e e b b e s e e e e bbb e e raanaa s 24
321 S 1= 24
322 S < 001 0T OPPPPPPPR 26
323 (D= Y= 1A o] o PR PPPPPRPP 27
3.24 TYPES, INPU/OULPUE MOOES. ... vvvvveeeeiieeeeeeteeeeeeaaasiesnneeeeeetteeeeeereeeeaaaesseaassaannnsnnnnnnnes 32
3.25 R0 e 18T 0 0] 0= L= | (R 33
3.3 THEILP PROBLEM ...cttiiiiiiitiii ettt e s e e e e e s s eab e eens 34
331 Normal SEMANTICS OF ILPovvviiiiiiiie e 36
332 (D TT =T To] 0 3] o I 1 I PP PPUPRTRRR 38

34 IMETHODS AND CONCEPT S, ..t ttttttttnetneeneeneeaeaeas et es sttt sen e eaeeasenstaeassssseneenseseernrnnses 40

Viii CONTENTS

34.1 The search in aspace of hypatheses...........ccccveiveiiiiiiiiecec e A0
34.2 Therelation df 6-subsumption between ClauSES..........oocevvviiii i 41
34.3 The refinement operator (top-down apProach)ovveviviiiii e 42
34.4 The lgg ogerator (bottoM-UP APEOACH).......ue e 45
345 SEArCh MELNOGS. ... A5
3.4.6 = Lo [0 F= 1 3 o TS ¥ 4
3.4.7 Dedaringthelangua@ bias..........cccooveeviviiiii e e A8
35 STATE-OF-THE-ART OF [LP .. e e 50
351 (0 0T 0 Yo 1 S 50
35.2 Sane ILP (@nd diKE) SYStEMS.....covui i 51
353 F Y o] o T o= 14 o] < 55
354 INAUCtiVE Program SYNtNESIS.ccveiii e e e e e raa e e e e ea e e eeees 56
355 Problems and limitationsS...........ccciiriiiii e 59
3.6 SUMMARY ettt e ettt e oo e et e e et e e e et e e h et e e ean e e e e na e e enra s 60
4. AN APPROACH TO INDUCTIVE SYNTHESIS .. .o 61
41 LN 200 04 1 T N PP 61
4.2 OVERVIEW ...ttt ettt ettt e e ettt e et et e e et et ee e e e et e e e st e e e e e b b e e e e eeebaa e e et ennn s eeeeennas 62
4.3 SPECIFICATION ...ttt ettt e e e e e ettt s e e e et e e e e e e e e e e e nnnnnne e e a e e e e nneeeeeenennnnnnnnnnnnsd 63
43.1 Objedive of the synthesis MethoddOgyvieiiiiiiie e 64
432 Examples, modes, types, integrity 0ONStraiNtS..........cvveeeeeeeeeiiiiis i ee e 65
4.4 BACKGROUND KNOWLEDGEuuuiiiiiiiiiieiiiii i ss st s et nsessaba s ea s s s s aaa s 66
4.5 PROGRAMMING KNOWLEDGEcivttuiiiiiiiineiiittis e s sesi e s eabi e s ssbaaas s s s sabas s s s s aana e esanns 67
451 AlGOrthmM SKEICHES.uei e e 68
452 Clause StrUCLUIE GFraIMITBISuueeeeiiseeeeeiie e e e eeeatt s e e e eaa s e eeeateaeeeaenssrnnaeeeeenanaaeeenes 13
4.6 CLASSOF SYNTHESIZABLE PROGRAMSttteeieeeeeeeeeeessteennsnnsia s s s e e e eeeeeeeeeennennnnnnnnnneeeeeees 73
4.7 THE SYNTHESISOF A LOGIC PROGRAM ...ccvttuiiiiitiiieiiitii i ieesiesi e e ssbbi s s s ssais s s saeaaa e s sannes 4
4.7.1 The dAUSE GONSITUCLONveeeeeieeeeie et e e e 75
4.7.2 The refiNEMENt OPEIALONccieiie e e e e e e e e e e ara s 79
4.7.3 Therelevant SUB-MOGE! ..o 81
4.7.4 The depth bounN@d INtEIPretercovvvv e e e 86
475 Vocabuary andclause structure grammar (CSG)cvuvevveviiieeeiiiiiiieeee e e eeaias 90
4.7.6 LY LS 11T g o 94
4.8 PROPERTIES OF THE REFINEMENT OPERATOR ... 1ctutettteeetteeeseseeeeasesensesenseenneeennnesennnneeennes 94

4.9 A SESTONWITH SKIL ettt e e e e e e e et e e e e e ra e eneenerneeaneed 98

CONTENTS IX

4.10 LIMITATIONS ettt ettt s e s e e e e et e s e e e s e e s s e aaa e e e aans 101
411 RELATED WORK ...ttt ettt e e e n e e e aabe e 102
4111 LiNKEA TOIMNS. ...t e e e e e e e e e e e e ee e 102
4112 Generic programming KNOWMEAQE.uiiviiii e e 104
412 SUMMARY ettt ettt e et e oo e e e ettt e e e ettt e e 104
5. ITERATIVE INDUGCTION .. .ceitiii ettt e et e e e e e e e e e e nbeaans 107
51 N 20 5180 T N PP 107
52 INDUCTION OF RECURSIVE CLAUSESciittiuiiiiitiiieeieisasi e s estis s e s e sas s s s ennana e e s sania e eees 108
521 Complete/sparse sets of @XamMPIES.........viiviiiii e 109
522 Basic representative Set (BRS)......ccvuviiiieiiiii ettt e e ren e 110
523 RESOIULION PAN ... i e e 111
53 I TERATIVE INDUCTION ..ctttnieiittit ettt s e e et e s et e st b s s e e s sa b e e s e e b e e s s e abnn s e e s eaaaas 114
54 THE SKILIT ALGORITHM ... iiiiiieetiitii e e e e ettt e e e et e e e e e e e e e e e e e e e e e eeeeeees 115
54.1 [T oT0 o K== Ty =S 116
5.4.2 PUrE IteratiVe StrategYcevvu i e e eeeiie e e eecee e e e e e e e e e e et e e e e et e e e e e anaaeeeeaes 121
543 SKILIT @rChItEAUIE. ...t e e e e e e e e e e e 124
55 EXAMPLE SESTONS. ...otuniiiiiiiiii ettt e s e e e e e a e s 125
551 SYNthESIS Of UNIOINV3 . .ceiie e e e e e e e eraaaas 126
5.5.2 S 01001 S EY 00 o) 7 2 127
55.3 Multi-predicate SYNthESISii e 128
5.6 1 T 7 T PP 131
5.6.1 S T0] T ol o] o -1 0 1< 131
5.6.2 Variable Pl NG ..coeeee e 132
57 RELATED WORK ...ttt ittt s e e e b s s e e s s e eaa e e eans 134
57.1 (@1 Fo7s =0 1 FoT] o] 1= o1 s o 134
5.7.2 SPASE EXMPIE SELS.....u i eiieiii e ee e et e e e e a e e e 135
58 SUMMARY L.ttt ettt e e ettt e e e e e e e e ettt e e ettt e e et e e e et it e as 137
6. EMPIRICAL EVALUATION L.ttt e e e e eee 139
6.1 EXPERIMENTAL METHODOLOGY ..uuiiiiitineiiittiiieeetbaaa s e essbi s s s easi s s sanaas s s sabb e s s aanan s 140
6.1.1 Sieeess ate, test-perfed programs and CPU time ... 141
6.1.2 The universe of POSItiVe EXMPIESoi i e e 142
6.1.3 The universe of Negative EXMPIES ... v 143

6.1.4 The SKILIt PAraMELErS ... e e e e e e e e e et e e e e area s 144

X CONTENTS

6.1.5 Predicates used in the EXErimENtS..........uuiiiiiiiiii i e e e e e e e e enes 144
6.1.6 Overview of the experiments CONALLLE.covvviiiiiiiii e 145
6.2 RESULTSWITH SKILIT 1ottt ettt e e 146
6.2.1 SUECESS IA ... ee ettt ettt e 146
6.2.2 Percentage of test-perfed ProgramS........cocuviiieiieiiii e e e 148
6.2.3 CPU LTIttt et e e e ekt e e e e sttt e e e s abbr e e e e e e 149
6.3 EXPERIMENTSWITH UNION/B ...ttt ettt ee e e et e e e e s 150
6.4 COMPARISONWITH OTHER SYSTEMS...ccvttttttuuisseeetneeessmnenssnssneeassseeeesseeesnnensnnnsnenneaeeens 152
6.4.1 CRUSTACEAN ...ttt ettt e ettt e e e e et e e e eennraaa s 152
6.4.2 0 T o 153
6.5 OTHER EXPERIMENTS ...ttt ettt e ettt r e e e e et et e e e e e nnn s 155
6.5.1 FACLOMTA ..o 155
6.5.2 YT (o 156
6.5.3 1 o TP TP 156
6.5.4 = L U1 o PP PPPTPP 158
6.5.5 INSEITION SOttt e e e e e e e e e e e e e e e e s n e 158
6.6 RELATED WORK CONCERNING EVALUATIONceeiiiieeenrrnniaeeeeeseeaeeeeeeeeeeennnnnnnnneseneeaeeeeees 159
7. INTEGRITY CONSTRAINTS. oottt e et e e e e e eeaans 163
7.1 20 5110 T PP 163
7.2 THE NUMBER OF NEGATIVE EXAMPLES0tuuiiiiiitiiie ittt s e st eaaa e eans 165
7.3 INTEGRITY CONSTRAINTS ..ttttuuiteeeeeeeeeeeeessrannnsnsee s s s e e eeeeeeeeeeessrennnnnrea s aeeeeeeeeeeeennnnrennnns 166
7.31 Constraint SAtiSFACTIONvvviiiiiiee e 167
7.4 MONIC AND THE MONTE CARLO STRATEGY «..vvvvuuieeeeereeeeeeesnsnnnnnnnissseeeeseeeeeennnnnnnnnnnennns 169
7.4.1 Operationd iNtegrity CONSIFAINISuuuiieeiieiii e e e e e e eeeees 170
7.4.2 The algorithm for constraint cheCkng............ooveiiiiiii i 171
7.4.3 Types and dStriBULIONSuviieii e e 174
7.5 EVALUATION. c.cui ittt 175
751 F= o] 0= a0 G I= U To | Y 2P 175
7.5.2 (8]0 o] 2 RSP P PP PRPPPPPPP 178
7.6 RELATED WORK ...ttt ettt e e e s e e e e e naeaaa s 179
7.7 DISCUSSION ...ttt e e s e r e e s e e e een 180
7.7.1 The NUMDEr Of QUETTES.vve e e e e e e e e e et e e e e anaaas 180
7.7.2 SouNdBSSAN COMPIELENESS.....vu i e e e e e e e e e 181

7.7.3 [0 = LA T 181

CONTENTS Xi

8. CONCLUSION ...ttt ettt ettt e ettt e e e e ek bbbt e e e e s sanee e e e e e nbbeeeeee s 183
8.1 SUMMARY L.ttt ettt e e ettt s r e e et e e ettt e e et et e e et e e e et it as 183
8.2 OPEN PROBLEMS. ...t ttteeetttrtiestseeeesaaeeeeeeeeeese s nna s st e e e e s e eeeeeeeeeenennnrr e naeeeeeneeeeeeeeeeennnnnns 186

8.2.1 The seledion d auxiliary prediCates...........uuoiiiiiiiii i e 186

822 Fg1C= = ot (T o] TR PPPPPPPPP 186

8.2.3 Y= T A =D o) = 187
8.3 EVALUATION OF THE APFROACH ...t eeeteeeeeeeennte s seee s e e e ettt e ee e seae s s e e e e e e e e e ennnnnnneeas 187
8.4 MAIN CONTRIBUTIONS TO THE STATE-OF-THE-ARTuuiiiiiitiiiei it rerneii s eeann s 188
85 THEFUTURE «.o it s e e aa e e reab e e 189
REFERENGCES. ...ttt e et e e e ettt s e et et e s r e e e e bt e e e eeena e eeeenen 191
Y N | PSP 199
APFENDIX A Lottt e r s e e e naeaan 199
APFENDIX B 203
APFENDIX €.ttt ettt et e 203
LIST OF FIGURES ...ttt e e e e s e e e b s 205
L IST OF ALGORITHMS. ...uiiiiitti et ettt e e e a e e e e e e s e e e e s e e s s e s e e s e e b e e e eabbe s 206
LIST OF EXAMPLES . ..ottt e s e 206
L IST OF DEFINITIONS. ... ittt ettt r e e e e e e e s e e b e e s e e ne b b e e s aeaaa s e e e aans 207

1. Introduction

In this thesis we describe a methodology for the aitomatic construction of Prolog
programs from various pieces of available information. Programs are described in terms
of positive and negative examples, sketches and integrity constraints. Definitions of
auxiliary predicates and knowledge aout the structure of the dauses to construct are
also given. This methodology is implemented as g/stem SKIL (Sketch-based Inductive

Leaner) and its iterative extension SKILit. Both systems are written in Prolog.

The information given to the system describes how the intended program should behave
and can be regarded as a program spedfication. Since we ae deding with fragmented
information we have an incomplete spedfication which does not fully describe the
behaviour of the program. The unspedfied behaviour is hypothesized by our
methodology by means of inductive inference For that reason, we can see our work as
an approadc to the inductive synthesis of logic programs from incomplete spedfications.
This work is therefore related to the more general field of Automatic Programning or

(Automatic) Program Synthesis.

On the other hand, inductive synthesis of logic programs can be naturally regarded as a

sub-field of Inductive Logic Programning (ILP). The am of ILP is to induce theories

2 INTRODUCTION

from observations using logic programming formalisms to describe both theories and
observations. For that reason it is usualy regarded as an intersedion of Machine

Learning and Logic Programning (Figure 1.1).

Machine Logic
Learning Programming

Inductive
Logic
Programming

N,/

[Inductive Synthesis of Logic Programs]

Automatic
Programmlng

from Incomplete Specifications

Figure 1.1: Our work and related fields.

Let ustake alook at a smple example of what we mean by inductive synthesis of logic
programs from incomplete spedficaions. Given the set E™ of positive examples of the

relation descendart/2
descendart(ali pio,antonio).
descendart(alipio,adriana).
and the set of negative examples E™ of the same relation
descendart(antonio,ali pio).
descendart(adrianaantonio).
and an auxili ary program B (which is often referred to as badkground knowledge)
son(antonio,adriana).
son(ali pio,antonio).

alogic program P defining predicate descendart/2 is constructed:

Motivation 3

descendart(A,B) — son(A,B).
descendart(A,B) — son(A,C), descendart(C,B).

In terms of program synthesis, the spedficaion is made of the example sets E™ and E".
Program P is a synthesized program which, together with the auxiliary program B,
satisfies the spedficaion. In terms of ILP, examples E* and E are regarded as
observations. These ae eplained by the induced theory P together with badkground
knowledge B. The examplesin E” are logica consegquences of P [0 B whereas the ones in

E arenot.

The onditions under which P satisfies the incomplete spedfication {E",E'}, or P
explains the observations { E",E’} with resped to B can be stated as:

POBEFE" ad POBFe foral elE

The general am of an ILP system, whether or not regarded as a program synthesis
system, is to find a program P which satisfies the &ove conditions. This thesis describes
the methodology behind one such system: SKILit.

1.1 Motivation

One of the main motivations of this work was the fad that many ILP techniques and
algorithms did not sean to be well suited to the problem of inductive program synthesis,
and in particular to the synthesis of reaursive programs. ILP systems which represented
the state-of-the-art when this work first started, such as FOIL and GOLEM, were
pradicdly unable to handle incomplete sets of examples. In order to construct the
definition of a reaursive predicae, such systems require large numbers of well chosen
examples. The system SKILit we propose is able to induce reaursive definitions from
small sparse sets of examples. Experiments ow that SKILit obtains good results when

only few positive examples are available even if they are randomly generated. Thisis due

4 INTRODUCTION

to the iterative induction technique amployed by SKILit, which is one of the main

contributions of the present work.

Other more recant systems also have this ability to inducereaursive dauses from a sparse
set of positive examples. However, these other systems have astrong language bias and
can only synthesize programs within a restricted family of programs. Using the
methodology described in this thesis, system SKILit is potentialy able to induce ay pure
Prolog program since it alows the dedaration of programming knowledge through
clause structure grammars. These ae represented using the definite dause grammar
notation (DCG). We should stress however, that SKILit is able to perform synthesis

when no grammar is provided.

Another problem we gproadc in this thesis is related to the large number of negative
examples required by most systems to avoid the induction of over-general programs. Our
methodology enables the use of integrity constraints to express the bounds of the
intended relation. The use of integrity constraints in ILP is not new. However,
processng such constraints usually involves heary theorem proving mecdhanisms. The
approach we alopt here for integrity constraint cheding is a very efficient one. It is
based on a Monte Carlo strategy which, given an integrity constraint | and an induced
program P, cheds with some degree of uncertainty whether P and | are consistent or

not.

1.2 Main contributions

The methodology presented in this thesis combines some novel techniques with existing
methods. Our main contributions are SKIL’s inductive engine, iterative induction, and an
efficient Monte Carlo method to handle integrity constraints. The basic inductive engine
presented is adequate for program synthesis from few examples. It also exploits mode
and type information, as well as programming knowledge represented as clause structure

grammars and agorithm sketches. Algorithm sketches alow the user to represent

Main contributions 5

spedfic programming knowledge and gve this information to the system. Iterative
induction allows more flexibility in the choice of the positive examples given to a system.
The Monte Carlo constraint handler makes it pradicd to use integrity congtraints in
inductive program synthesis. A brief overview of ead one of these apedsis given in the

following sedions.

1.2.1 Theinductive engine

From a spedficaion including the positive examples

member(2,[2]).
member(2,[1,2]).

The inductive engine of SKIL is able to inducethe dauses

member (A,[A|B]). (Cy)
member (A,[B|C]) — member(A,C). (C2

Our methodology constructs ead clause by seaching for arelational link from the input
to the output arguments of some positive example. The @nnedion is established using
the auxiliary predicates defined in the badkground knowledge and the positive examples
initially given. The input/output modes dedared for ead predicate ae dso taken into
acount. For example, asauming that the second argument is output and the first one is
input, the aguments of member(2,[1,2]) can be relationally linked as follows. From
[1,2] weget terms 1 and [2] by decomposing the list [1,2] and from [2] we get term 2,
using the example member(2,[2]). This link corresponds to the following instance of
clause (C2):

member(2,[1,2]) — member(2,[2]).
Thisinstanceis turned into a dause by repladng terms with variables.

The seach for a relationa link is guided by an example (data-driven induction), which

has the advantage of reducing the number of candidate dausesto consider. The strategy

6 INTRODUCTION

for constructing ead clause depends on one positive example only at atime. The reason
for this is that our inductive engine does not employ heuristics based on example
coverage or similar notions, as it happens with FOIL [96] or CHILLIN [125. These

heuristics tend to be lessreliable when few examples are available.

Our inductive engine dso exploits programming knowledge represented as clause
structure grammars. Thisisavery smple and powerful formalism which can be seen aso

as dedarative bias.

The inductive engine dso alows the synthesis from algorithm sketches. These can be

seen as partialy explained positive examples which speed-up the synthesis process

For example, the positive example member(6,[3,1,6,5]) could be partialy explained by
telling the system that from list [3,1,6,5] you obtain list [1,6,5] and from this list you
obtain 6, the desired output. This information can ke represented as an algorithm sketch
and be given to the system. The sketch is represented as a ground clause.

member (6,[3,1,6,5]) — $P1([3,1,6,5], [1,6,5]), $P2([1,6,5],6).

The $P1 and $P2 predicaes represent unknown sequences of literals involving
operational predicaes. The synthesis task consists mainly of constructing those
sequences of literals. Any positive example like member(2,[1,2]) can be represented by a
sketch like member(2,[1,2]) - $P3(2,[1,2]).

Our inductive engine handles both plain positive examples and algorithm sketches in a
uniform way. Each clause is obtained from one example or sketch by using a unique
sketch refinement operator. This Kketch refinement operator is siown to be cmplete

under adequate assumptions.

1.2.2 lterativeinduction

In order to induce the reaursive dause from example member(2,[1,2]), the inductive

engine of SKIL needs to be given the example member(2,[2]). This fad makes the

Main contributions 7

induction of reaursive programs by SKIL difficult when examples are not carefully
chosen. The role of iterative induction is to fadlitate the synthesis of reaursive programs.

System SKILit implements iterative induction.
Suppose that the spedficaion now includes the positive examples

member (7,[7,9]).
member(2,[1,2]).

From this edficaion SKILit is able to synthesize the same reaursive definition we saw

in the previous Sedion.

member (A,[A|B]). (C1)
member (A,[B|C]) — member(A,C). (C2

Let us e in broad terms, how. In the first iteration two clauses are mnstructed, one for

ead positive example.

member (A,[A|B]).
member (A,[B,A|C]). (C3)

In the second iteration, positive examples are again processed. The reaursive dause C2 is
constructed from the example member(2,[1,2]) with the help of the fad member(2,[2]).
However, this fad is not in the spedfication. It is instead covered by clause C1. This

clause has a very important role in the inductive process

The dauses induced duing the first iterations are used by the system to support the
introduction of reaursive dauses. They express certain properties of the relation to
synthesize. These properties may or may not be part of the final program. The properties
made redundant by other clauses are deleted by SKILit's program compresson module,
TC.

8 INTRODUCTION

1.2.3 Integrity constraints and the M onte Carlo method

The module MONIC of system SKILit processs integrity constraints by using a rather
efficient, although incomplete, Monte Carlo strategy. Every program P synthesized by
SKILit should satisfy the integrity constraints in the spedficaion. Satisfadion cheding
is done by randomly generating n fads which are logicd consequences of the program.
Eadh one of these fads is used to look for a violating instance of some integrity

congtraint.
For instance, the integrity constraint for predicate unior/3

union(A,B,C),member (X,C) — member (X,A),member (X,B)

isreal as “if X isin list C, then it is either in A or in B”. This constraint must be
respeded by the program that defines the predicate unior/3. Given a candidate program
P with union([2],[],[3]) as a logicd consequence and a crred definition for the

predicate member/2, one violating instance of the &ove integrity constraint is

union([2],[] ,[3]),member(3,[3]) — member(3,[]),member(3,[2])

sincethe antecadent istrue and the mnsequent is false.

Our congtraint chedker MONIC does not necessarily find a violating instance of the
integrity constraint. This only happens if one of the n randomly drawn logicd
consequences of P results in a violating instance & siown above. The probability of that

to happen grows with n, which can be set by the user.

1.3 Overview of thethesis

In Chapter 2, we situate the aurrent work in the context of program development. We
refer to CASE toals, forma methods, deductive synthesis and inductive synthesis. In
Chapter 3, we discuss Inductive Logic Programming (ILP). We sart with an

Overview of the thesis 9

introduction to Logic Programming, and present the ILP concepts and techniques which

arerelevant to our work.

In Chapter 4, we present the inductive engine that is the cre of our methodology. It is
described as gstem SKIL, which synthesizes logic programs by exploiting examples and
sketches. We give asketch refinement operator and show a mmpletenessresult for it. In
Chapter 5, we introduce the iterative induction technique that overcomes the main
limitation of SKIL: the difficulty of inducing reaursive definitions from sparse sets of
positive examples. System SKILit (SKIL iterative version) iteratively invokes (sub-)
system SKIL. In Chapter 6, we provide anpiricd evaluation of the method and of system
SKILit. In Chapter 7, we describe the mnstraint chedker MONIC, which uses a Monte
Carlo strategy. MONIC allows the inclusion of integrity constraints in the spedficaions

given to SKILit. In Chapter 8, we give nclusions, limitations and future work.

2. Program Development

In this chaper we give a brief overview of various methoddogies of program
devdopment, including software engineeing and atomatic programning,
covering CASE tods and formal program devdopment. A greater attention is
given to the synthesis of programs from incomplete spedfications, particularly

to the synthesis of logic programs from examples.

2.1 Introduction

Software engineeing traditionally divides program development in four distinct phases

[113.

» Elabaation d the spedfication. The spedficaion contains the user’s requirements
relative to the program to construct. The requirements are described in retural
language. The spedfication should contain information about what the program
should do without describing how it should be done.

11

12 PROGRAM DEVELOPMENT

* Analysis and daesign, which elaborates the items given in the spedfication. In this
phase program developers make ahigh level description of the involved algorithms.

Data structures and data-flow are identified.

» Implementation, where the high level algorithms designed in the previous phase ae

trandated into exeautable code.

» Verification, where the exeautable program is confronted with the spedficaion. If any
deficiency is found in the program (i.e. the program is incorred), one or more of the

previous phases are redone.

Our work intends to contribute to the auitomation of code generation within the scope of
programming in the small?, whilst permitting incomplete spedfications by examples, and
other pieces of information. On the one hand, it is our am to make spedficaions as
simple to construct as possble, on the other we wish to totally or partialy automate the

generation of code from incomplete spedfications.

2.2 Automatic programming

Could the computer acaomplish the laborious task of programming? This dream is as old
as programming itself. The quest for automatic programming is motivated by two main

reasons.

» to accderate the processof program development, mainly the implementation phase
previoudy referred, freeng as much as possble the analyst/programmer from non-

credive tasks;

! The expresdon ‘executable code’ is used in the sense that there is an avail able interpreter/compiler for that
language.

2 A distinction is also made between programming in the large and programrring in the small. Programming in the
large involves a large tean of analysts and programmers, working for a long period of time (months to yeas),

CASE todls 13

» to increase the reliability of programs, minimizing human intervention, which is often

asourceof errors.

Computer aiding tools for software development, the formal development

methodologies, and the synthesis of programs have pursued these objedives.

2.3 CASE tods

The aconym CASE stands for Computer Aided Sdtware Engineeing. CASE Todls are
computer programs that aid the task of developing a system, from the daboration of

spedfications to the production of documentation [113].

A CASE system can contain severa different tools. Diagram editors for the management
of application related information: data flow, system structure, entities-relationships
diagrams, etc. These ditors are usually more than smple design toals. They should be
able to cepture the information contained in the diagrams and alert the user for
inconsistencies and other anomalies. Other sorts of CASE tools include database
querying tools, dictionaries which maintain the information relative to the involved

entities, tools which allow easy generation of reports, user interfacegenerators, etc.

CASE todls enable greaer productivity in the development of complex systems, and are
common in professonal environments nowadays. Its main role is to organize the vast
quantity of information involved in a large development projed, in order to make that
information easily accesshle to everyone involved. Systems developed with the support
of CASE tools tend to be more reliable.

while programming in the small refers to systems which do not take more than a few months to develop with no
more than one or two people. ‘ Software’ engineering is especiall y devoted to programming in the large.

14 PROGRAM DEVELOPMENT

Some CASE systems include code generators. These ae dle to crede preliminary
segments of code (skdeton code) from the information gathered in the diagram editors
and data dictionaries. Even so, the availability of this type of CASE toal is very limited.

To conclude, CASE tools are mainly useful for the support of the management of projed
development. Mogt tedious programming tasks are il 1eft to the programmer. Yet,
without tools cgpable of automating or semi-automating the generation of code, the

CASE tedhnology is far from reading its full potential [35].

2.4 Formal methods

In terms of formal development methodologies, programming is e as a mathematicd
adivity, and programs are mnsidered complex mathematicd expressons [45]. This
conception of programming allows, for example, to prove that a program is corred with

resped to its gedfication [30].

In approaches based on forma methods, the spedficaion is expressed in a formal
language, as first order logic [28], instead of natural language. The exeautable program
can be obtained from the given spedficaion using inference and/or rewrite rules. The
application of these rules can be manua or semi-automatic. In general, it is difficult to
medanicdly derive a @mplex program this way [28]. For this reason, we frequently find
program synthesis methodologies which are semi-automatic and guded by the user. We

give two examples below.

The KIDS system by Douglas Smith, supports the development of corred and efficient
programs from formal spedfications (cf. following Sedion). The ewironment for the
development of KIDS is highly automated, although interadive. The user makes high
level dedsions concerning program the design and the system takes these dedsions into

acount generating an exeautable program [117]].

Program synthesis 15

Jullig [55] proposes a program development environment (REACTO) where the spirit of
CASE tools is integrated with forma methods, and with program synthesis. On the one
hand, graphic ading tools for analysis are made available to the user, on the other hand
the user is alowed to write formal spedficaions and obtain exeautable cde. One of the

components of REACTO isthe KIDS system previoudly referred to.

In conclusion, CASE toals provide graphicd aid for analysis, but give limited support for
the generation of code. Formal methods are mostly used for writing the spedficaions
rather than for the generation of an exeautable program. Program synthesizers, discussed

in the next Sedion, concentrate on the generation of code instead of system analysis

[55].

2.5 Program synthesis

Broadly spe&ing, we cdl program synthesis to any systematic process of program
construction from a given spedfication which describes what the program should do
[27]. Within the cdegory of systematic methods we find the (semi-)automatic methods
of code generation from a spedficaion of the intended program behaviour. In this case,

the program synthesis is also named as automatic programmning [8,99].

In this context, the term ‘spedfication’ can have many different connotations. Biermann
organises the automatic programming reseach field acwrding to the kind of
spedfication used [8]: synthesis from formal spedfications (first order logic formulas);
synthesis from examples of input/output pairs; and synthesis from dialogues in raetural
language between the synthesis gystem and the user. We can aso find formal

spedfications represented as a hierarchicd finite state madiine [55] or a temporal logic

[109.

When the spedfication is expressed in netural language, the wde generator must cope
with the typicd ambiguity and syntadicd irregularity of natural language. Synthesis

16 PROGRAM DEVELOPMENT

systems from natural language ae usualy interadive, alowing the user to describe the

problem through a dialogue with the system.

In the 1970s there were afew ambitious projeds in this domain [42] with limited
success Later, the reseach focus moved in the diredion of spedficaions in very high
levd languages. These languages are dosely related to formal languages, even though
they sometimes allow some informality typicd of natural language [99,part Vv].

2.5.1 Logic program synthesis
Within program synthesis, we ae mainly interested in logic program synthesis. In this
field, Deville and Lau [27] divide the formal spedficaions into formal and informal

ones. The formal spedfications can be ather complete or incompl ete.

A formal spedfication is expressed using a formal language, as the first order logic or
one of its subsets. The spedficatiion is a set of logicd formulas involving one logicd
predicate r which is to be defined. This notion of spedfication in the mntext of logic

program synthesis is broad enough to include complete and incomplete spedficaions.

A complete spedfication includes al the anditions which the program to synthesize
should satisfy. An incomplete spedfication describes only part of those @nditions. In
general, a spedficaion from examples of answers of alogic program is incomplete, i.e.,
not al of the program behaviour is gedfied. In this case, the mde generator will have
the task of hypothesizing the unspedfied behaviour. A spedficaion from examples can
be regarded as a formal spedfication, as long as a rigorous language is used to describe
the examples[27].

Example 2.1: (from [27]) Two spedficaions for the predicae included(X,Y) which
defines the set of pairs <X,Y>, of which X and Y are lists and every element of X is

contained in Y.

Complete spedficaion:

Program synthesis 17

{included(X,Y) -~ OA(member(A,X) - member(A,Y)) }

Incomplete spedfication (by examples):

{ included([],[2,1]), included([1,2] ,[1,3,2,1]), ~included([2,1] ,[]) }

Logic program synthesis from formal spedfications has threemain approacdes:

» condtructive synthesis, whereby a program is extraded from a constructive proof of

the existence of a program satisfying the spedfication;

* deductive synthesis, whereby a program is derived from a spedficaion using

deduction rules;

* inductive synthesis, whereby a program which generalizes the information contained

in the spedficaion is constructed using inductive methods.

Among these three gproades to program synthesis from formal spedficaions, our
work can be regarded as inductive synthesis, more spedficdly, as inductive synthesis

from examples of the intended program behaviour.

2.5.2 Program synthesis from examples

In the ealy 1980s, the MIS system (Modd Inference System) by Ehud Shapiro [109

synthesizes programs in Prolog language from examples given by the user.

System MIS works interadively following a program debuggng philosophy. The user
presents positive and negative examples and the system confronts the given examples
with the aurrent version of the program, starting with the empty program. When a new
example highlights a problem in the program, the system nodifies it with the am to

eliminate the eror.

18 PROGRAM DEVELOPMENT

Debuggng a program consists of the dimination, creaion or modification of individual
clauses. During the debuggng process the system may query the user about predicaes
involved in the program. These queries have the form “is p(a) true or false?”
(membership gueries or ground queries) and “which values of the variable X make p(X)

true?” (existentia queries).

The system MIS is able to generate small Prolog programs, such as member/2, which is
true if the first argument is a member of the second argument, or append/3, which
concaenates two lists into a third one. The system can also be alapted to generate

programs in DCG (definite dause grammar) notation.

The work of Ehud Shapiro contains a methodology for the synthesis of Prolog programs
from examples which till i nspires work on the subjed [41,95]. The influence of his work

is mainly noticedle in the field of Inductive Logic Programning (ILP, cf. Chapter 3).

ILP came @out in the nineties and its main concern is to generate logic programs from
examples [77]. Although the main focus of ILP reseach has not been automatic
programming many ILP systems demonstrate their abilities by showing that it is possble
to generate smple Prolog programs at the level of the ones taught in a first logic
programming course. As examples of some gproaches concerned with automatic
programming we can refer to the works of Quinlan [96,97], Bergadano et a.[5, 6],
Flener [37,39] and Popelinsky et al. [94].

Although currently the trend is to do inductive synthesis with logic programming
languages such as Prolog, in the seventies and eighties the preferred language was LISP,
which is closer to the functional paradigm. The works of Summers [118 and Biermann

[7] are examples of that.

The shift from functional to logic languages, may be atributed to the gopropriateness of
logic programming to the task of inducing clauses from examples, and aso to the

growing popularity of Prolog. The fad that in a logic programming language

Other relevant topics 19

generdizaion and spedaizaion of clauses and programs correspond to very smple
operations® may have mntributed to that shift [109). Despite the general trend, work on
inductive synthesis of functional programsis gill published. In 1995system ADATE [89]
synthesizes programs in the language ML.

To sum up, we can say that both logic programming and functional languages have
important feaures which justify their choice for program synthesis (and not from
examples only). Both paradigms have meta-programming capabilities, which are
important for automatic programming. Both LISP and Prolog programs tend to be
compad and relatively easy to understand. Finally, both functional and logic languages
have strong theoreticd foundations, which enables a dea formalizaion of inductive

operations and program transformation [109, pp.162163.

2.6 Other relevant topics

Other subjeds in computer science ae relevant to the quest for computer tools that ease
the dfort of programmers and program analysts. We will not refer to these subjedsin a

systematic way, but rather present some pointers which can be followed.

* Program devdopment environments. In the aeaof Logic Programming we highlight
the work of Mireille Ducas [31]. A good example of how a program development
environment can help a FORTRAN programmer to exploit the existing sub-routine
library can be found in the work of Stickel et al. [117].

» Algorithmic debuggng. This is an important source of inspiration for the work on
synthesis from examples. The synthesis process can ke seen as a debuggng process
starting with the empty program. In this areawe have, among others, the works of
Shapiro [109, Moniz Pereira and Miguel Calgjo [17,91] and Pa&ki et al.[90].

3 These operations are simple when the generalization model employed is 6-subsumption. Other generalization

20 PROGRAM DEVELOPMENT

* Programming by demonstration. The am of programming by demonstration is,
acording to Cypher, the following: If a user knows how to accomplish atask using a
computer, that should be exough to creae a program that automates that task. It
should not be necessry to know a programming language like C or BASIC.
Typicdly, the user demonstrates hisher intentions by means of a graphicd interface
The system based on these notions generalizes the user’s adions and infers a program

or amaao [19].

2.7 Summary

CASE toals provide agood help for the tasks of projed analysis and development,
increasing the overall productivity of software development. They also provide greaer
software reliability. However, CASE methodology has offered very little regarding code

generation, leaving many tedious tasks to the programmer.

The advocaes of formal development methods regard programming as a mathematicd
adivity and programs as complex mathematicd expressons [45]. They propose formal
spedfication languages, from which one obtains the program code following a formal
methodology. The @rredness of a formally developed program with resped to its
spedficaion can be proved. Employing such rigorous approach helps to avoid many
programming errors. This asped is espedally relevant in criticd applications such as air
traffic control or industrial plant maintenance, where aprogram bug may have dramatic

costs [30].

The systematic development of programs from spedfications is referred here a program
synthesis. Spedficaions can be formal or informal, complete or incomplete. From formal
and complete spedfications, programs can be derived using deductive methods smilar to

the ones used in theorem proving..

models may be more complex.

Sumnary 21

Formal methods, however, are often too heary. Formal programming is only within the
read of experts. To write aformal and complete spedficaion is not an easy task.
Existing derivation methods are not totally automated, and still demand much effort from
the programmer. Program synthesis from incomplete spedficaions (inductive synthesis)
fadlitates the task of the programmer by eliminating the need for abstradion demanded
by traditional formal methods.

The aeaof inductive synthesis is usually geaed towards the generation of LISP and
Prolog programs from examples. While the synthesis of LISP programs from examples
has e little development in the nineties, the synthesis of Prolog programs has grealy
increased with the growth of the fields of logic programming and of inductive logic

programming (ILP).

ILP technology may be an important component of future programming environments.
The am of having one day a totaly automated tool which constructs any intended
program from examples only (Biermann cdls that auto-magic programming) seans
unredistic. However, we believe ILP can give an important contribution to the
development of toals that help the programmer acemplishing his task. Moreover, ILP
may enable unskilled computer users to creae smal computer programs without
programming, and therefore incresse dramaticdly the eae of constructing new

applications.

3. Inductive Logic Programming

In this chapter we introduce Induwctive Logic Programming (ILP) concepts
which arerelevant to ou work. We start with Logic Programming itself, which
can ke seen asone of the pill ars of ILP. The general ILP task is defined as the
construction d a logic program satisfying certain condtions. The main ILP
approaches are described. We a@nclude the Chaper by giving an acourt of
the state-of-the-art of the field.

3.1 Introduction

Lying in the intersedion of Logic Programning (LP) and Machine Learning (ML),
Inductive Logic Programming (ILP) investigates methods for the generation of logic
programs from examples and therefore inherits much of the theoreticd framework of
logic programming. In the following Sedions we present all the logic programming
concepts which are relevant to our work. We dso describe the most important ILP

methods and concepts, stressng what is more relevant to us.

23

24 INDUCTIVE LOGIC PROGRAMMING

3.2 Logic programs

A logic program, in the context of this work, is a set of clauses, i.e., First Order Logic
formulas written in clausal form. In this Sedion we follow mainly the notation and
terminology used by Hogger [46] and Lloyd [64]. In the latter one can find a detailed

acount of the theory of logic programming.

3.2.1 Syntax

A clauseisafirst order logic formulain clausal form:
OXq, ooy Xs (L1 OL2O... OLy)

where eat L isaliteral, Xy, ..., Xs are dl the variables occurring in the dause. A literal
is an atom (positive literal) or a negated atom (negative literal). An atomis an expresson
of the form p(ty,tz,...,t%), with k= O, where p is the name of a predicate of arity k. Such a
predicate name can also be represented by p/k. The ti are the aguments of the gom.
Eadh argument ti isaterm. A negated atom is of the form - p(ty,tz, ... ,t).

A term can be avariable, a constant, or a wmposed term of the form f(ty,tz,...), in

which f isafunctor with arity n>0 and the t; are terms.

A clause can aso be regarded as a set of literals {Li, Lo, ... , Ln}. Another usual way of

writing a dause is as an implication

A OAO... OAn « B; OB O... OBy

where eab A is a positive literal and ead B; is the @aom of a negative literal. The sub-
formulaAs O A0 ... OAnis cdled the head of the dause or consequent. B; 001B, O ... [
B, is cdled the body of the dause or antecalent.

Clauses can be dassfied acwording to their number of positive and negative literals. A

clause with exadly one positive literal (exadly one literal in the head) and zero or more

Logic programs 25

negative literals is a definite dause. Any clause with more than one positive literal is an
indefinite dause. A clause with ro literals is cdled the empty dause and is denoted by a

white square OJ. The anpty clause represents contradiction: false— true.

A reaursive dause isone in which at least one of its body literals has the same predicate
asthe literal in the head. A clause without variables is cdled a groundclause. Similarly,
we have groundliteral and groundterm. A ground clause with a single positive litera is

afact.

A logic program P is a (possbly empty) set of clauses. The anpty program is denoted by
the symbol [J. In order to represent logic programs we will use, for convenience an
identica notation as the one used in the logic programming language Prolog [116]. The
symbols for digunction ([J]) and conjunction (L)) are replaceal by commes, and clause ends
with a period. However, we differ from Prolog notation in one asped: the implication

arrow (<) isused instead of Prolog’s colon dash :-.

Al! A2! e ;Am “— Bl; BZ; LREI Bn .

Variables are denoted by strings garting with an upper case letter (such asX, Y, A, €tc.),
and constants are denoted by strings darting with a lower case letter (such as a, c, X,
etc.).

A normal logic program contains clauses with at lesst one positive literal. Eac clause

has the form

A<Ly,...Ln

where A is an atom and the L; are literals. Each clause in a normal program defines the
predicate p/k of atom A. The definition of a predicae p/k in a program P is the set of
clausesin P which define p/k. A logic program containing only definite dausesis cdled a

definite logic program.

Example 3.1: The logic program below has three d¢auses:

26 INDUCTIVE LOGIC PROGRAMMING

parent(X,Y) — father(X,Y).
parent(X,Y) — mother(X,Y).
ancestor(X,2) — parent(X,Y), ancestor(Y,2).

This is a definite logic program (therefore it is also a normal logic program) defining

predicates parent/2 and ancestor/2.¢

3.2.2 Semantics

A Herbrand model of a logic program P is, informally, a set of ground atoms which
logicdly validate eab clause of P. These ground atoms are dements of the Herbrand
base of program P. The Herbrand base is the set of ground atoms which can be
constructed using the predicates contained in P and any functors or constants belonging

to the language.

A fad qis alogical consequence of a program P if al the models (Herbrand and non-
Herbrand) of P are dso models of g. That is denoted by

PF ¢
A definite program (which excludes programs containing clauses with negative literals in
the body) has a set of Herbrand models which are structured in a lattice acording to the
partial order relation [between sets. The minimal element of this lattice is the minimal
(Herbrand) model. The notation MM(P) denotes the minimal (Herbrand) model of the

program P.

The minimal model of a definite program P corresponds to the set of ground atoms

which are itslogicd consequences

P F qif and only if g 0 MM(P)
In terms of denotation semantics, the meaning d a (definite) logic program P is MM(P).

In other words, it isthe set of ground logicd consequences of P.

Logic programs 27

The semantics of a hormal program P with negated literals in the body of at least one of
its clauses is defined in terms of its completion denoted as Comp(P). The cmpletion of a
program is obtained by transforming its clauses into equivalencies, and adding spedal

clauses defining an equality theory [64].

For anormal program P, insteal of referring to the model of P, we refer to the model of
Comp(P). However, to smplify the description of our work, we will say “the model of a
program P” even if it is a normal program. We should however stressthat many of the
theoreticd results obtained for definite programs are not valid for the generdity of

normal programs. We will i dentify those diff erences whenever it seans relevant.

The programs g/nthesized by our methodology are definite. The synthesis g/stem may

however have normal programs for bad<ground knowledge.

3.2.3 Derivation

A logic program is exeauted by posing queries to it. A query is a dause of the form
«Li,...,Ln where eab Liisaliteral. Basicdly, a query — g to a program P asks whether
afad qisaground logicd consequence of P or not, or if it is possble to assgn certain
values to the variables in g so that g is a ground logicd consequence of P after repladng

the variables by the corresponding values.

A query may succeal or fail. If it succeals and the query contains variables, then a
substitution (cdled answer substitution) is also part of the answer. A substitution is an
application between a set of variables and a set of terms, and is represented as a set of
variable/term pairs. Substitutions are usually denoted by Greek letters sich as 6 and o.

The processof substituting variables by terms is cdled instantiation.

Another fundamental concept is unification. Two atoms are unifiable when they can de
made identicd by substituting their variables by termsin a mnsistent way. A substitution

which makes two atoms identicd is cdled a unifier. Of al the unifiers of two atoms there

28 INDUCTIVE LOGIC PROGRAMMING

exists only one most general unifier. This corresponds, informally, to the substitution

which minimally instantiates the two atoms.

Example 3.2: Atoms f(a) and f(X) are unifiable. The subgtitution 8 = { X/a} is a unifier.
By applying this subgtitution to the secnd atom we obtain the first one, f(a) = f(X)6.

Substitution @is aso the most general unifier of the two atoms.+

Resolution is an inference rule which enables the derivation of one dause R from two
other clauses C; and C,, cdled parent clauses. Clause R is the resolvent. Parent clauses
must be complementary, i.e., for some literal A; in one of them there must be aliteral
- A inthe other so that A, and A, are unifiable. Therefore, if C, isthe dause A. I More-
Literals and C; is =A; [Other-Literals, resolvent R is (More-Literals [0 Other-

Literals)8, where 8 isthe most general unifier of A; and A..

An answer to aquery Q is derived from P using a proof procedure, an algorithm which
applies a set of derivation rules to P and Q following a given strategy and constructing a
proof. The proof procedure we use is SLDNF-resolution, which is used in the Prolog

language interpreters. SLDNF-resolution is an extension of S.D resolution.

SL D-resolution works as follows. Given a query Q of the form

< Q1,Q2,...,Qm

where eab Q is a non-negated literal, and gven a definite program P, SLD-resolution
starts by seleding one of the literals from the query. Here, we will assume that the literal
seledion rule will always choose the leftmost literal, for it is the most common seledion

rule. Inthat case, thefirst literal to be dosenis Q.

Next, we choose a tause C; from the program P, so that the head of C can ke unified
with Q:. Suppose that C; is of the form

A~By,By,...,Bn

Logic programs 29

Then, AGi=Q,6:, where 6, isthe most genera unifier of A and Q.

As sich, we obtain the resolvent R;

- (Bl,BZ Bn,QZ ----- Qm) 61

After this first resolution step we will proceel in the same manner with resolvent Ry,
seleding one dause C, from program P and obtaining a new unifier 8, and a new

resolvent R,. This processis repeaed until we get the enpty clause [as the resolvent.

An SLD-derivation of a program P from query — Q is represented by the sequenceD =
((R1,Cy1,6)), (R2,C2,6,), ... , R), where Ry = < Q, R isthe resolvent of R.; and Ci.;, and
@ is their most general unifier, for 1 <i < n. A refutation of — Q from aprogram P is a
derivation of P from — Q which ends with the enpty clause (R, =). By refuting - Q
from P, we prove Q68 from P. Subgtitution 6 is an answer substitution. We dso say that
QOisderivable fromP.

The answer subgtitution 6 to the initial query is obtained by composition of the most
generd unifiers 64, 6,, etc. of the sequencein the derivation. When the enpty resolvent is

not derivable the query fails.

When afad g is SLD-derivable from a program P we write

PHaq

The set of all the answer substitutions given by SLD-resolution to a query is obtained by
seaching exhaustively the spaceof SLD-derivations. The S.D-tree generated as a result
this each hasthe starting query initsroot, and ead branch is one possble derivation of
the program for the query. Each branch may either end with the empty clause (which
corresponds to the answer), or on a non-empty clause which does not resolve with any
clause of the program, or it can be an infinite branch. When all the branches of an SLD-
treefor the query — Q are finite and none ends with clause [, we say that the query

finitely fails.

30 INDUCTIVE LOGIC PROGRAMMING

Example 3.3: Suppose we have the following program P:

descendart(X,Y) — son(X,Y).
descendart(X,2) — son(X,Y),descendart(Y,2).
son(ali pio,antonio).

son(antonio,adriana).

The query — descendart(alipio,X) is posed to program P. The answer 6={ X/antonio} is
given by the following derivation:

~ descendart(ali pio,X). descendart(V,2) — son(Y,2).
91:{X/Z} /
—son(alipio,2). son(ali pio,antonio).

92:{ Z/antoni 0} /
O

Figure 3.1: Derivation Graph
We have P |- descendart(ali pio,antonio).+
Note that the set of fads derivable by SLD-resolution from a definite program P
corresponds exadly to the minimal Herbrand model of P, i.e.,
PFag « PFqg = oMM(P)

In other words, we can use SLD-resolution to determine which are the ground logicd

consequences of a program P.

To be aleto ded with queries containing negated literals and normal programs, we need

to extend the SLD resolution with the negation as failure rule. This is how we obtain

Logic programs 31

SLDNF-resolution. The negation as failure operator is usualy denoted by not and is
defined asfollows: aquery — not Q succeals if and only if the question — Q finitely fails.

In terms of derivation, when a program P is being derived and aliteral not Q is found in
the resolvent two situations may occur. The first posshility isthat Q is derivable, and in
that case nat Q cannot be resolved upon. The second possbility is that there is a finite
SLDNF treeT for Q such that T has no successul branches (Q cannot de derived from
P). We represent that derivation step as (— Lits; [1not Q O Lits,, T), (Lits; O Lits, C,
0).

By imposing certain conditions to a program P, we can then relate the ground fads g

derivable from P through SLDNF with the ground logicd consequences of Comp(P).

PFsonveg = Comp(P) F q

Briefly, the conditions are & follows: no predicate p of P should be expressed dredly or
indiredly in terms of naot p; al the variables of a dause should occur at least oncein a
non-negated literal; P should be strict in relation to any query q. For a definition of strict
programs £e[46]. Besides these mnditions, the SLDNF-resolution should never seled a

negated literal that is not fully instantiated.

The relation defined between logic programs (sets of clauses of some language L) and
fads (elements of the language L), through a set R of derivation rules, is cdled a

derivabhility relation.
F={<P,g>|POL,qgOL, qisderivable from P using R}

A proof procedure anstructs one derivability relation. For readability, we will use the |-
symbol to denote both the SLD and SLDNF derivation.

Definition 3.1: Given a language L, a derivability relation |, a program POL and a
query —qsuchasqllL, aninterpreter for the language L is the operator,

32 INDUCTIVE LOGIC PROGRAMMING

Int(P, —q, F)={ 6 |P}|-q6}

Eadc element of Int(P,~q, |) is an answer substitution given by |- for a query —q
posed to P.

3.2.4 Types, input/output modes

A type corresponds to a non empty set of ground terms. This st is cdled a type domain
or, smply a type. To every argument of a predicae we can asciate atype. In the
present work, this assciation is established through a type dedaration of the form
type(p(type,...,type)). These dedarations are given with the program spedficaion for
the predicate p/k (Sedion 4.3.1).

Argument types are used as a ondition to be satisfied by the queries posed to the
program and also by the answer substitutions [26]. An ntuple of terms (Aq,...,A,) IS

compatible with an ntuple of types (type,... type,) if there exists a substitution 8 such
that (Ad,...,An) 8 O (typerx... xtype,).

Example 3.4: We spedfy the type of arguments of member/2 as (X,Y)O(integerxlist).
This information is used as a pre-condition as well as a post-condition. As a pre-
condition is used to filter the queries of member/2. Before aquery — member(A,B) is
exeauted, it is chedked if (A,B) is compatible with (integer,list). As post-condition it

verifiesif an answer substitution 6 given is such that (A,B)6 [(integer xlist).+

One avantage of type dedarations is that they help the programmer to structure the
logic programs he writes. Another oneisthat they alow the exeaution of these programs
to be more dficient [26]. Type dedarations are of interest to us mainly as a fador of

efficiency in inductive logic programming (seeSedion 4.7 and [120).

Logic programs 33

The inpu/output modes (or smply modes) of a predicae determine its posshle uses
[26,64]. For every predicae agument an input or output condition is defined. The input
conditions ghould be verified before the exeaution of the logic program, whilst the output
conditions $ould be verified after the answer substitution is obtained. The most smple
input condition is “the agument should be aground term”. Another condition could be,

for example, “the agument should be avariable”. Output conditions are similar.

The input/output modes most frequently used in ILP determine which predicae
arguments dould be ground terms before exeaution [82,96,109. For this reason, these
arguments are cdled the inpu arguments. The remaining arguments are cdled output

arguments. Here, an input/output mode dedaration for predicae p/k is of the form

mode(p(My, ...,My)).
where M; isaplus sgn ‘+’ if thei-th argument isinput, and a minus sgn ‘-’ otherwise.

Example 3.5: The mode of a predicate p(X,Y) can spedfy that this predicae should be
invoked with the variable X instantiated. Variable Y may be instantiated or not. We cdl X

an input argument and Y an output argument. The mode of predicate p/2 is expressed as

mode(p(+ ,-)).4

For convenience we sometimes use the following notation. The ‘+’ or ‘-’ signs preceding
the aguments of aliteral in a dause, mean that these aguments have an input or output
mode, respedively. This way, the literal p(+a,+b,-c) corresponds to the literal p(a,b,c),
with the input/output mode p(+,+,-).

3.2.5 Integrity constraints

Integrity constraints are first order logic formulas of the form Ai[...0A«— Bi[l... (0B,
where A and B; represent literals. In general, integrity constraints are not representable
by definite dauses. They are used in logic programming applications such as deductive
databases [71,121] and inductive logic programming. In both cases, these spedal clauses

34 INDUCTIVE LOGIC PROGRAMMING

serve to prevent a given logic program from being updited in an undesirable way. In
Chapter 7 we onsider integrity constraints in more detail, particularly with resped to

ILP applications.

3.3 ThelLP problem

While in Logic Programming we proceal from programs to their logicd consequences,
in Induwctive Logic Programming we start from the logicad consequences and attempt to
obtain the programs. The description of the logicd consequences of the intended
program is in the form of paositive and negative examples. These examples are usualy
ground atoms’. Being represented by ground atoms, positive examples are like samples
of the minimal model of the intended program. The limits of the model of the intended
program are indicated by the negative examples. ground atoms which should not be

logicd consequences of the program.

The inductive task consists of finding a program P which is a hypothesis compatible with
the given examples. This hypothesis is found within a hypothesis language L (also caled
concept language) which is a set of logic programs. We say that program P is induced,
synthesized, or learned. The task of constructing a program inductively is cdled
induction, inductive synthesis, program synthesis from examples or smply machine
learning from examples. This multiplicity of terms is due to the fad that this problem is
of interest to different communities within computer science and artificial intelligence
We will mainly use the designation inductive program synthesis from incomplete
spedfications. For commodity, we will sometimes sy that P is ‘the target/intended
program’ although in general there is a set of acceptable solutions for a synthesis

problem.

* However, there ae gproaches which use non-ground clauses to represent positive and regative examples, as in
[20,37,102), and our own work presented here.

The ILP problem 35

As it happens with many other Madine Leaning tasks, it is of utmost importance that
the synthesis task of a program does not start from scratch. Having other predicaes that
can be used as auxiliary by the program is important. These ae normally referred to as
backgroundknowedge.

The predicaes in badkground knowledge can be defined either extensionaly or
intensionally. Badkground knowledge is exensiond when it consists of a set of ground
fads involving the auxiliary predicates. If auxiliary predicaes are defined through
program clauses which are not necessarily ground, then badkground knowledge is

intensond.

The objediveof ILP is generally presented as foll ows (De Raedt, Lavrac [24]):

Given

aset of examples E (consisting of positive examples E*, and negative examples E),

badkground knowledge B,

language L of logic programs,

and a notion of explanation (a semantics),
find

e aprogram PLIL that explainsthe examples E relatively to B.

There ae different notions of explanaion. The most common is cdled the normal
semantics of ILP. Another important notion of explanation is given through ron

monotonic semantics [22, 24, 36, 44]. In thiswork we will adopt normal semantics.

36 INDUCTIVE LOGIC PROGRAMMING

3.3.1 Normal semanticsof ILP

A program P explains a set of examples E = E* 0 E relatively to program B if

POB FE' (completeness
and

POB F e for dl e OE (soundnesg
Example 3.6:

Positive examples. { descendart(ali pio,antonio)}

Negative examples: { descendart(antonio,ali pio)}

Badkground knowledge: { son(ali pio,antonio), son(antonio,adriana)}
Hypothesis. { descendart(X,Y) — son(X,Y)}

The conditions of completenessand soundnesscan be thedked using the SLD-resolution
(or the SLDNF-resolution if the dauses are not definite). Completeness is chedked by
verifying that all positive examples are etaled by hypothesis P together with

badkground knowledge B (in this case there is only one positive example):
P [0 B |- descendart(alipio,antonio)
The soundnesscondition is verified if no negative example is entailed by P [1 B.

P [0 B [+ descendart(antonio,ali pio)

Definition 3.2: A program P covers (intensionaly) a fad e if P F e. A program P
covers (intensionally) afad erelatively to aprogramBif P B F e.¢

Some ILP approaches use extensiond coverage, a somewhat different notion that is

computationally lessdemanding, but yielding dfferent results.

The ILP problem 37

Definition 3.3: A program P covers (extensionally) a fad e relatively to a model M if
there exists a dause COP (C = H — B) and a substitution 6 such that C8is ground, HE6=e
and B M. ¢

Example 3.7: Given program P
descendart(X,2) — son(X,Y),descendart(Y,2).

descendart(X,Y) — son(X,Y).

and the badground knowledge
B = { son(ali pio,antonio),son(antonio,adriana)}
P intensionally covers the example

descendart(ali pio,adriana

relatively to B. However, P does not extensionaly cover the example.¢

In this dissertation the notion of intensional coverage will aways be used, unless

otherwise spedfied.

The aonditions of completeness and soundness above presented, take into acount only
positive axd negative examples. This <enario can be etended to include integrity
congtraints as a more expressve source of information, and perticularly of negative
information. An integrity constraint Body — Head is stisfied by POB if it is true in the
minima model of the program P [0 B. This can be chedked transforming the integrity

congtraint into a query.
P [0 B £ Body, not Head

A set of integrity constraints is stisfied if ead constraint in that set is stisfied. In
Chapter 7, we will formalize these notions and present an efficient method for constraint

cheding.

38 INDUCTIVE LOGIC PROGRAMMING

Example 3.8: Let | be the integrity constraint
descendart(X,Y)Odescendart(Y,X) - false.

This constraint says that nobody is a descendant of one of his own descendants. Let P be

the program
descendart(X,2) — son(X,Y).
descendart(X,Y) — son(Y,X).

and B the bacground knowledge
B = { son(antonio,adriana)}
To ched if program P is satisfied by constraint | we pose to the program the query
~ descendart(X,Y),descendart(Y,X).
The query succeels with X= antonio and Y= adriana Therefore P does not satisfy |.4

As will be seen in Chapter 7, both positive and negative examples can be expressed as
integrity constraints. The conditions of completenessand soundnessin the definition of

the ILP problem can be replaced by the mnstraint satisfaction condition.

In our work the three onditions (completeness soundness and constraint satisfadion)
will be separatelly chedked during induction. Soundness is chedked for ead tentative
clause. Completeness is enforced by the synthesis grategy. Constraint satisfadion is

chedked with some degreeof uncertainty.

3.3.2 DiredionsinILP

The am of ILP, as presented above, serves only as a starting point for a system which
generates logic programs from examples. We will next refer to other aspeds that can be

considered when developing an ILP system:

The ILP problem 39

* Interaction. An ILP system can ke interadive or non-interadive. An interactive
system asks questions to an oracle (usually the user) during the induction process
Systems MIS [109, CLINT [20] and SYNAPSE [37] are interadive. System SKILit

presented here is non-interadive.

* Noise. The data supdied to the system can contain various types of incorred
information (e.g. an example provided as positive may in fad be negative). In this
case, we say that the datais noisy. A system cgpable of handling noise must relax the
conditions of completeness and soundness [61,62]. Our approach does not handle

noise.

* Predicate invention. The auxiliary predicaes defined within badkground knowledge
may not be sufficient to find a satisfadory hypothesis. Some ILP systems avoid this
limitation by inventing new predicaes [57,114]. Here we do not consider predicae

invention.

* Snge-predicate or multi-predicate learning/synthesis. When a system accepts
examples of different predicates, inducing definitions of various predicaes
simultaneoudly, it is said to perform multi-predicate learning/synthesis [25,100,109.
Otherwise, it is sid to perform single predicate learning/synthesis. Here we
concentrate mainly on single predicae leaning. However, we show that our

methodology also applies to multi-predicae synthesis.

* Incrementality. An incremental system has the aility of modifying an initial theory as
new examples are presented. In the same dStuation, the non-incremental system
discards the initial theory and restarts the induction of a new theory from scratch. This
task is cdled theory revision [100,124]. Although our system is cgpable of eliminating
clauses from the existing theory and adding new ones, here we concentrate mainly on

the induction task.

40 INDUCTIVE LOGIC PROGRAMMING

3.4 Methods and concepts

Now that the ILP task is gedfied, we will see different approadies to construct a

program P from examples and other sources of information.

3.4.1 Thesearch in a spaceof hypotheses

As amost every other problem in artificial intelligence, finding an intended program can
be reduced to a search problem. In this case, the search space is a set of programs in
hypotheses language L. This gaceis gructured by the relation of generalizaion between
hypotheses.

Definition 3.4: (Mugdeton, De Radalt [83]) : A hypothesis A is more general than a
hypothesis B, if and only if, AF B. Hypothesis B is said to be more spedfic than A. ¢

Starting from a set of initial hypotheses, the seach is conducted by continuously
applying generalization and/or spedalization operators on the existing hypotheses until a
stopping criterion is stisfied. A generalization operator produces a set of hypotheses
G1,Gy,...,Gn from a hypothesis A, and every G; is more general than A. A spedalization

operator produces a set of hypotheses which are more spedfic than the initial one.

Structuring the seach space acording to a generalizaion relation enables filtering out
many hypotheses. For instance given a hypothesis H, a positive example e, and
badkground knowledge B, if HOOB e then for no spedalizaion S of H we have STIBF
e. This fad saves the dfort of considering hypotheses which are more spedfic than H
when trying to cover example e. Analogousdy, when a hypothesis H violates the
soundnesscondition HOOB F € for a negative example €, al hypotheses which are more

general than H are dso not sound. They can therefore be discarded.

The generdization relation based on the logicd implicaion, corresponds to the most
natural notion of generalization. However, logicd implicaion poses osme nceptual

problems such as:

Methods and concepts 41

» Giventwo clauses C; and C; it is not a deddable problem to determine whether C;
Ce.

» Two clauses C; and C, don't necessarily have aunique least general generalization

under implication [47].

For that reason other generaizaion models have been proposed. Plotkin suggested 6
subsumption [92]. Buntine proposed generalized subsumption [16] that extends
Plotkin’s work. More recantly, Idestam-Almquist brought forth T-implication [47], in an
attempt to overcome some problems inherent in previous generalizaion models.
Nevertheless the model of 6-subsumption is the most frequently adopted in ILP
algorithms. It is also the generalization model we adopt here and to which we give more

emphasis.

3.4.2 Therdation of 8-subsumption between clauses

The generdizaion relation between clauses is an important spedal case of the
generdizaion between programs. Many ILP methods decompose the problem of
seaching in the general spaceof hypotheses into smpler seach problems in the dause

space

Definition 3.5: (Plotkin [92]) A clause C1 6-subsumes another clause C2 if and only if
there exists a substitution 6 such that C160JC2. ¢

The 6-subsumption relation is grictly weeker than the relation of logicd implication [16].

If a dause A 6-subsumes a dause B then AFB. The opposite is not true.

Example 3.9: Consider the next two clauses.

CL: p(X) ~ p(f(X)).
C2: p(X) ~ p(f(f(X)))

We have C1F C2 without having C1 6-subsumes C2.4

42 INDUCTIVE LOGIC PROGRAMMING

Definition 3.6: A clause C1 is 68-equivalent to a dause C2, if and only if, C1 6-subsumes
C2 and C2 6-subsumes C1.4

Definition 3.7: A clause Cisreduced if it is not 6-equivalent to any subset of itself.¢

6-subsumption between clauses induces a lattice in the set of reduced clauses. Any two
clauses have aunique least general generalization (least upper bound, and a unique

most general spedalization (greatest lower bound under 6-subsumption.

Within a given set of clauses, we may refer to most spedfic dauses and most general
clauses. The dause member(X,Y) is most general among the dauses which define the
predicae member/2. The dause O (or false—true) is most general within any set of
clauses. This clause orresponds to the anpty set and therefore 6-subsumes any (other)
clause. A most spedfic dause that covers an example e, relatively to a program P, is
e« by,by,... where the by are ground consequences of P. In this case, restrictions sould
be made so that the set of literals {by, b,,...} bemmes finite. The most spedfic dause is
usually denoted by [.

Given this generaization model, we now need operators which allow us to navigate in
the set of clauses of the hypothesis language. We will see the refinement operator, a
spedalization operator relevant to our work, and a least general generalization operator.
The latter will be described in less detail. Spedalization operators allow us to move in
the lattice of clauses from the most general to the most spedfic (top-down appoach).

Generalizaion operators make us go in the opposite diredion (bottom-up approach).

3.4.3 Therefinement operator (top-down approach)

Shapiro introduced the notion of a dause refinement operator under the 6-subsumption
generdizaion model. Here, we give amore genera definition following De Raedt and
Lavrac[24].

Methods and concepts 43

Definition 3.8: An operator p associates to a dause C a set of clauses p(C) cdled

refinements of C. Thisis a set of spedalizations of C under 6-subsumption. ¢
A typicd refinement operator applies two sorts of transformations to spedalize a tause:

1. variable instantiation;

2. joining aliteral to a dause.

Example 3.10: The dause member(A,[B|X]) can be spedaized, for example, by
instantiating B to A. We then obtain the refinement member(A, [A|X]). Another
refinement can be obtained by adding a litera to the initid clause & in

member (A,[B|X]) — member (A, X).¢

We can seach for a the required clause by applying repeaedly a refinement operator.
We start from the most general clause and then apply the refinement operator repeaedly
to refinements. The seach process terminates when one or more dauses are found to
satisfy a given stopping criterion. This approach to the anstruction of a hypothesis is
referred to as the top-down approad, since it goes from the most genera clause to the

more spedfic ones.

member (X,Y)

Bl D

member(X,X) member(X,[Y]Z]) member((X|Y],Z) member(X,Y)—member(Y,X)

member (X,[X|Z]) member (X,[Y|Z]) — member (X,2)

Figure 3.2: Part of onerefinement graph [109.

A top-down seach for a dause using refinement operators corresponds to a seach in a

refinement graph. A refinement graph is a direded acyclic graph, whose nodes are

44 INDUCTIVE LOGIC PROGRAMMING

clauses, and the root is the top clause. The branches of the graph correspond to

spedalization operations.
Various fadors affed the size and shape of the seach tree

» The top clause. If we seach for clauses to define the predicae p/n, then the most
genera clause is going to be p(Xi,...,Xn), where eab X; is a variable [96,109. If we
do not want to determine what the dause head predicate is, then we can start with

clause true—false [22].

» The refinement operator. There ae three main properties of a refinement operator,
acording to Mugdeton and De Raalt [83]. The operator is globdly complete if we
can obtain any clause of the language by repeaedly applying the operator to the initial
clause. The operator islocally complete if, for any clause C, p(C) corresponds to the
set of al of the most general spedfications of C. Finaly, the operator is optimal if it

does not generate ay clause more than once

» The stoppng criterion. The stopping criterion determines when to stop the search in
the refinement graph. Normally, this criterion is defined in terms of the positive and
negative examples. Shapiro’s MIS system [109 stops the @nstruction of a dause
when it is gedfic enough not to cover negative examples. The stopping criterion can
also demand that all the dause variables are linked [43]. Some systems use heuristics
to define the stopping criterion [96].

e The search method The order in which the nodes of the refinement graph are
generated may aso follow different strategies. The most frequently used seach
methods (see Sedion 3.4.5) are breadth-first [109, heuristic seach (particularly
grealy seach methods [96,125), and iterative degoening [22].

Methods and concepts 45

3.4.4 Thelgg qerator (bottom-up approach)

Under the 6-subsumption relation we can define the notion of the least genera

generdization of two clauses.

Definition 3.9: Clause G is a generdlization of two clauses A and B, if and only if, G 6

subsumes A and G 6-subsumes B. ¢

Definition 3.10: A clause G isthe least general generalization of clauses A and B, if
and only if, for every generdizaion G' of A and B, G' 6-subsumes G. We write

lgg(A,B)=G.+
Example 3.11: Theresult of Igg(p(a) — q(a), p(b) — q(b)) isthe dause p(X) — q(X) ¢

Plotkin, in hiswork about generalization under the 68-subsumption model [92,93], shows
that the Igg of two clauses exists and it is unique (up to equivalence), and describes an

algorithm to construct it.

More recantly, Mugdeton and Feng have popularized the Igg operator, by employing it
in their GOLEM system [82]. In this g/stem, the positive examples are first transformed
into starting clauses which are most spedfic for the given predicae. Each of these
starting clauses has a given positive example in the head. The body is a finite set of
logicd consequences of the badkground knowledge. By applying Plotkin's Igg operator,
more genera clauses are obtained from the starting ones. The most important
contribution made by this work of Mugdeton and Feng, was making Plotkin's original
ideas efficient. This was mainly achieved due to the restrictions made to the hypothesis

language. Other systems have, meanwhile, used the Igg operator [1,125.

3.4.5 Search methods

The seach methods employed in ILP are basicdly the ones known from artificia

intelligence The breadth-first search method [59] is a type of brute force search where

46 INDUCTIVE LOGIC PROGRAMMING

the dause spaceis explored exhaustively. This is a mmplete search method, i.e., if an

admissble solution exists in the search spacethen it will be found.

To perform the seach, the brealth-first method keegys a queue of clause refinements.
Initially the queue mntains the top clause only. At ead step, the method withdraws the
first clause in the queue and expands it into a set of clauses. All the dause refinements
resulting from the expansion are placal at the end of the queue. The expansion of a

clause is made by applying a refinement operator.

Despite being complete, the method has the disadvantage of being inefficient (in terms of
memory space ad computational time). Its use is justified when the search spaceis made
aufficiently small considering the available computational resources, and when other

methods are not successul.

The heuristic search method is aternative to the brute force methods, in particular to
breadth-first seach methods. The heuristic seach method computes for every candidate
clause avalue measuring how close it is from the objedive. That value is cdculated
through what is cdled a heuristic function. Comparatively to the breadth-first method,

the seach is no longer blind: the most promising hypotheses are cmnsidered first.

The hill -climbing method chooses among all the dause refinements the one with the best
heuristic value. The remaining refinements are discaded. The method has no

badtradking (it is a greedy search method).

Although efficient, hill-climbing has the disadvantage of not being complete, since the
seach can follow a diredion without any solution (a dead-end). Quinlan’s FOIL system
[96] usesthis ach method. Other more sophisticated heuristic methods exist which can

overcome some of the problems of the hill -climbing method[59].

Methods and concepts 47

3.4.6 Language bias

Any basis for restricting the size of the search spaceor for preferring one solution over
another, apart from consistency with the observations, is cdled bias [73,115. All the
learning agorithms, including the ILP ones, employ some sort of bias to perform the
seach for solutions in a relatively efficient manner. The spedfic restrictions that are

imposed to the hypothesis language ae cdled languag bias.

The hypothesis language can be @nstrained in many different ways. Here ae some

examples of language bias:

» Admissble vocabuary: The induced clauses can only involve predicaes belonging to
a pre-defined set. This st of predicates is cdled the vocabuary. In some gproades,
the set of predicaes admissble & a given stage is determined by other existing
predicaes, asin Rus®l’s determinations [104].

» Depth of terms. Here, the restriction consists in limiting the depth of the terms that
occur in the dauses It intends to capture the structural complexity of terms. The
depth of variables and constants is 0. The depth of a term f(ty,....tn), is
1+max(depth(t;)) [21,82].

» Linked clauses: A clauseislinked if al its variables are linked. A variableis linked if it
occursin the heal of a dause or in aliteral that contains a linked variable (Helft [43)]).

This restriction avoids ome potentially uselessliteralsin the dause.

» Depth of avariable : The depth of variables occurring in program clauses can aso be
restricted. Let p(Xi,...,Xn) < L1,Lo,...,L,... be a dause. A variable occurring in the
clause hea (Xi,...,Xn) has a depth of 0. A variable V whose leftmost occurrenceisin
literal L has depth 1+d, where d is the maximum depth of the variables in L, which
ocaur in p(Xa,...,Xn) < L1,La,..., L1 [62].

48 INDUCTIVE LOGIC PROGRAMMING

* Reaursion: Constructed programs may be non reaursive. This is a very strong

restriction, obviously not very adequate to Prolog program synthesis.

o Determination: Let A—Ly,Lo,...,L,... be a ¢dause. A variable occurring in litera L, is
determinate if it has a unique valid substitution determined by the values of the
variables in L; ocaurring in A—Ly,Ly,..., L1 The literal L, is determinate if al its
variables not appeaing in A—Lj,Ly,..., Lr1 are determinate. A clause is determinate if
all its literals are determinate [62,82]. By imposing a limit j to the maximum arity of
literals, and a limit i to the maximum depth of the variables in a determinate dause,

we obtain ij-determinate clauses.

» Types and inpu/output modes. Type and input/output mode dedarations are dso
useful for limiting the seach spacein ILP problems. The dauses of the hypothesis
language which do not conform to the type or mode dedarations may be filtered out
[80,82,109.

Care must be taken when defining the gpropriate bias. If the bias is drong, that is if it
constrains the hypothesis language a grea ded, the language may be incapable of
representing a large family of concepts. However, the inductive system nmay be more
efficient. Inversely, if the bias is wed&k (not very restrictive), then the system covers a

larger spedrum of problems but at the st of efficiency.

3.4.7 Dedaring thelanguage bias

In the light of the aove, it seems that the language bias $ould be controlled by the user
as much as posshle, rather than being static. This type of bias which is defined by the

user is cdled dedarative bias.

The posshility of defining the language bias gymbolicadly also has the alvantage of
enabling the ILP system to automaticdly change the hypothesis language whenever
necessary. Therefore, the system may begin searching for a hypothesis in a relatively

Methods and concepts 49

smple language. If the seach is unsuccesdul the system moves to more @mplex

hypothesis languages. This <heme is cdled languagp shift or shift of bias [20].

The smplest form of dedaring language bias is by setting numericad parameters. This
way, we can limit the number of clauses in a hypothesis, the number of literas in a
clause, the number of variables of a determined type, the predicae aity, the depth of

terms, etc. Such language biases are very common in ILP systems[82].

Meanwhile, other more sophisticated forms of describing the hypothesis language have
been proposed. Wirth and O'Rorke [123 proposed dependency graphs, that ill ustrate the
dependency relationships between literals. Rule models by Kietz and Wrobel [56], as well
as the clause schemata by Feng and Mugdeton [34] are higher order rules that represent
sets of hypotheses. An example of a higher order rule is P(X,Z2) — Q(X,Y),P(Y,2). The
symbols P and Q are variables which represent predicaes. Substituting these variables by
different predicate names we obtain different clauses. A possble substitution would gve

us

descendart(X,2) — son(X,Y),descendart(¥,Z2).

Definite dause grammars or DCG, are dso useful for describing the language bias. A
DCG is a Prolog program written in a spedal notation for the encoding of grammars
[88]. William Cohen, in his Grendel system [18] used the DCG formalism to define the
admissble bodies of clauses. Klingspor [58] combined the goproach of DCG with higher
order rules. Instead of diredly describing the hypothesis language his grammears define a
set of higher order rules which can be instantiated. The dauses of the hypothesis
language ae obtained by ingtantiation. Our own induction methodology described here
uses the DCG formalism to represent the program knowledge useful for program

synthesis. Another posshility for language bias description was presented by Bergadano
[5].

50 INDUCTIVE LOGIC PROGRAMMING

Birgit Tausend joined in a single formalism many different forms of bias representation.
Her language MILES-CTL [119 allows the description of sets of clauses by using
structures cdled clause templates. Inside these structures we can use predicate variables,
define types of predicaes and arguments, restrict the aity of predicates, etc. Using the
MILES-CTL Tausend compares the impad of different language biases on a set of test
cases. [12Q.

We have identified another sort of dedarative bias that is useful to the synthesis process
[14]. When the user is able to describe how an algorithm works on a particular example,
even if in an inacairate and vague way, the system can exploit that information in order
to reduce the seach effort. In Sedion 4.5.1 we describe how to represent this

information using what we cdl algorithm sketches.

3.5 State-of-the-art of ILP

3.5.1 Originsof ILP

Nowadays, ILP is a very adive reseach field, and occupies a significant position within
madine leaning [84]. Earlier leaning from examples used zero-order languages
(conditions in the form of attribute-value pairs, dedsion trees) to represent the

hypotheses, or very restrictive forms of predicate cdculus[66].

The works of Banerji [3], Plotkin [92,93], Michalski [67], Vere [127], Brazlil [13] and
Sammut [107], amongst others, proposed approadies to make hypothesis languages
more expressve. The motivation was to make dgorithms for leaning from examples
more widely applicable [106. However, as the hypothesis language becane more
expressve, the leaning algorithms had to search through larger hypotheses gaces and,
in consequence, the design of these becane a talenge. A unifying principle or theory

was also missng.

Sate-of-the-art of ILP 51

One such theory was proposed by Shapiro [109, who used definite dauses to represent
the hypotheses and a small set of operators for the generation of plausible hypotheses
within hs MIS system. Towards the end of the eghties and ealy nineties, logic
programming was adopted as the basis of logicd approaches to madine leaning from
examples. Mugdeton coined the term Inductive Logic Programming [77]. Various other

systems emerged.

3.5.2 SomelLP (and alike) systems

Shapiro’s MIS system is geaed towards algorithmic debuggng of logic programs. Logic
program synthesis from examples can be regarded as a spedal case of this more genera
problem. For ead sesson with MIS, some positive and negative examples must be
suppdied initially. More examples get requested by the system during the inductive
process Besides the examples, the system accedts type and input/output mode
dedarations of the involved predicates. Dependency dedarations between predicates are
also given to the system. Badkground knowledge is defined intensionally.

The systems GOLEM, by Mugdeton and Feng [82], and FOIL, by Quinlan [96, 97, 99],
were quite successul due to their relative dficiency and some pradicd problems to
which these systems were gplied. The GOLEM system induction engine is based in the
lgg operator of Plotkin [92], which was already described here (Sedion 3.4.4). The
system performs an incomplete bottom-up seach: it constructs maximally spedfic
clauses from randomly chosen examples and then applies the Igg operator to obtain more
general clauses. The dauses which cover more positive examples and less negative

examples are chosen.

The FOIL system constructs ead clause following a top-down approach. The top clause
is the most genera clause (e.g. member(X,Y)). The system uses the hill-climbing search
method, and the heuristic function is defined in terms of an information-theoretica

measure based on the number of covered positive and negative examples. Constructed

52 INDUCTIVE LOGIC PROGRAMMING

clauses are gpended to a candidate program following an AQ-like @vering strategy
[67,70].

Systems GOLEM and FOIL accept ground positive and negative examples suppied by
the user. In addition to that, input/output mode dedarations and dependency dedarations
for every predicae ae given. Both systems are non-interadive axd non-incremental. In

both cases badkground knowledge is extensionally defined.

System Progol, by Mugdeton [80], seaches for every clause usng a bottom-up
approach smilar to GOLEM’s. It starts with amost spedfic dause and constructs one of
its possble generalizations. The heal of the starting clause is a positive example. The
body is a subset of the model of the badground knowledge. The seach for the
generalization is guided by an A* like method [59]. Progol is relatively efficient when
compared to GOLEM and FOIL. It alows an intensional representation of badground
knowledge.

CLINT [20Q] is an interadive and incremental system that constructs a theory from
ground positive and negative examples and badkground knowledge. Given a dausal
language L, CLINT takes ead uncovered positive example e and constructs a set S of
initial clauses covering e which are maximally spedfic in L (acwording to the 6
subsumption relation). These dauses must not cover any negative example. Afterwards,
eat clause COS is maximally generalized by removing literals from the body of the
clause. Before removing aliteral, the system queries the user about the truth value of an
example which is covered by the tentative dause but not by C. If al new examples are
positive, the generalization step is acceted, otherwise it is rgjeded. The negative
examples obtained in the processof generalizing a dause ae used to deted and remove

possbly incorred clauses. The user isagain queried in the process

The SYNAPSE system [38] of Pierre Flener belongs to a different class It is exclusively
devoted to automatic programming tasks. The system synthesizes programs from ground

examples and from properties (corred but incomplete dauses), and is a hybrid of

Sate-of-the-art of ILP 53

different approades to program synthesis. Calling it an ILP system is a little mideading.
In SYNAPSE we can find deductive synthesis, knowledge based synthesis and learning

from examples [37].

The synthesis is guided by a scheme that encodes a particular programming strategy
(divide-and-conquer, generation-and-test, producer-consumer, etc.). The program is
constructed by transforming this £heme. SYNAPSE interads with the user, to avoid
exponential seach. The SYNAPSE system does not use auxiliary programs supdied by
the user (background knowledge), but performs predicaes invention.

System CRUSTACEAN [1] is a follow-up of system LOPSTER [60] and induces logic

programs of the form

p(Tbl,. . .,Tbn).
o(Ths,....Th) p(Tra,...Tr).

where eab Tx; is aterm. The base dause and the reaursive dauses are cnstructed by
structural decomposition of the given ground positive examples. Ground negative
examples are dso given and are used to eiminate overgeneral candidate programs.
Demmposing an example mnsists of finding all the possble subterms of its arguments.
For instance, suppose we have the positive example last_of(a,[c,a]). The first argument
can be decomposed into subterm a only. The second argument [c,a] can be decomposed
into [c,a], ¢, [a], a and []. Each subterm is obtained by applying a sequence of
decomposition operators to the initial term. This sequenceis named the generating term.
The number of times the generating term is applied is cdled depth. Term [a], for
instance, is obtained from [c,a] by the generating term pair(2), i.e., the function that
returns the tall of the list. The depth is 1. When the subterm is obtained by no
decomposition, the generating term is nore. CRUSTACEAN obtains al the possble
decompositions of the example by combining al possble dewmmpositions of its
arguments. One possble decomposition of the example last_of(a,[c,a]) is last_of(a,[a]).

It is obtained by the mmbination of generating terms (nore, pair(2)) at depth 1.

54 INDUCTIVE LOGIC PROGRAMMING

Now suppose there is another postive example last _of(b,[x,y,b]). One of the
decompositions of this exampleislast_of(b,[b]). The corresponding generating terms are
nore for the first argument, and pair(2) for the second. However, pair(2) must be
applied twice (depth 2).

CRUSTACEAN can now combine the two decompositions of the examples, since they
have the same generating terms (nore,pair(2)). The result of the combination is a
program. The base dause is the Igg of the aoms which result from the gplication of the
generating terms to the examples. In other words, Igg(last_of(a,[a]), last_of(b,[b])),

i.e
last_of(A,[A]).

To obtain the head of the reaursive dause, we gply the generating terms to the
examples O, 1,..., n-1 times where n is the respedive depth. The resulting atoms are
last_of(a,[c,a]) for the first example, and last_of(b,[x,y,b]), last_of(b,[y,b]) for the
semnd example. The heal of the dause is the Igg of these three @oms. The reaursive

literal is obtained by applying the generating terms to the hea.
last_of(A,[B,C|D]) — last_of(A,[C|D]).

Obviousdy CRUSTACEAN does not find the right combination of generating terms of
the examples diredly. All the different generating terms used to obtain al the subterms
of all the aguments of all the examples must be found. After that, the system constructs
all the possble mmbinations of the generating terms of the aguments for ead example.
The combinations of different examples are then matched in all possble ways. Each
match is either discarded becaise of incompatibility of generating terms or results in a
program. Programs are then filtered. Redundant programs, infinitely reaursive programs
and programs covering negative examples are not considered. The remaining programs

are the answer.

Sate-of-the-art of ILP 55

Because of the very redtrictive language bias, CRUSTACEAN is not able to exploit any
sort of badkground knowledge.

System Colledion Strategy Background Example of
of examples knowledge appications
MIS interactive, complete search intensional prog. synthesis
incremental
GOLEM heuristic selection of extensional biology,
hypotheses with random mesh design,
generation of sedls. guantitative models
Uses Igg.
FOIL covering AQ-like extensional prog. synthesis

strategy. top-down
construction of clauses.

hill -cli mbing.
Progd covering AQ-like intensional biochemistry

strategy.
CLINT interactive, bottom-up construction intensional prog. synthesis

incremental of clauses knowledge base updating
autonomous agents
SYNAPSE interactive scheme transformation. none prog. synthesis
invents predicates

CRUSTACEAN term decompositi on none prog. synthesis

Table 3.1: Main characteristics of some important ILP systems.

The systems referred above represent only a seledion of the state-of-the-art in ILP.
Other systems are dso of interest. This is the cae of systems such as CHILLIN [125,
CLAUDIEN [22], FOCL [110], FORCE2 [12], FORTE [100], ITOU [10Z, MOBAL
[76], SMART [74], TIM [49], WIM [95], etc. However, our intention here is not to

make an exhaustive description of these systems.

3.5.3 Applications

Most ILP applicaions fall either in the aeaof knowledge extradion and discovery or
program synthesis. As for the gplicaions in the aea of knowledge extradion and
discovery, GOLEM, for instance, has been applied to the problems of qualitative model
construction [11], construction of temporal models for satellite maintenance operations
[33], protein structure prediction [77], and mesh design [29]. Progol has adready been
applied for knowledge extradion in biochemistry [85]. The results produced by Progol
were published in a biochemistry scientific journal [86]. Other systems also had pradicd

56 INDUCTIVE LOGIC PROGRAMMING

applicaions, as is the cae of MOBAL [75] , CLAUDIEN [22], FORTE [10(and
FOCL [32].

3.5.4 Inductive program synthesis

If in the field of knowledge extradion and scientific discovery ILP is arealy a useful
toal, the same canot be said with resped to program synthesis from examples (inductive
synthesis). In this field, there ae ill important problems to be solved before we have a
true pradicd applicaion. The am of our work is to move forward in the diredion of

using inductive tools to aid in the development of small programs.

In this Sedion we informally show ill ustrative results of systems which are representative
of what has been adhieved in the field of inductive program synthesis. The systems
referred to are MIS, GOLEM, FOIL, SYNAPSE and CRUSTACEAN.

Let us first see a example of an MIS sesson as given by Shapiro [109. The task is to
synthesize predicae isort/2 which sorts alist using an insertion strategy. A definition for

isort/2 is g/nthesized as follows:

isort([X]Y],2) —isort(Y,V),insert(X,V,2).
isort([] .[]).

The auxiliary predicate insert/3 is aso synthesized.

insert(X,[],[X]).

insert(X,[Y|Z],[X,Y]Z]) <« X<V.

insert(X,[Y|Z],[Y]V]) « insert(X,Z,V),Y=<X.
The sesgon is reported in eight (1) pages which are mainly filled with information given
by the system describing the aurrent situation (these descriptions must be dedked by the
user), as well as with the queries asked to the user and corresponding answers. A

summary of the sesson indicates that 30 fads on isort/2 and insert/3 were necessary for

the synthesis. Asfor CPU time, 36 semnds were nealed.

Sate-of-the-art of ILP 57

In the field of program synthesis from examples, the GOLEM system was guccesgul in
the induction of predicates, such as of member/2, revese/2, multiply/2 and gsort/2, but

only when the examples were caefully chosen.

Thereaursive dause of the predicate definition gsort/2 (quick sort) isa dasscd test for a

system performing synthesis from examples:

gsort([] ,[1])-
gsort([A|B],[C|D]) -
partition(A,B,E,F),
gsort(F,G),
gsort(E,H),
append(H,[A[G],[C|D]).
This clause has two reaursive literals, which makes it problematic for some synthesis
strategies. Furthermore, the dause has 4 literals in the body (6 if functors are not used), a
relatively large number of variables (8), and some of them have adepth of 3. GOLEM
generated the definition of ‘quick sort’” from 15 well chosen examples, in about one
hundredth of a second. The badkground knowledge contained 84fads on partitiorn/4 and

append/3. Obvioudly these results are not guaranteed if other examples are used.

The FOIL system was evaluated in [97] by its authors. The task for this test consisted in
synthesizing a series of predicaes taken from Bratko’'s “Prolog for Artificial

Intelligence’ [10]. As an example, we show the definition generated for revese/2:

revese(A,B) - A=B, dest(A,C,D), sublist(A,C).
revese(A,B) —
dest(A,C,D),revese(D,E),
append(F,D,A),append(E,F,B).
This definition was g/nthesized from 40 positive examples and 1561 negative examples
(see Appendix A for definitions of auxiliary predicates sich as append/3, etc.). The
examples given are d the examples that involve lists of size 3 or less Although FOIL
needs a large number of examples to generate aprogram, it is robust in the presence of

redundancy in the badkground knowledge.

58 INDUCTIVE LOGIC PROGRAMMING

System Progol synthesizes a definition of ‘quick sort’ in lessthan a second, given 11
positive and 12 well chosen regative examples. In [80] we can find a summary of the

results obtained from Progol in inductive synthesis.

The SYNAPSE system can synthesize programs as hard as ‘insertion sort’, although
yielding a different definition from the one obtained with MIS. Given 10 postive

examples, the following 3 properties

isort([X].[X]).

isort([X,Y],[X,Y]) « X<Y.

isort([X,Y],[Y,X]) < Y>X.
and spedfic programming knowledge relative to this problem, a definition of isort/2 is
generated. During the synthesis processa definition for the predicae insert/3 is invented
[37, pp.209. Thus the user does not have to provide auxiliary predicates required to

synthesizethis predicae.

The sysstem CRUSTACEAN can synthesize reaursive programs with functors without
auxiliary predicates. Every program has a base dause and a reaursive dause. Here is an

example:

split([1,[1.01)-
split ([A,B|C],[A|D],[B|E]) ~
slit(C,D,E).

CRUSTACEAN can generate this program from 2 positive examples and 4 negative
ones, without any further information. However, the system is restricted to a very limited
hypothesis language. The strategy used by the system is very robust with resped to the
choice of examples. In other words, the two examples given do not have to be caefully

chosen in order to synthesize the reaursive program shown above.

Sate-of-the-art of ILP 59

3.5.5 Problemsand limitations

Intensiond background knomedge. Systems GOLEM and FOIL only accept
extensional badkground knowledge. Extensional representation of the predicae in the
badkground knowledge provides greder efficiency. However, the construction and
maintenance of large badground knowledge is difficult [79]. Some systems
(CRUSTACEAN, SYNAPSE) do not even alow the use of badkground knowledge.

Reaursive program synthesis from sparse sets of examples. Progol, as well as
GOLEM and FOIL, have problems in synthesizing reaursive logic programs from a
set of relatively small positive examples. Quinlan points out that the synthesis of
member/2 is not robust. In one experiment, it was observed that when 25% of the
positive examples were diminated at random the induced program was gill corred,

but contained threeredundant clauses [97].

Use of generic programning knomMedge. The present ILP systems, with few
exceptions, perform a blind search for the target program. Few take alvantage of
existing knowledge éout programming. One exception is the SYNAPSE system,
which constructs the dauses following the strategy of divide-and-conquer. Even this
system does not allow the definition of new strategies without changing the ade of
the system itself. In Sedion 4.5.1.1 we describe dause structure grammars. a
formalism to represent generic programming knowledge which enables to overcome

this $ortcoming.

Use of spedfic programning knomedge. If the user has ©ome notion, however
incomplete, about the strategy that a particular program to be synthesized should
follow, he should have the opportunity of giving that information to the system. The
algorithm sketches presented in Sedion 4.5.1 allow this ort of information to be
conveyed to system SKILit.

Over-generalization. The excessve number of negative examples many ILP systems

need in order to induce the target programs is a problem that has arealy been

60 INDUCTIVE LOGIC PROGRAMMING

recognized by this research community. The strategies that have been proposed are, in
our view, unsatisfadory. The user of a program synthesis s/stem should be ale to
represent the intended negative information in a cwmpad way. Integrity constraints
alow this compad representation, but creaes grea efficiency problems. In Chapter 7
we propose an efficient algorithm that allows the use of integrity congtraints in the

context of ILP.

3.6 Summary

In inductive synthesis of logic programs, ILP is a promising reseach areg but more
work is required before the technology is useful in pradicd applicaions. It is however
taking large steps in that diredion. Before that happens, some problems have to be
solved, such as the synthesis of reaursive programs from sparse sets of positive
examples, the dfedive use ad representation of generic programming knowledge and
spedfic programming knowledge, as well as the use of integrity constraints for the

representation of information usually given to the system through negative examples.

In Chapters 4, 5 and 7 we aldress these problems and propose a program synthesis
methodology which attempts to overcome some of the aurrent limitations of inductive

approaches to program synthesis from examples.

4. An Approach to Inductive Synthesis

This chapter presents an appoach to logic program synthesis from incomplete
spedfications. System KIL isintroduced. We describe the information that is
given to the system, and dcfine the dass of synthesizable programs. The

synthesis processandits main agorithms are described.

4.1 Introduction

In this Chapter we describe the methodology on which system SKIL is based. Thisis an
inductive logic programming system geaed towards the synthesis of logic programs (or
simply programs) from examples of their behaviour. In terms of program synthesis we

can seeSKIL asasynthesis g/stem from incomplete spedfications.

The starting point is an incomplete description of a predicae p/k. The am is to
synthesize a program P defining p/k. This description is cdled a spedficaion and
consists of positive and negative examples of that predicae, integrity constraints,
inpu/output mode dedarations and type dedarations. From this data the system

constructs a program that generalizes the positive examples, and that is consistent with

61

62 AN APFROACH TO INDUCTIVE SYNTHESIS

the negative examples and integrity constraints (Chapter 7). The program produced by

SKIL consists of definite dauses with no functors.

Another important element of the processis the background knoMedge (BK). Thisis a
logic program that defines auxiliary predicates that can be used in the definition of the
predicae to be synthesized. Although it is not regarded as a language bias, the
badkground knowledge dso affeds the set of synthesizable dauses. It has a determinant
role in the seledion of literals due to the dause anstruction strategy employed by SKIL.

Besides the spedfication and the badkground knowledge, the SKIL system exploits other
sources of information that affed the synthesis process It is the cae of the algorithm
sketches and the clause structure grammar (CSG). The dause structure grammar can be
seen as a way of defining the language bias, for it defines the set of clauses g/nthesizable
by the system.

\
Specification
* Pos. examples
* Neg. examples
* Int.Constraints

\- J

4 N\
Background 'l
P
knowledge » SKIL Program]
.

J

Programming
knowledge

* CSG

» Sketches

—

Figure 4.1: Framework of the SKIL system

4.2 Overview

We first describe the input of SKIL. What is a spedficaion (Sedion 4.3), what can be
badkground knowledge (Sedion 4.4) and how is programming knowledge represented

Spedfication 63

(Sedion 4.5). Within the programming knowledge Sedion we define dgorithm sketches
and explain the role of clause structure grammars. In Sedion 4.6 we daraderize the

programs SKIL can synthesize

The processof synthesizing a logic program is described in detail in Sedion 4.7. There
we describe the dgorithms for program construction (SKIL) and clause cnstruction.
We present the sketches refinement operator and the notion of relevant sub-model. We
also describe the depth-bounded interpreter used in the interpretation of badkground
knowledge and constructed programs, and how the dause structure grammars are used
within the refinement operator. The Sedion ends with a description of type dedking in
SKIL.

In Sedion 4.9 we show a synthesis ssson with SKIL and in the remaining three
Sedions we discuss limitations of the methodology, related work and gve a brief
summary of this Chapter.

4.3 Spedfication

The spedfication supgied to the SKIL system is incomplete. The program behaviour
that is not described in the spedfication is inferred. The spedficaion describes one single

predicate p/k to be defined as program P.

Given predicate p/k, a spedfication is defined as atuple (T,M,E",E",IC) where

» Tisthetype dedaration for predicae p/k;

M is the input/output mode dedaration for p/k;

E’ isaset of positive examples of p/k;

E isaset of negative examples of p/k;

IC isaset of integrity constraints restricting p/k.

64 AN APFROACH TO INDUCTIVE SYNTHESIS

The Figure 4.2 below, shows the typicd format of a spedficaion given to SKIL. The
notation has a Prolog-like syntax: mode and type dedarations, examples, and integrity

constraints are represented as clauses.

mode(p(my, ...,my)).
type(p(ts,...,t)).

% positive examples

p(...).

% negative examples

Zn().
0.

% integrity constraints
p(...)s.,q(...) = r(...),....s(...).

Figure 4.2: Typical format of a specification for predicate p/k.

4.3.1 Objedive of the synthesis methodology

Given badground knowledge BK and a spedficaion (T,M,E",E,IC) describing
predicate p/k, SKIL constructs program P defining p/k. The program has, idedly, the

following properties:

» All the positive examples are avered:
POBK |-E'

* No negative example is covered:

PO BK [+e foral eE

Spedfication 65

» The mnstructed program satisfies the integrity constraints (this condition is cheded
with some degree of uncertainty due to the Monte Carlo strategy employed, as we

will | ater seein Chapter 7).

P [0 BK [+ (Body, nat Head) for al 1TIIC, | has the form Body - Head.

4.3.2 Examples, modes, types, integrity constraints

The positive examples given to SKIL are ground atoms. The negative examples are
ground atoms marked with a‘— sign. The mode dedaration of a predicae p/k assgns to
ead one of the k arguments an input or output diredion. The input arguments are

marked with a‘+" sign, and the output onesa‘— sign.

A positive eample of the predicae revase/2, that reverses a list, can be
revese([2,1],[1,2]). This positive example determines that the program to synthesize
should output that the reverse of list [2,1] islist [1,2]. A negative example of the same
relation is—revese([0,3],[0,3]).

The input/output mode dedaration is

mode(revase(+,—)).

The meaning of thisinput/output dedaration is that a query to the program which defines
the predicae revase/2 must have the first argument instantiated before being exeauted,
asin —revese([2,4,3],X).

The type dedaration assciates to ead argument an identifier that represents the
assgned type. The types considered here include lists (list identifier), integers (int
identifier), etc. (Appendix B). In the cae of predicae revese/2, the type dedaration is
type(revese(list,list)). The type dedarations fadlitate the processof induction, but they

are optional. In Figure 4.3 we see a example of a spedfication.

66 AN APFROACH TO INDUCTIVE SYNTHESIS

mode(revase(+,-)).
type(revese(list,list)).

% positive examples
revese([] ,[]).
revase([1],[1]).
revese([1,2],[2,1]).

% negative examples
—revese([] ,[1]).
—revese([1,2],[1,2]).
—revese([1,2,3],[2,1,3]).

% integrity constraints
revase([A,B],[C,D])-->A=D.
revase([A,B],[C,D])-->B=C.

Figure 4.3: Example of a specification for the predicate revese/2.

Integrity constraints are non-ground clauses containing negative information just like
negative examples do. Every negative example can be transformed into an integrity
constraint. To make the description of the method cleaer, we will separate the
description of how negative examples and integrity constraints are handled. The latter

isue will be described in Chapter 7.

4.4 Background knowledge

The badkground knowledge supgied to the SKIL system is a Prolog program that
defines the auxiliary predicates which can be invoked by the program to synthesize
Badkground knowledge dauses can contain functors and negation. Figure 4.4 shows the

sort of auxiliary programs that can be found in the background knowledge.

addast([] ,X,[X]).

Programming knomMedge 67

addast([A|B] . X,[AIC]) -
addast(B,X,C).

nul([]).
dest([A[B] A B).

const([A|B] ,A,B).

Figure 4.4: An example of background knavledge

Among the predicaes defined in the badkground knowledge, the user can indicate which
are the admissble predicates for a given synthesis task. This is done through a
dedaration that is given to the system, jointly with the spedficaion. Let us e @

example.

adm _predicates(revese/2, [const/3,dest/3,null/ 1,addast/3,revese/2]).

The aove dedaration indicates that the system can induce adefinition for the predicate
revase/2 with clauses involving predicaes const/3, dest/3, null/1l, addast/3 and
revase/2, and only these predicaes. The almisshle predicae dedaration defines the
vocabuary for the synthesis task.

4.5 Programming knowledge

Besides the information contained in the spedficaion and the badkground knowledge,
SKIL employs other sources of auxiliary knowledge, such as sketches, which contain
spedfic knowledge for every synthesis task and the clause structure grammar, which
contains generic programming knowledge. This body of information is what we cdl

programning knomedge.

These dements are obvioudly not considered part of the spedfication itself. They should
instead be regarded as tools used to acamplish the synthesis task. While the examples

68 AN APFROACH TO INDUCTIVE SYNTHESIS

and integrity constraints indicate what is intended to be synthesized, the sketches and
grammars indicae how the synthesis ould or can be done. This distinction between the

‘what’ and the ‘how’ of the synthesis processhas been pointed out in Chapter 0.

45.1 Algorithm sketches

The user of a synthesis gystem may know which particular predicates are involved and
how those predicates contribute to the derivation of a given positive example. If this sort
of knowledge eists, then it is of interest that the synthesis g/stem is able to exploit it.
This knowledge is communicated to the system through an algorithm sketch. The SKIL
system is able to exploit algorithm sketches supgied by the user [14]. We should stress
however, that algorithm sketches are not mandatory inpui.

4.5.1.1 What isan dgorithm sketch?

Informally, an algorithm sketch represents the explanation of a positive example in terms
of relational links from the input to the output arguments of the example. Formally, an
algorithm sketch relative to a program P is a ground clause whose hea is a positive
example of a predicae p/k defined in P, and the body contains literals which explain the
output arguments of the example from the input arguments. When part of the
explanation is not known, the aguments are linked by spedal literals cdled sketch
literals. The remaining literals, involving admissble predicates are cdled operationd
literals. The predicaes used in sketch literals (sketch predicates) start with the $
charader. These sketch predicaes aso have an input/output mode.

Definition 4.1: Let a be aset of literals, t isadirediondly linked term in a with resped
toaset of terms T if and only if t O T or t is an output argument of some literal LOa and

al the input arguments of L are diredionally linked in a with resped to T.+

Please note that in the following we use a tause-like notation for representing sets of

literals. Therefore, the sequencel,L,, . L, representsthe set of literals{L1,L,,. Ln}.

Programming knomMedge 69

Example 4.1: Theterm eisdiredionaly linked with resped to {a,b} in the set of literals
p(+a,—¢),q(+b,—d),r(+c,+d,—€). Thelink is graphicaly represented in Figure 4.5.

a b

l: }
e
Figure4.5: Linkingterms {a,b} toterme.

In the same set of literals we can find other links. For example, the term b is direcionally

linked with resped to { b} .¢

Definition 4.2: A set of literas a is ardationd link from a set of terms T; to a set of
terms T, if and only if every termt occurring in a is diredionally linked in a with respea

to T, and every term in T, ocaursin a .¢

Example 4.2: A relationa link links terms T, to terms T, and contains no literals with
terms that are not linked with resped to Ti. The set a = p(+a,—b),q(+c,—d) is not a
relational link from {a} to {d} becaise c is not diredionally linked in a. However it isa

relational link from {a,c} to any subset of {a,b,c,d}.

The set of literas p(+a,—c),q(+b,—d),r(+c,+d,—e) is a relational link from {a,b} to any
subset of {a,b,c,d,e}.¢

Definition 4.3: A term t is dirediondly linked in a dause H— 8, where B is a set of
literals, if and only if there isarelational link al1B from the input arguments of H to t.¢

Definition 4.4: A clause H — a isadirediondly linked clause if all output arguments of

H are diredionally linked termsin a with resped to the set of input arguments of H.+

70 AN APFROACH TO INDUCTIVE SYNTHESIS

Definition 4.5: An algorithm sketch is a diredionally linked ground clause of the form
H~Ly,Ls,..Ln with n=1, where H is a positive example of some predicae to be defined,

and the literals L4,L»,...,Lncan be ather operationa literals or sketch literals. ¢

Sketch literals are employed to link arguments that otherwise would remain unlinked.
Syntacicdly they are distinguished by predicae symbols like $Px, where x is a positive
integer.

Example 4.3:Let rv([3,2,1],[1,2,3]) be apostive example of predicae rv(+,-). The

following clause is a sketch.

rv(+[3,2,1],41,2,3]) —
$P1(+[3,2,1],—32,1]),rv(+[2,1] - 1,2]),$P2(+3,+[1,2] ,-[1,2,3]).

This ketch involves two sketch predicates $P1 and $P2, and one operational predicae
rv/2. It can be seen as an explanation of how to reverse list [3,2,1]: “first obtain 3 and
[2,1] (it is not described how), reverse[2,1], and combine the result of the latter with 3

to obtain [1,2,3] (again, somehow)”.

In the @ove sketch, the input list [3,2,1] is linked to [1,2,3]. Figure 4.6 shows a
graphicd representation of the sketch.

[1.2,3]

Figure 4.6: Graphical representation d one sketch.

Programming knomMedge 71

4.5.1.2 Positive examples are black box sketches

Any positive example can be regarded as a sketch containing no information about how
the output arguments can ke obtained from the input ones. The link between input and
output arguments is then done by a single sketch literal whose only purpose is to make

the missng connedions explicit.

Definition 4.6: When the body of the sketch contains just one sketch literal, the sketch is
cdled a black box sketch. The bladk box sketch asciated to a postive example
p(ty,...,tx) hasthe form

p(ta,... k) « $P(ts,...t).

where $P(ts,...t) is a sketch literal with the same aguments of the positive example and

$P/k is a predicae with the same input/ output mode of p/k.¢

45.1.3 Skeches as refinements

An agorithm sketch can also be seen as an internal representation of a dause that is
being built acording to a strategy of argument linking. The seach for an adequate
operational sketch is done in a spaceof agorithm sketches garting from an initial sketch
and by employing a spedfic refinement operator. In that perspedive, ead clause is

obtained by transforming an operational sketch which explains a given positive example.

Definition 4.7: An agorithm sketch is an operationd sketch if it has no sketch literals.¢

Definition 4.8: The process of repladng the sketch literals of a sketch by operational
literals 9 that an operational sketch is obtained is cdled sketch consolidation .¢

The program synthesis methodology described in this Chapter follows a strategy of
sketch consolidation. When a sketch is fully consolidated, ead term and ead literal in
the sketch are operationally linked.

72 AN APFROACH TO INDUCTIVE SYNTHESIS

Definition 4.9: A termt is operationdly linked in a sketch H — B if and only if thereis a
relational link aJ3 from the input arguments of H to t and a contains operationd literals

only.+

Definition 4.10: A literal L is operationdly linked in a sketch Sk if and only if al the
input arguments of L are operationally linked in Sk.+

Although a sketch is represented as a dause, and can therefore be viewed as a set of
literals, we will define the sketch consolidation algorithms assuming a given ordering of

the literas in the body if the sketch. Thiswill be done only for the sake of clarity.

Definition 4.11: A sketch H—a is a syntactically ordered sketch if and only if the

following conditions are true:

1) Every operationaly linked literal appeas to the left of any non-operationaly
linked literal.

2) Every operationally linked operational literal appeas to the left of any sketch

literal.¢
Example 4.4: The sketch

rv(+[3,2,1],41,2,3]) —
$P1(+[3,2,1],—32,1]),rv(+[2,1] - 1,2]),$P2(+ 3,+[1,2] ,-[1,2,3]).

is gyntadicdly ordered. The sketch

rv(+[3,2,1],41,2,3]) —
rv(+{2,1],1,2]),$P1(+[3,2,1] -3 2,1]), $P2(+3,+[1,2] ,-[1,2,3]).

is not ordered. Literal $P1(+[3,2,1],—3-2,1]) is operationally linked, even though it is
not an operational literal. Therefore it should be to the left of litera rv(+[2,1],-1,2])
that is not operationally linked.

Classof synthesizable programs 73

The sketch

rv(+[3,2,1],41,2,3]) «
$P2(+3,+[1,2],-[1,2,3]),$P1(+[3,2,1] .—-3-{2,1]),rv(+[2,1] ,{1,2]).

is not ordered either. Literal $P2(+3,+[1,2] ,-[1,2,3]) is not operationaly linked (none of
itsinput terms is diredionaly linked) and appeasto the left of $P1(+[3,2,1],—32,1]).
.

4.5.2 Clause structure grammars

Another important source of information for our program synthesis methodology, and
which is not part of the spedficaion, is the clause structure grammar. The dause
structure grammar contains programming knowledge and, for that reason, is not spedfic
to the synthesis task of any particular predicate. Insteal it is generic for a cetain classof
programs. One particular clause structure grammar can be used to synthesize divide-and-
conquer programs, while another can describe generate-and-test programs. In our
methodology, clause structure grammars are described using the definite dause grammear
(DCGQG) notation [88]. CSG are described in Sedion 4.7.5.

Algorithm sketches, as well as clause structure grammars, make the synthesis task easier
to acaomplish. Obvioudly, the user has to take some time giving this information to the
system. However, the dause grammars are potentialy reusable (as $own) and not

particular to a given program.

4.6 Classof synthesizable programs

The programs g/nthesized by our methodology consist of clauses with one literal in the

head and without negated literals in the body. In other words, they are definite programs.

The produced logic programs do not have functors nor constants. The aguments of the

literals in the dauses are dways uninstantiated variables. The need for functors is

74 AN APFROACH TO INDUCTIVE SYNTHESIS

eliminated by using appropriate predicaes. The processof transforming a program which
contains function symbols into an equivalent one without function symbols is caled
flattening [102. For example, the sequence of literals p([A|B]),q(B) that contains a
structured term (the list [A|B]) can be represented by p(X),decomp(X,Y,Z2),q(2). The
predicate decomp/3 decomposes a list X in head Y and tall Z. As we will see later,
various auxiliary predicates smilar to decomp/3 will be used to aid the in the synthesis
task. The definitions of these auxiliary predicaes are alded to the badkground
knowledge and suppied to the system.

Constants are handled in a similar way. Predicates such asnull/ 1 or zero/1 can be used to
introduce into the dauses the cngtants [] (the empty list) and O (number zero),

respedively.

The dice of a functor free language is not fundamental, in the sense that the
methodology could be alapted to work with functors. However, the gproach chosen
has the advantage that it smplifies the dause refinement operation, and, consequently,

the synthesis algorithms.

Nevertheless flattened clauses produced by SKILit can be automaticdly unflattened by
the system for presentation. Some of the synthesized programs $own here ae presented

in their unflattened form.

4.7 The synthesis of alogic program

The synthesis methodology employed by system SKIL takes as input a set of positive
examples E', negative examples E-, integrity constraints IC on a predicae p/k, a
(possbly empty) initial program P, and badkground knowledge BK. The output is alogic
program P that defines predicae p/k. The system uses a @vering strategy which works

as follows.

The synthesis of a logic program 75

For eat uncovered positive example elJE", SKIL triesto construct a new clause, so that
when added to P, e gets covered (see Algorithm 1). Clause cnstruction is done in
procedure ClauseConstruction (Algorithm 2). When this procedure fails to construct a
new clause, the ampty set () is returned. In this case, program P remains therefore

unchanged, and Algorithm 1 moves on to the next positive example.

Procedure SKIL

input: E",E",IC, Po, BK

output: P

P:= Po

for each e D E" wherePOBK 0 E'-{€} [te
NewClause := ClauseConstruction (e,E"-{ e} ,E",IC,P,BK)
P := P NewClause

next

return P

Algarithm 1: Construction d a program by SKIL

Program P can be initially empty, but may aready contain some dauses which define
predicate p/k. These initial clauses can be supgied by the user, or by another procedure
invoking SKIL, as is the cae of algorithm SKILit presented in Chapter 5. The initial

program is Py. Algorithm 1 shows the detail s of the covering procedure.

4.7.1 The dause mnstructor

Ead clause is constructed to cover a particular positive example of the predicate to be
synthesized. That example serves as a sead in the @nstruction process since its

arguments are used to guide the seledion of literals in the dause body.

The dause nstruction strategy is based on the seach of arelationd link between the
input arguments of the example and the output arguments. This link is made by the
admissble auxiliary predicaes. In the cae of reaursive programs, the predicae to
synthesize is itself an admisshble predicae. The predicae being synthesized is partially
defined by the positive examples E™ and possbly by existing clauses (for example in Py).

76 AN APFROACH TO INDUCTIVE SYNTHESIS

When the procedure ClauseConstruction is invoked by Algorithm 1 the example e to be
covered and the set of remaining positive examples E'-{€} are pased as sparate
arguments. Using the examples in E*-{€} in the processof clause wmnstruction enables

SKIL to inducereaursive dauses.

The dause returned is extraded from the relational link, i.e., from the sequence of literals
that link the input arguments of the positive example to its output arguments. This last

step involves mainly transforming constants into variables.
Example 4.5: Suppose we have the following scenario:

Positive example (with mode dedaration):

mode(grandather(+,-)).
grandather (tom,bob).

Badkground knowledge (with mode dedarations):

mode(father (+,-)). mode(mother (+,-)).
father(tom,anre). mother (anne,bob).
father(tom,jack). mother(anne,chris).

To congtruct a dause that covers the given positive example we will try to link the input
argument (tom) with the output argument (bob). The sequence of literals
father(tom,anne),mother (anne,bob) establishes that link and can ke regarded as a sort of

explanation of the positive example.

Now, with the positive example and that sequence of literals we will construct the
instantiated candidate dause (sketch)

grandather (tom,bob) - father (tom,anre),mother (anre,bob)

from which we extrad the dause

grandather (X,2) — father(X,Y),mother(Y,2)

by repladng constants with variables. ¢

The synthesis of a logic program 77

The process of constructing a dause that, together with the badground knowledge,
covers a given postive example, consists mainly in the cnsolidation of a sketch
asciated to that example. The sketch asciated to an example e is either supgdied by
the user or abladk box sketch of the form e~ $P(...) which is automaticdly generated by
the system (seeSedion 4.5.1).

The mnsolidation of a sketch is done using a breadth-first search strategy. The objedive
isto obtain what is cdled an operationd sketch, i.e., a sketch without sketch literals. The
seachis conducted using a refinement operator p, which provides the set of refinements
of every sketch. A sketch refinement is also a sketch. The seach starts with the sketch

asciated to the positive example.

Procedure ClauseConstruction
input: e E",E,IC,P,BK
output: Cl (the new clause)
Ketch := AsciatedKetch(e)
Q :=[Skech]
repeat
if Q=0 then return O
K= firgt sketchin Q
if K isan operational sketch then
Cl := Variabhili ze(Sk)
if {CI}OPOBKOE' coverseand
{CI} OPOBKOE" does not cover any e[JE” and
{CI}OPOBKOE" does not violate IC
then return {Cl}
end if
end if
Q:=Q-k
Newsk := p(Sk,P,BK,E") (Algorithm 3)
Q := Q after appending NewSk to the end of Q
always

Algarithm 2: Generation d a clause through the refinement of a sketch

The seach stops when an operational sketch is found which satisfies the stopping
criterion. The dause returned is obtained by repladng the sketch terms with variables (a

78 AN APFROACH TO INDUCTIVE SYNTHESIS

process we cd variabilization). Variabilization of the dause is done by function
Variabhili ze described in Sedion 4.7.1.1.

The procedure ClauseConstruction (Algorithm 2) initializes a queue Q of refinements
with the sketch assciated to the example given as input. In every iteration of the
‘reped’ cycle, the first sketch in Q is removed, and a set of its refinements is
constructed. The sketches in the refinement set are placed at the end of Q.

As we can seg the repea cycle may terminate for different reasons. Idedly, it stops
when an operational sketch is found. From that sketch is extraded a dause that covers
the positive example and does not violate the integrity constraints or cover any negative
example. In order not to violate the negative examples, {Cl}OPOBKOE" cannot
intensionally cover any of them. Integrity constraints are dedked by the module
MONIC, described in Chapter 7. When the refinement queue Q bewmmes empty
Algorithm 2 stops as well. In this case, the enpty set isreturned.

In the aurrent implementation of the SKIL system, the number of refinements
constructed duing the generation of a dause is aso controlled. For that, we impose a
limit on the number of refinements constructed. This parameter is cdled effort limit. Its
default value is of 300 refinements, but it can be set using a spedfic dedaration. When
the dfort limit is readed, the mnstruction of the dause terminates, and the anpty set is
returned.

4.7.1.1 Variabili zation

The variahili zation of a sketch consists of repladng the terms occurring in the sketch by
variables. This replacanent can be done using dfferent variabili zation strategies. Here
we describe two of them: the simple \ariabilization strategy and the complete

variabhili zation strategy.

To variabili ze a sketch using the simple variabili zation strategy, ead term is replaced

with a variable. The same variable corresponds to different occurrences of the same term.

The synthesis of a logic program 79

For example, the dause etraded from the sketch p(a,2) - q(a.c),t(a,cz) is
pP(A,2) - q(A,C),t(A,C,2). Thisis the smplest variabili zation method which assumes that
two different variables correspond to two different terms. Under this assumption the

variabili zation of a sketch is unique.

The mmplete variabili zation procedure returns, for ead sketch, the set of clauses that
have that sketch as an instance The @mplete variabilization of sketch

p(a,2) — q(a,c),t(a,c,2) isaset of 20 clausesincluding

P(A.Z) - a(A.C).i(A.C.2),

p(A.2) - q(B,C).1(A.C.2),

p(A.Z) - q(A.C).(B.C.2),

P(A.Z) - q(A.C).H(AD,2),
etc.

If the function Variabili ze uses the mmplete variabilization procedure then it returns a
set of clauses instead of just one. In this case the stopping conditions of Algorithm 2
must be hedked for ead clause resulting from the variabili zation. The dgorithm stops if
one of the dauses sttisifies the @nditions. The result of ClauseConstruction is then the

set of variabili zations (clauses) satisfying the stopping criterion.

In the arrent implementation of SKIL only the smple variabilization procedure is
available. The variabilization strategy can, however, be an option of the user. Other

variabili zation strategies could also be devised.

4.7.2 Therefinement operator

The set of refinements of a sketch Sk is given by the refinement operator p (Algorithm
3). This operator takes Sk and seleds one sketch literal $P(X,Y) to consolidate (X
represents the set of input arguments and Y the output). The job of the refinement

operator is to find al possble replacanents for this ketch literal. Each replacanent is

80 AN APFROACH TO INDUCTIVE SYNTHESIS

made of an operational literal and a new sketch literal. Ultimately, the sketch literal
$P(X,Y) can also be removed.

The refinement operator always consolidates the sketch from input to output, i.e., it only
introduces operational literals whose input arguments are linked to the input arguments
of the head of the sketch via operational literals only. Therefore, the seleded $P(X,Y)
must be aliteral whose input arguments X are operationally linked terms within the
sketch. If more than one such sketch literal exists, the leftmost one is chosen for
refinement. To smpify the description of Algorithm 3 we aaume that the sketch to
refine is syntactically ordered (Sedion 4.5.1). This means that the seleded $P(X,Y) is
always the leftmost sketch literal.

Procedure p
input: algorithm sketch Sk
P,BK,E"
output: a set of sketch refinements of &
k= e a,$P(X)Y),Bwhere
a and S are literal sequences,
SP(X,Y) isthe leftmost sketch literal whose
input arguments are diredionally linked terms.
Xisthe set of itsinput arguments,
Y isthe set of its output arguments,
if there is no $P(X,Y) in those conditionsreturn 0
RelMod := RelevantSutModel (X,P,BK,E" e a)
NewlLiterals := { (Pred(Xwv, Yu),3Pnew(X[Yu, Y=Yuv)) |
Pred(Xwm, Ym)ORelMod and $Pnew is a new sketch literal }
Refin:={ e~ a,y,| yO NewLiterals }
if Y=00 then Refin:=Refin0 { e~ a,B }
return Refin

Algarithm 3: Refinement Operator

Having identified the sketch literal $P(X,Y) to refine, the method constructs a set of
atoms that belong to the model of POBKOE". Each of these @oms has as input

argumentstermsin X. This &t of atomsisthe relevant sub-model (seeAlgorithm 4).

The synthesis of a logic program 81

Ead element Pred(Xw,Yum) of the relevant sub-model ModRel will correspond to one
refinement. For that, the sketch literal is replacel by a njunction Pred(Xw,Yw),
$Pnem(Xenew, Yenew), Where $Pnew is the new sketch predicate. The new sketch literal
represents new consolidation opportunities in subsequent refinement steps. The set of
input terms Xenew inCludes the termsin X and in Yu. The set of output terms Yenew includes
thetermsin Y that are not operationally linked yet.

If the set of output terms Y in $P(X,Y) is empty the refinement obtained by smply
removing this ketch literal is also returned. Making one sketch literal disappea alows
SKIL to move on to the next sketch literal and eventually consolidate the whole sketch.

Example 4.6: Let S be the sketch

grandather (+tom,—bob) - father(+tom,—anre),$P1(+tom,+anne,—bob.

S has one sketch literal ($P1(+tom,+anne—bob)). Each element of the set of
refinements is constructed by repladng this sketch literal by a @njunction of an
operationa literal and of a new sketch literal. Here is the refinement set, using the
predicates defined in Example 4.5:

Refin={ (grandfather(+tom,—bob ~
father (+tom,—anre),
mother (+ anre,—bob),
$P2(+tom,+anre,+bob).),
(grandather (+tom,—bob)
father (+ tom,—anre),
mother (+ anre,—chris),
$P3(+tom,+anre,+chris—bob.) }

4.7.3 Theredevant sub-model

The operationa literals that replacethe sketch literal, correspond to a set RelMod of
ground faas derived from the program POOBKOE". This RelMod set is a relevant subset
of the model of POBKE" (which we cdl the relevant sub-model) and is constructed as

82 AN APFROACH TO INDUCTIVE SYNTHESIS

follows (see Algorithm 4). For ead admissble predicae we mnstruct queries using
input arguments of the sketch literal. The queries are posed to the program POBKOE"
using a depth-bounded program interpreter (Sedion 4.7.4). The set of answers given by
the interpreter is the intended sub-model RelMod.

Procedure RelevantSulModel

input: X, P,.BK,E" e a

output: RelMod a relevant sub-model of POBKOE"

RelMod := [

Predicates := PredicatesToFoll ome — a)

for each PredJPredicates
Queries:={ Pred(X,,Yp) | XoOX, Y, are variables }
Atoms :={ Q8| QUQueries and 8 OInt(POBKOE" ,Q, |-) }
RelMod := RelModJAtoms

next

RelMod := RelMod-a (eliminates literal repetitions)

RelMod := Prune(RelMod, e~ a)

return RelMod

Algarithm 4: Construction d the relevant sub-mode

Example 4.7: The input arguments {tom, anne} of the sketch literal $P1(+tom, +anre,

-boby) in the following sketch

grandather (+tom,-bob) —
father(+tom,-anre),
$P1(+tom,+anre,-boh).

are used to formulate queries involving the almissble predicates father/2 and mother/2

(asauming that these ae almissble predicaes). Taking the definitions for these

predicates given for Example 4.5, we get the following set of possble queries
Queries = { father(tom,X), father(anne,X), mother(tom,X), mother(anre, X) }

The first and fourth query get two answer substitutions ead. The second and third

queries get no answers. The set of fads constructed from the answersis

Facts = { father(tom,anne), father(tom,jack),

The synthesis of a logic program 83

mother (anne,bob), mother(anre,chris) }

The relevant sub-modd is

RelMod = { father(tom,jack), mother(anne,bob), mother(anne,chris)}

It should be stressed that father(tom,anne) was excluded from the relevant sub-model as
it is already in the sketch being refined. ¢

Why are we interested in a sub-model of POBKOE'? The badkground knowledge BK
enables the introduction of auxiliary predicates. The positive examples E* enable the
introduction of reaursive literals. The previoudy induced clauses in P speed up the
induction of reaursive dauses. Although we can lean reaursive dauses from relevant
sub-models of BKLJE™ only (without P), this would make the successof the system very
much dependent on the choice of the positive examples. This issue will be daborated in

the following Chapter.

Algorithm 4 removes from the relevant sub-model atoms that already exist as literals in
the sketch that is being refined. This control avoids the unnecessary repetition of literals

in the final clause.

4.7.3.1 Pruning

The function Prune is made of two different heuristic steps described below. A non-
heuristic version of Algorithm 4 can be obtained by removing the cd to the function

Prune.
First heuristic step:

RelMod := RelMod—{ € | € has the same predicae & e
and itsinput arguments are
asubset of the input arguments of €}

Seoond heuristic step:

RelMod := RelMod—{ L | L introduces terms produced by e— a }

84 AN APFROACH TO INDUCTIVE SYNTHESIS

In the first heuristic step, atoms corresponding to reaursive literals that are potentia
sources for non-termination are removed. The aiterion is that al the aoms whose input
arguments are asubset of the input arguments of the head of the sketch are removed.
Thus, we will not have such clauses as p(X) — p(X) nor as p(X,Y) « p(Y,X). This is an
elementary control of non-termination, which does not avoid all undesirable situations. In
any case, the program interpreter used in SKIL has itself a mecdhanism to prevent non-

termination: the control of the depth of demonstrations.

The second heuristic step removes from the relevant sub-model atoms that try to re-
introduce terms arealy existing in e~ a. The set of output terms of an atom L in the

relevant sub-model must be digoint from the set of produced termsin e~ a.

Definition 4.12: Given a dause e~ a, and the input/output mode dedarations of the

predicates involved, the set of terms produced by the dause is
in(e) O { diredionaly linked terms of a with resped to in(e) }

where in(e) is the set of input terms of the head of the dause. The set of terms produced
by e~ a isdenoted by produced(e— a). ¢

So, any atom L of the relevant sub-model generated by Algorithm 4 must satisfy the

following condition:
out(L) n prodwed(e~ a) =
where out(L) denotes the set of output terms of atom L.

Atoms not satisfying this restriction are discarded because, after variabilization of the
sketch, they would correspond to potentially useless literals. This is a reasonable
heuristic since the am of the refinement processis to produce the output terms of the

example, and it is typicdly unnecessary to produce eab term more than once. However,

The synthesis of a logic program 85

under this heuristic and gven one example, some dauses covering it may not be

synthesizable.

Example 4.8: Let e~ a in Algorithm 4 be rv(+[3,2] ,{2,3]) « dest(+[3,2],—32]). In
this case the aomrv(+[2],—{2]) will not be in RelMod becaise

out(rv(+[2],-2])) ={[2]}
produwced(rv(+[3,2],-2,3]) - dest(+[3,2] -31{2])) ={ [3,2], 3,[2] }

{[2]} n {[32],3,[2] } ={[2]} #DO0

Therefore the dause rv(A,B) — dest(A,C,D), rv(D,D), const(B,C,D) is never synthesized.
.

The use of this filter reduces the number of posshle sketch refinements at ead
refinement step, as well as the branching fador of the seach process thus increasing

efficiency.

However, this filter has the disadvantage of causing incompleteness in the dause

construction.

Example 4.9: Suppose that example e; isrv([1,2],[2,1]). Thereaursive dause is
rv(A,B) — dest(A,C,D),rv(D,E),addast(E,C,B).

The sketch that SKIL should find is
rv([1,2],[2,1]) < dest([1,2],1,[2]),rv([2] ,[2]),add ast([2] ,1,[2,1]).

This Ketch is never produced by SKIL from example rv([1,2],[2,1]). When SKIL
refines rv([1,2],[2,1]) — dest([1,2],1,[2]),$PX(...), the @om rv([2],[2]) is not alowed

into the relevant sub-model because it attemptsto re-introducethe term|[2].¢

86 AN APFROACH TO INDUCTIVE SYNTHESIS

4.7.4 Thedepth bounded interpreter

SKIL’s g/mthesis methodology employs SLD/SLDNF resolution in the following

Stuations:
» Tedtsfor the wverage of positive and negative examples;
» Construction of the relevant sub-model.

The SLD-resolution may give rise to pradica problems due to the posshility of having
infinite or too long computations. To guaranteethe termination of the synthesis process
the program interpreter used by SKIL employs a medchanism that controls the depth of
ead refutation.

Definition 4.13 Let D be aderivation of a program P. The invocation levd of an

ocaurrence C; of a dause CLIP in aderivation D is defined as invi(C;,D):
invi(Ci,D) = 0if Ci isin thefirst step of the derivation, i.e., D = ((Q,Ci,6),...).

invi(Ci,D) = k+1 if C; resolves with a literal first appeaing in resolvent R:1 in D,
R;+1 is obtained by resolving R; and C;, and invi(C;,D)=k. ¢

Example 4.10: Consider the following zero-order program:

a—b,a C
a—cC. C
b. Cs
C. Cs

One possble derivation is siown in Figure 4.7.

The synthesis of a logic program 87

Figure4.7: One derivation d the program.

Symbolicdly, the derivation is represented by
D=((~aCi1), (~ba, Cs1), (<a, Ci2), (~ba, Cs2), (~a, Ca1), (~¢,Cs1), O)

(substitutions are not considered since they are not neaded) where Cy; represents the i-th

occurrence of clause Cx.

The invocaion level of Cy; is O since it is in the first step of the derivation. The

invocation level of C31is1
inV|(C3,1,D) = 1+invI(C1,1, D)

since Cs ;1 resolves with literal b introduced by Ci 1. The invocation level of Cy» isalso 1.
Asfor the rest of the derivation,

inV|(C3,2,D) =2= 1+invI(C1,2, D) =1+1
inV|(C2,1,D) =2= 1+invI(C1,2, D) =1+1

inV|(C4,1,D) =3= 1+invI(C2,1, D) =1+2

88 AN APFROACH TO INDUCTIVE SYNTHESIS

Now we can define the depth of a refutation in terms of the maximum invocation level of

a dause on all the derivations of an SLD tree

Definition 4.14: Let P be adefinite logic program and —Q a query. The refutation
depth, refdepth(~ Q,P), of —Q from P is the maximum invocation level of al clause

ocaurrences in the SLD derivation treeT of ~Q:

refdepth(— Q,P) = max({ invi(C;,D) | D isabranch of T and C; occursinD })

The two above notions can be extended to SLDNF resolution in a natura way.

The depth-bounded interpreter answers only those queries which admit a refutation with
depth smaller then a given limit h. When the depth of a demonstration goes beyond the

limit, the interpreter fails.

Definition 4.15: Let P be aprogram and — Q a query, a depth-bounded interpreter of

limit h is the operator,

INt(P, - Q, -n) ={ 6|P }-n QO}
where |- represents the derivability relation

P Qif and only if P |- Q and refdepth(— Q,P) < h.

In ILP approades it is common to find some sort of control of the cmputation depth.
The interpreter used in SKIL employs a wntrol mechanism similar the one used by
Shapiro for MIS [109 to diagnose ¢sclic programs. Mugdeton and Feng used the

notion of h-easy model to construct subsets of a program model [82].

The synthesis of a logic program 89

Definition 4.16: Given a logic program P, an atom q is h-easy with resped to P if and
only if there is a derivation of g from P involving at most h resolution steps. The
Herbrand h-easy model of P isthe set of all the instances of atoms h-easy with resped to
P.

The h-easy model of a program P corresponds, in broad terms, to the set of fads which
can be derived with a depth-bounded interpreter. To guaranteethat the h-easy model is

finite, program clauses sould be range restricted.

The h-easy approach was criticized by de Raedt who, instead, proposed to limit the

complexity of the termsinvolved in ead computation [21]].

Definition 4.17: An atom f(ts,...,t,) is h-complexif and only if for all i: 1<i<n: depth of
termti<h (page 47).¢

An h-complex model of a program P corresponds to the set of atoms which have a
derivation from P involving only h-complex terms. A program P is h-conform if, for
every h-complex atom g, the SLD treefor deriving q from P only contains h-complex

atoms.

Although it seems smple to adopt the h-complex approacd for controlling termination in
SKIL, we believe that the pradicd results obtained by the synthesis method would not
be much different if the h-complex approach was adopted. On the other hand, a
complexity-bound interpreter would be mputationaly heavier. For h-conform
programs the ntrol of complexity could be done saticdly. Unfortunately, for a
program to be h-conform, severe syntadic restrictions must be imposed. One of those
conditions is that all variables occurring in the body of a dause dso occur in the head.

Thisis not adequate for our purposes.

90 AN APFROACH TO INDUCTIVE SYNTHESIS

4.7.5 Vocabulary and clause structure grammar (CSG)

The admisgble predicaes that can be used to obtain the sub-model are given by the
function PredicatesToFoll ow invoked by Algorithm 4. Those predicaes are determined,
beforehand, by the almissble predicaes dedaration. They constitute the vocabuary
available for clause @nstruction. The function PredicatesToFollow can be defined in a
smple form, returning the set of vocabulary predicaes. This is the solution usualy
adopted by ILP systems.

However, it is ensible that the semi-automatic development of programs sould explore
programning knowledge [38,111]. The knowledge relative to the processng of
structured objeds guch as lists could include, for example, the following. If we want to
processan objed using a procedure P, we decompose that objed into parts, invoke the
same procedure reaursively, and combine the partial solutions. The SKIL system allows
this kind of programming knowledge to be expressed as a clause structure grammar
(CSG).

A clause structure grammar defines the admissble sequences of predicae names in the
body of synthesized clauses. Such CSG's are expresed in definite dause grammar
(DCGQG) notation [88].

The top rules of the CSG's used here have the form
body(P)-->L1(<O:>,<N;>),...,rears(<O>,<N>,P),...,La(<O>,<N>).

where for ead Li(<O;>,<N;>)

* L;isthename of agroup of literas (e.g. test literals, decomposition literals, etc.),

o <O;>iseither * or +. The symbol * means that the sequence of literals can be anpty.

The symbol + means that there should be & least one literal in the sequence

 <N> is an integer greder than 0, which limits the maximum admissble number of

literals in the group.

The synthesis of a logic program 91

e PisaDCG variable.

The group reaurs is a speda group for reaursive literals. The only predicate almissble

in this group is the predicae being synthesized. Its name is carried in variable P.
For ead L; the CSG contains a set of rules of the form

Li(_,N)-->lit_Li{N>0}.
Li(_,N)-->lit_Li{N2 is N-1},Li(+,N2).
Li(*,N)-->] .

lit_Li->[<Pi>];..:[<Pe].

where eab <P;> is a predicae of the group L;, lit_L;is a DCG predicate name, and N,
N2 are DCG variables.

Thereaurs spedal agroup is defined with the set of rules

reaurs(_,N,P)-->lit_reaurs(P),{N>0}.
reaurs(_,N,P)-->lit_reaurs(P),{N2 is N-1},reaurs(+,N2,P).
reaurs(*,N,P)-->[] .

lit_reaurs(P)-->[P].

Example 4.11: The CSG shown here describes a set of reaursive dauses. It starts by
defining several groups of literals. The first group decomposes certain arguments of the
clause head in sub-terms (using predicates like dest/3, which separate alist into head and
body). The secnd group contains test literals. The third group allows the introduction of
reaursive literas. Finaly, the fourth group consists of composition literals, whose
purpose is to congtruct the output arguments from terms obtained by previous literals
(using predicaes like append/3). The genera structure of the reaursive dause is

described in the following way:

body(P)-->decomp(+,2),test(*,2),reaurs(*,2,P),comp(*,2).

92 AN APFROACH TO INDUCTIVE SYNTHESIS

where the agument P passes the name of the predicate in the head (for example
member/2 if we ae synthesizing member). The maximum number of literals of any given
group is 2. All the groups of literals may be anpty except for the decomp group. The
deacomposition group is defined following the model defined above:

deacomp(_,N)-->lit_decomp,{N>0}.
deacomp(_,N)-->lit_decomp,{N2 is N-1},decomp(+,N2).
decomp(*,N)-->]] .

lit_decomp-->[dest/3];[pred/2] ;[partb/4].

The group of reaursive literals is also defined as above. The test and composition groups
are defined smilarly to the decomposition group. Below we show only the lit_test and

lit_comp rules.

lit_test-->[null/ 1] ;[memberb/2].
lit_comp-->[appendty3]; [addast/3];[const/3].

Some dauses admited by this CSG (assuming in this example that we ae synthesizing

rv/2) would have the form

rv(_,) —dest(_,_,),rv(_,).
rv(_,) —pred(_, ,).rv(,).
rv(_,) —dest(_,_,),rv(_,),addast(_,_,).

Some dauses not admited by the CSG:

rv(_,) —rv(_,).

Clauses must have & least one decomposition literal.

rv(_,) —rv(,),dest(_, ,).,rv(_,).

No clause can have adecomposition literal between two reaursive literals.

rv(_,) —dest(_,_,),dest(_,_,).,dest(_,_,).

The synthesis of a logic program 93

The maximum number of decomposition literalsis 2.¢

When Algorithm 4 invokes the function PredicatesToFoll ow, with the part of the sketch
e a to the left of the literal $P(...) as an argument, it generates the set of admissble
predicate names which, acording to the CSG, can follow a. The CSG does not restrict
the literal arguments. It smply defines acceptable predicate dhains that can appea in the
literals of the body of a dause.

It would be relatively simple to extend the CSG to restrict the aguments of the literals
also. However, we prefer to adopt this smple solution since it makes CSGs easier to
write and maintain. In any case, the dhoice of literal arguments is restricted by the dause
construction medhanism that aways follows ome relational link and takes the types of

the predicates into acount.

The function PredicatesToFollow invokes the predicae body/3 defined by the CSG in
the following way: the first argument is instantiated to the name of the predicate to be
defined; the second argument is a list whose first elements represent the sequence of the
predicate namesin a. The next element of that list is a variable, which will be instantiated
with the predicate name that can follow in the sequence The rest of the list is a non-

instantiated variable. The third argument is an empty list.
Example 4.12: e~ a isthe dause

sort([2,1],[1,2]) — dest([2,1] ,2,[1]).
Thus, given the CSG from Example 4.11, the set of predicaes that can follow is { dest/3,
partb/4, sort/2}. Thisis equivalent to colleding the answers obtained by the query.
—body(sort/2,[dest/3,PRED|_],[]).

Variable PRED will be successvely unified with dest/3, partitiorn/4 and sort/2. If we
considered al the vocabulary predicaes, independently of CSG, then the set of

PredicatesToFoll ow would be

94 AN APFROACH TO INDUCTIVE SYNTHESIS

{dest/3, partb/4, null/ 1, memberb/2, sort/2,const/3, appendb/3,addast/3}

Clause structure grammars enable the description of an adequate language bias. The
method is quite powerful since eab grammar can ke highly reusable. The same grammear

can cover alarge dassof predicae definitions.

4.7.6 Type dheking

The types dedared in the spedfication are dso chedked duing the construction of the
relevant sub-model. This gep was not explicitly included in Algorithm 4 for the sake of
clarity. In redity, the set of queries constructed by the instruction

Queries:={ Pred(X,Yp) | XoX, Y, are variables }

of Algorithm 4 excludes those queries whose input arguments do not conform to the
type dedaration. For that, SKIL chedks if every input term is in the domain of the
corresponding type. In other words, the system chedks whether the n-tuple of the query
arguments is compatible with the type dedarations (Sedion 3.2.4). This cheding is
made using the type definitions (see Appendix B). For the predicates whose type is not
dedared any input terms are acceted.

4.8 Properties of the refinement operator

In this Sedion we discuss ®me theoreticd properties of SKIL’s refinement operator.
We ae mainly interested in determining if the refinement operator can always find a

clause mvering a given example if the dauseisin the search space

Given a program P and an example e(X,Y) such that in(e(X,Y))=X and out(e(X,Y))=Y, if
there isarelational link a from X to Y such that P|- a, then SKIL’s refinement operator
(p) findsit.

Properties of the refinement operator 95

If we have apositive example with no sketch associated, the refinement operator p starts
with the bladk box sketch e(X,Y)~3$P1(X,Y) and finds al the refinements
e(X,Y) p(X2,Y2),$P2(X3,Y3) such that Pl p(X2,Y2) and X20X, where $P2(X3,Y3) is a
new sketch litera whose aguments (X3,Y3) are a ombination of (X,Y) and (X2,Y2).
The repeaed applicaion of p gives al the relationa links from X to Y. If there is one
sketch assciated, the refinement operator handles ead sketch literal in a similar way.
Given a program P and a sketch Sk such that, if there is a dause C that is a

variabili zation of a cnsolidation of Sk then SKIL can find that clause.

Now we give aformal acount of what has been stated above. We show that SKIL’s
refinement operator can find al the interesting operationa refinements of a given sketch.
As a onsequence SKIL can find all the variabili zations of those refinements. We start by
defining the mncept of consolidation. The interesting refinements of a sketch will be its

consolidations.

Note that in the following we use a ¢ause-like notation for representing sets of literals.
The sequence ai,a, represents the set of literals a;0a, where a1 and a, are sets of
literals. The sequencelL,a representsthe set {L} O a, where L isasingle literal and a isa

set of literals.

Definition 4.18: A set of literals a is a consolidation of a set 8 of operational or sketch

literals, denoted a1 B iff:

a a=p

b) Bisof the form $P(X,Y) and «a is arelational link from the set of terms SXX to the
set of terms SYLIY;

¢) Bisof the form (L,3:), where L is an operational or sketch literal, a is of the form

(on,02), an0L and a0 3..4

Intuitively, a set of literals is a wnsolidation of a sketch literal $P(X,Y) if it produces all
the output terms Y of $P(X,Y) from a subset of itsinput terms X. Note that the empty set

96 AN APFROACH TO INDUCTIVE SYNTHESIS

is an acceptable consolidation for any sketch literal with no output terms. The notion of

consolidation is reaursively extended to arbitrary sets of literals.

Example 4.13. Suppose we have two predicaes p(+,-) and q(+,—-). The set of literals
p(a,b),q(b,c,d) is one possble mnsolidation of the sketch litera $P1(+a,—c,—d) since
there is a relational link from {a} to {c,d}. We dso have that p(+a,—b),q(+b,—c,—d) is
one mnsolidation of $P2(+a,—c) since in particular, there is arelational link from {a} to
{c}. The empty set is one mnsolidation of $P3(+a,+b). Another consolidation of this
sketch literal is p(+a,—b),p(+b,—).

One mnsolidation of p(+a,—b),$P4(+b,-d),p(+d,—) is p(+a,—b),p(+b,—),$P5(+b,+c,—
d),p(+d,—f).¢

One sketch is a mnsolidation of another sketch if both have the same head and there is a

relation of consolidation between their bodies.

Definition 4.19: Let S; and S, be two sketches. S is a consolidation of S;, denated SO, iff
Slz(H — al), Sz:(H — az) and a0 aq.¢

A sketch refinement operator produces consolidations of one sketch.

Definition 4.20: A sketch refinement operator (SRO) p is an operator that, given a
sketch S returns a set of sketches, denoted by p(S), where for al SOp(S) we have that
SOSe

SKIL’s refinement operator has four arguments. p(S,Po,BK ,E"). The first argument is
the sketch to refine. The others are the initial program Py, the badkground knowledge BK
and the positive examples E”. In this dion we mnsider these last three aiguments as
one single program P = P,(BKOE". For the same reason we invoke RelevantSulviode!
with the empty set in the third and fourth arguments. As shorthand for p(SPo,BK ,E")
we write p(9).

Properties of the refinement operator 97

Definition 4.21: The set of refinements of a sketch S obtained by iterated application of
aSRO pisdenoted as p (9 = {S DT AT (H0....

We now define the notion of completeness of a sketch refinement operator in terms of

the notion of consolidation.

Definition 4.22: Let p be aSRO, SSa set of sketches, S, a syntadicdly ordered sketch
in SS and S an operational sketch in SSsuch that S0S,. The SRO p is complete in SS
iff S0P (Sy).¢

Theorem 4.1: Given a program P, SKIL's refinement operator, p, is complete in the set

of sketches SS{ S| for every operationd literal L inthe body of S P|-L }.

Proof: Let S be an operational sketch in SSand S, an arbitrary sketch in SSsuch that
SOS. We must prove that STp (S),.

If S, has no sketch literals then, by definition of consolidation S=S;. By definition of o,
we have that SOp (S).

If S has at least one sketch literal, then S, is of the form H — a1,$P(X,Y), 5, where a; is
a sequence of operationa literals. By definition of consolidation S is of the form

H — a1,a2,as, where a,00$P(X,Y) and a3 Ss.

If a,=0 then the set of output terms'Y must be empty, otherwise we would not have that
ax00$P(X,Y). Inthis case (H — a1,3) O p(H — a1,$P(X,Y),3:) since if Y is empty, one of
the refinements is obtained by eliminating the sketch literal $P(X,Y).

If a.0$P(X)Y) and a.#[00 then there must be an operational literal LOa, such that
in(L)OX. Suppose there is no such literal, then no term in Y is diredionally linked in a.
with resped to X which contradicts a,[1$P(X,Y).

98 AN APFROACH TO INDUCTIVE SYNTHESIS

Since P[-. we have that L0 RelevantSulModel (X,P,[0,00, H — a1). This is justified by
the fad that the relevant sub-model is obtained by constructing al queries with all
alowed predicaes for H— a; with all the possble combinations of input arguments

taken from X. Therefore (H — a,L,$P2(XOin(L),Y-out(L)),5s) Op(S).

Now let a,’ be a, without L. We have that a,’ 0$P2(Xin(L),Y-out(L)) becaise a- links
SX0out(L) O XOout(L) to SYz-out(L)IY-out(L). Therefore we can reeson for a,’ as
we did for a; and conclude that H — a1,02,3; 0 0™ (S1) asauming that a hasn literals.

Applying the same reasoning to the other sketch literals of S; as we did for $P(X,Y) we
can conlude that H ai,az2,as O 0 Hea,$P(X,Y),3:), for some integer k, i.e,
S (S).¢

If a dause structure grammar G is considered, the set of sketches SSis restricted to the
sketches admited by G.

Theorem 4.2: Given a program P, a sketch S and a dause C = Hc B, if there is a
substitution 8 such that CAS and P|-Bc6, then SKIL can find clause C, asauming that
the complete variabili zation (Sedion 4.7.1.1) technique is used.

Proof: By the mmpletenessof p and the assumption that PHBc6 we have that C60p ().
Therefore SKIL can find the sketch CO and as a nsequence it can find al the

variabili zations of C8including the dause C.¢

4.9 A sesson with SKIL

We start by using the SKIL system to synthesize the predicae rv/2. This examples helps
to illustrate how the system works when well-chosen positive and negative examples are
provided, and when a background knowledge program and a dause structure grammar
are given. The result is a reaursive program. At the end the system indicates the CPU

time taken (in seconds) and the total number of sketch refinements constructed.

A sessonwith XKIL

Spedfication

mode(rv(+,-)).
type(rv(list,list)).

rv(([] ,[)-
n(1,2,3],[3.2,1]).
n(2,3],03,2]).

~v([1,2],[1,2]).
n([1,2,3],[2.1,3]).
n([1,2,3],[23.1]).
nv([1,2,34],[3.4.2,1]).

Programming knowledge

background knoMedge(list). % Appendix A
clause_structure(decomp_test rec comp_2). % Appendix C
adm_predicates(rv/2, [const/3,dest/3,null/ 1,addast/3,rv/2]).

SKIL output:
?- kil (rv/2).

exampleto cover: rv([] ,[])
clause 12) generated after 2 refinements:
rv(AA) «

nul (A).

exampleto cover: rv([1,2,3],[3,2,1])
clause 13) generated after 32 refinements:
rv(A,B) —

dest(A,C,D),

rv(D,E),

addast(E,C,B).

example to cover: rv([2,3],[3,2])
example cvered by exsting clause q13)
Program generated (prv):

c(12):rv(AA)
nul (A).
c(13):rv(AB)

100 AN APFROACH TO INDUCTIVE SYNTHESIS

dest(A,C,D),
rv(D,E),
addast(E,C,B).

34 refinements (total)
2.200secs

The badckground knowledge (list) contains the definitions and dedarations of type and
mode of auxiliary predicates (Appendix A). The dause structure grammar uses a divide-
and-conquer strategy as the one shown in Example 4.11 (Appendix C). Each reaursive
clause has in the body a sequence of decomposition literals, test literals, reaursive literals,

and composition literals.

By running SKIL with the same data, but without using a CSG, we obtain the same
program. Nevertheless the number of refinements increases to 60 (almost doubles) in a

relatively simple problem. The processng time is also higher (about 2.7 seconds).

Type dedarations aso affed the system performance We experimented removing only
the type dedaration for the auxiliary predicate addast/3. The number of refinements was
84 (instea of 34) and the time spent was 3.5 seconds.

The doice of the predicates dedared as admissble dso affeds the anount of seach.
This influence can either be positive, reducing the number of considered refinements, as
well as negative, increasing that number. By including, for example, the predicae
append/3 in the admisgble predicae dedaration, we obtain the same result after 86

refinements and 3.6 seconds.

If, instead of the three positive examples, SKIL is given the first positive example and
one sketch, as siown below, the same program is g/nthesized after 9 refinements and in
2/3 of the time.

rv([],[]). % positive example
sketch(rv([1,2,3],[3,2,1])
$P1([1,2,3],1,[2,3]), rv([2,3],[3,2]), $P2([3,2],1,[3,2,1])).

Limitations 101

4.10 Limitations

As $own above, the SKIL system was able to synthesize areaursive definition for rv/2
from threewell-chosen positive examples. Whatever the presentation order of these three
examples, the final result of SKIL always included the two clauses ¢(12) and ¢(13). Some
sequences give rise to athird clause, which is redundant in resped to the other two. The
synthesis CPU time measured also fluctuates from experiment to experiment. In any

case, this &t of positive examples eams aifficient to induce the two relevant clauses.

We will now try adightly different set of positive examples.

([l ()
rv([1,2,3],[3,2,1]).
rv([4,5],[54]).

In this case, the program synthesized by SKIL is

c(12):rv(AA) ~
nul (A).

c(14):rv(AB) —
dest(A,C,D),
dest(D,E,F),
addast(F,E,D),
addast(D,C,B).
This program does not cover the example rv([1,2,3],[3,2,1]) given. The seach for a
clause that covers this example terminates after exhausting the set of sketch refinements
within the language bias. In particular, SKIL is not able to induce the reaursive dause

c(13) generated in the ealier run.

The reaursive dause does not appea becaise the example rv([2,3],[3,2]) is missng. In
fad, SKIL has problems in generating reaursive definitions from a set of positive
examples which are not well-chosen, due to the strategy of seaching for relational links.

For this reason, we propose an iterative induction strategy that is capable of synthesizing

102 AN APFROACH TO INDUCTIVE SYNTHESIS

reaursive dauses from sets of positive examples analogous to the one presented above.

Thisis described in the next Chapter.

4.11 Related work

4111 Linked terms

In 1977 Steven Vere [127] studied the problem of the induction of relational productions
from examples in presence of a set of relevant fads (badground knowledge) by linking
termsin different literals. Acoording to Vere, arelationd production has the form a — 3,
where a and are onjunctions of literals. In order to incorporate badkground
knowledge literals into a cnjunction of foreground literals, Vere proposed the notion of
asociation chain. Two literalsL,, L, have an asociation if the Ajj(L1,L>) i-th term of Ly

is equal to j-th term of L,. An asciation chain is a sequence of associations A,

(Lg,L), Ai3,i4(L2,L3),..., Ain,in+1(|-n-1,|-n), where for evenr, i # ir+1.

next(2,3),nex(3,4),next(4,5)

Figure 4.8:A Verechain o asciations example.

Figure 4.8 shows an example of one Vere's asociation chain. For the sake of clarity, we
use Prolog notation instead of Vere's. A counterexample of an asciation chain is

nex(2,3),nex(3,4),0dd3). For arecat ILP approac to productions ee[23].

Although asciation chains and the relationa links described here have smilar spirit,
they represent different concepts. A relationa link is defined in terms of input/output
arguments and intends to conned two sets of terms: the set of input arguments and the

set of output arguments. An asociation chain conneds two literals. In an association

Related work 103

chain there is at most one wnnedion between any two literals. Relational links are more

complex since aliteral may be conneded to many others.

Richards and Mooney use relationd pathfinding in the system FORTE [10Q within a
clause spedalization method. The ideaof this technique is to consider the set of termsin
a logic program’'s Herbrand base @& a hypergraph of terms linked by the relations
(predicates) defined in the program. For example, given a postive eample
uncle(arthur,charlotte), the search for a dause is made by expanding every term from

the example. For that one mnsiders the known data aout the parent/2 relation:

parent(cristopher,arthur).

parent(penelope,arthur).

parent(cristopher,victoria).

parent(penelope, victoria).

parent(victoria, charlotte).

parent(james, charlotte).

parent(victoria, colin).

parent(james, colin).
The expansion of the term arthur leals to the new terms { christopher, penelope} (fads
parent(cristopher,arthur) and parent(penelope,arthur)). The epansion of the term
charlotte leads to {victoria, james} (fads parent(victoria, charlotte) and parent(james,
charlotte)). Thereis no intersedion between the two term sets obtained in the expansion.
By expanding the terms that resulted from the expansion of arthur we will obtain
(finaly) the term victoria (either fad parent(cristopher,victoria) or parent(penelope,
victoria)). We have, therefore, an intersedion between the set of terms obtained from
arthur, {chistopher, pendlope} O {victoria}, and from charlotte, {victoria, james},

which correspondsto arelational path. This path can be aranged into

uncle(arthur,charlotte) — parent(christopher,arthur),

parent(cristopher,victoria), parent(victoria, charlotte).

which correspondsto the dause

104 AN APFROACH TO INDUCTIVE SYNTHESIS

uncle(X,Y) — parent(Z,X),parent(Z,W),parent(W,Y).

The relational pathfinding (RP) tedinique is different from the relationa linking
technique used within the SKIL system in various aspeds. In first place SKIL strongly
explores the input/output modes of the predicates involved in the definition. We can say
that SKIL carries out a sort of direded relational pathfinding search. Secondly, in the
FORTE system, when the RP method produces a dause which is over-genera, the
spedalization of that clause is generated using a hill-climbing strategy, identicd to FOIL
[96]. In SKIL, the mnstruction of a dause is made using only one spedalization operator
(Algorithm 3) which seaches for relational links taking into acmunt negative examples
and integrity congtraints. We have, therefore, a smpler clause nstruction algorithm
which avoids the disadvantages of the hill -climbing method (cf. Sedion 3.4.5).

4.11.2 Generic programming knowledge

As adready mentioned in Chapter 3, various generic programming knowledge
representation formalisms have been proposed for the inductive @nstruction of logic
programs. Namely the dependency graphs by Wirth and O’ Rorke [123, the rule models
by Kietz and Wrobel [56], and the clause schemata by Feng and Mugdeton [34]. Cohen
[18] and Klingspor [58] aso used the DCG notation to represent language bias in their
systems.

The dause structure grammars used in SKIL are less expressve in comparison to other
formalisms, particularly Cohen’'s DCGs, because they do not enable restricting the
arguments of the literals of the induced clauses. The simplicity of CSGs is, however,

advantageous particularly in what concerns construction and maintenance by the user.

4.12 Summary

The system SKIL synthesizes definite logic programs without functors or constants from

a given spedficaion, badkground knowledge and programming knowledge. The

Sumnary 105

spedficaion contains postive examples, negative examples, integrity constraints,
input/output mode and type dedarations for the predicae to synthesize Programming

knowledge mnsists of clause structure grammars and algorithm sketches.

The synthesis of alogic program in SKIL proceeds by constructing one dause & atime.
Ead clause is constructed starting from an algorithm sketch associated to a given
positive example. The onstruction strategy consolidates the sketch by seeking a
relational link between the aguments of the literal in the head of the sketch. A candidate
clause is extraded from the wnsolidated sketch through a variabilization operation.
Candidates that cover any negative example ae discaded. To find the gpropriate
sketch one explores the spaceof sketch refinements which is expanded using a sketch
refinement operator. The dause structure grammar allows the definition of the structure

of the dause to synthesize The refinement operator takes this information into aceount.

The notion of sketch consolidation is formally defined and is related with the notion of
sketch refinement. It is diown that the sketch refinement operator is complete with
resped to operational consolidations of one sketch, assuming that no pruning is being
done in the relevant sub-model. Assuming that the cmmplete variabili ation is enforced we

charaderizethe set of clauses that can be found by SKIL.

The main limitation of SKIL, which is dared by many other ILP systems, is the faa that
it requires well-chosen examples in order to synthesize areaursive definition. This

problem is addressed in the next Chapter where we introduce iterative induction.

5. lterative Induction

This Chapter describes the problem of inducing reaursive dauses and various
approaches to this problem. We present the iterative induction method andthe
implemented system SKILit. This g/stem is able to synthesize reaursive
definitions from sparse sets of positive examples. This @lves the main

limitation o system SKIL, presented in the previous Chapter.

5.1 Introduction

The induction of reaursive definitions from positive examples is a difficult task for a
typicd ILP system. On the one hand, we have systems which require that the examples
suppied are chosen with care (the so cdled good examples [63]). On the other hand,
there ae systems which do not require caefully chosen examples but only synthesize a
small classof logic programs, which allows the use of spedfic strategies to search for

reaursive definitions ([1, 12, 49]. The SKILit system, presented in this Chapter, is

107

108 ITERATIVE INDUCTION

cgpable of synthesizing reaursive definitions from examples which pose difficulties to

other systems.

The SKILit system is an extension of the SKIL system, and uses an iterative induction
strategy to synthesize reaursive definitions from a set of examples chosen without prior

knowledge of the required results.

5.2 Induction of reaursive dauses

The possbility of defining concepts reaursively in a cncise and elegant way is one of the
mogt attradive feaures of logic programming. Nevertheless reaursion is also a source of
many pradica and theoreticd problems. In inductive logic programming, the problem of
inducing reaursive definitions from a set of naturally chosen examples is well known. In
this Chapter we analyse this problem in detail, and describe our contribution to tadle it,

by means of iterativeinduction.

The &isting systems which induce reaursive dauses from examples in a non-interadive
fashion (without an orade) can be divided in two groups acarding to approach they
adopt. The first group includes approadhes in which the positive examples do not affed
the dause seach space which is explored exhaustively. Examples are used instea to
define the stopping criterion (WiM [95], FORCE2 [12]). These can be regarded as brute
force methods and are sometimes cdled model-driven methods. This approach hes the
advantage of being more robust with resped to variations in the initial set of examples,

but the disadvantage of not exploiting those variations to accderate the search.

The second group includes g/stems which generate the required clauses from positive
examples and, in some caes, from badground knowledge (SKIL and [1, 80, 82, 96€]).
In these systems, the examples are used to make heuristic-based dedsions, thus reducing
the initial seach space Therefore, these systems are less robust with resped to

variations in the set of positive examples comparatively to the brute force methods. The

Induction d reaursive dauses 109

main advantage of this ond approad is efficiency. These methods are sometimes

cdled data-driven methods[1], as opposed to the model-driven ones.

For al the data-driven methods, it is important to consider a model M of the set of
examples E" and of the badkground knowledge BK (that is, the set of fads that can be
inferred from E'JBK).

5.2.1 Complete/sparse sets of examples

The FOIL system [12] can synthesize the definition of member/2 if it is given al the fads
about this predicate involving some list (e.g. [1,2,3]) and all its sub-structures. All these
examples make possble the task of seleding the most appropriate literas. The results of
FOIL get worse when the set of examples is not complete [97]. The reason why FOIL
requires all these examplesisthat its heuristic function for seleding the best literal to add
in eat refinement step is computed in terms of the number of covered examples. Since
coverage tests are extensional, the example sets must be cmplete. The GOLEM system

has the same limitation.

Example 5.1: Clause member(A,[B]|Y]) — member(A,Y) only covers extensiondly the
positive example member(2,[1,2,3]) if the postive example member(2,[2,3]) is also

given.+

Informally, and following Quinlan’s terminology, we say that a set of positive examples
is complete with resped to a set of clauses, if eat example is extensionally covered by

one of the dauses. A set of examples which is not complete is a sparse set of examples.
Example 5.2: Given the program that defines the predicate member/2,
member (A,[A|B]). (CD

member(A,[B|C]) — (C2)
member (A,C).

110 ITERATIVE INDUCTION

A set of examples which includes member(2,[1,3,2]) should also have member(2,[3,2])
and member(2,[2]) to be complete ¢

The fad that FOIL and GOLEM neal a set of complete examples to synthesize the
required set of clauses makes the task of inducing reaursive programs hard. It is not
expeded, in a redistic dtuation, that the user suppies unnecessxrily large sets of

examples. ILP systems sould be ale to handle sparse sets of examples.

5.2.2 Basicrepresentative set (BRS)

C. Ling [63] used the notion of basic representative set (BRS) to define what is a set of
goodexamples for the induction of a logic program. For some ILP systems, a BRS is a
necessary condition to synthesize aprogram. Thisisthe cae of all systems which employ
extensional coverage tests. A program P can never extensionally cover a set of examples
which does not include aBRS of P. This limitation includes g/stems such as FOIL,
GOLEM, Progol, amongst others. The SKILit system does not require a basic

representative set to synthesize aprogram.

A set of positive examples which is complete relatively to a set of clauses, contains at

least one basic representative set (BRS) of those dauses.

Definition 5.1: A basic representative set of a program P is any set S of ground atoms

obtained from a true ground instance (in the minimal model of P) of eadt clause CLIP.+

Since aclause in a logic program may have many true instances, the program may also

have many basic representative sets.

Example 5.3: Given the program which defines the predicae member/2, (see Example

5.2) abasic representative set of that program is

{member(1,[1,2]), member(4,[2,3,4]), member(4,[3,4])}

which corresponds to the true instantiation

Induction d reaursive dauses 111

member(1,[1,2]).
member (4,[2,3,4]) — member(4,[3,4]).

Another BRS for the same program is

{member(3,[2,3,4]), member(3,[3,4])}

The latter set has two examples only since member(3,[3,4]) belongs to both clauses in

the following instantiation.

member (3,[3,4]).
member (3,[2,3,4]) — member(3,[3,4]).

If one of the examplesis removed from any of the BRS above it is no longer a BRS.4

Definition 5.2: Let C be a tause of a program P, a basic representative set of clause C
with resped to P, denoted by BRSC(C,P), is a set of ground atoms obtained from a
ground instance of C which is true in the minimal model of P. The example which
corresponds to the full instantiation of the head of C is a representative example of C

with resped to P. ¢

By definition, a program’s BRS may include examples of different predicates. However,
for convenience, whenever we refer to a BRS of a program P defining predicae p/k, we
will consider only the examples in the BRS which are relative to p/k. The dements of the
BRS relative to other predicaes are assumed to be extensionally or intensionally given as

bad<ground knowledge.

5.2.3 Resolution path

Inductive synthesis may also take alvantage when the given positive examples include &
lesst a set of examples involved in one derivation. The set of atoms involved in the

derivation of afad is cdled resolution pah or resolution chain.

The dements of a basic representative set relative to the same dause, belong to the same

path (or chain) of resolution.

112 ITERATIVE INDUCTION

Definition 5.3 Let e be an example, P a program, and D = ((R1,Cy,61), (R2,Cy,6,), ...
(R.,Cn,6y), O), where Ry = —~e and C; 0 P, the derivation of e from P, the resolution
path of e with resped to P, RP(e,P) isthe set of atoms

n

RP(e,P) = [] atoms(R)6.6....6,
i=1

where atoms(R) represents the set of atomsin resolvent R. ¢

The resolution path of an example e with resped to a program P corresponds to the set
of fads used to prove e from P. The dements of one basic representative set of a dause
C arein the same resolution path. If eis arepresentative example of clause C [0 P, and D
= ((~eC,6), ... , (R,C,,6,), O), is a derivation of e from P, the set of literals in
C6,6....6,isaBRSC(C,P).

Example 5.4: Let us consider the program for member/2 defined in Example 5.2 and the

example member(4,[3,2,4]). To prove this fad we @nstruct the derivation below.

~ member(4,[3,2,4]). c2

o

~ member(4,[2,4]). c2

.

~ member(4,[4]). Cl

.

O

Figure5.1: Derivation d a positive example.

Thisderivation is ymbolicdly represented, omitting substitutions, by

D = ((~member(4,[3,2,4]),C2), (— member(4,[2,4]),C2), (~member(4,[4]),C1))

Induction d reaursive dauses 113

The resolution path is now obtained by colleding the @oms in the resolvents of the

derivation.

RP(member(4,[3,2,4]),P) =
{member(4,[3,2,4])} O {member(4,[2,4])} O {member(4,[4])}

So, the examples in the resolution path of member(4,[3,2,4]) are {member(4,[3,2,4]),
member(4,[2,4]), member(4,[4])} .¢

Some methods, such as the inversion d implication by Mugdeton [77] or the one used
by system LOPSTER [60Q] (which employs a technique cdled sub-unification) do not
require aBRS to induce areaursive dause. All they ned is a representative example of
that clause and another example in the resolution path representing the reaursive literal.
In the cae of these two methods we ae aauming that only one reaursive literd is
needed since the LOPSTER system only synthesizes clauses with at most one reaursive
literal. In the description of the dgorithm for the inversion of implication this limitation is

not mentioned, but it seems implicit.

Example 5.5: To induce the program in Example 5.2 it would be sufficient for a
program like LOPSTER to have the examples member(4,[3,2,4]) and member(4,[4]).

We should stressthat these two examples are not a BRS of the program.+

For the sysstem CRUSTACEAN (afollow-up of LOPSTER) the representative examples
of a reaursive dause do not have to belong to the same resolution path [1]. The
technique used by this g/stem to discover reaursion consists in the analysis of the

structure of the terms which are aguments of the examples.

Example 5.6: To induce the program in Example 5.2 the examples member(4,[3,2,4])
and member(1,[2,1]) would be sufficient for a program like CRUSTACEAN. Noticethat

the second example is not in the resolution path of the first one. ¢

114 ITERATIVE INDUCTION

5.3 Iterativeinduction

How does the SKIL system induce areaursive dause? Let us take alook at a particular

situation. If it is given the positive examples

member(2,[3,2]).
member(2,[2]).

SKIL induces the program

member (A,B) — dest(B,C,D),member(A,D).

member (A,B) — dest(B,A,C).
This is a good result, since we have areaursive program that, given the definition of
dest/3 (Appendix A), covers the two positive examples. The semnd example is
representative of the base dause, and the two are representative of the reaursive dause.
These two examples are aBRS of the induced program, and as a ansequence, they are

in the same resolution path.

If, however, we subgtitute one of the examples diown ealier by a somewhat different

onhe, obtaining

member(2,[3,2]).
member(7,[7,1]).

the induced program is now

member (A,B) — dest(B,C,D),dest(D,A,E). (Prop))

member (A,B) — dest(B,A,C). (Prop2
We lost the reaursive dause. However, this program induced by SKIL is not totally
uninteresting. Even though the program is not reaursive, ead one of its clauses is a
property of the concept of member. The first property, for example, says that every
semnd element of alist is a member of that list. These properties which generalize the
examples initialy suppied to the system can now be exploited in the seach for reaursive

clauses. Let us ssehow.

The SKILit algorithm 115

The reason why SKIL does not find the reaursive dause from the examples
{member(2,[3,2]), member(7,[7,1])} is asfollows. To generate areaursive dause from

the example member(2,[3,2]) SKIL must construct the sketch

member(2,[3,2]) — dest([3,2],3,[2]),member (2,[2]).

For that, it is necessary that ead atom in the body of the sketch is in the model of
{member(7,[7,1])} OBK. However, thisis not the cae. The aom member(2,[2]) is not

in the model. For this reason, the reaursive dause is not constructed.

The only reason for that atom not to be in the model, is that it is not one of the initia
positive examples given to the system. Nevertheless after the first passage of SKIL
through the positive examples, the two properties Propl, Prop2 emerge. One of them
covers the missng example (member(2,[2]) O M(BKO{Propl, PropZ)). In other
words, the aucial example that was not in the initial data can be @duced by the SKIL
system itself. As a mnsequence, SKIL now has the information to generate the reaursive
clause. Indedl, the reaursive dause is generated duing the second pess through the

examples thanks to the properties generated ealier.

By generdlizing this process we obtain an iterative dgorithm which invokes SKIL in

every iteration. We cdl this method iterativeinduction.

5.4 The SKILit algorithm

The SKILit algorithm (iterative SKIL) constructs logic programs using the iterative
induction method. SKIL is invoked by SKILit as a sub-module which goes through the
positive examples attempting to construct new clauses. Algorithm 5 describes this

procedure in detail.

The SKILit algorithm starts with program Po, which is initialy empty. In the first
iteration, SKILit constructs program P;. The dauses in P; generalize some positive

examples and are typicdly non-reaursive. In general, it is difficult to introduce reaursion

116 ITERATIVE INDUCTION

a this level, due to the ladk of crucia postive examples among the given ones. It is
likely, therefore, that the dauses in P; are defined using auxiliary predicaes only (i.e.,

without reaursive literals).

Procedure SKILit
input: E, E (positive and negative examples)
BK (badkground knowledge).
output: P (logic program)
i:=0
Po:=0
repeat
Pi1 = KIL(E",E, P,BK)
=i+l
until Pi+1 does not contain new clauses with respead to P;
P := TC(P..1,BK,E",E)
return P

Algarithm 5: Iterative induction

In a second iteration, program P is induced. Here, it is more likely that reaursion
appeas, since P; covers ome aucial examples that were missng in the first iteration.
Analogoudly, as P, covers more fads, other interesting reaursive dauses may appea in
the next iterations. The process $ops when one of the iterations does not introduce new
clauses. After the last iteration, the dgorithm TC (theory compresor) is invoked. This
module diminates redundant clauses, which are typicdly properties induced in initial

iterations and subsequently made redundant by reaursive dauses.

5.4.1 Good examples

The method of iterative induction synthesizes program P by constructing a sequence of
programs Po, P4, ...,P, where P, = [0 and P, = P. Each P; is obtained by appending to
Pi.1 one or more dauses (with the exception of P, which is equal to P..1). Therefore, and

sincewe ae deding with definite programs, we have that

M(P; 0 BK) OM(P.. 0 BK), 1<i<n

The SKILit algorithm 117

Since the model of P,CIBK grows with i and, in ead iteration i clause cnstruction
depends on the model of P [0BKOE", the probability of synthesising the required
reaursive dause in a given iteration is at least as high as in the precaling iterations. But
which initial set of examples gould be given so that our method of iterative induction
would induce the required reaursive dause? How do we daraderize aset of good

examples?

Aswe saw on Sedion 5.3, iterative induction does not need a basic representative set of
examples to synthesize areaursive dause. However, to synthesize a tause, the method
needs all the aomsin a BRSC of that clause. Note that this does not imply that the set of

initial examples must contain a BRSC. Let us then seewhich examples $ould be given.

Let us analyze the cae of areaursive dause C = (|1 ... l5...) with a single reaursive
literal 1,. Let {el, e} bethe sub-set of a BRSC relative to predicae p/k defined in C. To

synthesize C, iterative induction needs example e, and another example &, which ads as

substitute for ,. Example & should be representative of a dause C, that (together with
BK) covers e, (the letter p was chosen since C,, is regarded as a property, and we will

asaume for now that C, is non-reaursive). Therefore, a set of good examples to

synthesize C is {e;, &}. Iterative induction synthesizes C, from & in iteration i. In

iteration i+1 it synthesizes C from e, and C,.

Example 5.7: Let us consider the following program P

member (A,B) — dest(B,A,C). (CD
member (A,B) — dest(B,C,D),member(A,D). (C2)
dest([A|B],A,B). (C3)

One posshle BRSC of C2 is { e = member(3,[1,2,3,4]), & = member(3,[2,3,4])}. A

non-reaursive dause C, covering & is

member (A,B) - dest(B,C,D),dest(D,A E).

118 ITERATIVE INDUCTION

There ae many examples covered by C, which can figure & &. One of them is, for

instance, member (5,[2,5]). We then have aset of good examples for iterative induction {
e =member(3,[1,2,3,4]), & = member(3,[2,5])} . ¢

For eath example e, there ae several non-reaursive dauses which cover that example.
The example itself may be regarded as a ground unit clause. In order to charaderize the

acctable examples &, given a representative example e; of a dause we will show how

to construct the non-reaursive dause C,.

Let P be aprogram and e, an example cvered by that program. We can, by applying
resolution to the dauses of P, obtain a non-reaursive dause C, which coverse,. Let D be
a refutation ((«e,C1,61), (R:,Cy,8,),..., (R,,Cy,6,), O) of e from P. The dause C, is
obtained by transforming clause C,; acarding to the sequence of derivation steps in D,

skipping those which resolve reaursive literals. The processis described in detail below.

First we remove from D all the derivation steps involving clauses which are not defining
predicate p/k. We dso remove the first derivation step from D. In what is now the first
derivation step (R;,C;,8), we replaceR; with C;. We resolve anegative literal of C; with
the positive literal of C; thus obtaining the derivation step (Cy1,C;,0)). By applying the
remaining steps of D we get asresult a dause C,. Thisis a non-reaursive dause covering

.

Example 5.8: Continuing with Example 5.7 we will show how a dause C, is constructed

from P. The derivation D of e,, omitting the substitutions, is

((—~member(3,[2,3,4]), C2),

(< dest([2,3,4] ,A,B),member(3,B), C3),
(«~ member(3,[3,4]), C1), O)
(seeFigure 5.2).

The SKILit algorithm 119

We now remove the first step involving clause (C2) to the derivation. We do the same to
the step involving C3 sincethis clause is not defining member/2. We ae left with the step

involving C1. By resolving C2 with C1 we obtain the non-reaursive dause C, covering

€.
member (A,B) — dest(B,C,D),dest(D,A,E).
¢
—member(3,[2,3,4]) c2
 dest([2,3.4] ,A,B),member (3,B) c3
— member(3,[3,4]) C1
O

Figure 5.2: Derivation D of the example e,.

An important question must be arswered now:

+ Given any example & covered by clause C, as congtructed above does iterative

induction always give a tause mvering ;?

In general, given an example & covered by a dause @vering another example e, the

method of iterative induction may synthesize a tause ép not covering & (athough
experience tells us that in most cases it does). This is becaise the dgorithm that
constructs the programs in ead iteration (SKIL, Algorithm 1) uses a covering strategy.
If an example is covered SKIL does not try to find another alternative dause to cover it.
Therefore the first clause found is the one that stays. This problem caused by the
covering strategy suggests a more powerful (yet heavier) non-covering strategy. This
alternative strategy will be described below in Sedion 5.4.2.

120 ITERATIVE INDUCTION

The analysis done so far applies to a dause with a single reaursive literal. If clause C has

more than one reaursive literal we need an example analogous to & for eah of those
literals. Since the BRSC of a dause with k reaursive literals C = (l1—...l2,.. . lke1,...)

contains k+1 examples { ey, &,..., &1}, iterative induction neals a set of examples { e,

&...., 81} to be successul. Each example & represents a dause C; coveringe , 2<i <

k+1.

For ead BRSC { ey, &,..., 1} of a dause C in a program P we have afamily of sets of

good examples. We cd ead one of these sets a BRSCI (clause basic representative set
of examples for iterative induction). Each BRSCI {ey, &, ..., &1} is obtained from the

BRSC by repladng one or more examples g 2<i<k+ 1, with an example & covered by a

non-reaursive dause obtained by resolution from P as described above.

Note however, that since SKILit is iterative, the auxiliary property C, may itself be a
reaursive dause. In that case the set of good examples to generate the target reaursive

clause C must include one set of good examples to generate C,.

Example 5.9: We can synthesize areaursive definition of member/2 from the following

examples:
member(2,[1,3,2,4]). -member(2,[]).
member (5,[5,6]). -member(2,[3]).
member(6,[1,2,3,4,5,6]). -member(2,[1,4,3]).

-member(2,[1,4]).

Using the CSG "decomp_test_rec comp_2 in the first iteration it is only possble to

generate the non-reaursive dause
member (A,[A|B]).

Its representative example is member(5,[5,6]). In the second iteration SKILit obtains the

clause

The SKILit algorithm 121

member (A,[B,C|D]) — member(A,D).

This is a reaursive property of member/2 generated from example member(2,[1,3,2,4])
and the first clause. The two clauses gill do not cover example member(6,[1,2,3,4,5,6]).
From this example and from the reaursive property another reaursive dause gpeas in

the third iteration:

member (A,[B|C]) — member(A,C).

Thethreeinitial positive examples are aset of good examples to synthesizethis clause.+

Since program P is not known before being synthesized, how can we onstruct a
BRSCI? A good strategy is to give aseries of positive examples whose input terms
increase in complexity (in case we ae in presence of structured terms, such aslists) or in
value (in case we ae deding with an ordered domain, such as integers) starting with the
most simple cae (list [], integer 0) and ending up with reasonably complex terms (lists
of length 4 or less integers up to 4). For ead level of complexity we should provide
examples which represent different cases. For example sort([1,2],[1,2]) and
sort([2,1],[1,2]) represent two possble cases for sorting lists of length 2. One exchanges

the dements of the input list and the other does not.

5.4.2 Pureiterative strategy
As we saw above, when the default covering strategy is used we canot guarantee that

SKILit always finds ome dause C, given any example & covered by that clause. For

that reason we introduce here anew iterative strategy.

At ead iteration, SKILit tries to construct a new clause for ead postive example,
covered or uncovered. Note that with the covering strategy SKILit does not use mvered
examples to generate new clauses. The process $ops when no new clauses are found in
oneiteration. Termination is guaranted if the dause language isfinite, asit usualy is. In

any case it can be made finite by defining an appropriate dause structure grammar.

122 ITERATIVE INDUCTION

We cdl this procedure the pure iterative strategy. If the complete variabili zation method
isin use eab example may give in ead iteration a set of clauses insteal of just one. The
induction strategy is chosen through a dedaration in the spedficaion and it corresponds

to turning on or off the avering condition in Algorithm 1 (clause @nstructor).

Example 5.10: Here we show how the @vering and pure iterative strategies may have
different results. The task consists of the multiple synthesis of predicaes sort/2 and
insert/3. The spedficaion contains information relative to both predicaes (see Sedion

5.5.3). We give the same input to SKILit with ead of the strategies on and compare the

results.

Input:
sort([3,2,1],[1,2,3]). environment(list).
insert(2,[1],[1,2]). csg(decomp _test recl_comp_2).
insert(6,[] ,[6]). adm_predicates(sort/2,
sort([] ,[]). [dest/3,const/3,insert/3,s0rt/2,'<'/2,null/ 1]).
insert(1,[2],[1,2]). adm_predicates(insert/3,
sort([5,4],[4,9]). [dest/3,const/3,'<'/2,null/ 1,insert/3]).
-insert(2,[1],[2,1]). % choaose strategy as appropriate.
-insert(1,[2],[2,1]). strategy(pure_iterative).

-insert(3,[1,2],[3,1,2]). strategy(covering).
-insert(3,[1,2],[1,3,2]).

-sort([1,2],[2,1]).

-sort([1,3,2],[1,3,2]).

-sort([3,2,1],[2,3,1]).

-sort([3,2,4,1],[2,3,4,1]).

-sort([2,3,1],[2,3,1]).

Output, covering strategy:

sort([] ,[1)-
sort([AB|C] D) — insert(B,[AB|C] E), insert(A[B|C] ,D).

insert(A,[B],[B,A]) «B<A.
insert(A[] ,[A])-
insert(A,[B|C],[AB|C]) «A<B.

The SKILit algorithm 123

Number of iterations; 2
575refinements (total)
4.64 ecs

Output, pureiterative strategy

sort([],[1)-

sort([A,B|C],D) —insert(B,[A,B|C],E), insert(A,[B|C],D).
sort([A,B],C) —insert(A,[B],C).

sort([A|B],C) ~sort(B,D), insert(A,D,C).

insert(A,[B],[B,A]) « B<A.
insert(A,[].[A]).

insert(A,[B|C],[A,B|C]) ~A<B.
insert(A,[B|C],[B|D]) «B<A, insert(A,C,D).
insert(A[l .[A]).

insert(A,[B],[A,B]) « A<B.
insert(A,[B],[B|C]) « B<A, insert(A[] ,C).

Number of iterations. 5

2230refinements (total)

3537 secs
These results are produced without TC. Note that, given the positive examples in that
spedfic order, the wvering strategy is able to find a non-reaursive program that covers
all of them except sort([3,2,1],[1,2,3]) (there is no clause in the search spacethat covers
this example). The pureiterative strategy finds aternative dauses, and among them some
reaursive ones. The final program (in bold) can be found by a compresson module like
TC. Note that heuristic pruning of the relevant sub-model and the simple variabili zation

technique were used in this example. ¢

We now charaderize the set of clauses that SKILit can generate using pue iterative

induction.

Theorem 5.1: Let Sbe asketch, P a program, G a dause structure grammar and C a
clause. If COOS (CO is a mnsolidation of S) for some substitution 6, and the set of

124 ITERATIVE INDUCTION

clauses accepted by G is finite, then SKILit, with the pure iterative strategy, no pruning

heuristics and complete variabili zation outputs C in finite time given S, P and G.

Proof: If CAOS then, by the mmpletenessof the sketch refinement operator, C60p ().
Since G accedts only a finite set of clauses then p (9 is finite. Using the pure iterative
strategy SKILit constructs all the consolidations of S and eventually finds the sketch C6.
One of its variabili zations is necessarily C. Therefore C is output in finite time by SKILit

with the pure iterative strategy.¢

As a onsequence, given the set of examples {e;, &}, and badground knowledge BK if

thereisanon-reaursive dause C, that together with BK covers & then SKILit generates

that clause. If there is areaursive dause C with a BRSC {e,, e} and C,[1BK covers e,

then SKILit generates C from {ey, &}. Similarly, we can have multiple reaursive literals

in clause C or a chain of reaursive properties as in Example 5.9.

5.4.3 SKILit architedure

The diagram in Figure 5.3 shows the relationship between the main modules in the
SKILit system. Each arrow shows module dependencies. The module & the top is
SKILit (Algorithm 5), which iteratively cdls the sub-system SKIL (Algorithm 1) and also

employs the theory compressor TC.

The TC module is the program compressor (or theory compressor). The logic program
obtained through iterative induction may contain clauses (properties) which, athough
useful to the induction process are not necessary in the final program. Some may even
be undesirable, causing non-termination. In any case, it is important to eliminate these

clauses for reasons of efficiency and readability. Thisistherole of TC.

Example sessons

125

SKILit
(alg 5)
SKIL TC
(alg 1) (theory
compressor)
A 4
ClauseConstructor
(alg 2)
A 4
MONIC p (refin. op.)
(alg 6) (alg 3)
CSG Relevant Sub-
Inter preter model
(alg 4)
v \ 4 i

A4

Depth-bounded
Inter preter

Figure 5.3: The SKILit system architecture

The Theory Compressor gets as input a program induced by the iterative induction

method, and seleds a subset of its clauses. For that, it uses a strategy of sub-theory

seledion. It identifies useful sub-programs of the whole induced program. From the

combination of those sub-programs, it constructs a final program which maximises a

combination of criteria. The aiteria ae defined in terms of positive example mverage,

compresson, and solution length [15]. The theory compressor is not described in detail

in this thesis.

5.5 Example sessons

Here we show examples that demonstrate SKILit’s abilities in the synthesis of reaursive

predicates from sparse sets of examples. The predicate unior/3 has two interdependent

126 ITERATIVE INDUCTION

reaursive dauses. The predicae gsort/2 has one dause with two reaursive literals. We
also show how to use SKILit in a multi-predicate synthesis task. For these sessons,

system SKILit used the covering strategy, heuristic pruning and simple variabili zation.

5.5.1 Synthesisof union/3

We show an example of synthesis of a definition of the predicate unior/3 from positive
and negative examples and programming knowledge. The given examples have been
chosen following the strategy described ealier, varying the complexity of input terms.
Notice however, that the positive examples are not a basic representative set of the

program, neither belong to the same resolution path.

Spedfication:

mode(union(+,+,-)). -union([2],[3,4],[3.4]).

type(union(list,list,list)). -union([2,3],[2],[2]).
-union([2],[1,2],[2,1,2]).

union([] ,[2,3],[2,3]). -union([2,3],[4].,[2,4]).

union([2],[2,3],[2,3]).
union([2],[3,4],[2,3.4]).
union([2,3],[4,2,5],[3.4,2,5]).
union([2,3],[4,5],[2,3,4,5]).

Background and programming knowledge:

background know edge(li st).
adm_predicates(unior/3,

[dest/3,const/3,null/ 1,uniorn/3,member/2,natmember/2]).
clause_structure(decomp_test rec comp_2).

Synthesized program (before dimination of redundant clauses):

c(17):union([] ,AA).

c(18):union([A],B,B) — % redundan
member (A,B).
c(19):union([A],B,[A|B]) % redundan

namember (A,B).

Example sessons 127

¢(20):union([A|B],C,D)
member (A,C),
unon(B,C,D).

c(21):union([A|B],C,[A|D]) ~
namember(A,C),
unon(B,C,D).

Number of iterations; 2
408 refinements (total)
18.22 secs

The synthesized program contains 3 clauses (c(17), ¢(20), c¢(21)), two of which are
reaursive. The module of theory compresson TC, eliminates two redundant clauses
(c(18) and c(19)). These ae intermediate dauses which serve & properties and are
fundamental in the synthesis of the reaursive dauses. The dauses are presented

unflattened. Unflattening is done by SKILit only to improve the readability of the results.

Predicate notmember/2 is employed since SKILit does not induce dauses with negated
literals. Even though this limitation of SKILit would be smple to overcome, the search

would beame somewhat heavier and the results could be diff erent.

5.5.2 Synthesisof gsort/2

The synthesis of the definition of the quicksort sorting algorithm is a dasscd chalenge
for systems which synthesize reaursive definitions. For this reason, we show the result
obtained by SKILit on this task. What determines that the sorting algorithm constructed
by SKILit is quicksort, and not another one, are the admissble auxiliary predicaes and

the dause structure grammer.

Spedfication:

mode(gsort(+,-)). -gsort([2,1],[2,1]).

type(gsort(list,list)). -gsort([1,2],[2,1]).
-gsort([3,1,2],[1,3,2]).

gsort([] ,[])- -gsort([3,2,1],[2,1,3,1]).

gsort([3,1],[1,3]). -gsort([2,3,1],[2,3,1]).

gsort([3,2,5,1,4],[1,2,3,4,5]). -gsort([3,2,1],[2,1,3]).

128 ITERATIVE INDUCTION

Background and programming knowledge:

background knomedge(list).
adm_predicates(qsort/2,

[dest/3,const/3,partb/4,appendl/3,qsort/2,'<'/2,null/ 1]).
clause_structure(demmp_test rec comp_2). % Appendix C

Yoparameters
max_num_of refinement_nodes(2500.

Synthesized program (before dimination of redundant clauses):

c(18):gsort([] ,[1).
c(19):gsort([A,B],[B,A]) — % redundan
B<A.
c(20):gsort([A|B],C) ~
patb(A,B,D,E),
cport(D,F),
oport(E,G),
appendh(F,[A|G],C).

Number of iterations. 2
2780refinements (total)
386.415secs

Oncemore, an intermediate property is g/nthesized (clause q19)), which is eliminated by
the TC module.

5.5.3 Multi-predicate synthesis

Here we show how SKILit can synthesize atwo-predicae program. The predicaes to
define ae sort/2 and insert/3. The spedfication includes positive and negative examples
from both predicaes as well as mode and type dedarations. The dause structure
grammar is one, but ead predicae has a different list of auxiliary predicaes. These ae
all defined in the badground knowledge list.

Input:

Example sessons

129

mode(sort(+,-)).
type(sort(list,list)).

mode(insert(+,+,-)).
type(insert(int,list,list)).

sort([3,2,1],[1,2,3]).
insert(6,[] ,[6]).
sort([] ,[])-
insert(1,[2],[1,2]).
sort([5,4] ,[4,5]).
insert(2,[1],[1,2]).

background knoMedge(list).

[insert(2,[1],[2,1]).
[insert(1,[2],[2,1]).

[insert(3,[1,2],[3,1,2)).
[insert(3,[1,2],[1,3,2)).

~sort([1,2],[2,1]).
~sort([1,3,2],[1,3,2]).
~sort([3,2,1],[2,3,1]).
-sort([3,2,4,1] ,[2,34,

clause_structure(decomp_test recl_comp_2).
adm_predicates(sort/2,[dest/3,const/3,insert/3,sort/2,'<'/2,null/ 1]).
adm_predicates(insert/3,[dest/3,const/3,'<'/2,null/ 1,insert/3]).

In the output (SKILit's trace we can see the order by which clauses have been

generated. In the first iteration we have base dauses and useful properties for both

predicaes. The reaursive dause of insert/3 is also synthesized in the first iteration. In the

send iteration we have the reaursive dause for sort/2.

Output:

Iteration #1

exampleto cover: sort([3,2,1],[1,2,3])
empty queue.

example to cover: insert(6,[] ,[6])
clause 26) generated after 7 refinements:
insert(A,[] .[A]).

example to cover: sort([] ,[])
clause q27) generated after 2 refinements:

sort([].1)-

exampleto cover: insert(1,[2],[1,2])

130

ITERATIVE INDUCTION

clause 28) generated after 47 refinements:
insert(A,[B|C].[A,B|C]) ~
A<B.

example to cover: sort([5,4],[4,5])
clause 29) generated after 101 refinements:
sort([A,B],C) «

insert(B,[A],C).

example to cover: insert(2,[1],[1,2])
clause 30) generated after 105refinements:
insert(A,[B|C],[B|D]) —

B<A,

insert(A,C,D).

Iteration #2
exampleto cover: sort([3,2,1],[1,2,3])
clause q31) generated after 14 refinements:
sort([A|B],C) —

sort(B,D),

insert(A,D,C).

example to cover: insert(6,[],[6])
example mvered by exsting clause q26)

example to cover: sort([] ,[])
example mvered by exsting clause q27)

exampleto cover: insert(1,[2],[1,2])
example mvered by exsting clause 28)

exampleto cover: sort([5,4],[4,5])
example mvered by exsting clause q29)

example to cover: insert(2,[1],[1,2])
example mvered by exsting clause q30)

Synthesized Program:

c(27)-sort([],1)-

Limitations 131

c(29):sort([A,B],C) — % redundan
insert(B,[A],C).

c(31):sort([A|B],C)
sort(B,D),
insert(A,D,C).

c(26):insert(A[] ,[A]).

c(28):insert(A,[B|C],[A,BIC])
A<B.

c(30):insert(A,[B|C],[B|D])
B<A,
insert(A,C,D).

Number of iterations. 2
351 refinements (total)

Although SKILit is able to perform multiple predicae synthesis, we have not carefully
evaluated our methodology in this srt of tasks. In particular, no systematic empiricd
evaluation was done to quantify the succes and limitations of our approach to multiple

predicae synthesis. We intend to do thisin the future.

5.6 Limitations

In this edion we describe the main limitations of the inductive synthesis approach.

5.6.1 Spedfic programs

The programs g/nthesized by SKILit are sometimes more spedfic than those which
would be onstructed by other systems able to induce reaursive definitions from sparse

sets of positive examples, asit isthe cae of CRUSTACEAN.

Example 5.11: Given the positive examples

132 ITERATIVE INDUCTION

member(2,[1,2,3]).
member(3,[5,4,3]).

SKILit generates program:

member (X,[Y, X|Z]).
member (X,[Y]Z]) — member (X,2).

Other systems, such as CRUSTACEAN, synthesize amore general program.

member (X,[X|Z]).
member (X,[Y]Z]) — member(X,2).
SKILit's program does not cover the example member(2,[2,1]), while the second

program does.+

This feaure of SKILit can be regarded as a limitation relatively to other systems.
However, there is no guaranteethat the program that the user has in mind is the more
genera one, instead of the other. In other words, this charaderistic of SKILit is
sometimes a limitation, but other timesit can be an advantage. An evidence of that is that
SKILit competes well with CRUSTACEAN, aswe ca seein Sedion 6.4.1.

5.6.2 Variable splitting

The breadth-first seach performed by SKILit while @tempting to construct a dause, is
sustainable due to some options taken to reduce the search space One of these options
involves the transformation of constants into variables, which we cd variabili zation,
occurring in Algorithm 2. Given a fully instantiated clause, the am of variabili zation is to

find one or more dauses which have the initial one & an instance

The process of smple variabili zation currently implemented in SKILit is efficient (see
Sedion 4.7.1.1). Moreover, the variabili zation of a particular sketch results in only one
clause, which avoids the problem usually referred to asvariable splitting [102]. This fad
helps controlli ng the branching fador of the seach tree The disadvantage of this smple

variabili zation processis that it does not take into acount the fad that the same constant

Limitations 133

may correspond to two different variables. This may prevent the synthesis of some
desirable dauses. As it has been mentioned before, the cmplete variabili zation process

solves this problem.

Example 5.12: According to the process employed by SKILit, the variabili zation of the

clause

p(a,2) — q(a,c),t(a,c,2). D

is obtained by repladng all the occurrences of a cnstant with the same variable.

Different variables correspond to different constants. The result is

p(A,2) - q(A,C),1(A,C,2).
This variabili zation processis smple and efficient, and has only one dause & a resullt.
However, the dause

p(A,2) - q(B,C),t(A,C,2).

also has the dause (1) asinstance A variabili zation processgiving, as a result, the set of
al the dauses with clause (1) as an instance would produce along list of clauses

including

pP(A,Z) - g(A,C) 1(B,C,2).
p(A,B) - q(C,D),t(E,F,G).

etc.¢

The smple variabilization process avoids the problem usually referred to as variable
splitting [102. Therefore, we can drasticdly reduce the branching fador of the
refinement tree As noted ealier, the complete variabili zation process could be given as

an option.

134 ITERATIVE INDUCTION

5.7 Related work

5.7.1 Closed-loop learning

Michalski describes in [68] the notion of a closed-loop learning system as a leaning
system able to use the leaned concepts as input in another learning phase. If the learnt
concepts are not internally exploited by the system, then it is cdled an open-loop system.
Michalski stresses that contrary to human learning systems, the madine learning systems
are typicdly open-loop systems. The iterative induction method follows the phil osophy
of closed-loop systems in the processof leaning reaursive dauses. The dauses leant in

initial iterations are employed by the learning processin the following ones.

One of the threeinduction strategies which Shapiro’s MIS system [109 can use is the
adaptive dtrategy. In this case, MIS works as a dosed-loop system, using the induced
clauses to aid the induction of new clauses, as it happens in iterative induction. In the
MIS system, the search for clauses is exhaustive, whilst in SKILit the seach is guided by
the examples through the sketch consolidation strategy. On the other hand, SKILit can
start the seach for a dause starting from any sketch, whilst MIS aways sts out from

the empty clause.

The CHILLIN [125 and RTL systems [40] also use an iterative strategy for the
induction of reaursive dauses. However, there sean to exist significant differences

between these goproadhes and the iterative induction method we propose.

The syssem CHILLIN interleaves a dause generdizaion phase with a dause
spedalizaion phase. These two phases are repeaed until no further compadion of the
program is possble. The generalizaion phase uses the least genera generalizaion
operator. The spedalization phase employs a top-down seach guided by a heuristic
similar to that of FOIL [96]. Even though this heuristic works well with a relatively large
set of examples, it does not sean adequate for the synthesis of reaursive definitions from

asmall set of examples.

Related work 135

The RTL system uses an iterative method for the definition of reaursive definitions. In
the first step, the system produces non-reaursive definitions, which are subsequently
transformed into reaursive ones. SKILit proceals in an analogous way, since it
frequently also starts by first producing non-reaursive definitions. However, it is difficult
to foreseewhich results RTL would obtain with small sets of positive examples. In [40]
no experimental results are given which could answer this question. However, we believe
that RTL would not give very good results with small example sets snceit also employs
aFOIL-like heuristic.

5.7.2 Sparse example sets

We have drealy referred here gproacdes to the synthesis of reaursive dauses from a
gparse small set of postive examples (Sedion 5.2). Systems like FORCE2 [172],
LOPSTER [60], and CRUSTACEAN [1] are devoted to that spedfic problem. Although
efficient, these systems induce avery restricted classof programs. CRUSTACEAN, for

instance, induces programs of the form

p(...).
p(...)<p(..).

and does not allow the use of badkground knowledge predicaes. The dassof programs
synthesizable by FORCE2 is described by

p(...) —qu(--),--On(...).
p(..) <ri(...),...rm(...),p(...).

Each predicate g and r; is a badground knowledge predicate. An important negative
asped of FORCE2 isthat the user must indicate which examples are cvered by the base

clause and which are not.

As it was described SKILit can induce programs with variable number of reaursive and
non-reaursive dauses and a variable number of reaursive literals. Another important

feaure of SKILit which is not shared by those gproadies is that its result is not

136 ITERATIVE INDUCTION

necessarily a reaursive program (unlessthe dause structure grammar imposes that). A
non reaursive solution is output whenever appropriate. Reaursive solutions appea only if

they involve shorter clauses than non-reaursive ones.

Systems TIM [49] and SMART [74] aso present approades to the problem of learning
reaursive definitions from sparse example sets. They were not known, however, before
SKILit wasfirst presented [53].

The system SMART of Mofizur et a. is able to induce theories consisting of one base
clause and one reaursive dause. While the base dause is induced using a term
deacomposition process akin to CRUSTACEAN's, the reaursive dause is built in a top
down fashion following somewhat MIS [109. The system restricts the seach by
examining variable dependencies. The system is capable of leaning the definitions of
various list processng predicaes from small sets of examples. The dass of target

programs is, however, more restricted than in SKIL.it.

System TIM, instead of looking for regularities within the terms in the examples as
CRUSTACEAN, constructs explanations of the examples in terms of badground
knowledge. These explanations are referred to as saturations. After saturations have
been constructed for al postive examples TIM looks for regularities in pairs of
saturations and uses those to generate the reaursive dause. The search for common path
structure is expensive, but it can lead to quite good results. Comparing experimental
results of TIM and SKILit conducted in similar conditions (but not necessarily the same),
we mnclude that there is no clea winner. In any case some programs are outside TIM’s
scope dtogether. TIM constructs definitions g/ntadicdly smilar to the ones of
FORCEZ2.

Notice that both SMART and TIM assume that the solution is a reaursive program,
contrary to SKILit.

Sumnary 137

5.8 Summary

System SKILit is an extension of the SKIL system, presented ealier. SKILit uses an
iterative induction strategy which enables the synthesis of reaursive definitions from a

gparse set of positive examples.

The iterative induction consists in repeaedly invoking SKIL using the dauses produced
in one iteration as input for the subsequent iterations. In the first iterations, non-reaursive
clauses that generalize some of the positive example typicdly arise. These dauses are
cdled properties and serve to support the introduction of reaursive literas in the

following iterations.

The iterative induction strategy overcomes the problem of inducing reaursive dauses
from sparse sets of positive examples. We dharaderized the sets of good examples for
the synthesis of reaursive dauses using iterative induction and described two aternative
strategies: the wvering strategy and the pure iterative strategy. We showed which
clauses are output by SKILit using the pure iterative strategy.

6. Empirical Evaluation

In this Chapter, we present an empirical evaluation d the SKILit system. We
describe an evaluation methoddogy and show results of some exeriments.

Comparative eyeriments between XKILit and dher systems are also presented.

This Chapter summearizes the experiments conducted to obtain an empirica evaluation of
the SKILit system. The objedive of the evaluation is to provide supporting evidence
concerning the advantages and dsadvantages of the SKILit methodology and system.
More spedficdly, we want to validate the system adequacy to the synthesis of reaursive
logic programs from sparse sets of positive examples. The experimental methodology
described here d@tempts to simulate ahuman user of a synthesis g/stem who does not

know the target programs beforehand.
The questions we want to answer are the following:

* What is the performance of SKILit in the synthesis of (reaursive) definitions from

Sparse sets of positive examples?

* How does SKILit compare to cther state-of-the-art ILP systems?

139

140 EMPIRICAL EVALUATION

To answer these questions we used the experimental methodology described in the next
Sedion. Until recantly, proposed ILP systems were usualy not systematicdly tested
following an experimental methodology. Instead, the virtues and wegknesses of the
systems were described with the help of some dosen examples [20,38,109. This is
obvioudly not sufficient. However, some recet approades to the problem of reaursive
definition induction from sparse sets of examples adopted a systematic evaluation
methodology in order to test the robustnessof the proposed systems to variations in the
choice of the positive and negative examples[1, 49, 125.

6.1 Experimental methodology

We have dedded to adapt an evaluation strategy which is commonly used in ML to the
needs of ILP. Each experiment consists of making the inductive synthesis g/stem (for
example, SKILit) run through a set of positive axd negative examples, cdled the training
set. The resulting logic program is then evaluated through another set of positive and
negative examples, cdled the test set. The evaluation through the test set is esentialy
done in terms of the number of positive and negative examples covered by the induced

program (Figure 6.1).

To evaluate the robustnessof the synthesis /stem with resped to the dhoice of training
examples, a series of experiments (10 or 20 repetitions) are performed. For ead
experiment, the training set is randomly constructed from a universe of positive examples
and a universe of negative examples which are defined a priori. The training set is given
as a spedfication to SKILit. The resulting synthesized program is then evaluated on a
test set. Ead test set is adso randomly constructed from universes of positive ad
negative examples. While anew training set is constructed for ead experiment, the test

set remains the same for the whole series of experiments for the same predicate.

The universe of paositive examples of a given relation is a subset of elements of that

relation. The probability of extrading ead example in that universe is also established.

Experimental methoddogy 141

The universe of negative examples contains elements which do not belong to the

relation.

Universe of o
- Training .
Positive SKILit
Synthesized
Program

Examples

Universe of Test
Negative Set Interpreter]—»[Evaluation]

Examples

Figure 6.1: Experimental Methoddogy

The evaluation of the system’s performance in one experiment consists of cdculating the
success rate of the induced program with resped to the test set, measuring the CPU®
time spent by the system during the induction. For ead series of experiments we dso
measure the percentage of programs which have successrate equal to 1 (i.e., are aror

freg. This measurement is caled the percentage of test-perfed programs.

Other measurements are made for ead experiment such as counting the number of

clauses in ead program. However, such results are not reported here.

6.1.1 Successrate, test-perfed programsand CPU time

The success iate of a logic program P with resped to a test set TS with #E negative

examples and #E" positive examplesis

cov(P,E")+(#E - cov(P,E))
HE +#HE

sr(P,TS =

® Central Processor Unit.

142 EMPIRICAL EVALUATION

where cov(P,E*) is the number of positive or negative examples covered by P. The
coverage test is intensional, and is conducted with a depth-bounded interpreter (Sedion
4.7.4).

After measuring the successrate of ead induced program Py, Ps,..., Py, Uusing atest set
TS in a series of n experiments, we can cdculate the percentage of test-perfed

programs.

#{P | sr(P,TS=1, POSynthProgs})
n

tpp(SynthProgs, TS) = x 100%

where SynthProgs ={ P1, Pa,..., Pn }, and #isthe cadinality of a set.

The percentage of test-perfed programs estimates the probability of obtaining a correa
program by running SKILit once In our opinion it is important to consider the
percentage of test-perfed programs, and not just the average successrate. We want to
distinguish a situation where asystem synthesizes an acceptable program in 90% of the
cases from the one where aprogram with a successrate of 0.90 is aways g/nthesized. In

our opinion, the first situation is preferable when the gplication is program synthesis.

The CPU time spent for ead experiment was measured on a SUN computer with a

SPARCI10 pocesor. SKILit was implemented with the Y ap Prolog compiler [2].

6.1.2 The universe of positive examples

The digtribution of positive examples p(Xi,...,Xx) of a relation p/k in a universe of
positive examples is defined in terms of the distributions of the types of ead argument
Xi. A type which correspondsto a set of non-structured terms, such asint (0, 1, 2,..., 9),
has a uniform distribution over a finite subset. A structured type, such as list, has a
uniform distribution over its dimension up to a cetain limit. In the cae of a lig, the
dimension isits length. A list with a length greaer then the limit is not considered. The

length of list [] is 0 and the length of a list [X|Y] is 1+length of Y. The universe of

Experimental methoddogy 143

positive examples involving structures with dimension smaller or equal to 4 is cdled
U4(+). The universe of positive examples involving structures with dimensions greaer or
equal to 3 and lessor equal to 5, is cdled U3:5(+). To choose the subterms of a

structured term we cnsider the type of the subterm.

We can aso have positive examples where only the input arguments are restricted in
dimension. The universe U2i(+) is made of positive examples where the maximum

dimension of input argumentsis 2.

The etradion of a positive example p(Xs,...,Xs) is made by extrading every term X; of
type Ti acarding to the distribution of T;. The p(Xy,...,Xx) which do not belong to the
relation are obviously not considered. The task of extrading a postive example is
simplified by taking advantage of the predicate p/k mode dedaration. This way, one only
extrads the input terms, whereby the output terms are determined by these. In case the
predicate is not deterministic, the output terms dould be randomly chosen among the

various possble answers.

6.1.3 The universe of negative examples

In our experiments, we initially considered two sorts of negative examples. random and

‘nea mises. We will now describe the two sorts of examples.

A random negative example p(Xy,...,Xy) is generated in an analogous way to a positive
example, i.e., extrading every term X; acording to the distribution of its type T; and
cheding that it is in fad a negative example of the relation. The universe of random

negative examples involving lists with lengths equal or lessthan 4 is cdled U4(-).

The negative examples we cdl ‘nea mises are syntadicdly close to positive examples,
but lying out of the relation. The extradion of a ‘nea miss is made by syntadicdly
corrupting a positive example and cheding that the resulting fad does not belong to the
relation. The goplicable corruption operations on a positive example ae defined a priori.

A list, for example, is corrupted by randomly erasing an element, adding an element, or

144 EMPIRICAL EVALUATION

switching two conseautive dements. The doice of the crruption operation is aso
random. The universe of ‘nea miss negative examples involving lists of lengths, equal
or lessthan 4, is cdled Unmd(-). Smilarly we can have Unm3:5(-), Unma2i(-), €etc.

Random negative examples are simpler to generate than nea misss, since they require
lessprocessng. In our opinion, however, nea misses tend to smulate better the kind of
negative examples ared user would gve. For that reason we only report here the results

obtained with nea missnegative examples.

6.1.4 The SKILit parameters

For every experiment it is important to take into acount the state of the SKILit

parameters.

parameter default value meaning

solver_depth 6 | controls the interpreter depth in the
coverage tests.

max_num_of refine 300 | maximum number of refinements generated

ment_nodes during the mnstruction of a clause.

dcg deomp_test_rec comp_2 | the dause structure grammar used to define
the language bias.

Table6.1: SKILit parameters.

When the parameter values for an experiment are not explicitly mentioned, the default

values are asumed.

6.1.5 Predicatesused in the experiments

The predicaes used for evaluation are some common list processng predicaes.

Experimental methoddogy 145

» member(int,list): This predicae istrue if the integer in the first argument is contained

inthelist in the second argument.
* lagt_of(int,list): The integer isthe last element of the list.

o deete(int,listlist): The second list is obtained from the first by removing the first
ocaurrence of the integer from it. If the integer is not in the first list, the predicae

fails.
o rv(lig,list): The secnd list has the same dements of the first one in reversed order.

o append(list,list,list): The third list is obtained by concatenating the first list with the

send one.

o gplit(list,ligt,list): The second list contains the dements which are in odd positions in
the first list. The third list contains the dements that are in even positions in the first

list.

o union(lig,ligt,list): Eac list represents a set and is assumed to have no repeded
elements. The third list contains al the dements from the first two lists, without

repetitions.

The definitions of all the aove predicaes are shown in Appendix A.

6.1.6 Overview of the experiments conducted

In the first series of experiments SKILit described in Sedion 6.2 was evauated on its
own. The negative examples used were nea misses. The positive examples used for
testing are more complex than the ones used for training. The reason for thisis that more
demanding test sets (U3:5(+)) reduce the possbility of having a not so good program (in
the sense that it would not be acceted by a human programmer) achieve ahigh success
rate. This option was motivated by the results we obtained on some ealy experiments

not reported here (see Appendix D). In those experiments less demanding test sets

146 EMPIRICAL EVALUATION

(U4(+)) were used and we observed that some programs s/nthesized by SKILit achieved
maximum success rate, despite being clealy imperfed. In Sedion 6.3 we describe
experiments with the synthesis of predicate unior/3 that describe some limitations of the
evaluation methodology as well as of the synthesis methodology. In Sedion 6.4 we give
results of experiments comparing SKILit with the systems CRUSTACEAN and Progol.

In Sedion 6.5 we show the results of other experiments conducted with SKILit.

6.2 Resultswith SKILIit

In this series of experiments we evaluate the performance of system SKILit with resped
to the number of randomly chosen positive and negative training examples on some
relatively smple predicaes (append/3, delete/3, last_of/2, member/2, rvi2, split/3). The
positive training examples are withdrawn from the universe U4(+) of every relation, and
the negative examples from the universe Unmd4(-). Regarding the test sets, positive

examples were randomly extraded from the universe U3:5(+).

6.2.1 Successrate

Figure 6.2 shows the learning curves for the average successrate obtained by SKILit for
ead one of the six predicates considered. For ead predicae, four curves are presented.
One for O negative examples, the others for 5, 20 and 10Q Every curve shows the
average success rate obtained over 10 repetitions for 2, 3, 5, 10 and 20 pstive

examples.

For five out of the six predicates considered in this experiment, SKILit was able to read
a successrate equal to 1 with 20 positive examples and 100 negative examples. One

exception was the predicate append/3 that remained at a maximum level of 0.85.

Some smpler predicates (delete/3, last_of/2, member/2, split/3) readed the maximum
success rate with 10 positive examples and 5 negative. The system can obtain good

results, in terms of successrate, even in the asence of training negative examples. This

Results with KILit 147

is fundamentally due to the following reason. The various ources of bias used by SKILit
(clause structure grammar, badkground knowledge, parameters, clause @nstruction
strategies, etc.) are sufficient to eliminate many definitions that cover test negative
examples. This is the cae of the induction of predicate member/2, for instance where
excdlent results are obtained with 10 positive examples and 0 negative ones. For almost
al predicaes we observe in these experiments little or no variation in the successrate

with resped to the number of negative training examples.

append/3 delete/3
! X | —o—100 ! N
2 08 N g 08 —0—100
& 06 —0—20 o 06
1) %) 4D*20
© 047 A5 o 0,4
© 02+ o 0,2 —4A—5
a Y0 ; ; ; 0 a 0+ f f f { —X-0
2 3 5 10 20 2 3 5 10 20
positive examples positive examples
last_of/2 member/2
1 —R——
2 —o—100 £ og —o— 100
0 —1—20 o 06 —0—20
3 3 04
3 ——5 3 0'2 ——5
a —%—0 @ ol ‘ ‘ ‘ | |—<—0
2 3 5 10 20
positive examples positive examples
rv/2 split/3
1 1) =
g 08 %100/ % 08 —0— 100
@ 0,6 —0—20 @ 0,6 —0—20
g 04 A5 e 04 —A—5
g 02 g 02
© 0 ‘ ‘ ‘ | | >0 © 0 ‘ ‘ ‘ | |0
2 3 5 10 20 2 3 5 10 20
positive examples positive examples

Figure 6.2: SuccessRate vs. the number of training examples.

148 EMPIRICAL EVALUATION

6.2.2 Percentage of test-perfed programs

In Figure 6.3 we show the leaning curves for the percentage of test perfed programs.

Figure 6.3: Percentage of test-perfect programs vs. the number of training examples.

Contrary to the successrate, the percentage of test-perfed programs varies noticedly
with the number of negative examples. This happens, for instance, with the predicaes
append/3, last_of/2 and rv/2. Furthermore, these predicaes obtain 0% of test-perfed
programs when O negative examples are suppied. Once ajain, the system rapidly
converges towards 100% when the number of examples increases. The exception is ill

the predicate append/3.

Results with XKILit

149

6.2.3 CPU time

The average CPU time spent for the various experiments is siown in Figure 6.4.

append/3 delete/3
80 50
—0— 100
60 20 40 —<>— 100
£40 —A—5 2 30 20
= £ &5
—%—0
20 10 ——0
0 0+ ‘ ‘ ‘ !
2 3 5 10 20 2 3 5 10 20
positive examples positive examples
last_of/2 member/2
100 o 20
80 100 —<>— 100
—0— 20 15
o 60 Ak ° —1—20
£ 4 g -5
= 0 =
20 5 —%—0
03 ‘ ‘ ‘ 0 - ‘ ‘ ‘
2 3 5 10 20 2 3 5 10 20
positive examples positive examples
rv/2 split/3
250 25
200 —0— 100 20 —0— 100
o 150 020 o 15 —0—20
£ 100 55 || Eqo &5
50 X0 5 X0
0 : : : ‘ 0+ : : : ‘
2 3 5 10 20 2 3 5 10 20
positive examples positive examples

Figure 6.4: Spent CPU time (seconds).

We can observe some irregularity in the time aurves relative to the number of examples.
However, SKILit behaves well as the number of positive and negative training examples
grows. In most cases, the CPU time does not dramaticadly increase with the number of
training examples. The CPU time SKILit spends eansto be more dfeaed by the quality

of positive examples rather than their quantity.

150 EMPIRICAL EVALUATION

6.3 Experimentswith union/3

Systematic evaluation following the methodology described before has also been carried
out with other predicaes. For some of them (factorial/2, exNth/2, noreiszro/1), results

were somewhat similar to the ones presented for the six predicates used ealier.

However, for more complex predicaes, such as unior/3, quicksort/2 (qsort/2), insert/3
and partitior/4, good positive examples and/or good negative examples are hard to
generate randomly in our methodology. These predicates have sometimes more than one
reaursive dause or more than one base dause, eat of which involving one particular test

literal. Others have more than one reaursive literal.

This does not necessarily mean that our synthesis methodology neels carefully chosen
examples for those predicaes. It may aso be the cae that smulating a human user by
randomly generating examples is harder for more complex predicates. For example,
many of the negative examples randomly generated for predicate unior/3 tend to be
variants of a few different cases. On the other hand some important negative examples
are unlikely to be randomly generated. We should note that the process of random
generation of examples was the same for all the predicaes evaluated (from member/2 to
partitiorn/4).

We will now describe some experiments conducted with the synthesis of predicae

unior/3 which help describing some of these difficulties.

We ran SKILit on sets of 30 randomly generated positive examples and 100 negative
examples. Positive examples were taken from the universe U2i(+), and negative
examples from the universe Unm2i(-). Test examples were taken from U3:5(+) and

Unma2i(-). The number of repetitions per experiment was 50.

With randomly constructed training sets, SKILit did not synthesize one test perfed
program in 50 runs (Table 6.2). We can improve the results by changing the dause

structure grammar so that every clause is forced to have a least one test literal (the

Experiments with uriorn/3

151

previous clause structure grammar alowed clauses without test literals). The new CSG is

cdled decomp_+test_rec comp_2 In 50 runs, SKILit finds 3 test-perfed programs.

Positive Negative CSG success| test-perfed |time

random nea mises | decomp test rec comp 2 0.532 0| 570484
random nea mises |decomp +test rec comp 2| 0.585 6| 543441
random 9 chosen demmp test rec comp 2 0.753 34| 204748
random 9 chosen demmp +test rec comp 2| 0.740 34| 130772
5 chosen nea mises | decomp test rec comp 2 0.794 58| 63106
5 chosen nea mises |decomp +test rec comp 2| 0.821 64| 50.838

Table 6.2: Experimental results for unior/3.

Are these bad results due to the ladk of good positive examples or good negative
examples? To answer this question we ran SKILit again with 50 sets of 30 random
positive examples. However this time 9 negative examples were manually chosen. The
results improved clealy independently of the grammar used. For the dause structure
grammar decomp_+test_rec comp_2 however, the CPU time spent was considerably

less(Table 6.2). The chosen positive ad negative examples are shown in Table 6.3.

Chosen pasitive examples Chosen negative examples

union(] ,[2,3],[2,3]).
union([2],[2,3],[2,3]).
union([2],[3,4],[2,3,4]).
union([2,3],[4,2,5],[3,4,2,5]).
union([2,3],[4,5],[2,3,4,5]).

-union([2],[1,2],[2,1,2]).
-union([2],[3,4],[3.4]).
-union([3],[2],[3]).
-union([2,3],[2],[2]).
-union([2,3],[4],[3,4]).
-union([2,3],[4],[2,4]).
-union([2],[2],[2,2]).
-union([2,1],[2],[2,1,2]).
-union([1,2],[1,2],[1,1,2]).

Table 6.3: Chosen positive and regative examples used in the experiments.

We then picked 5 chosen positive examples (Table 6.3) and ran SKILit with 50 sets of
100random negative examples. The results obtained are quite good with the usual clause
structure grammar and till im prove if we use the grammar that imposes test literals. We
can conclude that it is likely (34%) to find good random sets of positive examples when
good negative ones are manually chosen. It is also likely (58%, 64%) to find good

152 EMPIRICAL EVALUATION

random sets of negative examples when good positive ones are given. However, finding

two good random sets smultaneously has low probabili ty (0%, 6%) (Table 6.2).

One possble diredion is to give the user more powerful means to transmit negative
examples to the system. This motivated our work with integrity constraints, presented in

the next Chapter.

6.4 Comparison with other systems

Here we mncentrate on comparing SKILit with CRUSTACEAN and Progol, since these
two systems san to be representative of the state-of-the-art. Nevertheless other

previously described works, are dso relevant.

6.4.1 CRUSTACEAN

A comparison between the SKILit system and the CRUSTACEAN system, conducted
on some predicates whose results appea in [53], is simmarised in Table 6.4 and shown
graphicdly in Figure 6.5. The values 1own for CRUSTACEAN were taken from [1].
The values for SKILit were obtained from experiments performed by us in conditions, as
identica as possble, to those described by Aha & al. For this reason we should consider
these values only as indicaive. Anyhow, in the presence of a rather reduced number of
positive axd negative examples, the SKILit system obtains success rate results
comparable to the CRUSTACEAN system. Taking into acount that SKILit uses a much
wedker language bias than CRUSTACEAN (which implies a larger seach space ad a
wider applicability) it is an important result (seeSedion 3.5.4).

Comparison with ather systems 153

SKILit | CRUSTACEAN

number of training positive examples

2 3 5 2 3
append/3 0.76 0.80 0.89 0.63 0.74
delete/3 0.75 0.88 1.00 0.62 0.71
rvi2 0.66 0.85 0.87 0.80 0.86
member/2 0.70 0.89 0.95 0.65 0.76
last of/2 0.71 0.72 0.94 0.74 0.89

Table6.4; SKILit's successratevs. CRUSTACEAN's

For ead predicae we varied the number of positive examples between 2 and 5, whilst
the number of negative examples was kept constant (=10). The positive examples were
extraded from the universe U4(+). For the negative examples we used the universe

Unmd4(+). The results $row averages obtained over 5 runs.

Figure 6.5: Successrates of SKILit vs. CRUSTACEAN

6.4.2 Progd

To compare SKILit with the system Progol [80], we dedded to take one of the input
files distributed with Progol itself. Thisfile mntains 17 positive examples and 8 negative
ones for predicate append/3. With these examples, the Progol version that was available
to us, perfedly synthesizes a definition of append/3. The cmmparison experiment with
SKILit consisted in running both systems over 20 sub-sets of those 17 positive examples.
These subsets were randomly constructed and suppied to ead system, together with all

the negative examples. The results are shown in Table 6.5.

154

EMPIRICAL EVALUATION

SuccessRate Standard Deviation % Test-perfeds
XKILit Progd XKILit Progd XKILit Progd
3 0.625 0.500 0.217 0.000 25 0
5 0.750 0.525 0.250 0.109 50 5
7 0.800 0.699 0.245 0.244 60 35
9 0.900 0.949 0.200 0.150 80 85
11 0.975 0.945 0.109 0.149 95 60
13 0.850 0.996 0.229 0.006 70 70
15 0.975 0.998 0.109 0.006 95 90
17 1.000 0.998 0.000 0.006 100 90

Table 6.5: Comparison between SKILit and Progd for predicate append/3.
(Thefirst column shows the number of positive examples)

The same results are represented graphicdly in Figure 6.6.

% of test-perfect programs

number of positive examples

3 5 7

9 11 13 15

number of positive examples

17

—— SKILit
—X— Progol

Figure 6.6: Comparison between SKILit and Progd for append/3.

Comparing the percentages of the test-perfed programs obtained by ead system, we

observe that SKILit gets better results. Taking into acmunt that we ae in a program

synthesis context, this is a very positive result. With resped to the successrate, SKILit

seams to adhieve better results when tadling very small sets of examples (3 to 7

examples).

Other Experiments 155

6.5 Other Experiments

In this Sedion we show some isolated experiments conducted with SKILit with manually
seleded positive and negative examples. These experiments srve to ill ustrate the dassof

programs SKILit is able to induce

Note that in all these experiments the same dause structure grammar has been used
(decomp_test_rec comp_2), unless s$ated otherwise. This is the same grammar used in

all the other experiments reported in this thesis.

The badkground knowledge is either ‘integer’ or ‘list’ depending on the almissble
predicates. Unfortunately, a list of the almissble predicaes has to be given to SKILit.

Thisis an important limitation that we must investigate in the future.

6.5.1 Factorial

Predicate factorial (X,Y) istrueif Y = X!.
Input:

mode(factorial (+,-)). -factorial(3,3).
factorial(2,2). -factorial (4,12).
factorial (3,6).

factorial(4,24).

background knomedge(integer).
adm_predicates(factorial/2,[sucd/2,pred/2,zero/1,multb/3,factorial/2]).
clause_structure(decomp_test rec comp_2).

Output:

factorial (A,A) — pred(A,B),pred(B,C),zero(C).
factorial (A,B) — pred(A,C),factorial (C,D),multb(D,A,B).

Number of iterations: 3
507 refinements (total)

156 EMPIRICAL EVALUATION

6.5.2 Multiply

Predicate multi ply(A,B,C) instantiates C with A*B.

Input:
mode(multiply(+,+,-)). -multiply(2,2,2).
type(multi ply(int,int,int)). -multi ply(3,3,6).
-multiply(2,2,5).
multi ply(0,4,0). -multi ply(2,2,6).
multi ply(1,5,5). -multiply(2,2,8).
multi ply(2,3,6). -multi ply(2,3,4).

multi ply(3,4,12).

background knowl edge(integer).

adm_predicates(multi ply/3,[pred/2,sucd/2,zero/ 1,plus/3,0ne/1,multi ply/3]).
clause_structure(decomp_test_rec comp_2).

Output:

multi ply(A,B,A) — zero(A).
multi ply(A,B,C) — pred(A,D), multi ply(D,B,E), plus(E,B,C).

Number of iterations: 3
795 refinements (total)

Properties generated (discarded by TC):

multi ply(1,AA).

6.5.3 Insert

Predicae insert(l,L1,L2) inserts an integer | into a sorted list L1 obtaining L2 so that L2
is Sorted.

Input:

mode(insert(+,+,-)). -insert(2,[1],[2,1]).
type(insert(int,list,list)). -insert(1,[2],[2,1]).

Other Experiments 157

insert(3,[1,2],[3,1,2)).
insert(2,[] ,[2]). finsert(3,[1,2],[1,3,2)).
insert(1,[2],[1,2]).

insert(2,[1],[1,2]).

insert(3,[1,5],[1,3,5]).

background knoMedge(list).
adm_predicates(insert/3,[dest/3,const/3,'<'/2,null/ 1,insert/3]).
clause_structure(decomp_test rec comp_2).

Output:

insert(A[l.[A]).
insert(A,[B|C],[AB|C]) - A<B.
insert(A,[B|C],D) —insert(A,C,E),insert(B,E,D).

This definition of insert/3 seams logicdly corred. Computationaly it has the following
problem. Posing to the program the query

~insert(8,[1,3,5,7],R).
we get a series of identicd answers

R=1[1,3578 ;
R=1[1,3578 :
R=[1,3578] :
R=1[1,3578] :
R=1[1,3578 :
R=1[1,357,8]

This kind of computational problem could be eaily deteded by limiting the number of
identica answers obtained on the training examples. This filter, however, is not currently

implemented in SKILit.

If we dange the CSG so that double rearsion is not alowed

(decomp_test_recl_comp_2 Appendix C) we get the following definition for insert/3:

insert(A[] ,[A]).

158 EMPIRICAL EVALUATION

insert(A,[B|C],[A,B|C]) - A<B.
insert(A,[B|C],[B|D]) « B<A,insert(A,C,D).

6.5.4 Partition

The predicae partition(l,L,SG) splitslist L into two lists Sand G, so that S contains the

elements of L smaller or equal to |, and G contains the dements of L greaer than .

Input:

mode(partition(+,+ ,-,-)). -partition(2,[2],[2],[2]).

mode(partition(int,li st,li st,li st)). -partition(2,[1,3,4],[1,4] ,[3,4]).
-partition(2,[3,1],[3],[1]).

partition(2,[] ,[] ,[])- -partition(2,[1,0],[1],[Q]).

partition(4,[2,6],[2],[6]). -partition(2,[4,5],[4].,[9]).

partition(3,[1,2,5],[1,2],[5]). -partition(4,[1,2],[1].,[2]).

partition(3,[6,2,5],[2],[6,5]). -partition(2,[3],[3].[]).

-partition(2,[1],[1 ,[1]).
background know edge(li st).
adm_predicates(partitiorn/4,[dest/3,const/3,null/ 1,'<'/2,partitior/4]).
clause_structure(decomp_test_rec comp_2).

max_num_of _refinement_nocdkes (1000).

Output:

partition(A,[] ,[1.0])-
partition(A,[B|C],[B|D] ,E) — B<A, partition(A,C,D,E).
partition(A,[B|C],D,[B|E]) - A<B,partition(A,C,D,E).

Properties generated:

partition(A,[B,C],[B],[C]) - B<A,A<C.

6.5.5 Insertion sort

Predicae isort(A,B) sorts list A. List B is the sorted list. The almissble predicates
chosen (insertb/3) determine the sorting strategy.

Related work concerning evaluation 159

Input:
mode(isort(+,-)). -isort([1,2],[2,1]).
type(isort(list,list)). -isort([1,3,2],[1,3,2]).
-isort([3,2,1],[2,3,1]).
isort([] ,[]). -isort([3,2,4,1],[2,3,4,1]).

isort([2,1],[1,2]).
isort([3,2,1] [1,2,3]).

background knoMedge(list).
adm_predicates(isort/2,[dest/3,const/3,insertb/3,isort/2,'<'/2,null/ 1]).
clause_structure(decomp_test rec comp_2).

Output:

isort([] ,[]).
isort([A|B],C) —isort(B,D),insertb(A,D,C).

Number of iterations. 3
193 refinements (total)

Properties generated:

isort([A,B],C) — insertb(A,[B],C).

6.6 Related work concerning evaluation

Some ILP systems have been empiricdly evaluated in a systematic way by their authors.

Next we describe the most relevant pieces of work here.

In 1993 Quinlan presented his “Midterm Report” where system FOIL is evaluated [97]
using an experimental methodology considered to be “more pragmatic” than the usually
used for machine leaning/ILP systems. Quinlan criticized in particular the fad that many
systems have been evaluated using a very limited badkground knowledge, as well as a set
of carefully chosen training examples. The evaluation methodology adopted by Quinlan

consists of making the system synthesize aseries of list processng predicaes from

160 EMPIRICAL EVALUATION

Bratko's book, “Prolog Programning for Artificial Intelligence’ [10]. The badkground

knowledge isinitially empty and acaimulates the predicates as it leans.

With resped to the training examples, Quinlan considers the set of lists with length three
or less and with elements from the set {1,2,3}. This st of lists is cdled universe U3.
Another set, universe U4, has lists of length four or lessand elements in {1,2,3,4}. For
eadt relation and for ead universe he constructed the set of positive examples belonging
to the relation involving the lists in that universe. Those that do not belong to the relation
constitute the set of negative examples. All the positive examples are assgned for
training, as well as al the negative examples up to the limit of 90 000examples. The

results obtained are mnsidered satisfadory for most of the predicates.

In relation to Quinlan’s work, we would like to point out the following. In spite of the
fad that the training sets are not carefully chosen, they are mmplete for ead universe
considered (U3, U4). This faa fadlitates the induction of reaursive definitions. In an
inductive synthesis stting, where the user manually suppies the examples, one cainot
exped the training sets to be complete. Instead, the training sets tend to be small and

sparse.

In 1994 Aha d al. [1] evaluated the CRUSTACEAN system using randomly seleded
training sets, in order to demonstrate that the system can synthesize reaursive definitions
from a smal (and sparse) set of examples. For ead predicae, CRUSTACEAN's
performance (successrate) was measured with training sets of 2 to 3 positive examples
and 10 negative examples, al of which were randomly chosen. The performance values
are obtained from an average of 10 runs for a given number of positive examples. The
predicaes involved are append/3, delete/3, exractNth/3, factorial/2, last of/2,
member/2, norelsZero/1, plus/3, revese/2 and split/ 3.

Our experimental methodology is largely based on this work. Their evaluation arealy
confronts an induction system to situations where the training sets are not complete, but

sparse. The methodology’s main limitation is, in our view, its difficult applicaion to

Related work concerning evaluation 161

systems with a wider set of synthesizeble programs than CRUSTACEAN. A system like
SKILit, for example, which can induce agrea variety of clauses, requires negative
examples that can eliminate over-general programs. It is unlikely that these negative

examples are randomly generated in the methodology of Aha 4 al.

7. Integrity Constraints

In this Chapter we introduce the integrity checkng dgorithm MONIC which
uses a Monte Carlo strategy to search for inconsistencies between a program
and integrity constraints. MONIC is efficient, sound but incomplete. MONIC
is integrated with the SKILit system and we present experimental results
regarding the synthesis of programs from positive examples and integrity

constraints.

7.1 Introduction

Typicd ILP systems accept ground negative examples only. In our view, a ground atom
conveys very little information when it is given as a negative example. The pradicd
result of thisisthat the number of negative examples given to a system tends to be high.
The fad that ILP systems usually require alarge number of negative examples is the
main problem tadkled in this Chapter.

To illustrate this problem we present two examples referred to in the literature.

163

164 INTEGRITY CONSTRAINTS

* Acoording to the “mid-term report” by Quinlan [97] the FOIL system leans the
predicae revase/2 using 1560to 92796negative examples.

o Zele @ a. [125 refers that the CHILLIN system leans the predicae member/2 with

an average acarragy of around 50% given more than 80 negative examples.

These fads restrict the goplicability of ILP systems, espedally when the examples are
manually suppied by the user, asit happensin program synthesis.

The problem of the excessve number of negative examples has already drawn some
attention from the ILP community. Some systems like FORCE2 [12], LOPSTER [60]
and CRUSTACEAN [1] use avery restrictive language bias, which reduces the number
of negative examples required. However, these systems sem difficult to extend to cope
with a greaer variety of logic programs. The FOIL system [96] alows the use of a
closed world asumption. If a fad is not given to the system explicitly as a positive
example, it is then considered a negative example. This technique is not pradicd in many
learning situations becaise it forces the user to suppy a set of complete positive

examples.

A promising alternative relies on the use of integrity constraints. These ae first order
logic dauses of the form all...[b— c[...[Od, that can be used to transmit to the system
some mnditions that the predicae to synthesize should resped, as it happens with
negative examples. The main difference is that the integrity constraints enable a more
compad representation than atomic negative examples. Luc de Raeadt suggested that an
ILP system could use mnstraintsto verify the generated programs [21].

In spite of the fad that integrity constraints are not normal program clauses, the SLDNF
proof procedure can be used to ched whether a logic program satisfies an integrity
congtraint, by transforming the mnstraint into aquery, and posing that query to the logic
program. This drategy, however, suffers from severe dficiency problems, sincefinding a

violating instance of the anstraint may involve trying all its possble instantiations. Other

The number of negative examples 165

more sophisticated spedal integrity constraint handlers, like SATCHMO [65], still seen
computationally too heavy for pradicd usein ILP.

We propose a new method to handle integrity constraints. It enables the use of
constraints in ILP systems without high efficiency costs. Experimental results $ow that
we can induce quite acarate reaursive logic programs rather efficiently thisway. In faa,
in our experiments, we observed that for the same level of acaracy, our system runs

faster with integrity constraints than with negative examples.

Our integrity constraint cheder (MONIC) uses a ‘Monte Carlo’ strategy. To chedk
whether a program P satisfies an integrity constraint I, it randomly generates a number of
logicd consequences of P and verifies if they satisfy |I. This is a very efficient way to
handle mnstraints. Unfortunately our constraint chedker is aso incomplete. However,
we can control the level of incompleteness by varying the number of logicd

consequences sampled from P.

7.2 The number of negative examples

As it was drealy referred in Chapter 5, many ILP systems require an excessve number
of positive examples to induce predicae definitions. This a serious problem and a barrier
to the usability of ILP systems, espedaly in the program synthesis context. System
SKILit handles the ladk of crucial training positive examples by generating properties.
These ae dauses that cgpture regularities within the positive examples, generalize them,

and enable the introduction of reaursive dauses.

What about negative examples? Giving al the aucial negative examples to an ILP
system can also be tedious, as there can be alarge number of them. One ground negative
example conveys little information to the system. Besides, the user does not know which
negative examples are more gpropriate for the synthesis task. Thus se/he tends to give

the system nore negative examples than necessary.

166 INTEGRITY CONSTRAINTS

7.3 Integrity constraints

A property can represent a set of positive examples. Likewise, the negative examples can
also be replacal by, or complemented with, more expressve dauses. Such clauses are

cdled integrity constraints.

Example 7.1: We can express that no term is member of the empty list through the

integrity constraint member ([] ,X) - false. ¢

Example 7.2: The dause sort(X,Y) - sorted(Y), represents an integrity constraint which
expreses the mndition “the second argument of predicate sort/2 is a sorted list”.
Likewise, we can say that the list Y is a permutation of list X with
sort(X,Y) - permutation(X,Y).¢

Integrity constraints, like negative examples, can be used by an ILP system to deted or
regjed over-general programs. In fad, the negative examples can be seen as a spedal case
of integrity constraints. For example, member([],2) - false represents the negative
example member ([] ,2). An integrity constraint intensionally represents a possbly infinite
set of negative examples and can expressthe negative information in shorter terms than

ground negative examples.

Definition 7.1: An integrity congraint is a first order clause of the form
A0...OA[RB,0...kBn The A and the B are @oms. The A are cdled postive

conditions and the B;, negative mnditions of the constraint.+

Note that A.[l...0A[=B: ... Bm can be written as B.[... 1By - Al... A, Here, we
will adopt a Prolog-like notation as we did for other clauses’. The disunction and
conjunction operators are replaced by commes as in By,...,Bn— A,...,An. The ommas

on the aitecalent side represent conjunctions. Those on the cnsequent side represent

Integrity constraints 167

digunctions. As we did for program clauses, we will keg the arow (-). Negation is

interpreted as negation as failure.
Example 7.3: The integrity constraint

union(A,B,C),member (X,C) - member (X,A),member (X,B)

expresses the cndition that if X belongs to the list in the third argument of unior/3
(output argument) then it is either a member of the list in the first argument or of the list

on the second one (one of the input arguments).+

Integrity congtraints are generally defined as range restricted clauses [21,105. In this
work we do not consider this restriction, since the programs we synthesize ae not range

restricted either.

Positive and negative examples can also be represented as integrity constraints. A
positive example p corresponds to the cngraint true-p. A negative example n is
represented as the ondgraint n-false. Although examples and constraints can
theoreticdly be handled in a uniform way, we do it separately since we use different

strategies to handle positive examples, negative examples and integrity constraints.

7.3.1 Constraint satisfaction

In order to avoid the induction of over-general programs, an ILP system should test the
candidate program against the integrity congtraints on certain occasions. If a candidate
program P satisfies the integrity constraints, then it is accepted and the induction process

procedls to the next phase.

® Obviously, constraints are more expressve than Prolog Clauses snce the first can have more than one literal in
the head.

168 INTEGRITY CONSTRAINTS

We now define the notions of satisfaction, violation and violating instance of an
integrity constraint [21]. The ayent that verifies the mnstraint satisfaction will be cded
integrity constraint checke or simply integrity checke:.

Definition 7.2: Given a mnstraint By, ...,Bm— As,...,As and aprogram P, the congtraint is
satisfied by P if and only if the query Ba,...,Bm,not A4,...,not A, failson P. If P does
not satisfy | we say that P violates the wmnstraint I. If IT is a set of integrity constraints,
P satisfies I T if it satisfies all the cnstraintsin IT.¢

Definition 7.3: If | is an integrity constraint By,...,.Bn— Aq,...,An 10 is a violating
instance of | if and only if 8 is a posshle axswer substitution for the query

«Ba,...,Bmnot A,...,not A,, when presented to P.¢

Example 7.4. The integrity consgtraint sort(X,Y) - sorted(Y) is not satisfied by program
{sort(X,X)} O {definition of sorted/1}. We can chedck that by transforming the cnstraint

into the query

< sort(X,Y),not sorted(Y).

This query succeals on {sort(X,X)} [{definition of sorted/1} with the aswer
substitution { X/[1,0], Y/[1,0]}. Thus, aviolating instanceis

sort([1,0],[1,0]) - sorted([1,0]).

Given Definition 7.2, we can chedk whether a program P satisfies a congraint by
transforming the cnstraint into a query and posing that query to P, using SLDNF.
Although this is a smple way to ched consistency, it is potentialy inefficient. It is
convenient because it does not require spedal theorem provers. Its inefficiency is due to

the generate-and-test nature of SLD(NF).

MONIC andthe Morte Carlo strategy 169

Example 7.5: Integrity constraint sort(X,Y) - sorted(Y) can be transformed into a query
< sort(X,Y),not sorted(Y). To chedk the mnsistency of the constraint and a program P,
we pose the query to P. SLDNF constructs al possble instantiations of the literal
sort(X,Y) and, for ead value of Y, it tests whether or not it is a sorted list (assuming X
and Y range over lists). When an unsorted list is found, we have aviolating instance of
the mnstraint. This can be very inefficient. Suppose we ae onsidering that X and Y
range over lists of length 0,1,2,3 and 4, with integer elements from {0,1,...,9}. This
represents a universe of more than 10000lists. To answer such a query, SLDNF may
have to try al possble values. This problem gets exponentialy hard as the aity of the

predicae in the first literal increases. ¢

Relatively little d@tention has been given to integrity constraints in the field of madine
learning, inductive logic programming included. Luc De Raedt employed integrity
congtraints in his ystem CLINT [21]. The constraints were transformed into queries and
confronted with the induced programs, as suggested by Definition 7.2. For this reason,
the seach for aviolating instanceis inefficient. If any violating instanceis found, CLINT

attempts to determine which predicae is incorrealy defined with the help of an orade.

One can find other integrity chedkers in the logic programming literature, such as
SATCHMO [65], and the one by Sadri and Kowalski [105. The problem with this sort
of integrity chedkersistheir inefficiency.

7.4 MONIC and the Monte Carlo strategy

In this Sedion we describe MONIC (Monte Carlo Integrity Checke), a Monte Carlo
method’ [103 which hendles integrity constraints. The method is incorporated within

" Acoording to Rubinstein [103, the designation “Monte Carlo” was introduced by von Neumann and Ulam during
the World War |1, as code for the secret work being carried out at Los Alamos, whil e the Method of Monte Carlo
was applied to problems related to the aomic bomb. Nowadays, still according to Rubinstein, it is ill the most
powerful and the most used method in complex simulation problems with a broad scope of appli cation.

170 INTEGRITY CONSTRAINTS

system SKILit. As ®en in Chapter 5 SKILit constructs a logic program P by adding one
clause C at atimeto an initia theory Po. Algorithm 6 describes the induction processand
shows where the integrity chedk is made.
P:=Pg
while P does not satisfy some stopping criterion
construct new clause C
if PO {C} O BK satisfiesintegrity constraints
P:=P0O{C}
end if
end while

Algarithm 6: High level description d SKILit

In eat cycle, after the generation of a dause C, there is a mnsstency chedk which
involves the new program P [0 {C}. This new program is accepted only if it satisfies the

integrity constraints. We now describe how the integrity constraints are processed.

7.4.1 Operational integrity constraints

MONIC processs integrity constraints of the form A,...,An—>Bu,...,.Bm, as defined
ealier. Furthermore, two conditions are imposed to an integrity constraint I given in the

spedfication of a program P defining a predicate p/k.
1. Theleftmost literal of the antecadent, should be apositive literal with predicate p/k.

2. If I istransformed into query Q of theform — B;,...,Bm,not Aq,...,not A, and the input
arguments of B, are instantiated, then the query should be an acceptable query with
resped to the input/output modes of the predicaesin Q.

A query —L, where L is either p(Xa,...,Xy) or nat p(Xi,...,Xn), is accetable if every
input argument X is fully instantiated. A query —p(Xi,...,Xs), MoreLiterals is
acceptable if, after instantiation of all arguments X;, the query — Moreliterals is

accetable, where Moreliterals is a cnjunction of literals. A query —nat p(Xy,...,Xn),

MONIC andthe Morte Carlo strategy 171

MoreLiterals is acceptable if the query —Moreliterals is accetable. Cheding the
acceptability of a query istrivial given the input/output mode dedarations of the involved
predicates. This condition guarantees that the input/output mode of the involved
predicates will be respeded.

The first condition guarantees that the integrity constraint restricts predicae p/k, since
the literal with the predicae p/k is found in the anteceadent of the congtraint. The fad that
this literal must be in the leftmost position alows the search for a violating instance of

the integrity constraint to start from a ground logica consequence of programP.

The integrity constraints accepted by MONIC are restrictive in the sense defined by De
Radalt [21]. In this type of restrictions, the literals relative to the predicae to be induced
are in the anteceadent. An example of a restrictive integrity constraint relative to predicate

unior/3is

union(A,B,C),member (X,A) — member (X,C).

This constraint says that if list C is the union of lists A and B, then every element X of A
should be an element of C.

An integrity constraint which hes the predicae to be induced in the consequent is cdled
generative An example of a generative mnstraint relatively to predicae unior/3 is
true— union(A,A,A). Here we do not consider this srt of constraints, although it seans

possble to extend our integrity chedker to handle them.

7.4.2 Thealgorithm for constraint cheding

Our consistency chedking agorithm (MONIC) takes a particular program P defining
some predicae p/k and a set of integrity constraint 1T, and gves one of two possble
answers. Either P and IT are inconsistent (some I T is violated), or P and IT are not

found to be inconsistent, and are awnsidered probally consistent.

172 INTEGRITY CONSTRAINTS

The Monte Carlo method is based on the random generation of fads concerning the
predicate p/k which are logicd consequences of the program P. Ead of these fads is
used to search for an instance of some I 1T which is logicdly false. If such a violating
instance is found, we can be sure that P and IT are incongistent. if no violating instance
of some | 1T isfound, after alimited number of attempts we stop. Inthat case, P and IT

are not found to be inconsistent, but only probably consistent.

The random generation of ground logica consequences of P is central to the dgorithm,
and deserves ome more dtention. To obtain fad f, such that P |- f, we start with the
most general term p(Xa,...,Xk) of p/k (Xi,... Xk are variables). For clarity, we assume k=2
in the following. Let us also suppose mode(p(+,-)), and type(p(typex.typey)), for the
most general term p(X,Y). We now want a query — p(X,Y), where X is bound to a term
of type typex (remember that X is an input argument). For that, X unifies with a term ti,
of type typex. After querying program P, variable Y is bound to a term to. Fad f is

p(ti n,tout) .

The random nature of f comes from the doice of the input arguments. Each term of a
given type is smpled from a given population of terms with a fixed distribution (see
Sedion 7.4.3).

Given a fad, we unify it with the leftmost literal in the atecadent of ead ICIT. The
constraint can now be transformed into an acceptable query. The query posed to P either
succeals or fails. Successmeans that a violating instance of | was found, and so P and |
are inconsistent. Failure means that, although no violating instance was found, P and |
can gill be inconsistent. However, the more fadsfail to violate I, the more likely it is that
P and | are mnsstent. Further on, in Sedion 7.7.1, a probabilistic measure of this

likelinessis given.

input: Program P defining the predicae p/k;
Mode and type dedarations of predicae p/k;
A set of integrity constraints I T,
Integer n.

MONIC andthe Morte Carlo strategy 173

output: One of {inconsistent, probably consistent}

1. Generate query Q
p(X,Y) isthe most general term of p/k
(X represents the input arguments, Y the output ones)
For ead variable Vi[IX, randomly instantiate it with t; of type type(V));
8n = { Vilt:}
Q:= «P(X,Y)6hn
2. Posequery Qto P
If Q failsthenreturnto step 1
Else we obtain an answer substitution Gy
(if there ae dternative answer substitutions, we onsider eat
one of them)
3. Generate fad f
f= P(X,Y)elneout
4. For ead I0I T, seach aviolating instance of I.
Transform | into aquery —L,MoreLiterals
B isthe unifier of the leftmost literal L and f
Pose query — Moreliterals@, to P
If the query succeels then P violates |
Store f as a negative example
Return ‘inconsistent’
5. After n queriesreturn ‘ probably consistent’
Otherwise returnto step 1

Algarithm 7: MONIC: Theintegrity checker.

Example 7.6: The program P below, contains an incorred definition of rv/2 which is
supposed to reverse the order of the dements of a given list. Definitions for append/3
and last_of/2 are dso given as part of the badkground knowledge.

mode(rv(+,-)).

type(rv(list,list)).

rv([A,B|C],[B,A|C]).

rv([A|B],C) —rv(B,D),append(D,[A],C).

mode(append(+,+ -)).
type(append(list,list,list)).

append([] ,AA).

append([A|B],C,[A|D]) - append(B,C,D).

mode(last_of(+,-)).

174 INTEGRITY CONSTRAINTS

type(last_of(li st,int)).

last_of([X] ,X).

last_of([X|Y],2) —last_of(Y,2).
The following integrity constraint | imposes that for every fad rv(X,Y), the first element
of list X isthe last element of list Y.

rv(X,Y), X=[A|B] - last_of(Y,A).

We will now follow one iteration of the mnstraint chedker MONIC (Algorithm 7).

Step L rv(X,Y) isthe most general term;
Xisthe only input argument and has type li st;
A random choice of aterm of typelist givest=[4,1,5];
Thequery Qis —rv([4,1,5],X).
Step 2 The query Q succeals on P and we obtain 6,,={X/[1,4,5]}.
Step 3 fisrv([4,1,5],[1,4,5]).
Step 4 | isturned into the query
<rv([4,1,5],[1,4,5]), [4,1,5]=[4][1,5]] , not last_of([4,1,5],4).
The query succeals. | isviolated.
Storerv([4,1,5],[1,4,5]) as a negative example.

Return ‘inconsistent’. ¢

7.4.3 Typesand distributions

Random fads are obtained by randomly generating the input arguments of a query which
is placed upon a program P. The random generation of ead argument is made acording
to a distribution defined for the type of that argument. Here, a distribution is associated
to every type. The distribution can be pre-defined in the ILP system, or it can be defined
by the user himself. Presently, we define the distribution of a type by spedfying the
probability of obtaining terms of length 0, 1, 2, etc. An aternative for the definitions of
type distribution are the stochastic logic programs by Mugdeton [81].

Evaluation 175

Example 7.7: In our experiments we defined the distribution for the set of lists of length

0to 4, with elements 0 to 9, asfollows.
Probalblit y(length of list L=n) = 0.2 for n=0,...,4.
Probalblit y(any element of alist L isd)=0.1 for d=0,...,9.

As a onsequence, 0.2 is the probabili ty of obtaining an empty list ([]). The probability of
obtaining the list [3] is0.2x0.1=0.02. ¢

Although MONIC requires that a particular distribution must be defined for ead type,
the dhoice of the distributions does not seam difficult. In fad, the distributions we used

in the experiments were pradicdly our first choice

7.5 Evaluation

We mnducted some experiments to evaluate SKILit's performance when combined with
the MONIC module for integrity constraint cheding. In the first experiments (Sedion
7.5.1) we dhose the predicates append/3 and rv/2 and for ead one of them tried dfferent
sets of integrity constraints. The evaluation methodology is identica to that described in
Sedion 6.2, except that here the integrity constraints are dso given. In Sedion 7.5.2 we
describe experiments with the predicate unior/3. In al the experiments the number of

queries generated by Algorithm 7 (Integer n) was 100.

7.5.1 append/3 and rv/2

For the predicae append/3 the following four sets of integrity constraints were used (see
Appendix A for the definitions of member/2 and subli st/2):

icl: append(X,Y,Z),member (A X) — member(A,Z).
append(X,Y,Z),member(A,Y) - member (A,2).

ic2: append(X,Y,2),sublist([A,B] ,X) - sublist([A,B],2).

176 INTEGRITY CONSTRAINTS

append(X,Y,2),subli ([A,B],Y) - sublit((A,B] ,2).

ic3: append(X,Y,Z),sublist(A,X) - sublist(A,Z).
append(X,Y,2),sublist(A,Y) - sublist(A,Z).

icd: append(X,Y,Z),sublist(A,X) - sublist(A,Z).
append(X,Y,2),sublist(A,Y) - sublist(A,Z).
append([|].X,X) - false.
We now explain in words the meaning of some of the wnstraints. The first constraint in
icl, for instance, says that if list Z is the result of appending lists X and Y, then any
element A of X should be an element of Z. The second constraint in ic2 says that if A and
B are two conseautive dements of list Y, they should be two conseautive dements of list
Z. The third constraint of ic4 says that if we gpend a list with at lesst one dement
([_1]) tolist X, we should never obtain the same list X.

For rv/2 we have two sets of constraints

icl: rv(X,Y),sublist((A,B] ,X) - subli ([B,A]Y).

ic2: rv(X)Y),length(X,N) - length(Y,N).
rv(X,Y),member (A, X) - member(A,Y).
rv(X,Y),member(A,Y) — member (A, X).
The first constraint says that if list Y is the result of reversing list X then any two
conseautive dements of X should be cnseautive but in reverse order in Y. The first

constraint inic2 says that the reversed list has the same length as the original one.

In the experiments conducted, the system SKILit + MONIC obtains better results in
terms of successrate than SKILit with negative examples (Sedion 6.2). For the integrity
constraint in icl, the synthesis of rv/2 reades 100% successrate with only 10 randomly
chosen positive examples. The results with the predicae append/3 also bea the results
obtained with negative examples, mainly for the sets of integrity congtraints icl and ic2
(seeFigure 7.1).

Evaluation

177

Figure 7.1: SKILit + MONIC: obtained successrate.

In terms of percentage of test-perfed programs gnthesized, the results were dso better

than the ones obtained with negative examples for most of the integrity constraint sets

chosen. This means that when the user has integrity constraints available, the dance of

synthesizing the intended program increases (seeFigure 7.2)

append/3

100

80
60
40
20

% test-perfect
programs

2 3 5 10

positive examples

20

—o—icl
—O—ic2
—A—ic3
—X—ic4

% test perfect

programs

100
80
60
40
20

rv/2

3 5 10

positive examples

—0—icl
—1—ic2

Figure 7.2: SKILit + MONIC: percentages of test-perfect program.

Similarly as with postive and negative examples, the doice of adequate integrity

constraint is very important. The set of congtraints ic2 for the predicae rv/2 did not

obtain good results, becaise those @nstraints do not cover many important negative

examples, such as rv([1,2],[1,2]) (they only say that the two arguments of rv(X.Y)

should have the same number of elements and that every element of the input list is an

element of the output list and vice versa).

178 INTEGRITY CONSTRAINTS

append/3 rv/3

60 60

50 —o—ic1 50 +

40 ; 40
o —0—ic2 o ic1
* 20 = o0 —1—ic2

10 —X—ic4 10 |

0 -+ : : : ‘ 0 ‘ ‘ ‘ ‘
2 3 5 10 20 2 3 5 10 20
positive examples positive examples

Figure 7.3: SKILit + MONIC: CPU time spent (seconds).

Aswe can seein Figure 7.3 the st of using integrity constraints, in terms of time spent
to synthesize adefinition, is comparable or better to the exclusive use of negative

examples (Sedion 6.2).

7.5.2 union/3

For the predicae union/3 we used two sets of integrity constraints.

icl: union(A,B,C),member (X,A) - member (X,C).
union(A,B,C),member (X,B) - member (X,C).
union([X|B],C,D),member(X,C),D=[X|E] - C=[X|F].

ic2: union(A,B,C),member (X,A) - member(X,C).
union(A,B,C),member(X,B) — member(X,C).
union(A,B,C),member (X,A),member (X,B),append(A,B,C) - false.
Inicl the first constraint says that, for every fad union(A,B,C), every element of the list
A must be in C. The second congtraint says that every element of B must be in C. The
third constraint applies when the first element X of the first input list is a member of the
other input list (C) and the first element of the output list (D). In this case X must also be
the firg element of C (union([1],[1,2],[1,2]) is a postive eample while
union([1],[2,1],[1,2,1]) is a negative one).

Related work 179

Inic2, the first two congtraints are the same asinicl. The third constraint says that if A
and B have a ommon element then the result of union/3 must be different from the
result of appending the two lists (union([2],[1,2],[1,2]) and append([2],[1,2],[2,1,2])).

These experiments with unior/3 were mnducted in a setting similar to the one used in
Sedion 6.3. For eat set of constraints, we ran SKILit+MONIC 50 times giving eat
time 30 positive examples randomly taken from U2i(+). No negative examples were
given. We dso used two different clause structure grammars. decomp_test rec comp_2,

and decomp_+test_rec comp_2which forces g/nthesized clauses to have test literals.

constraint set CSG success | test-terfed | time
ic2 decomp_test rec comp 2 0.689 24| 251802
icl decomp_test rec comp 2 0.758 38| 147188
ic2 decomp_+test rec comp 2 0.780 44| 122487

Table 7.1: Experiments with unior/3 and integrity constraints.

The results are shown in Table 7.1. The successand percentage of test-perfed programs
obtained with the integrity constraints in icl and ic2 were dealy higher than the results
obtained with random negative examples (Table 6.2), and very similar to the ones
obtained with the manually chosen nregative examples. In the cae of ic2 with the
demmp_+test_rec comp_2 CSG, the results obtained were dealy better than the ones
with chosen negative examples. The synthesis time was comparable to the experimentsin
Sedion 6.3.

7.6 Related work

There ae other procedures for integrity constraint cheding. Sadri and Kowalski
proposed a proof procedure that chedks integrity constraint satisfadion, given a logic
program and a set of constraints [105. This procedure verifies if an update to the
program violates any of the constraints. In case there is only one integrity congtraint, the
method of Sadri and Kowalski is equivalent to SLDNF-resolution (Sedion 3.2.3).
Another theorem-prover, SATCHMO, was proposed by Manthey and Bry [65].

180 INTEGRITY CONSTRAINTS

This kind of integrity chedkers uses a systematic gpproach to search for inconsistencies.
To find a violating instance of an integrity congtraint, a large number of possble
instantiations must be mnsidered. The Monte Carlo strategy only considers a sample of
those instantiations which drasticdly reduces the seach effort for a violating instance of

the integrity constraint.

Luc De Raadt used integrity constraints in system CLINT [21]. In his work, an integrity
constraint is chedked by transforming it into a query and posing it to the generated

program.

7.7 Discusson

7.7.1 The number of queries

The proposed integrity chedker finds a violating instance of an integrity constraint | by
generating a limited number of queries. Each query is posed to program P. From the
answers the integrity chedker obtains fads. With these fads we try to obtain a violating
instance of constraint |. If such an instanceis found, we can be cetain that the program
and the congraint are inconsistent; otherwise, we cainot be sure they are mnsistent.

MONIC is thus incomplete.

Nevertheless the binomia distribution tells us that the probability, after n queries, of
finding an inconsistency is a = (1-p)" , where p is the probability of a given query
obtained from | and posed to program P to succeel. This distribution tells us that, after n

succesdul queries, the higher the value of n, the more probable it is that P and | are

consistent.

Intuitively, the value of p measures the consistency level of the integrity constraint with
the program P. The adual value of p is unknown. However, we can choose alower limit
for p meaning that if there is an inconsistency, then at least 100 x p% of the queries give

a violating instance of I. We cd this the “integrity constraint generality assumption”.

Discusson 181

After n non-violating queries, and gven a value for p, we can be 100 x (1-a)% sure that

P and | are consistent.

Unfortunately, the user cannot say, a priori, whether this assumption will be verified or
not, since that depends on P, which is unknown. We can, however, have an intuitive
notion of the generality of a given congtraint, and, therefore, prefer more ‘general’
constraints, such as sort(X,Y) - sorted(Y), to more ‘spedfic ones, such as

sort([2,3],[3,2]) - false.

7.7.2 Soundnessand completeness

When MONIC finds a violating instance of an integrity constraint, that means that the
program does not satisfy the mnstraint. In that sense MONIC is corred or sound, since
it does not find false inconsistencies. However, MONIC is only as corred as the proof
procedure that it is using to answer the queries. To guarantee the integrity of the proof

procedure asafe computationd rule should be used [46].

As we previously saw, MONIC may not find a violating instance even if one does exist.
For this reason, it isincomplete. However, when MONIC does not find an inconsistency
we have an asociated confidence level (a). Moreover, we can control this confidence

level by choosing an appropriate number of queries.

7.7.3 Limitations

The inclusion of integrity congtraints in spedfications, independently of the @nstraint
chedking method employed, represents an additional effort for the user, since writing a
set of adequate integrity constraints can be @ complex as writing the program itself.
However, the inclusion of integrity constraints in the spedficaion is optional. If they are
easy to express they can be exploited by the system. Otherwise the system can use

negative examples only.

182 INTEGRITY CONSTRAINTS

The most important limitations, spedfic to our Monte Carlo approadh, are the
incompleteness of the search for a violating instance (discussed in Sedion 7.7.2), the
need of asociating dstribution of probability functions to the involved types (Sedion
7.4.3), and the fad that the method does not cope with all integrity constraints (Sedion
7.4.1).

Even though the distributions asociated to types can affed the behaviour of the method,
we did not have to make any tuning of this distribution in order to achieve the obtained
results. For this reason, and in pradicd terms, this limitation does not seem to be

significant.

The restrictive integrity constraints handled by MONIC seem the most adequate for the
representation of negative information in a ontext of synthesis from incomplete
spedfications. For this reason, we did not consider other sorts of constraints. Such an

extension could be mnsidered in the future.

8. Conclusion

8.1 Summary

In this thesis we present a methodology for the aitomatic construction of logic
programs. This methodology is the basis of system SKILit. To dbtain a program P the
user suppies certain information to the system describing some aspeds of that program.
The system asaumes that the information given is incomplete. From this information,
which we cdl spedfication, SKILit builds a program P' which satisfies the spedfication.
In case P' does not satisfy the user, he/she can supdy more data to the spedficaion and
rerun SKILit. SKILit is indwctive for it starts from a given incomplete spedficaion S
and synthesizes a program P which may have logicd consequence not described in S In
short, SKILit is a system for the inductive synthesis of logic programs from incomplete
spedfications (Chapters 4 and 5). A spedfication given to SKILit contains different sorts
of data. The wre of the spedfication is composed of the positive examples and the

negative examples.

The iterativeinduction strategy used by SKILit (Chapter 5) helped find an answer for an
important limitation of many ILP systems, representing state-of-the-art such as GOLEM

183

184 CONCLUSION

[82], FOIL [96] and Progol [80]. Unlike these systems, SKILit is cgpable of synthesizing
reaursive programs from sparse sets of positive examples. To be succesdul in the
synthesis task, the user of SKILit does not have to supdy alist of examples as complete
as possble, nor to guess the examples acwrding to possble resolution paths of the
target program. Asuming that the user gives complete sets of examples or examples
computationally related to ead other would be ajainst the spirit of programming by
examples. Iterative induction represents an advance in the state of the at of reaursive

program synthesis.

While being able to cope with incomplete sets of examples, SKILit has a quite wide class
of synthesizable programs. Other systems previous to SKILit, like LOPSTER [60],
FORCE2 [12] and CRUSTACEAN [1], are dso cagpable of synthesizing reaursive
definitions from few examples. However, all of them synthesize programs within a very
restricted and well defined class The strategies used by these systems, however
interesting, force them to strongly restrict the language bias. Programs such as
quicksort/2, which hes two reaursive literals in a dause, and union/3 that has two
reaursive dauses were synthesized by SKILit, but are not synthesizable by the systems

mentioned above.

The dassof programs g/nthesizable by SKILit for a given synthesis task can be defined
by a clause structure grammar (CSG). Although it is not strictly necessary, a CSG
enables a more dficient construction of the intended program. A CSG serves to transmit
to SKILit a cetain programming strategy, such as “divide-and-conquer”, “generation-
and-test”, etc. Since eab strategy serves a vast set of programs, the CSG are highly
reusable.

The background knomedge (BK) has an important role in the synthesis process The
predicates defined in the BK determine the vocabulary which SKILit will use in the
construction of clauses. Therefore, an adequate badkground knowledge can turn a hard
synthesis task into an easy one. On the other hand, an unsuccesgul attempt may be due
to insufficient background knowledge (Sedion 4.8).

Sumnary 185

The mnstruction of a dause is made by searching for arelationd li nk between the input
arguments and the output arguments of a positive example. This grategy employed by
SKILit enables the badground knowledge to constrain the cnstruction of a dause since
only the logicd consequences of the BK, the postive examples and of the dauses

meanwhile synthesized by SKILit can be part of the link.

The dause mnstruction strategy used by SKILit alows the BK to be defined
intensondly (Sedion 4.4) as any Prolog program. Intensiona BK makes the

construction and maintenance of auxili ary predicaes much easier.

The user of SKILit can spedfy the intended program entirely by examples. However,
other means of spedficaion are available. A sketch (Sedion 4.5.1), for example,
provides abstraded information about how a particular example is processed. SKILit
explores the given sketches by consolidating and transforming them into operational
clauses (Chapter 5). Sketches and examples are handled in a uniform way. The sketch
refinement operator employed by SKILit is $iown to be complete under appropriate

assumptions.

A system demanding an excessve number of postive examples is as inadequate for
program synthesis, as a system which demands an excessve number of negative
examples. For that reason, we have extended SKILit with the integrity chedker MONIC
which is cgpable of handling integrity constraints. Due to its expressveness an integrity

constraint can replace darge number of ground negative examples.

The Monte Carlo strategy which was designed to handle cnsgtraints sems quite
efficient, which makes it appropriate in an inductive synthesis context. Other existing

approaches to integrity cheding are heavier and could be impradicd in this context.

186 CONCLUSION

8.2 Open problems

SKILit did not yet result in a useful support tool for a logic programming environment.
However, we took some steps in the diredion of making the inductive gproadc to
program synthesis feasible. Many important problems 4gill have to be solved. The
solutions we propose @uld, of course, be improved. In this Sedion we discuss me

unresolved problems and the research lines they can lead to.

8.2.1 The seledion of auxiliary predicates

An inductive synthesis g/stem should have aquite rich badkground knowledge, so that it
could be used in a wide variety of problems. In the experiments usually carried out with
ILP systems, the BK defines the exad set of auxiliary predicates neaded so that the
synthesis task would succee.

Even though the strategy of following a relationa link enables SKILit to filter many
irrelevant auxiliary predicaes, the system's performance degrades when the number of
admissble auxiliary predicaes is very large (Sedion 3.4.5). The solution adopted here
involves the user who indicaes to the system which are the admissble predicaes to be
considered. It is obvious that this is not entirely satisfadory, as it places a burden on the

user.

SKILit also failsif the BK predicaes are insufficient, becaise it cannot invent predicates.
Predicae invention is a difficult task in itself [114]. Nevertheless it would be worthwhile
to extend SKILit, becaise apradicd system should try to fill i n the gaps within BK.

8.2.2 Interaction

When the spedfication supgied by the user is insufficient for SKILit to build an adequate
program, the solution is to examine SKILit's results and change the spedficaion

acordingly.

Evaluation d the approach 187

The synthesis g/stem should gude the user in the @nstruction and refinement of the
spedfication. Interadive systems typicdly suggest the user which examples to supgy
during the synthesis processitself, freang the user from the difficult task of guessng
which are good and bad examples. Unfortunately, interadive systems tend to ask too
many questions during the synthesis ssson, disturbing the user. For that reason, we

have adopted a non interadive solution.

Nevertheless it would be important for a system such as SKILit to have some interadive
tools for evaluating the produced programs, as well as for the debuggng of
spedfications. This rt of post-synthesis interadion would be lessdisturbing for the user
because it would be restricted to the situations in which the final induced program is

either incorred or incomplete.

8.2.3 Many examples

SKILit is guided towards the synthesis from small sets of examples. Each clause is
constructed to cover one positive example, and the remaining positive examples are not
diredly taken into acount. SKILit explores the internal structure of the example itself,
but ignores the patterns which may be common to different examples. For that reason

SKILit may have difficulties in adequately coping with large quantities of data.

8.3 Evaluation of the approach

The eperiments with SKILit, caried out in Chapter 6, showed that the system is
cgpable of synthesizing list handling predicates from sets of naturally chosen positive
examples. The so cdled natura choice of examples was smulated by randomly

extrading examples from a given universe with a pre-defined dstribution.

188 CONCLUSION

8.4 Main contributionsto the state-of-the-art

We presented the notion of algorithm sketch as a formalism for partially describing
computations. We defined the notions of skeah refinement and sketch consolidation and
presented a refinement operator that finds al the operational consolidations of one
sketch. This refinement operator is the basis of the inductive engine of our logic program

synthesis methodology.

The iterative induction developed and employed in SKILit allows the synthesis of
reaursive definitions from small and sparse sets of examples. This is an important result,
considering that SKILit does not impose very strong congtraints upon the dass of
synthesizable programs. In particular, SKILit does not assume that the target program is
reaursive (unlessthe dausal grammear states otherwise). Reaursive solutions are preferred
to non-reaursive ones only if the latter involve shorter clauses. This is an important
feaure that we do not find, for instance, in CRUSTACEAN, TIM or SYNAP&E. SKILit
can aso cope with very small sets of examples, becaise the methodology does not

depend on some @verage-based or information gain oriented heuristic (Sedion 3.4.5).

The dassof synthesizable programs can be defined through a dause structure grammear.
This grammar alows the representation of generic programming knowledge, and
restricts the seach space This results in more dficient induction. Nevertheless the

methodology is able to work without any grammar.

The dause structure grammars employed in SKILit allow the definition of admissble
predicate sequences in the body of induced clauses. The aguments of those predicates
are handled by relational linking. The alvantage is that clause structure grammars are

easy to define and maintain.

Finaly, the Monte Carlo strategy adapted to the integrity cheding alows the
spedfication to include integrity constraints. These can be much more expressve than

traditional negative examples, enabling the user to write more @ncise spedficaions. The

The Future 189

main advantage of our MONIC integrity chedker isits efficiency. Using SKILit+MONIC,
induction from a spedfication with positive examples and constraints is not significantly
more time @nsuming than using plain SKILit to induce from positive axd negative

examples.

8.5 The Future

In the nea future, SKILit could benefit from a more dficient re-implementation. It
would also be alvantageous to have other seach strategies besides the one used, to
enable @ping with large numbers of examples, using large badkground knowledge
programs, and synthesizing more complex clauses. It would be important that the system
could work with little negative information (negative examples or integrity constraints).
The methodology could also better exploit the information contained in agorithm
sketches.

The ided future for a system like SKILit would be its integration into a program
development environment where it could be atool among others. A graphicd interface
that minimised the user’s efforts in building an incomplete spedficaion and alowing the
description of algorithm sketches would be aucial. It would also be important to have
the posshility of communicaing with other development tools, from simple text editors

to static and dynamic program analysis modules.

Inductive programming techniques may in the future be useful for naive axd experienced
programmers. Programming by example may be an important spedfication paradigm for
naive programmers that need programming for interfadng with complex applications of
daily use like word processors, spreadsheds or database management systems. Inductive
techniques will keg unwilling programmers away from code & much as possble.
Experienced programmers may benefit from tools based on programming by example
embedded in enhanced text editors. Incomplete spedficaions may be ataded to the

code and be used for program synthesis and verification.

190 CONCLUSION

In its core, automatic program synthesis will have to be more knowledge based. Different
aspeds of programming knowledge will be encoded as input for the synthesis g/stems.
These different types of knowledge will be, on the one hand, separately represented and
on the other will have to be cmbined to obtain, for ead task, an integrated solution. In
this thesis we followed this diredion focussng on two types of programming knowledge:

spedfic knowledge (sketches) and generic knowledge (structure grammars).

Automatic programming systems will have to have knowledge éout auxiliary programs
and about synthesized programs. Having a list of badkground predicates is not enough,
espedally if it isa very long list. An automatic programming system should, for example,

easlly reaognize positive examples of a program it already knows.

To sum up, automatic programming provides very relevant reseach chalenges. Their
relevance derives from the importance of programming itself. Any tool or methodology
that makes programming essier means that more powerful applicaions may appea.
Either becaise the development of the gplicaion was made smpler or becaise its
interfacemade it easier to use. More powerful and easier to use gplicaions mean that
computer-aided tasks (programming included) will be acomplished more dficiently,

leaving whoever has to fulfil those tasks with more predous gare time.

References

[1] Aha, D. W., Lapointe, S., Ling, C. X., Matwin S (1994): “Inverting Implication with
Small Training Sets’. Procealings of the European Conference on Madine
Leaning, ECML-94. Ed. F. Bergadano, L. De Raedt. Springer Verlag.

[2] Azevedo, R., Costa, V.S., Damas, L., Reis, R. (1990: “YAP Reference Manual”.
Centro de Informéaticada Universidade do Porto.

[3] Banerji, R. B. (1964: “A Language for the Description of Concepts’. General
Systens, 9, pp. 135141

[4] Baroglio, C., Giordana, A., Saitta, L. (1992: “Leaning Mutualy Dependent
Relations’. Journal of Intelligent Information Systems, 1, pp. 159176, Kluwer
Academic Publishers, Boston.

[5] Bergadano, F., (1993: “Towards an Inductive Logic Programming Language”.
Deliverable no. TO1 of ILP projed.

[6] Bergadano, F., Gunetti, D. (1993: “The Difficulties of Leaning Logic Programs
with Cut”. Journal of Artificial Intelligence Research 1, pp. 91-107.

[7] Biermann, A. W., (1978: “The inference of reguar LISP Rograms from
Examples’. IEEE Transactions on $ystems, Man and Cybernetics, Vol. SMC-8,
No. 8, August 1978

[8] Biermann, A. W., (1990: “Automatic Programming”. Encydopedia o Artificial
Intelli gence Ed. Stuart C. Shapiro. Wiley Interscience

[9] Blum, L. and Blum, M. (1975: “Toward a Mathematicd Theory of Inductive
Inference”. Information andControl, 28, pp. 125155

[10] Bratko, 1. (1986: Prolog Programning for Artificial Intelligence. Addison-Wesley.

[11] Bratko, I., Mugdeton, S., Varsek, A. (1992: “Leaning Qualitative Models of
Dynamic Systems’. Inductive Logic Programming. Ed. S. Mugdeton. Academic
Press

[12] Braail, P., Jorge, A. (1992: “Modular Approadc to ILP: Leaning from interadion
between Modules’. Logical Approaches to Machine Learning, Workshop ndes.
ECAI 92

[13] Braail, P. (1981): A Modd for Error Detedion and Corredion. PhD Thesis.
University of Edinburgh.

[14] Brazil, P., Jorge, A. (1994): “Leaning by Refining Algorithm Sketches’.
Procealings of ECAI-94. Ed. T. Cohn. Wiley.

[15] Braail, P., Jorge, A. (1997: “Induction with Subtheory Seledion”. ECML 97 -
Poster Papers. Ed. M. van Someren, G. Widmer. Laboratory of Intelligent Systems,
Faaulty of Informatics and Statistics, University of Economics, Prague.

[16] Buntine, W. (1988: “Generalized Subsumption and its Application to Induction and
Redundancy”. Artificial Intelligence 36, pp 149176, Elsevier Sience Publishers
B.V. (North Holland).

191

192 REFERENCES

[17] Cdgo, M. (199)): A Framework for Dedarative Prolog Debuggng. PhD Thess.
Universidade Nova de Lisboa

[12] Cohen, W. W. (1993: “Pac leaning arestricted classof reaursive logic programs’.
Procealings of the third Internationa Workshop onlnductive Logic Programming
(pp. 73-86). Bled, Slovenia. J. Stefan Ingtitute.

[18] Cohen, W. W. (1993: “Rapid prototyping of ILP systems using explicit bias’.
Procealings of 19931JCAI Workshop onlLP.

[19] Cypher, A. (Ed.) (1993: Watch What | Do: Programning by Demonstration. MIT
Press

[20|De Raedt, L. (1991): Interactive Concept Learning. PhD thesis. Katholieke
Universiteit Leuven.

[2]]De Raealt, L. (199): Interactive Theory Reuson: An Indwctive Logc
Programning Approach. Academic Press

[22] De Raedt, L., Bruynooghe, M. (1993: “A theory of Clausal Discovery”.
Procealings of 1JCAI-93. Chamberry, France

[23De Raalt, L., ldestam-Almquist, P, Sablon, G (1997: *“6&-subsumption for
Structural Matching”. Procealings of ECML-97. Prague. M. van Someren, G.
Widmer (Ed.). Springer.

[24] De Raddt, L. Lavrac N. (1995: “Multiple Predicae Leaning in two Inductive
Logic Programming settings’. Journal of Pure and Applied Logic, 4(2):227-254.
[25] De Radlt, L., Lavrac N., Dzeroski, S. (1993: “Multiple Predicate Leaning”.

Procedalings of 1JCAI-93. Chamberry. France R. Bajcsy (Ed.). Morgan Kaufmann.

[26] Deville, Y. (1990: Logic Programming, Systematic Program Devdopment.
Addison-Wedley Publishing Company.

[27] Deville, Y., Lau, K.,(1999: “Logic Program Synthesis’. The Jurna of Logic
Programning, spedal issue Ten Years of Logic Programming, volumes 19,20,
May/July 1994

[28] Diller, A. (1991): Z, anintroduction to formal methods. Wiley.

[29] Dolsak, B. and Mugdeton, S. (1992: “The Applicaion of Inductive Logic
Programming to Finite Element Mesh Design”. Inductive Logic Programming. Ed.
S. Mugdeton. Academic Press

[30] Dromey, G. (1989: Program Derivation, the devdopment of programs from
spedfication. Addison-Wesley.

[31] Ducas®, M. (1994: “Logic Programming Environments. Dynamic Program
Anaysis and Debuggng”’. The Jurnal of Logic Programning, spedal issue Ten
Years of Logic Programning, volumes 19,20, May/July 1994

[32] Esposito, F., Malerba, G., Semeraro, G. and Pazzani, M. (1993: “Document
understanding: a machine learning approadY”. Real-World Appli cations of Machine
Learning, Workshop ndes. Ed. Y. Kodratoff, P. Langley. ECML-93, Vienna.

[33 Feng, C. (1992: “Inducing Temporal Fault Diagnostic Rules from a Qualitative
Modéd”. Inductive Logic Programmning. Ed. S. Mugdeton. Academic Press

[34] Feng, C. and Mugdeton, S. (1992: “Towards Inductive Generalization in Higher
Order Logic”. Procealings of the Ninth Internationd Workshop ML92. Ed. Derek
Sleaman and P. Edwards. Morgan Kaufmann.

REFERENCES 193

[35] Fisher, A., (1988: CASE: Using Sdtware Devdopment tods. Wiley.

[36] Flach, P. (1995: Conjedures. an inqury concerning the logic of induction. PhD
Thesis. ITK dissertation series - 1.

[37] Flener, P. (1999: Logic Program Synthesis From Incomplete Information. Kluwer
Academic Publishers.

[38] Flener, P., Deville, Y. (1992: “Logic Program Synthesis from Incomplete
Spedfications’. Reseach Report RR 92-22. Université Catholique de Louvain,
Unite d'Informatique.

[39] Flener, P., Popdinsky, L., (1994: “On the use of Inductive Reasoning in Program
Synthesis: Prgjudice and Prospeds’. Joint Proc. of LOPSTR' 94 and META’ 94,
LNCS, Springer-Verlag.

[40] Giordana, A., Satta, L., Baroglio, C. (1993: “Leaning Simple Reaursve
Theories’. Procealings of the 7th Internationd Symposium, ISMIS93. Ledure
Notesin Artificia Intelligence Springer-Verlag.

[41] Grobelnik, M. (1992: “MARKUS. An Optima Mode Inference System’.
Procealings on ECAI-92 Workshop onLogical Approaches to Machine Learning.
Rouveiral, C. (Ed.).

[42]Heidorn, G. E. (1979: “Automatic Programming Through Natural Language
Dialogue: A Survey”. [99].

[43] Helft, N. (1987): “Inductive Generdlization: a Logicd Framework”. Procealings of
EWSL 87. Ed. |. Bratko, N. Lavrac Sigma Press

[44] Helft, N. (1989: “Induction as nonmonotonic inference”. Proceadings of the 1st
Internationd Conference on Principles of KnomMedge Representation and
Reasoning, pp 149156 Morgan-Kaufmann.

[45] Hoare, C.A.R (1989: “Mathematics of Programming”. BY TE 11(8).

[46]Hogger, C. J. (1990: Essntials of Logic Programming. Graduate texts in
computer science series. Oxford University Press

[47]1destam-Almquist, P. (1993: “Generdizaion under implicaion by reaursive ati-
unification”. Procealings of ILP-93. Technicd Report. Jozef Stefan Institute.

[48] I destam-Almquist, P. (1993: Generalization d Clauses. PhD thesis. Report Series
No. 93-025. Stockholm University, Royal Institute of Tednology, Department of
Computer and Systems Sciences.

[49]1destam-Almquist, P. (1995: “Efficient Induction of Reaursive Definitions by
Structural Anaysis of Saturations’. Procealings of the Fifth Internationd
Workshop onlInductive Logic Programming. Ed. L. De Raedt. Scientific Report.
Departement of Computer Science, K.U. Leuven.

[50] Jaquet, J.-M. (Ed.) (1993: Constructing Logic Programs. Wiley Professonal
Computing. Wiley.

[5]] Jazza A. (1999: “Toward Better Software Automation”. Sdtware Engineaing
Notes, vol. 20 no. 1. ACM SIGSOFT.

[52] Joch, A. (1999: “How Software doesn't work”. BYTE, 20(12).

[53] Jorge, A. and Brazil, P. (1996: “Architedure for Iterative Leaning of Reaursive
Definitions’. Advances in Inductive Logic Programming. Ed. Luc De Radlt. 10S
Press

194 REFERENCES

[54] Jorge, A. and Braalil, P. (1996: “Integrity Constraints in ILP using a Monte Carlo
approac”. Inductive Logic Programming, 6™ Internationa Workshop, ILP-96. Ed.
Stephen Mugdeton. LNAI 1314 Springer..

[55]Jdullig, R. K. (1993: “Applying Forma Software Synthesis’. IEEE Sdtware. Vol.
10, No. 3, pp. 11-22.

[56] Kietz, J. and Wrobel, S. (1992: “Controlling the Complexity of Leaning in Logic”.
Inductive Logic Programning. Ed. Stephen Mugdeton. Academic PressLimited.

[57]Kijsirikul, B., Numao M. and Shimura, M. (1992: “Discrimination-Based
Constructive Induction of Logic Programs’. Procealings of AAA-92. Morgan-
Kaufmann.

[58] Klingspor, V. (1994: “GRDT: Enhancing Model-Based Leaning for Its Application
in Robot Navigation”. Procealings of the Fourth Internationd Workshop on
Inductive Logic Programmning (ILP-94). GMD-Studien Nr. 237. GMD, Alemanha.

[59 Korf, R. E., (1990: “Seach”. Encydopedia of Artificial Intelligence Ed. Stuart C.
Shapiro. Wiley Interscience

[60] Lapointe, S., Matwin, S., (1992: “Sub-unificaion: A tool for efficient induction of
reaursive programs’. Procealings of the Ninth Internationd Conference on
Machine Learning (pp. 273-281). Aberdeee, Scotland. Morgan Kaufmann.

[61] Lavrac N., Dzeoski, S. (1992: “Inductive Leaning of Relations from Noisy
Examples’. Indwctive Logic Programming. Ed. S. Mugdeton. Academic Press
Limited.

[62] Lavrac N., Dzeroski, S. (1994: Indutive Logic Programming: Techniques and
Applications. Ellis Horwood.

[63]Ling, C. X., (199]): “Inductive Leaning From Good Examples’. 12th Internationd
Joint Conference on Artificial Intelligence Ed. J. Mylopoulos, R. Reiter. Morgan
Kaufmann.

[64] Lloyd, J. W., (1987 Foundaions of Logic Programning (secmnd, extended
edition). Springer-Verlag.

[65] Manthey, R., Bry, F. (1988: “SATCHMO: a theorem prover implemented in
Prolog”. Procealings of CADE 88 (9th Conference on Automated Deduction).
Springer-Verlag.

[66] Michalski, R. S. (1983: “A Theory and Methodology of Inductive Leaning”. [69].

[67]Michalski, R. S. (1990: “Leaning, Madine”. Encydopedia o Artificial
Intelligence Ed. S. Shapiro. Wiley Inter-Science

[68] Michalski, R. S. (1994): “Inferential Theory of Leaning: Developing Foundations
for Multistrategy Leaning”. Machine Learning, A Multi strategy Approach, Volume
IV. Ed. Ryszard Michalski, Gheorghe Teauci. Morgan Kaufmann.

[69] Michalski, R. S., Carbonell, J. and Mitchell, T. (1983 Machine Learning. An
Artificial Intelli gence Approach. Tioga Publishing Company.

[70] Michalski, R. S., Larson, J. B. (1978: “Seledion of most representative training
examples and incremental generation of VL1 hypotheses. The underlying
methodology and description of programs ESEL and AQL11’. Technicd report 867.
Computer Science Department, University of 1lli nois, Urbana-Champaign.

REFERENCES 195

[72] Minker, J. (Ed.) (1988: Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers.

[72] Mitchell, T. (1982: “Generdization as Seach”. Artificial Intelligence, 18, pp. 203
226.

[73] Mitchell, T. (1990: “The nedl for biases in leaning generalizaions’. Readings in
Machine Learning. Ed. J. Shavlik and T. Dietterich. Morgan Kaufmann.

[74 Mofizur, C. R. and Numao, M. (1999: “Top-down Induction of Reaursve
Programs from Small Number of Sparse Examples’. Procealings of the Fifth
Internationd Workshop on Induwctive Logic Programning. Ed. L. De Raeit.
Scientific Report. Departement of Computer Science, K.U. Leuven.

[75] Morik, K., Potamias, G. and Moustakis, V. (1993: “Knowledgedale Leaning Using
MOBAL - A Case Study in A Medicd Domain”. Real-World Applications of
Machine Learning, Workshop notes. Ed. Y. Kodratoff, P. Langley. ECML-93,
Viena.

[76] Morik, K., Wrobdl, S., Kietz, J. and Emde, W. (1993: Knowledge Acquisition and
Machine Learning: Theory Methods and Appli cations. Academic Press

[77]Mugdeton, S. (1994: “Inverting Implicaion”. Preliminary version.

[78 Mugdeton, S. (1992: “Inductive Logic Programming”. Inductive Logic
Programning. Ed. S. Mugdeton. Academic Press Also in Procealings of the First
Internationd Conferenceon Algorithmic Learning Theory, Ohmsha, Tokyo, 199Q

[79)Mugdeton, S. (1993: “Inductive Logic Programming: derivations, successes and
shortcomings’. Procealings of ECML-93. Ed. P. Braalil. Springer-Verlag.

[80] Mugdeton, S. (1995: “Inverse Entailment and Progol”. New Generation
Computing Journal, vol. 13, May 1995

[81]Mugdeton, S. (1995: “Stochastic Logic Programs. extended abstrad”.
Procealings of ILP-95. Ed. Luc De Raedt. Scientific Report. Katholiek Universiteit
Leuven.

[82]Mugdeton, S., Feng, C. (1990: “Efficient Induction of Logic Programs’.
Procealings of the 1st Conference on Algorithmic Learning Theory, Ohmsha,
Tokyo.

[83 Mugdetton, S., De Raedt, L., (1994): “Inductive Logic Programming”. The Jurna
of Logic Programming, spedal issue Ten Years of Logic Programming. Vol. 19,20,
May/July 1994

[84] Mugdeton, S., Mizoguchi, F. and Furukawa, K. (1995: Prefaceof the Spedal Isae
on Inductive Logic Programming, New Generation Computing. Vol. 13, Nos. 3,4.
Springer-Verlag.

[85] Mugdeton, S., King, R., Sternberg, M. (1992: “Protein secondary structure
prediction using logic”. Procealings of the 2nd Internationa Workshop onlILP.
Mugdeton, S. (Ed.). Report ICOT-TM 1182 pp. 228259

[86] Mugdeton, S., King, R., Sternberg, M. (1992: “Protein sewmndary structure
prediction using logic”. Protein Engineeing. 7:647-657.

[87] Nienhuys-Cheng, S-H., de Wolf, R. (1999: “Least Generdizaions and Greaest
Spedalizations of Sets of Clauses’. Journa of Artificial Intelligence Research.
Volume 4, pp 341363

196 REFERENCES

[88] O'Kede, R. (1990: The Craft of Prolog. MIT Press

[89] Olsn, R. (1999: “Inductive Functional Programming Using Incremental Program
Transformation”. Artificial Intelligence 74, pp 5581. Elsevier.

[90] Pa&kki, J., Gyimothy, T. and Horvath, T. (1994): “Effedive Algorithm Debuggng
for Inductive Logic Programming”. Procealings of the Fourth Internationd
Workshop on Induwctive Logic Programming (ILP-94). GMD-Studien Nr. 237.
GMD, Alemanha.

[91] Pereira, L. M. and Calgo, M. (1989: “Algorithmic Debuggng of Prolog Side-
Effeds’. Procealings of EPIA 89, ed. by J. P. Martins and E. Morgado, Ledure
Notes in Artificia Intelligence, Springer-Verlag.

[92] Plotkin, G. (1969: “A note on inductive generalizaion”. Machine Intelligence 5.
Ed. B. Métzer, D. Michie. Edinburgh University Press

[93] Plotkin, G. (1971): “A further note on inductive generadizaion” . Machine
Intelligence 6. Ed. B. Médltzer, D. Michie. Edinburgh University Press

[94] Popelinsky, L., Flener P, Stepankova O, (1994 “ILP and Automatic Programming:
Towards Three Approaches’. Procealings of the 4th Internationd Workshop on
Inductive Logic Programning. Volume 237, GMD-Studien.

[95] Popelinsky, L., Stpankova, O. (1995: “WiM: A study on top-down ILP program”.
Procealdings of AIT 95 Workshop. Brno. ISBN 80-214-06739.

[96] Quinlan, J. R. (1990: “Leaning Logicd Definitions from Relations’. Machine
Learning 53), pp.239-266.

[97] Quinlan, J. R. and Cameron-Jones, R. M. (1993: “FOIL: A Midterm Report”.
Procealings of the European Conference on Machine Learning ECML-93. Ed. P.
Brazlil. Springer-Verlag.

[98] Quinlan, J. R. and Cameron-Jones, R. M. (1995: “Induction of Logic Programs:
FOIL and related systems’. New Generation Computing, Spedal issue on Inductive
Logic Programming, 13(3-4).

[99 Rich, C. and Waters, R. (Eds) (1986: Readings in Artificial Intelligence and
Sdtware Engineeaing. Morgan Kaufmann.

[10q Richards, B., Mooney, R. (1995: “Refinement of First-Order Horn Clause Domain
Theories’. Machine Learning,Vol.19, No.2. Kluwer Academic Publishers.

[10]] Richards, B., Mooney, R. (1992: “Leaning relations by pathfinding”. Procealings
of the Tenth Nationd Conferenceon Artificial Intelligence MIT Press

[102 Rouveirol, C. (1992: “Extensions of Inversion of Resolution Applied to Theory
Completion”. Procealings of the 1st Internationd Workshop onlInductive Logic
Programning. Technicd Report. LIACC, Universidade do Porto.

[103 Rubinstein, R. (1981): Smulation andthe Monte Carlo Method John Wiley &
Sons.

[104 Rus=l, S., Subramanian, G. (1990: “Mutua Constraints on Representation and
Inference”. Machine Learning, Meta-Reasoning and Logics. Ed. P. Brazlil, K.
Konolige. Kluwer Academic Press

[105 Sadri, F., Kowalski, R. (1988: “A Theorem Proving Approach to Database
Integrity”. Deductive Databases and Logic Programning. Ed. Jadk Minker.
Morgan Kaufmann Publishers.

REFERENCES 197

[106 Sammut, C. (1993: “The Origins of Inductive Logic Programming: A Prehistoric
Tale”. Procealings of ILP-93. Technicd report. Joze Stefan Institute.

[107 Sammut, C., Banerji, R. (1989: “Leaning Concepts by asking Questions’.
Machine Learning: An Artificial Intelligence Approach, Vol. 2. Ed. R. Michalski, J.
Carbonell, T. Mitchel. Morgan Kaufmann.

[108 Sernadas, A., Sernadas, C. and Costa, J.F. (1995: “Objed-Spedficaion Logic”.
Journal of Logic and Computation 5(5), pp. 603630

[109 Shapiro, E. Y., (1982 Algorithmic Program Debuggng. MIT Press

[11Q Silverstein, G. and Pazza, M. (1989: “Relationa Clichés. constraining
congtructive induction during relational leaning”’. Procealings of the Sxth
Internationd Workshop onMachine Learning, Evanston, |lli nois. Kaufmann.

[111] Smith, D. R., (1990: “KIDS: A Semiautomatic Program Development System”.
IEEETrans. on Sdtware Engineeing, Vol. 16 No. 9.

[112 Solomonoff, R. J. (1964: “A formal Theory of Inductive Inference Part 1.
Information andControl, 7, pp. 1-22.

[113 Sommerville, 1., (1989: Sdtware Engneeaing (third edition). Addison-Wedey
Publishers Ltd.

[114) Stahl, 1. (1993: “Predicae Invention in ILP - an Overview”. Procealings of
ECML-93. Ed. P. Braazlil. Springer-Verlag.

[11H Stahl, 1. (1995: “The Appropriateness of Predicae Invention as Bias Shift
Operation in ILP’. Machine Learning, 20. pp.95-117.

[116 Sterling, L., Shapiro, E. Y., (1986 The Art of Prolog: Advanced Programning
Tecdhniques. MIT Press

[117] Stickel, M., Waldinger, R., Lowry, M., Presdurger, T., Underwood, |., (1994:
“Deductive composition of Astronomicad Software from Subroutine Libraries’.
Procealings of the Twelfth Internationd Conference on Automated Deduction.
Nancy, France A. Bundy (Ed.). LNAI 814. Springer Verlag.

[118 Summers, P. (1977: “A Methodology for LISP Rogram Construction from
Examples’. Journal of the Asociation for Computing Machinery, Vol. 24, No. 1.

[119 Tausend, B. (1994): “Representing Biases for Inductive Logic Programming”.
Procealings of ECML-94. Ed. F. Bergadano, L. De Raeadt. Springer-Verlag.

[120 Tausend, B. (1994: “Biases and Their Effeds in Inductive Logic Programming”.
Procealings of ECML-94. Ed. F. Bergadano, L. De Raeadt. Springer-Verlag.

[12]] Ullman, J. (1989: Principles of Databases and Knomedge Base Systems.
Volumes| and Il. Computer Science Press

[122 Vere, S. (1977): “Induction of Relational Productions in the Presence of
badkground Knowledge”. Proceadings of the Fifth Internationd Joint Conference
in Artificial Intelligence

[123 Wirth, R. and O’'Rorke (1992: “Congtraints for predicae invention”. Inductive
Logic Programming. Ed. S. Mugdeton. Academic Press

[124 Wrobel, S. (1994): Concept Formation and KnomMedge Revision. Kluwer
Academic Publishers.

[125 Z€lle, J. M., Mooney, R. J., Konvissr, J. B., (1994): “Combining Top-down and
Bottomrup Tedhniques in Inductive Logic Programming”. Procealings of the

198

Elevaith Internationd Conference on Machine Learning ML-94, Morgan-
Kaufmann.

Annex

Appendix A

Predicatesin background knowledge list:

mode(const(+,+,-)).
type(const(li t,int,li st)).

const(A,B,C) — A=[B|C].

mode(dest(+-,-)).
type(dest(list,intlist)).

dest(A,B,C) — A=[B|C].

mode(null (+)).
type(null (list)).

nul ([]).

mode(addast(+,+,-)).
type(addast(lis,int,li t)).

addast([] ,X,[X]).

addast([A|B] ,X,[AIC]) —
addast(B,X,C).

me(apmndb(-'- v+ "))'
type(appendh(list,list,list)).

appendt([] ,AA).
appendb([A|B],C,[AD])
appendh(B,C,D).
% predicae append/3 has a definiton equivalent to appendb’3.

mode(delete(+ -+ ,-)).
type(del ete(elem,lit,li t)).

199

200

ANNEX

delete(A,[A|B],B).
delete(A[B|C],[B|D]) ~
delete(A,C,D).

mode(last_of(-,+)).
type(last_of(elem,li<t)).

last_of(A[A]).
last_of(A[C|D]) last_cf(A,D).

mode(memberb(-,+)).
type(memberb(elem,li t)).

memberb(A,[A|B]).
memberb(A,[B|C]) —
memberb(A,C).

% predicae member/2 has a definition equivalent to memberb/2.

mode(notmember (+,+)).
type(natmember (elem,li st)).

notmember (A,B) — memberb(A,B).

rTDCb(partb(-'- t ""))'
type(part(int,list,list,list)).

% predicae partitiorn/4 has a definition equiavalent to partb/4.

partb(A,[B|C],[B|D],E) —
A>B,partb(A,C,D,E).

partb(A,[B|C],D,[B|E]) —
A=< B,partb(A,C,D,E).

partb(A[].[.[)-

mode(rv(+,-)).
type(rv(list,list)).

rv(ll, (1)

rv([C|D], B)
rv(D,E),
addast(E,C,B).

ANNEX 201

mode(singleton(+)).
type(sing eton(li t)).

singeton([X]).

mode(sort(+,-)).
type(sort(list,list)).

sort([A|B],C) —
part(A,B,E,F),
sort(E,G),sort(F,H),
append(G,[A[H],C).
sort([] ,[1)-

mode(split (+-,)).
type(split (li st list list)).

split (] .0.0)-
split ([A,B|D] [AlE] [B|F]) - split(D,E,F).

mode(union(+,+,-)).
type(union(li st,list,list)).

union([] ,AA).

union([A|B],C,D)
member(A,C),!,
union(B,C,D).

union([A|B],C,[A|D]) «
union(B,C,D).

mode(insertb(+,+,-)).
type(insertb(int,li st,li st)).

insertb(A[] ,[A]).
insertb(A,[B|C] ,[A,B|C]) — A<B.
insertb(A,[B|C] ,[B|D]) B<A,insertb(A,C,D).

Predicatesin background knowledge integer:

mode(pred(+.-)).
type(pred(int,int)).

202

ANNEX

pred(X,Y) « Yis X-1,X>0.

mode(sucd(+,-)).
type(succ(int,int)).

succ(X,Y) « Yis X+1.

mode(zero(+)).
type(zero(int)).

zero(0).

mode(one(+)).
type(one(int)).

one().

rTDCE(pl US(+ v+ "))'
type(plus(int,int,int)).

plus(X,Y,Z) - Zis Y+ X.

mode(multb(+,+,-)).
type(multb(int,int,int)).

multb(X,Y,2) — Zis X*Y.

Y%predicate multiply/3 is equivalent to multb/3.

mode(evean(-)).
type(even(peano)).

evan(0).
eva(s(s(X))) — even(X).

mode(odd+)).
type(odd(peano)).

odds(0)).
odds(s(X))) ~ odd(X).

Other predicates:

ANNEX 203

sorted([]).

sorted([A]).

sorted([A,B|C]) —
A=<B,
sorted([B|C]).

sublist(A,B) —
prefix(A,B).

sublist(A,[B|C])
sublist(A,C).

prefix([] ,A).

prefix([A|B],[AIC])
prefix(B,C).

Appendix B

Definitions of types:
int(X) — member(X,[0,1,2,3,4,5,6,7,8,9]).
letter (X) — member (X,[a,b,c,d,ef,g,h,i,j,kl,mn,0,p,qr,stuVv,wxy,z).

().
i ([A[B]) < int(A),list(B).

peand(0).
peand(s(X)) - peana(X).

Appendix C

‘decomp_test_rec comp_2

body(P)-->decomp(+,2) test(*,2),reaurs(*,2,P),comp(*,2).
body(P)-->test(+,2),comp(*,2).

decomp(_,N)-->lit_decomp,{N>0}.
decomp(_,N)-->lit_decomp,{N2 is N-1},decomp(+,N2).
decomp(*,N)-->[] .

204

ANNEX

lit_decomp-->[dest/3];[pred/2] ;[partb/4].
test(_,N)-->lit_test,{N>0}.

test(_,N)-->lit_test,{N2 is N-1} test(+,N2).

test(*,N)-->[] .

lit_test-->[null/ 1] ;[memberb/2] ;[natmemberb/2] ;[zero/1].
comp(_,N)-->lit_comp,{N>0}.

comp(_,N)-->lit_comp,{N2 is N-1},comp(+,N2).
comp(*,N)-->[] .

lit_comp-->[append/3];[insertb/3] ;[addast/3] ;[const/3].
reaurs(_,N,P)-->lit_reaurs(P),{N>0}.
reaurs(_,N,P)-->lit_reaurs(P),{N2 is N-1},req+,N2,P).
reaurs(*,N,P)-->[] .

lit_reaurs(P)-->[P].

‘decomp_+test_rec comp_2

body(P)-->decomp(+,2) test(+,2),req*,2,P),comp(*,2).
body(P)-->test(+,2),comp(*,2).

Otherwise identicd to decomp_test_rec comp_2dcg.

‘decomp_test_recl_comp_ 2

body(P)-->decomp(+,2),test*,2),red*,1,P),comp(*,2).
body(P)-->test(+,2),comp(*,2).

Otherwise identicd to decomp_test_rec comp_2dcg.

List of Figures

Figure 3.1: Derivation Graph

Figure 3.2: Part of one refinement graph [10§.

Figure 4.1: Framework of the SKIL system

Figure 4.2: Typica format of a spedfication for predicate p/k.

Figure 4.3: Example of a spedfication for the predicaterevase/2.

Figure 4.4: An example of background knowledge

Figure 4.5: Linking terms{a,b} toterm e.

Figure 4.6: Graphical representation of one sketch.,

Figure 4.7: One derivation of the program.

Figure 4.8:A Vere chain of asciations example,

Figure 5.1: Derivation of a positive example.

Figure 5.2: Derivation D of the example e,.
Figure 5.3: The SKILit system architedure

Figure 6.1: Experimental Methodology

Figure 6.2: SuccessRate vs. the number of training examples.

Figure 6.3: Percentage of test-perfed programs vs. the number of training examples.
Figure6.4: Spent CPU time (seonds)..
Figure 6.5: Successrates of SKILit vs. CRUSTACEAN

Figure 6.6: Comparison between SKILit and Progal for append/3.
Figure 7.1: SKILit + MONIC: ohtained successrate.

Figure 7.2: SKILit + MONIC: percentages of test-perfed program.
Figure 7.3: SKILit + MONIC: CPU time spent (seamnds).

205

List of Algorithms

Algorithm 1: Construction of aprogram by SKIL 75
Algorithm 2: Generation of a clause through the refinement of asketch~ 77
Algorithm 3: Refinement Operalor 80
Algorithm 4: Construction of therdlevant sub-mode 82
Algorithm 5 Iterative induCtion 116
Algorithm 6: High level description of SKILIt 170
Algorithm 7: MONIC: Theintegrity Chedker. 173
List of Examples

BN 2. L 16
BN 3. L. 25
BN 3.2, 28
BN 3.3, 30
BN B 32
BN B . 33
BN B 0. 36
BN 3.7 37
BN B 8 38
BN 3.0 41
EXAMD E 3. L0 43
EXAMD C B L 45
BN C A, L. 68
BN € 4.2, 69
BN € 4.3, 70
BN C A 72
BN € 4. 76
BN C 4 . 81
BN C 4. T 82
EXAMID € 4. 85
EXAMID C 4. 85
EXAMD C A, L0 86

206

207

EXAMD A, L 91
EXAMD A, L 93
EXAMD C A, L, 96
BN S, L 109
BN 5.2, 109
BN 5.3, 110
BN S . 112
BN 5. . 113
BN 5.8 113
EX M . 7. 117
BN 5.8 118
BN 5. 120
EXAMDIE 5. L0 122
EXAMD E S, L 131
EXAMD E 5. L 133
BN 7. L 166
EX M 7.2, 166
BN 7.3, 167
B T 168
EX M 7. 169
EX M 7.8 173
B M 7. T 175
List of Definitions

DE NIt ON B L. 31
D NIt ON B 2 36
DE NIt ON 3.3 37
D NIt ON Bu 40
DE NIt ON B D, 41
DE NIt ON B 8. 42
D NIt ON 3.7 42
DE NIt ON B 8. 43
DE NIt ON B 45
Definition 3.10: 45

208

D NIt ON AL 68
D NIt ON 42 69
D NIt ON 4.3 69
D NIt ON A 69
D NIt ON 4D, 70
DE NIt ON 4B, 71
D NIt ON . 7. 71
D NIt ON 4. 71
D NIt ON 4. 72
DE NIt ON 4. L0 72
D NIt ON A L 72
D NIt ON 4. L 84
D NIt ON 4. L3, 86
DE NIt ON 4. L 88
DE NIt ON 4. LD 88
DE NIt ON 4. LG 89
D NIt ON 4. LT 89
D NIt ON 4. L, 95
D NIt ON 4. L 96
DE NIt ON 4 20 96
D NIt ON A 2 97
D NIt ON 4 2 97
DE NIt ON 5. L. 110
D NIt ON 5.2 111
DE NIt ON 5.3 112
D NIt ON 7. L. 166
D NIt ON 7.2 168
Definition 7.3: 168

| ndex

definite, 25
round, 25
—6— g
indefinite, 25
linked, 47
6-subsumption, 41
recursive, 25

clause schemata, 49

—A— clause structure grammar, 73, 90
clause templates, 50

CLINT, 39, 169 180

closed world assumption, 164

adaptive strategy, 134
admissble predicatesin SKIL, 67

arguments, 24 closed-logp system, 134
inpu, 33 compatible
output, 33 with a type declaration, 32, 94
arity, 24 completeness
asciation chain, 102 inILP, 36
atom, 24 MONIC, 181

automatic progamming, 12, 15 of a sketch refinement operator, 97

concept language, 34

—B— consoli dation, 95
coverage
background krowledge extensional, 36
extensional, 35 intensional, 36
intensional, 35, 59 covering strategy, 119
basic representative set, 110 CRUSTACEAN, 53,58, 113 131, 152
bias, 47
declarative, 48 —D—
language, 47
bottom-up approach in ILP, 42 DCG, 49, 73
debugging, 17
—C— definite clause grammar, 49

dependency graphs, 49

CASE, 13 derivation, 28
code generators, 14 determinations, 47
clause, 24 directionally linked clause, 69

209

210

INDEX

— E—

effort limit, 78
environments

program development, 15, 19
example

negative, 34

positive, 34

explanation, 35

— F—

flattening, 74

FOIL, 46, 51, 104, 134, 159 184
formal methods, 14

functor, 24

inductive program synthesis from incomplete

specifications, 34
induwctive synthesis, 17, 34

input/output modes (or simply modes) of a predicate,

33

integrity constraint, 33, 37, 164, 166

generative, 171
restrictive, 171
satisfaction of, 168
violating instance, 168
interaction, 39
interactive system, 39
inverting implication, 113
iterative induction, 108

—G—

generali zation
least general, 42
operator, 40
generali zed subsumption, 41
GOLEM, 45, 51, 109 183
goad examples, 110

——

language shift, 49

leaning from examples, 34

least general generalization, 42, 45

literal, 24
logc program synthesis, 16

— H—

hill -climbing, 46

hypothesis
generali zation relation, 40
language, 34

— M—

MIS, 17, 39, 44, 51, 88, 134
mode declaration, 48
Monte Carlo
method of, 169
most general unifier, 28
multi -predicate synthesis, 39, 128

ij-determinate clauses, 48

incrementality, 39

—N—

noise, 39

INDEX 211
—0 rule models, 49
operator —S—

generali zation, 40
specidization, 40
oracle, 39

—p—

predicate invention, 39
Progd, 52,110, 153 184
program synthesis, 15
from examples, 34
programming knowledge, 59, 67, 90, 104
prodf procedure, 28
SLD, 28
SLDNF, 164
property, 52, 114
pure iterative strategy, 122

—Q—

acoeptable, 170
queue, 46

—R—

refinement of a clause, 43
refinement operator, 43

globally complete, 44

locally complete, 44

of SKIL, 77,94
relational link, 69, 75
relational pathfinding, 103
relational production, 102
relevant sub-model, 80

safe computational rule, 181
scheme
SYNAPSE, 53
seach
breadth-first, 45, 77
gredly, 46
heuristic, 46
top-down, 43
semantics
non-monotonic, 35
normal, 35
set of examples
basic representative, 110
complete, 109
sparse, 59, 109
single predicate synthesis, 39
sketch
algarithm, 68, 70
associated to an example, 71
black box, 71
consolidation, 71
literas, 68
operational, 71, 77
operational literals, 68
predicates, 68
syntactically ordered, 72
sketch refinement operator, 96
SKIL, 61
specification, 63
SKILit, 115
SLD resolution, 28
SLDNF resolution, 28
soundress 36

specidlization

212

INDEX

most general, 42
operator, 40
specification
complete, 16
formal, 14, 16
incomplete, 16, 61
informal, 16
substitution, 27
answer, 27
sub-unification, 113
successrate, 141
SYNAPSE, 39, 52

percentage of, 142
T-implication, 41
top-down approach in ILP, 42
type, 32

declaration, 32, 48

—U—

unifier, 27

S

TC, 116 124
term, 24

depth of a, 47
test-perfect programs

—\V—

variabili zation, 78
complete, 78
simple, 78

variable
depth of a, 47

variable splitti ng, 133

vocabulary, 47, 90

