
Iterative Induction of Logic Programs

An approach to logic program synthesis from incomplete specifications

 Alípio Már io Guedes Jorge

Tese submetida para obtenção

 do grau de Doutor em Ciência de Computadores

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

January 1998

To my Parents.

To my Wife.

Acknowledgements

My supervisor, Pavel Brazdil, has been an unlimited source of encouragement,

enthusiasm and patience. Thanks for his valuable comments, suggestions and guidance.

My colleagues in LIACC provided an excellent working atmosphere, with relaxing

breaks whenever necessary. Special thanks to those in NIAAD (the machine learning

group), particularly to the ones who share the office with me: João Gama and Luís

Torgo.

I must thank the Portuguese agency JNICT (Programa Ciência, grant BD/1327/91/IA

and PRAXIS XXI, grant BD/3285/94) for the financial support without which this work

would have not been possible. I also thank MLNet, ILPNet, Faculdade de Economia da

U. Porto, and the Japanese agency IISF, which made possible my participation in several

international scientific events.

Thanks to all my friends (I fortunately have a good collection of them) for all the good

moments, dinners, parties, weekends, etc. Special thanks to those more directly involved

with my work: Mário Florido and Paulo Azevedo.

Thanks to my family, for their support and care (I have a great family too).

Special thanks to my wife, Xinha, for her love and companion, and to my baby-daughter

Carolina for giving me peaceful nights since she was 3 months old.

Thanks to my parents, for their love, support and encouragement ever since.

Contents

1. INTRODUCTION...1

1.1 MOTIVATION...3

1.2 MAIN CONTRIBUTIONS...4

1.2.1 The inductive engine...5

1.2.2 Iterative induction...6

1.2.3 Integrity constraints and the Monte Carlo method...8

1.3 OVERVIEW OF THE THESIS..8

2. PROGRAM DEVELOPMENT ..11

2.1 INTRODUCTION ...11

2.2 AUTOMATIC PROGRAMMING...12

2.3 CASE TOOLS..13

2.4 FORMAL METHODS ..14

2.5 PROGRAM SYNTHESIS ..15

2.5.1 Logic program synthesis..16

2.5.2 Program synthesis from examples..17

2.6 OTHER RELEVANT TOPICS ..19

2.7 SUMMARY ...20

3. INDUCTIVE LOGIC PROGRAMM ING..23

3.1 INTRODUCTION ...23

3.2 LOGIC PROGRAMS..24

3.2.1 Syntax ...24

3.2.2 Semantics..26

3.2.3 Derivation...27

3.2.4 Types, input/output modes...32

3.2.5 Integrity constraints..33

3.3 THE ILP PROBLEM ...34

3.3.1 Normal semantics of ILP...36

3.3.2 Directions in ILP...38

3.4 METHODS AND CONCEPTS..40

CONTENTSviii

3.4.1 The search in a space of hypotheses..40

3.4.2 The relation of θ-subsumption between clauses...41

3.4.3 The refinement operator (top-down approach) ..42

3.4.4 The lgg operator (bottom-up approach)...45

3.4.5 Search methods...45

3.4.6 Language bias...47

3.4.7 Declaring the language bias...48

3.5 STATE-OF-THE-ART OF ILP..50

3.5.1 Origins of ILP...50

3.5.2 Some ILP (and ali ke) systems..51

3.5.3 Applications..55

3.5.4 Inductive program synthesis..56

3.5.5 Problems and limitations...59

3.6 SUMMARY ...60

4. AN APPROACH TO INDUCTIVE SYNTHESIS... 61

4.1 INTRODUCTION ...61

4.2 OVERVIEW ..62

4.3 SPECIFICATION..63

4.3.1 Objective of the synthesis methodology...64

4.3.2 Examples, modes, types, integrity constraints..65

4.4 BACKGROUND KNOWLEDGE ...66

4.5 PROGRAMMING KNOWLEDGE ... 67

4.5.1 Algorithm sketches..68

4.5.2 Clause structure grammars ...73

4.6 CLASS OF SYNTHESIZABLE PROGRAMS ..73

4.7 THE SYNTHESIS OF A LOGIC PROGRAM ..74

4.7.1 The clause constructor .. 75

4.7.2 The refinement operator..79

4.7.3 The relevant sub-model ... 81

4.7.4 The depth bounded interpreter ..86

4.7.5 Vocabulary and clause structure grammar (CSG) ...90

4.7.6 Type checking...94

4.8 PROPERTIES OF THE REFINEMENT OPERATOR...94

4.9 A SESSION WITH SKIL ...98

CONTENTS ix

4.10 LIMITATIONS ..101

4.11 RELATED WORK ..102

4.11.1 Linked terms..102

4.11.2 Generic programming knowledge..104

4.12 SUMMARY ..104

5. ITERATIVE INDUCTION...107

5.1 INTRODUCTION ...107

5.2 INDUCTION OF RECURSIVE CLAUSES..108

5.2.1 Complete/sparse sets of examples..109

5.2.2 Basic representative set (BRS)...110

5.2.3 Resolution path...111

5.3 ITERATIVE INDUCTION ...114

5.4 THE SKILIT ALGORITHM ...115

5.4.1 Good examples..116

5.4.2 Pure iterative strategy... 121

5.4.3 SKILit architecture..124

5.5 EXAMPLE SESSIONS..125

5.5.1 Synthesis of union/3 ..126

5.5.2 Synthesis of qsort/2 ...127

5.5.3 Multi -predicate synthesis ..128

5.6 LIMITATIONS...131

5.6.1 Specifi c programs...131

5.6.2 Variable splitti ng ..132

5.7 RELATED WORK...134

5.7.1 Closed-loop learning...134

5.7.2 Sparse example sets...135

5.8 SUMMARY ...137

6. EMPIRICAL EVALUATION ..139

6.1 EXPERIMENTAL METHODOLOGY ...140

6.1.1 Success rate, test-perfect programs and CPU time..141

6.1.2 The universe of positi ve examples ...142

6.1.3 The universe of negative examples..143

6.1.4 The SKILit parameters ..144

CONTENTSx

6.1.5 Predicates used in the experiments..144

6.1.6 Overview of the experiments conducted...145

6.2 RESULTS WITH SKILIT ..146

6.2.1 Success rate..146

6.2.2 Percentage of test-perfect programs..148

6.2.3 CPU time..149

6.3 EXPERIMENTS WITH UNION/3 ... 150

6.4 COMPARISON WITH OTHER SYSTEMS...152

6.4.1 CRUSTACEAN ...152

6.4.2 Progol ...153

6.5 OTHER EXPERIMENTS..155

6.5.1 Factorial ...155

6.5.2 Multiply ..156

6.5.3 Insert ..156

6.5.4 Partition ...158

6.5.5 Insertion sort...158

6.6 RELATED WORK CONCERNING EVALUATION ..159

7. INTEGRITY CONSTRAINTS...163

7.1 INTRODUCTION ...163

7.2 THE NUMBER OF NEGATIVE EXAMPLES..165

7.3 INTEGRITY CONSTRAINTS ..166

7.3.1 Constraint satisfaction..167

7.4 MONIC AND THE MONTE CARLO STRATEGY..169

7.4.1 Operational integrity constraints ..170

7.4.2 The algorithm for constraint checking...171

7.4.3 Types and distributions...174

7.5 EVALUATION...175

7.5.1 append/3 and rv/2...175

7.5.2 union/3..178

7.6 RELATED WORK ..179

7.7 DISCUSSION ..180

7.7.1 The number of queries... 180

7.7.2 Soundness and completeness...181

7.7.3 Limitations..181

CONTENTS xi

8. CONCLUSION ...183

8.1 SUMMARY ...183

8.2 OPEN PROBLEMS..186

8.2.1 The selection of auxili ary predicates...186

8.2.2 Interaction..186

8.2.3 Many examples ...187

8.3 EVALUATION OF THE APPROACH ...187

8.4 MAIN CONTRIBUTIONS TO THE STATE-OF-THE-ART .. 188

8.5 THE FUTURE ...189

REFERENCES... 191

ANNEX...199

APPENDIX A ...199

APPENDIX B..203

APPENDIX C..203

LIST OF FIGURES ... 205

LIST OF ALGORITHMS..206

LIST OF EXAMPLES..206

LIST OF DEFINITIONS...207

INDEX ..209

1

1. Introduction

In this thesis we describe a methodology for the automatic construction of Prolog

programs from various pieces of available information. Programs are described in terms

of positive and negative examples, sketches and integrity constraints. Definitions of

auxili ary predicates and knowledge about the structure of the clauses to construct are

also given. This methodology is implemented as system SKIL (Sketch-based Inductive

Learner) and its iterative extension SKILit. Both systems are written in Prolog.

The information given to the system describes how the intended program should behave

and can be regarded as a program specification. Since we are dealing with fragmented

information we have an incomplete specification which does not fully describe the

behaviour of the program. The unspecified behaviour is hypothesized by our

methodology by means of inductive inference. For that reason, we can see our work as

an approach to the inductive synthesis of logic programs from incomplete specifications.

This work is therefore related to the more general field of Automatic Programming or

(Automatic) Program Synthesis.

On the other hand, inductive synthesis of logic programs can be naturally regarded as a

sub-field of Inductive Logic Programming (ILP). The aim of ILP is to induce theories

2 INTRODUCTION

from observations using logic programming formalisms to describe both theories and

observations. For that reason it is usually regarded as an intersection of Machine

Learning and Logic Programming (Figure 1.1).

Machi ne
Learni ng

Logi c
Programming

A utomat i c
Programming

I nduct i ve
Logi c

Programming

I nduct i ve Synthesi s of Logi c Programs
f rom I ncompl ete Speci f i cat i ons

Figure 1.1: Our work and related fields.

Let us take a look at a simple example of what we mean by inductive synthesis of logic

programs from incomplete specifications. Given the set E+ of positive examples of the

relation descendant/2

descendant(alipio,antonio).

descendant(alipio,adriana).

and the set of negative examples E– of the same relation

descendant(antonio,alipio).

descendant(adriana,antonio).

and an auxili ary program B (which is often referred to as background knowledge)

son(antonio,adriana).

son(alipio,antonio).

a logic program P defining predicate descendant/2 is constructed:

Motivation 3

descendant(A,B)←son(A,B).

descendant(A,B)←son(A,C), descendant(C,B).

In terms of program synthesis, the specification is made of the example sets E+ and E–.

Program P is a synthesized program which, together with the auxili ary program B,

satisfies the specification. In terms of ILP, examples E+ and E– are regarded as

observations. These are explained by the induced theory P together with background

knowledge B. The examples in E+ are logical consequences of P ∪ B whereas the ones in

E– are not.

The conditions under which P satisfies the incomplete specification { E+,E–} , or P

explains the observations {E+,E–} with respect to B can be stated as:

P∪B|= E+ and P∪B|≠ e– for all e–∈E–

The general aim of an ILP system, whether or not regarded as a program synthesis

system, is to find a program P which satisfies the above conditions. This thesis describes

the methodology behind one such system: SKILit.

1.1 Motivation

One of the main motivations of this work was the fact that many ILP techniques and

algorithms did not seem to be well suited to the problem of inductive program synthesis,

and in particular to the synthesis of recursive programs. ILP systems which represented

the state-of-the-art when this work first started, such as FOIL and GOLEM, were

practically unable to handle incomplete sets of examples. In order to construct the

definition of a recursive predicate, such systems require large numbers of well chosen

examples. The system SKILit we propose is able to induce recursive definitions from

small sparse sets of examples. Experiments show that SKILit obtains good results when

only few positive examples are available even if they are randomly generated. This is due

4 INTRODUCTION

to the iterative induction technique employed by SKILit, which is one of the main

contributions of the present work.

Other more recent systems also have this abili ty to induce recursive clauses from a sparse

set of positive examples. However, these other systems have a strong language bias and

can only synthesize programs within a restricted family of programs. Using the

methodology described in this thesis, system SKILit is potentially able to induce any pure

Prolog program since it allows the declaration of programming knowledge through

clause structure grammars. These are represented using the definite clause grammar

notation (DCG). We should stress, however, that SKILit is able to perform synthesis

when no grammar is provided.

Another problem we approach in this thesis is related to the large number of negative

examples required by most systems to avoid the induction of over-general programs. Our

methodology enables the use of integrity constraints to express the bounds of the

intended relation. The use of integrity constraints in ILP is not new. However,

processing such constraints usually involves heavy theorem proving mechanisms. The

approach we adopt here for integrity constraint checking is a very efficient one. It is

based on a Monte Carlo strategy which, given an integrity constraint I and an induced

program P, checks with some degree of uncertainty whether P and I are consistent or

not.

1.2 Main contr ibutions

The methodology presented in this thesis combines some novel techniques with existing

methods. Our main contributions are SKIL’s inductive engine, iterative induction, and an

efficient Monte Carlo method to handle integrity constraints. The basic inductive engine

presented is adequate for program synthesis from few examples. It also exploits mode

and type information, as well as programming knowledge represented as clause structure

grammars and algorithm sketches. Algorithm sketches allow the user to represent

Main contributions 5

specific programming knowledge and give this information to the system. Iterative

induction allows more flexibili ty in the choice of the positive examples given to a system.

The Monte Carlo constraint handler makes it practical to use integrity constraints in

inductive program synthesis. A brief overview of each one of these aspects is given in the

following sections.

1.2.1 The inductive engine

From a specification including the positive examples

member(2,[2]).

member(2,[1,2]).

The inductive engine of SKIL is able to induce the clauses

member(A,[A|B]). (C1)

member(A,[B|C])←member(A,C). (C2)

Our methodology constructs each clause by searching for a relational link from the input

to the output arguments of some positive example. The connection is established using

the auxili ary predicates defined in the background knowledge and the positive examples

initially given. The input/output modes declared for each predicate are also taken into

account. For example, assuming that the second argument is output and the first one is

input, the arguments of member(2,[1,2]) can be relationally linked as follows. From

[1,2] we get terms 1 and [2] by decomposing the list [1,2] and from [2] we get term 2,

using the example member(2,[2]). This link corresponds to the following instance of

clause (C2):

member(2,[1,2])←member(2,[2]).

This instance is turned into a clause by replacing terms with variables.

The search for a relational link is guided by an example (data-driven induction), which

has the advantage of reducing the number of candidate clauses to consider. The strategy

6 INTRODUCTION

for constructing each clause depends on one positive example only at a time. The reason

for this is that our inductive engine does not employ heuristics based on example

coverage or similar notions, as it happens with FOIL [96] or CHILLIN [125]. These

heuristics tend to be less reliable when few examples are available.

Our inductive engine also exploits programming knowledge represented as clause

structure grammars. This is a very simple and powerful formalism which can be seen also

as declarative bias.

The inductive engine also allows the synthesis from algorithm sketches. These can be

seen as partially explained positive examples which speed-up the synthesis process.

For example, the positive example member(6,[3,1,6,5]) could be partially explained by

telli ng the system that from list [3,1,6,5] you obtain list [1,6,5] and from this list you

obtain 6, the desired output. This information can be represented as an algorithm sketch

and be given to the system. The sketch is represented as a ground clause.

member(6,[3,1,6,5])←$P1([3,1,6,5] , [1,6,5]), $P2([1,6,5] ,6).

The $P1 and $P2 predicates represent unknown sequences of literals involving

operational predicates. The synthesis task consists mainly of constructing those

sequences of literals. Any positive example like member(2,[1,2]) can be represented by a

sketch like member(2,[1,2])←$P3(2,[1,2]).

Our inductive engine handles both plain positive examples and algorithm sketches in a

uniform way. Each clause is obtained from one example or sketch by using a unique

sketch refinement operator. This sketch refinement operator is shown to be complete

under adequate assumptions.

1.2.2 I terative induction

In order to induce the recursive clause from example member(2,[1,2]), the inductive

engine of SKIL needs to be given the example member(2,[2]). This fact makes the

Main contributions 7

induction of recursive programs by SKIL difficult when examples are not carefully

chosen. The role of iterative induction is to facili tate the synthesis of recursive programs.

System SKILit implements iterative induction.

Suppose that the specification now includes the positive examples

member(7,[7,9]).

member(2,[1,2]).

From this specification SKILit is able to synthesize the same recursive definition we saw

in the previous Section.

member(A,[A|B]). (C1)

member(A,[B|C])←member(A,C). (C2)

Let us see, in broad terms, how. In the first iteration two clauses are constructed, one for

each positive example.

member(A,[A|B]).

member(A,[B,A|C]). (C3)

In the second iteration, positive examples are again processed. The recursive clause C2 is

constructed from the example member(2,[1,2]) with the help of the fact member(2,[2]).

However, this fact is not in the specification. It is instead covered by clause C1. This

clause has a very important role in the inductive process.

The clauses induced during the first iterations are used by the system to support the

introduction of recursive clauses. They express certain properties of the relation to

synthesize. These properties may or may not be part of the final program. The properties

made redundant by other clauses are deleted by SKILit’s program compression module,

TC.

8 INTRODUCTION

1.2.3 Integrity constraints and the Monte Carlo method

The module MONIC of system SKILit processes integrity constraints by using a rather

efficient, although incomplete, Monte Carlo strategy. Every program P synthesized by

SKILit should satisfy the integrity constraints in the specification. Satisfaction checking

is done by randomly generating n facts which are logical consequences of the program.

Each one of these facts is used to look for a violating instance of some integrity

constraint.

For instance, the integrity constraint for predicate union/3

union(A,B,C),member(X,C)→member(X,A),member(X,B)

is read as: “ if X is in list C, then it is either in A or in B” . This constraint must be

respected by the program that defines the predicate union/3. Given a candidate program

P with union([2] ,[] ,[3]) as a logical consequence, and a correct definition for the

predicate member/2, one violating instance of the above integrity constraint is

union([2] ,[] ,[3]),member(3,[3])→member(3,[]),member(3,[2])

since the antecedent is true and the consequent is false.

Our constraint checker MONIC does not necessarily find a violating instance of the

integrity constraint. This only happens if one of the n randomly drawn logical

consequences of P results in a violating instance as shown above. The probabili ty of that

to happen grows with n, which can be set by the user.

1.3 Overview of the thesis

In Chapter 2, we situate the current work in the context of program development. We

refer to CASE tools, formal methods, deductive synthesis and inductive synthesis. In

Chapter 3, we discuss Inductive Logic Programming (ILP). We start with an

Overview of the thesis 9

introduction to Logic Programming, and present the ILP concepts and techniques which

are relevant to our work.

In Chapter 4, we present the inductive engine that is the core of our methodology. It is

described as system SKIL, which synthesizes logic programs by exploiting examples and

sketches. We give a sketch refinement operator and show a completeness result for it. In

Chapter 5, we introduce the iterative induction technique that overcomes the main

limitation of SKIL: the difficulty of inducing recursive definitions from sparse sets of

positive examples. System SKILit (SKIL iterative version) iteratively invokes (sub-)

system SKIL. In Chapter 6, we provide empirical evaluation of the method and of system

SKILit. In Chapter 7, we describe the constraint checker MONIC, which uses a Monte

Carlo strategy. MONIC allows the inclusion of integrity constraints in the specifications

given to SKILit. In Chapter 8, we give conclusions, limitations and future work.

11

2. Program Development

In this chapter we give a brief overview of various methodologies of program

development, including software engineering and automatic programming,

covering CASE tools and formal program development. A greater attention is

given to the synthesis of programs from incomplete specifications, particularly

to the synthesis of logic programs from examples.

2.1 Introduction

Software engineering traditionally divides program development in four distinct phases

[113].

• Elaboration of the specification. The specification contains the user’s requirements

relative to the program to construct. The requirements are described in natural

language. The specification should contain information about what the program

should do without describing how it should be done.

12 PROGRAM DEVELOPMENT

• Analysis and design, which elaborates the items given in the specification. In this

phase program developers make a high level description of the involved algorithms.

Data structures and data-flow are identified.

• Implementation, where the high level algorithms designed in the previous phase are

translated into executable code1.

• Verification, where the executable program is confronted with the specification. If any

deficiency is found in the program (i.e. the program is incorrect), one or more of the

previous phases are redone.

Our work intends to contribute to the automation of code generation within the scope of

programming in the small2, whilst permitting incomplete specifications by examples, and

other pieces of information. On the one hand, it is our aim to make specifications as

simple to construct as possible, on the other we wish to totally or partially automate the

generation of code from incomplete specifications.

2.2 Automatic programming

Could the computer accomplish the laborious task of programming? This dream is as old

as programming itself. The quest for automatic programming is motivated by two main

reasons:

• to accelerate the process of program development, mainly the implementation phase

previously referred, freeing as much as possible the analyst/programmer from non-

creative tasks;

1 The expression ‘executable code’ is used in the sense that there is an available interpreter/compiler for that
language.

2 A distinction is also made between programming in the large and programming in the small . Programming in the
large involves a large team of analysts and programmers, working for a long period of time (months to years),

CASE tools 13

• to increase the reliabili ty of programs, minimizing human intervention, which is often

a source of errors.

Computer aiding tools for software development, the formal development

methodologies, and the synthesis of programs have pursued these objectives.

2.3 CASE tools

The acronym CASE stands for Computer Aided Software Engineering. CASE Tools are

computer programs that aid the task of developing a system, from the elaboration of

specifications to the production of documentation [113].

A CASE system can contain several different tools. Diagram editors for the management

of application related information: data flow, system structure, entities-relationships

diagrams, etc. These editors are usually more than simple design tools. They should be

able to capture the information contained in the diagrams and alert the user for

inconsistencies and other anomalies. Other sorts of CASE tools include database

querying tools, dictionaries which maintain the information relative to the involved

entities, tools which allow easy generation of reports, user interface generators, etc.

CASE tools enable greater productivity in the development of complex systems, and are

common in professional environments nowadays. Its main role is to organize the vast

quantity of information involved in a large development project, in order to make that

information easily accessible to everyone involved. Systems developed with the support

of CASE tools tend to be more reliable.

while programming in the small refers to systems which do not take more than a few months to develop with no
more than one or two people. ‘Software’ engineering is especiall y devoted to programming in the large.

14 PROGRAM DEVELOPMENT

Some CASE systems include code generators. These are able to create preliminary

segments of code (skeleton code) from the information gathered in the diagram editors

and data dictionaries. Even so, the availabili ty of this type of CASE tool is very limited.

To conclude, CASE tools are mainly useful for the support of the management of project

development. Most tedious programming tasks are still l eft to the programmer. Yet,

without tools capable of automating or semi-automating the generation of code, the

CASE technology is far from reaching its full potential [35].

2.4 Formal methods

In terms of formal development methodologies, programming is seen as a mathematical

activity, and programs are considered complex mathematical expressions [45]. This

conception of programming allows, for example, to prove that a program is correct with

respect to its specification [30].

In approaches based on formal methods, the specification is expressed in a formal

language, as first order logic [28], instead of natural language. The executable program

can be obtained from the given specification using inference and/or rewrite rules. The

application of these rules can be manual or semi-automatic. In general, it is diff icult to

mechanically derive a complex program this way [28]. For this reason, we frequently find

program synthesis methodologies which are semi-automatic and guided by the user. We

give two examples below.

The KIDS system by Douglas Smith, supports the development of correct and efficient

programs from formal specifications (cf. following Section). The environment for the

development of KIDS is highly automated, although interactive. The user makes high

level decisions concerning program the design and the system takes these decisions into

account generating an executable program [111].

Program synthesis 15

Jülli g [55] proposes a program development environment (REACTO) where the spirit of

CASE tools is integrated with formal methods, and with program synthesis. On the one

hand, graphic aiding tools for analysis are made available to the user, on the other hand

the user is allowed to write formal specifications and obtain executable code. One of the

components of REACTO is the KIDS system previously referred to.

In conclusion, CASE tools provide graphical aid for analysis, but give limited support for

the generation of code. Formal methods are mostly used for writing the specifications

rather than for the generation of an executable program. Program synthesizers, discussed

in the next Section, concentrate on the generation of code instead of system analysis

[55].

2.5 Program synthesis

Broadly speaking, we call program synthesis to any systematic process of program

construction from a given specification which describes what the program should do

[27]. Within the category of systematic methods we find the (semi-)automatic methods

of code generation from a specification of the intended program behaviour. In this case,

the program synthesis is also named as automatic programming [8,99].

In this context, the term ‘specification’ can have many different connotations. Biermann

organises the automatic programming research field according to the kind of

specification used [8]: synthesis from formal specifications (first order logic formulas);

synthesis from examples of input/output pairs; and synthesis from dialogues in natural

language between the synthesis system and the user. We can also find formal

specifications represented as a hierarchical finite state machine [55] or a temporal logic

[108].

When the specification is expressed in natural language, the code generator must cope

with the typical ambiguity and syntactical irregularity of natural language. Synthesis

16 PROGRAM DEVELOPMENT

systems from natural language are usually interactive, allowing the user to describe the

problem through a dialogue with the system.

In the 1970́s there were a few ambitious projects in this domain [42] with limited

success. Later, the research focus moved in the direction of specifications in very high

level languages. These languages are closely related to formal languages, even though

they sometimes allow some informality typical of natural language [99,part v].

2.5.1 Logic program synthesis

Within program synthesis, we are mainly interested in logic program synthesis. In this

field, Devill e and Lau [27] divide the formal specifications into formal and informal

ones. The formal specifications can be either complete or incomplete.

A formal specification is expressed using a formal language, as the first order logic or

one of its subsets. The specification is a set of logical formulas involving one logical

predicate r which is to be defined. This notion of specification in the context of logic

program synthesis is broad enough to include complete and incomplete specifications.

A complete specification includes all the conditions which the program to synthesize

should satisfy. An incomplete specification describes only part of those conditions. In

general, a specification from examples of answers of a logic program is incomplete, i.e.,

not all of the program behaviour is specified. In this case, the code generator will have

the task of hypothesizing the unspecified behaviour. A specification from examples can

be regarded as a formal specification, as long as a rigorous language is used to describe

the examples [27].

Example 2.1: (from [27]) Two specifications for the predicate included(X,Y) which

defines the set of pairs <X,Y> , of which X and Y are lists and every element of X is

contained in Y.

Complete specification:

Program synthesis 17

{ included(X,Y)↔∀A(member(A,X)→member(A,Y)) }

Incomplete specification (by examples):

{ included([] ,[2,1]), included([1,2] ,[1,3,2,1]), ¬included([2,1] ,[]) }

♦

Logic program synthesis from formal specifications has three main approaches:

• constructive synthesis, whereby a program is extracted from a constructive proof of

the existence of a program satisfying the specification;

• deductive synthesis, whereby a program is derived from a specification using

deduction rules;

• inductive synthesis, whereby a program which generalizes the information contained

in the specification is constructed using inductive methods.

Among these three approaches to program synthesis from formal specifications, our

work can be regarded as inductive synthesis, more specifically, as inductive synthesis

from examples of the intended program behaviour.

2.5.2 Program synthesis from examples

In the early 1980́s, the MIS system (Model Inference System) by Ehud Shapiro [109]

synthesizes programs in Prolog language from examples given by the user.

System MIS works interactively following a program debugging philosophy. The user

presents positive and negative examples and the system confronts the given examples

with the current version of the program, starting with the empty program. When a new

example highlights a problem in the program, the system modifies it with the aim to

eliminate the error.

18 PROGRAM DEVELOPMENT

Debugging a program consists of the elimination, creation or modification of individual

clauses. During the debugging process, the system may query the user about predicates

involved in the program. These queries have the form “is p(a) true or false?”

(membership queries or ground queries) and “which values of the variable X make p(X)

true?” (existential queries).

The system MIS is able to generate small Prolog programs, such as member/2, which is

true if the first argument is a member of the second argument, or append/3, which

concatenates two lists into a third one. The system can also be adapted to generate

programs in DCG (definite clause grammar) notation.

The work of Ehud Shapiro contains a methodology for the synthesis of Prolog programs

from examples which still i nspires work on the subject [41,95]. The influence of his work

is mainly noticeable in the field of Inductive Logic Programming (ILP, cf. Chapter 3).

ILP came about in the nineties and its main concern is to generate logic programs from

examples [77]. Although the main focus of ILP research has not been automatic

programming many ILP systems demonstrate their abili ties by showing that it is possible

to generate simple Prolog programs at the level of the ones taught in a first logic

programming course. As examples of some approaches concerned with automatic

programming we can refer to the works of Quinlan [96,97], Bergadano et al.[5, 6],

Flener [37,39] and Popelinsky et al. [94].

Although currently the trend is to do inductive synthesis with logic programming

languages such as Prolog, in the seventies and eighties the preferred language was LISP,

which is closer to the functional paradigm. The works of Summers [118] and Biermann

[7] are examples of that.

The shift from functional to logic languages, may be attributed to the appropriateness of

logic programming to the task of inducing clauses from examples, and also to the

growing popularity of Prolog. The fact that in a logic programming language

Other relevant topics 19

generalization and specialization of clauses and programs correspond to very simple

operations3 may have contributed to that shift [109]. Despite the general trend, work on

inductive synthesis of functional programs is still published. In 1995 system ADATE [89]

synthesizes programs in the language ML.

To sum up, we can say that both logic programming and functional languages have

important features which justify their choice for program synthesis (and not from

examples only). Both paradigms have meta-programming capabili ties, which are

important for automatic programming. Both LISP and Prolog programs tend to be

compact and relatively easy to understand. Finally, both functional and logic languages

have strong theoretical foundations, which enables a clear formalization of inductive

operations and program transformation [109, pp.162-163].

2.6 Other relevant topics

Other subjects in computer science are relevant to the quest for computer tools that ease

the effort of programmers and program analysts. We will not refer to these subjects in a

systematic way, but rather present some pointers which can be followed.

• Program development environments. In the area of Logic Programming we highlight

the work of Mireill e Ducassé [31]. A good example of how a program development

environment can help a FORTRAN programmer to exploit the existing sub-routine

library can be found in the work of Stickel et al. [117].

• Algorithmic debugging. This is an important source of inspiration for the work on

synthesis from examples. The synthesis process can be seen as a debugging process

starting with the empty program. In this area we have, among others, the works of

Shapiro [109], Moniz Pereira and Miguel Calejo [17,91] and Paaki et al.[90].

3 These operations are simple when the generali zation model employed is θ-subsumption. Other generali zation

20 PROGRAM DEVELOPMENT

• Programming by demonstration. The aim of programming by demonstration is,

according to Cypher, the following: If a user knows how to accomplish a task using a

computer, that should be enough to create a program that automates that task. It

should not be necessary to know a programming language like C or BASIC.

Typically, the user demonstrates his/her intentions by means of a graphical interface.

The system based on these notions generalizes the user’s actions and infers a program

or a macro [19].

2.7 Summary

CASE tools provide a good help for the tasks of project analysis and development,

increasing the overall productivity of software development. They also provide greater

software reliabili ty. However, CASE methodology has offered very little regarding code

generation, leaving many tedious tasks to the programmer.

The advocates of formal development methods regard programming as a mathematical

activity and programs as complex mathematical expressions [45]. They propose formal

specification languages, from which one obtains the program code following a formal

methodology. The correctness of a formally developed program with respect to its

specification can be proved. Employing such rigorous approach helps to avoid many

programming errors. This aspect is especially relevant in critical applications such as air

traffic control or industrial plant maintenance, where a program bug may have dramatic

costs [30].

The systematic development of programs from specifications is referred here as program

synthesis. Specifications can be formal or informal, complete or incomplete. From formal

and complete specifications, programs can be derived using deductive methods similar to

the ones used in theorem proving..

models may be more complex.

Summary 21

Formal methods, however, are often too heavy. Formal programming is only within the

reach of experts. To write a formal and complete specification is not an easy task.

Existing derivation methods are not totally automated, and still demand much effort from

the programmer. Program synthesis from incomplete specifications (inductive synthesis)

facili tates the task of the programmer by eliminating the need for abstraction demanded

by traditional formal methods.

The area of inductive synthesis is usually geared towards the generation of LISP and

Prolog programs from examples. While the synthesis of LISP programs from examples

has seen little development in the nineties, the synthesis of Prolog programs has greatly

increased with the growth of the fields of logic programming and of inductive logic

programming (ILP).

ILP technology may be an important component of future programming environments.

The aim of having one day a totally automated tool which constructs any intended

program from examples only (Biermann calls that auto-magic programming) seems

unrealistic. However, we believe ILP can give an important contribution to the

development of tools that help the programmer accomplishing his task. Moreover, ILP

may enable unskill ed computer users to create small computer programs without

programming, and therefore increase dramatically the ease of constructing new

applications.

23

3. Inductive Logic Programming

In this chapter we introduce Inductive Logic Programming (ILP) concepts

which are relevant to our work. We start with Logic Programming itself, which

can be seen as one of the pill ars of ILP. The general ILP task is defined as the

construction of a logic program satisfying certain conditions. The main ILP

approaches are described. We conclude the Chapter by giving an account of

the state-of-the-art of the field.

3.1 Introduction

Lying in the intersection of Logic Programming (LP) and Machine Learning (ML),

Inductive Logic Programming (ILP) investigates methods for the generation of logic

programs from examples and therefore inherits much of the theoretical framework of

logic programming. In the following Sections we present all the logic programming

concepts which are relevant to our work. We also describe the most important ILP

methods and concepts, stressing what is more relevant to us.

24 INDUCTIVE LOGIC PROGRAMMING

3.2 Logic programs

A logic program, in the context of this work, is a set of clauses, i.e., First Order Logic

formulas written in clausal form. In this Section we follow mainly the notation and

terminology used by Hogger [46] and Lloyd [64]. In the latter one can find a detailed

account of the theory of logic programming.

3.2.1 Syntax

A clause is a first order logic formula in clausal form:

∀X1, …, Xs (L1 ∨ L2 ∨ … ∨ Ln)

where each Li is a literal, X1, …, Xs are all the variables occurring in the clause. A literal

is an atom (positive literal) or a negated atom (negative literal). An atom is an expression

of the form p(t1,t2,…,tk), with k ≥ 0, where p is the name of a predicate of arity k. Such a

predicate name can also be represented by p/k. The ti are the arguments of the atom.

Each argument ti is a term. A negated atom is of the form ¬p(t1,t2,…,tk).

A term can be a variable, a constant, or a composed term of the form f(t1,t2,…,tn), in

which f is a functor with arity n>0 and the ti are terms.

A clause can also be regarded as a set of literals {L1, L2, … , Ln} . Another usual way of

writing a clause is as an implication

A1 ∨ A2∨ … ∨ Am ← B1 ∧ B2 ∧ … ∧ Bn

where each Ai is a positive literal and each Bi is the atom of a negative literal. The sub-

formula A1 ∨ A2∨ … ∨ Am is called the head of the clause or consequent. B1 ∧ B2 ∧ … ∧

Bn is called the body of the clause or antecedent.

Clauses can be classified according to their number of positive and negative literals. A

clause with exactly one positive literal (exactly one literal in the head) and zero or more

Logic programs 25

negative literals is a definite clause. Any clause with more than one positive literal is an

indefinite clause. A clause with no literals is called the empty clause and is denoted by a

white square �. The empty clause represents contradiction: false←true.

A recursive clause is one in which at least one of its body literals has the same predicate

as the literal in the head. A clause without variables is called a ground clause. Similarly,

we have ground literal and ground term. A ground clause with a single positive literal is

a fact.

A logic program P is a (possibly empty) set of clauses. The empty program is denoted by

the symbol ∅. In order to represent logic programs we will use, for convenience, an

identical notation as the one used in the logic programming language Prolog [116]. The

symbols for disjunction (∨) and conjunction (∧) are replaced by commas, and clause ends

with a period. However, we differ from Prolog notation in one aspect: the implication

arrow (←) is used instead of Prolog’s colon dash :-.

A1, A2, … , Am ← B1, B2, … , Bn .

Variables are denoted by strings starting with an upper case letter (such as X, Y, A, etc.),

and constants are denoted by strings starting with a lower case letter (such as a, c, x,

etc.).

A normal logic program contains clauses with at least one positive literal. Each clause

has the form

A←L1,…,Ln.

where A is an atom and the Li are literals. Each clause in a normal program defines the

predicate p/k of atom A. The definition of a predicate p/k in a program P is the set of

clauses in P which define p/k. A logic program containing only definite clauses is called a

definite logic program.

Example 3.1: The logic program below has three clauses:

26 INDUCTIVE LOGIC PROGRAMMING

parent(X,Y)←father(X,Y).

parent(X,Y)←mother(X,Y).

ancestor(X,Z)←parent(X,Y), ancestor(Y,Z).

This is a definite logic program (therefore it is also a normal logic program) defining

predicates parent/2 and ancestor/2.♦

3.2.2 Semantics

A Herbrand model of a logic program P is, informally, a set of ground atoms which

logically validate each clause of P. These ground atoms are elements of the Herbrand

base of program P. The Herbrand base is the set of ground atoms which can be

constructed using the predicates contained in P and any functors or constants belonging

to the language.

A fact q is a logical consequence of a program P if all the models (Herbrand and non-

Herbrand) of P are also models of q. That is denoted by

P |= q

A definite program (which excludes programs containing clauses with negative literals in

the body) has a set of Herbrand models which are structured in a lattice according to the

partial order relation ⊆ between sets. The minimal element of this lattice is the minimal

(Herbrand) model. The notation MM(P) denotes the minimal (Herbrand) model of the

program P.

The minimal model of a definite program P corresponds to the set of ground atoms

which are its logical consequences

P |= q if and only if q ∈ MM(P)

In terms of denotation semantics, the meaning of a (definite) logic program P is MM(P).

In other words, it is the set of ground logical consequences of P.

Logic programs 27

The semantics of a normal program P with negated literals in the body of at least one of

its clauses is defined in terms of its completion denoted as Comp(P). The completion of a

program is obtained by transforming its clauses into equivalencies, and adding special

clauses defining an equality theory [64].

For a normal program P, instead of referring to the model of P, we refer to the model of

Comp(P). However, to simplify the description of our work, we will say “the model of a

program P” even if it is a normal program. We should however stress that many of the

theoretical results obtained for definite programs are not valid for the generality of

normal programs. We will i dentify those differences whenever it seems relevant.

The programs synthesized by our methodology are definite. The synthesis system may

however have normal programs for background knowledge.

3.2.3 Derivation

A logic program is executed by posing queries to it. A query is a clause of the form

←L1,…,Ln where each Li is a literal. Basically, a query ←q to a program P asks whether

a fact q is a ground logical consequence of P or not, or if it is possible to assign certain

values to the variables in q so that q is a ground logical consequence of P after replacing

the variables by the corresponding values.

A query may succeed or fail . If it succeeds and the query contains variables, then a

substitution (called answer substitution) is also part of the answer. A substitution is an

application between a set of variables and a set of terms, and is represented as a set of

variable/term pairs. Substitutions are usually denoted by Greek letters such as θ and σ.

The process of substituting variables by terms is called instantiation.

Another fundamental concept is unification. Two atoms are unifiable when they can de

made identical by substituting their variables by terms in a consistent way. A substitution

which makes two atoms identical is called a unifier. Of all the unifiers of two atoms there

28 INDUCTIVE LOGIC PROGRAMMING

exists only one most general unifier. This corresponds, informally, to the substitution

which minimally instantiates the two atoms.

Example 3.2: Atoms f(a) and f(X) are unifiable. The substitution θ = { X/a} is a unifier.

By applying this substitution to the second atom we obtain the first one, f(a) = f(X)θ.

Substitution θ is also the most general unifier of the two atoms.♦

Resolution is an inference rule which enables the derivation of one clause R from two

other clauses C1 and C2, called parent clauses. Clause R is the resolvent. Parent clauses

must be complementary, i.e., for some literal A1 in one of them there must be a literal

¬A2 in the other so that A1 and A2 are unifiable. Therefore, if C1 is the clause A1 ∨ More-

Literals and C2 is ¬A2 ∨ Other-Literals, resolvent R is (More-Literals ∨ Other-

Literals)θ, where θ is the most general unifier of A1 and A2.

An answer to a query Q is derived from P using a proof procedure, an algorithm which

applies a set of derivation rules to P and Q following a given strategy and constructing a

proof. The proof procedure we use is SLDNF-resolution, which is used in the Prolog

language interpreters. SLDNF-resolution is an extension of SLD resolution.

SLD-resolution works as follows. Given a query Q of the form

←Q1,Q2,…,Qm

where each Qi is a non-negated literal, and given a definite program P, SLD-resolution

starts by selecting one of the literals from the query. Here, we will assume that the literal

selection rule will always choose the leftmost literal, for it is the most common selection

rule. In that case, the first literal to be chosen is Q1.

Next, we choose a clause C1 from the program P, so that the head of C can be unified

with Q1. Suppose that C1 is of the form

A←B1,B2,…,Bn

Logic programs 29

Then, Aθ1=Q1θ1, where θ1 is the most general unifier of A and Q1.

As such, we obtain the resolvent R1

←(B1,B2,…,Bn,Q2,…,Qm)θ1

After this first resolution step we will proceed in the same manner with resolvent R1,

selecting one clause C2 from program P and obtaining a new unifier θ2 and a new

resolvent R2. This process is repeated until we get the empty clause � as the resolvent.

An SLD-derivation of a program P from query ←Q is represented by the sequence D =

((R1,C1,θ1), (R2,C2,θ2), … , Rn), where R1 = ←Q, Ri is the resolvent of Ri-1 and Ci-1, and

θi is their most general unifier, for 1 ≤ i ≤ n. A refutation of ←Q from a program P is a

derivation of P from ←Q which ends with the empty clause (Rn = �). By refuting ←Q

from P, we prove Qθ from P. Substitution θ is an answer substitution. We also say that

Qθ is derivable from P.

The answer substitution θ to the initial query is obtained by composition of the most

general unifiers θ1, θ2, etc. of the sequence in the derivation. When the empty resolvent is

not derivable the query fails.

When a fact q is SLD-derivable from a program P we write

P |– q

The set of all the answer substitutions given by SLD-resolution to a query is obtained by

searching exhaustively the space of SLD-derivations. The SLD-tree generated as a result

this search has the starting query in its root, and each branch is one possible derivation of

the program for the query. Each branch may either end with the empty clause (which

corresponds to the answer), or on a non-empty clause which does not resolve with any

clause of the program, or it can be an infinite branch. When all the branches of an SLD-

tree for the query ←Q are finite and none ends with clause �, we say that the query

finitely fails.

30 INDUCTIVE LOGIC PROGRAMMING

Example 3.3: Suppose we have the following program P:

descendant(X,Y)←son(X,Y).

descendant(X,Z)←son(X,Y),descendant(Y,Z).

son(alipio,antonio).

son(antonio,adriana).

The query ←descendant(alipio,X) is posed to program P. The answer θ={ X/antonio} is

given by the following derivation:

We have P |– descendant(alipio,antonio).♦

Note that the set of facts derivable by SLD-resolution from a definite program P

corresponds exactly to the minimal Herbrand model of P, i.e.,

P |– q ⇔ P |= q ⇔ q∈MM(P)

In other words, we can use SLD-resolution to determine which are the ground logical

consequences of a program P.

To be able to deal with queries containing negated literals and normal programs, we need

to extend the SLD resolution with the negation as failure rule. This is how we obtain

←descendant(alipio,X).

←son(alipio,Z).

�

descendant(Y,Z)←son(Y,Z).

θ1={ X/Z}

θ2={ Z/antonio}

 son(alipio,antonio).

Figure 3.1: Derivation Graph

Logic programs 31

SLDNF-resolution. The negation as failure operator is usually denoted by not and is

defined as follows: a query ←not Q succeeds if and only if the question ←Q finitely fails.

In terms of derivation, when a program P is being derived and a literal not Q is found in

the resolvent two situations may occur. The first possibili ty is that Q is derivable, and in

that case not Q cannot be resolved upon. The second possibili ty is that there is a finite

SLDNF tree T for Q such that T has no successful branches (Q cannot de derived from

P). We represent that derivation step as (←Lits1 ∧ not Q ∧ Lits2, T), (←Lits1 ∧ Lits2, C,

θ).

By imposing certain conditions to a program P, we can then relate the ground facts q

derivable from P through SLDNF with the ground logical consequences of Comp(P).

P |– SLDNF q ⇔ Comp(P) |= q

Briefly, the conditions are as follows: no predicate p of P should be expressed directly or

indirectly in terms of not p; all the variables of a clause should occur at least once in a

non-negated literal; P should be strict in relation to any query q. For a definition of strict

programs see [46]. Besides these conditions, the SLDNF-resolution should never select a

negated literal that is not fully instantiated.

The relation defined between logic programs (sets of clauses of some language L) and

facts (elements of the language L), through a set R of derivation rules, is called a

derivabilit y relation.

|– = { <P,q> | P ⊆ L, q ∈ L, q is derivable from P using R}

A proof procedure constructs one derivabili ty relation. For readabili ty, we will use the |–

symbol to denote both the SLD and SLDNF derivation.

Definition 3.1: Given a language L, a derivabili ty relation |– , a program P⊆L and a

query ←q such as q∈L, an interpreter for the language L is the operator,

32 INDUCTIVE LOGIC PROGRAMMING

Int(P,←q, |–) = { θ | P |– qθ }

♦

Each element of Int(P,←q, |–) is an answer substitution given by |– for a query ←q

posed to P.

3.2.4 Types, input/output modes

A type corresponds to a non empty set of ground terms. This set is called a type domain

or, simply a type. To every argument of a predicate we can associate a type. In the

present work, this association is established through a type declaration of the form

type(p(type1,…,typek)). These declarations are given with the program specification for

the predicate p/k (Section 4.3.1).

Argument types are used as a condition to be satisfied by the queries posed to the

program and also by the answer substitutions [26]. An n-tuple of terms (A1,…,An) is

compatible with an n-tuple of types (type1,…,typen) if there exists a substitution θ such

that (A1,…,An)θ ∈ (type1×…×typen).

Example 3.4: We specify the type of arguments of member/2 as (X,Y)∈(integer×li st).

This information is used as a pre-condition as well as a post-condition. As a pre-

condition is used to filter the queries of member/2. Before a query ←member(A,B) is

executed, it is checked if (A,B) is compatible with (integer,li st). As post-condition it

verifies if an answer substitution θ given is such that (A,B)θ ∈ (integer×li st).♦

One advantage of type declarations is that they help the programmer to structure the

logic programs he writes. Another one is that they allow the execution of these programs

to be more efficient [26]. Type declarations are of interest to us mainly as a factor of

efficiency in inductive logic programming (see Section 4.7 and [120]).

Logic programs 33

The input/output modes (or simply modes) of a predicate determine its possible uses

[26,64]. For every predicate argument an input or output condition is defined. The input

conditions should be verified before the execution of the logic program, whilst the output

conditions should be verified after the answer substitution is obtained. The most simple

input condition is “the argument should be a ground term”. Another condition could be,

for example, “the argument should be a variable”. Output conditions are similar.

The input/output modes most frequently used in ILP determine which predicate

arguments should be ground terms before execution [82,96,109]. For this reason, these

arguments are called the input arguments. The remaining arguments are called output

arguments. Here, an input/output mode declaration for predicate p/k is of the form

mode(p(M1, …,Mk)).

where Mi is a plus sign ‘+’ if the i-th argument is input, and a minus sign ‘ -’ otherwise.

Example 3.5: The mode of a predicate p(X,Y) can specify that this predicate should be

invoked with the variable X instantiated. Variable Y may be instantiated or not. We call X

an input argument and Y an output argument. The mode of predicate p/2 is expressed as

mode(p(+,-)).♦

For convenience we sometimes use the following notation. The ‘+’ or ‘-’ signs preceding

the arguments of a literal in a clause, mean that these arguments have an input or output

mode, respectively. This way, the literal p(+a,+b,-c) corresponds to the literal p(a,b,c),

with the input/output mode p(+,+,-).

3.2.5 Integrity constraints

Integrity constraints are first order logic formulas of the form A1∧…∧Ak→B1∨…∨Bn,

where Ai and Bj represent literals. In general, integrity constraints are not representable

by definite clauses. They are used in logic programming applications such as deductive

databases [71,121] and inductive logic programming. In both cases, these special clauses

34 INDUCTIVE LOGIC PROGRAMMING

serve to prevent a given logic program from being updated in an undesirable way. In

Chapter 7 we consider integrity constraints in more detail, particularly with respect to

ILP applications.

3.3 The ILP problem

While in Logic Programming we proceed from programs to their logical consequences,

in Inductive Logic Programming we start from the logical consequences and attempt to

obtain the programs. The description of the logical consequences of the intended

program is in the form of positive and negative examples. These examples are usually

ground atoms4. Being represented by ground atoms, positive examples are like samples

of the minimal model of the intended program. The limits of the model of the intended

program are indicated by the negative examples: ground atoms which should not be

logical consequences of the program.

The inductive task consists of finding a program P which is a hypothesis compatible with

the given examples. This hypothesis is found within a hypothesis language L (also called

concept language) which is a set of logic programs. We say that program P is induced,

synthesized, or learned. The task of constructing a program inductively is called

induction, inductive synthesis, program synthesis from examples or simply machine

learning from examples. This multiplicity of terms is due to the fact that this problem is

of interest to different communities within computer science and artificial intelli gence.

We will mainly use the designation inductive program synthesis from incomplete

specifications. For commodity, we will sometimes say that P is ‘ the target/intended

program’ although in general there is a set of acceptable solutions for a synthesis

problem.

4 However, there are approaches which use non-ground clauses to represent positi ve and negative examples, as in
[20,37,102], and our own work presented here.

The ILP problem 35

As it happens with many other Machine Learning tasks, it is of utmost importance that

the synthesis task of a program does not start from scratch. Having other predicates that

can be used as auxili ary by the program is important. These are normally referred to as

background knowledge.

The predicates in background knowledge can be defined either extensionally or

intensionally. Background knowledge is extensional when it consists of a set of ground

facts involving the auxili ary predicates. If auxili ary predicates are defined through

program clauses which are not necessarily ground, then background knowledge is

intensional.

The objective of ILP is generally presented as follows (De Raedt, Lavrac [24]):

Given

• a set of examples E (consisting of positive examples E+, and negative examples E–),

• background knowledge B,

• language L of logic programs,

• and a notion of explanation (a semantics),

find

• a program P⊆L that explains the examples E relatively to B.

There are different notions of explanation. The most common is called the normal

semantics of ILP. Another important notion of explanation is given through non

monotonic semantics [22, 24, 36, 44]. In this work we will adopt normal semantics.

36 INDUCTIVE LOGIC PROGRAMMING

3.3.1 Normal semantics of ILP

A program P explains a set of examples E = E+ ∪ E– relatively to program B if

P∪B |= E+ (completeness)

and

P∪B |≠ e– for all e–∈E– (soundness)

Example 3.6:

Positive examples: { descendant(alipio,antonio)}

Negative examples: { descendant(antonio,alipio)}

Background knowledge: { son(alipio,antonio), son(antonio,adriana)}

Hypothesis: { descendant(X,Y)←son(X,Y)}

The conditions of completeness and soundness can be checked using the SLD-resolution

(or the SLDNF-resolution if the clauses are not definite). Completeness is checked by

verifying that all positive examples are entailed by hypothesis P together with

background knowledge B (in this case there is only one positive example):

P ∪ B |– descendant(alipio,antonio)

The soundness condition is verified if no negative example is entailed by P ∪ B.

P ∪ B |–/ descendant(antonio,alipio)

♦

Definition 3.2: A program P covers (intensionally) a fact e if P |= e. A program P

covers (intensionally) a fact e relatively to a program B if P ∪ B |= e.♦

Some ILP approaches use extensional coverage, a somewhat different notion that is

computationally less demanding, but yielding different results.

The ILP problem 37

Definition 3.3: A program P covers (extensionally) a fact e relatively to a model M if

there exists a clause C∈P (C = H←B) and a substitution θ such that Cθ is ground, Hθ=e

and Bθ ⊆ M. ♦

Example 3.7: Given program P

descendant(X,Z)←son(X,Y),descendant(Y,Z).

descendant(X,Y)←son(X,Y).

and the background knowledge

B = { son(alipio,antonio),son(antonio,adriana)}

P intensionally covers the example

descendant(alipio,adriana)

relatively to B. However, P does not extensionally cover the example.♦

In this dissertation the notion of intensional coverage will always be used, unless

otherwise specified.

The conditions of completeness and soundness above presented, take into account only

positive and negative examples. This scenario can be extended to include integrity

constraints as a more expressive source of information, and particularly of negative

information. An integrity constraint Body→Head is satisfied by P∪B if it is true in the

minimal model of the program P ∪ B. This can be checked transforming the integrity

constraint into a query.

P ∪ B |–/ Body, not Head

A set of integrity constraints is satisfied if each constraint in that set is satisfied. In

Chapter 7, we will formalize these notions and present an efficient method for constraint

checking.

38 INDUCTIVE LOGIC PROGRAMMING

Example 3.8: Let I be the integrity constraint

descendant(X,Y)∧descendant(Y,X)→false.

This constraint says that nobody is a descendant of one of his own descendants. Let P be

the program

descendant(X,Z)←son(X,Y).

descendant(X,Y)←son(Y,X).

and B the background knowledge

B = { son(antonio,adriana)}

To check if program P is satisfied by constraint I we pose to the program the query

← descendant(X,Y),descendant(Y,X).

The query succeeds with X= antonio and Y= adriana. Therefore P does not satisfy I.♦

As will be seen in Chapter 7, both positive and negative examples can be expressed as

integrity constraints. The conditions of completeness and soundness in the definition of

the ILP problem can be replaced by the constraint satisfaction condition.

In our work the three conditions (completeness, soundness and constraint satisfaction)

will be separatelly checked during induction. Soundness is checked for each tentative

clause. Completeness is enforced by the synthesis strategy. Constraint satisfaction is

checked with some degree of uncertainty.

3.3.2 Directions in ILP

The aim of ILP, as presented above, serves only as a starting point for a system which

generates logic programs from examples. We will next refer to other aspects that can be

considered when developing an ILP system:

The ILP problem 39

• Interaction. An ILP system can be interactive or non-interactive. An interactive

system asks questions to an oracle (usually the user) during the induction process.

Systems MIS [109], CLINT [20] and SYNAPSE [37] are interactive. System SKILit

presented here is non-interactive.

• Noise. The data supplied to the system can contain various types of incorrect

information (e.g. an example provided as positive may in fact be negative). In this

case, we say that the data is noisy. A system capable of handling noise must relax the

conditions of completeness and soundness [61,62]. Our approach does not handle

noise.

• Predicate invention. The auxili ary predicates defined within background knowledge

may not be sufficient to find a satisfactory hypothesis. Some ILP systems avoid this

limitation by inventing new predicates [57,114]. Here we do not consider predicate

invention.

• Single-predicate or multi -predicate learning/synthesis. When a system accepts

examples of different predicates, inducing definitions of various predicates

simultaneously, it is said to perform multi -predicate learning/synthesis [25,100,109].

Otherwise, it is said to perform single predicate learning/synthesis. Here we

concentrate mainly on single predicate learning. However, we show that our

methodology also applies to multi-predicate synthesis.

• Incrementality. An incremental system has the abili ty of modifying an initial theory as

new examples are presented. In the same situation, the non-incremental system

discards the initial theory and restarts the induction of a new theory from scratch. This

task is called theory revision [100,124]. Although our system is capable of eliminating

clauses from the existing theory and adding new ones, here we concentrate mainly on

the induction task.

40 INDUCTIVE LOGIC PROGRAMMING

3.4 Methods and concepts

Now that the ILP task is specified, we will see different approaches to construct a

program P from examples and other sources of information.

3.4.1 The search in a space of hypotheses

As almost every other problem in artificial intelli gence, finding an intended program can

be reduced to a search problem. In this case, the search space is a set of programs in

hypotheses language L. This space is structured by the relation of generalization between

hypotheses.

Definition 3.4: (Muggleton, De Raedt [83]) : A hypothesis A is more general than a

hypothesis B, if and only if, A|= B. Hypothesis B is said to be more specific than A. ♦

Starting from a set of initial hypotheses, the search is conducted by continuously

applying generalization and/or specialization operators on the existing hypotheses until a

stopping criterion is satisfied. A generalization operator produces a set of hypotheses

G1,G2,…,Gn from a hypothesis A, and every Gi is more general than A. A specialization

operator produces a set of hypotheses which are more specific than the initial one.

Structuring the search space according to a generalization relation enables filtering out

many hypotheses. For instance, given a hypothesis H, a positive example e, and

background knowledge B, if H∪B|≠ e then for no specialization S of H we have S∪B|=

e. This fact saves the effort of considering hypotheses which are more specific than H

when trying to cover example e. Analogously, when a hypothesis H violates the

soundness condition H∪B |= e– for a negative example e–, all hypotheses which are more

general than H are also not sound. They can therefore be discarded.

The generalization relation based on the logical implication, corresponds to the most

natural notion of generalization. However, logical implication poses some conceptual

problems such as:

Methods and concepts 41

• Given two clauses C1 and C2 it is not a decidable problem to determine whether C1 |=

C2.

• Two clauses C1 and C2 don’ t necessarily have a unique least general generalization

under implication [47].

For that reason other generalization models have been proposed. Plotkin suggested θ-

subsumption [92]. Buntine proposed generalized subsumption [16] that extends

Plotkin’s work. More recently, Idestam-Almquist brought forth T-implication [47], in an

attempt to overcome some problems inherent in previous generalization models.

Nevertheless, the model of θ-subsumption is the most frequently adopted in ILP

algorithms. It is also the generalization model we adopt here and to which we give more

emphasis.

3.4.2 The relation of θθ-subsumption between clauses

The generalization relation between clauses is an important special case of the

generalization between programs. Many ILP methods decompose the problem of

searching in the general space of hypotheses into simpler search problems in the clause

space.

Definition 3.5: (Plotkin [92]) A clause C1 θ-subsumes another clause C2 if and only if

there exists a substitution θ such that C1θ⊆C2. ♦

The θ-subsumption relation is strictly weaker than the relation of logical implication [16].

If a clause A θ-subsumes a clause B then A|=B. The opposite is not true.

Example 3.9: Consider the next two clauses.

C1: p(X)←p(f(X)).

C2: p(X)←p(f(f(X)))

We have C1|= C2 without having C1 θ-subsumes C2.♦

42 INDUCTIVE LOGIC PROGRAMMING

Definition 3.6: A clause C1 is θ-equivalent to a clause C2, if and only if, C1 θ-subsumes

C2 and C2 θ-subsumes C1.♦♦

Definition 3.7: A clause C is reduced if it is not θ-equivalent to any subset of itself.♦

θ-subsumption between clauses induces a lattice in the set of reduced clauses. Any two

clauses have a unique least general generalization (least upper bound), and a unique

most general specialization (greatest lower bound) under θ-subsumption.

Within a given set of clauses, we may refer to most specific clauses and most general

clauses. The clause member(X,Y) is most general among the clauses which define the

predicate member/2. The clause � (or false←true) is most general within any set of

clauses. This clause corresponds to the empty set and therefore θ-subsumes any (other)

clause. A most specific clause that covers an example e, relatively to a program P, is

e←b1,b2,… where the bi are ground consequences of P. In this case, restrictions should

be made so that the set of literals {b1, b2,…} becomes finite. The most specific clause is

usually denoted by ⊥.

Given this generalization model, we now need operators which allow us to navigate in

the set of clauses of the hypothesis language. We will see the refinement operator, a

specialization operator relevant to our work, and a least general generalization operator.

The latter will be described in less detail. Specialization operators allow us to move in

the lattice of clauses from the most general to the most specific (top-down approach).

Generalization operators make us go in the opposite direction (bottom-up approach).

3.4.3 The refinement operator (top-down approach)

Shapiro introduced the notion of a clause refinement operator under the θ-subsumption

generalization model. Here, we give a more general definition following De Raedt and

Lavrac [24].

Methods and concepts 43

Definition 3.8: An operator ρ associates to a clause C a set of clauses ρ(C) called

refinements of C. This is a set of specializations of C under θ-subsumption.♦

A typical refinement operator applies two sorts of transformations to specialize a clause:

1. variable instantiation;

2. joining a literal to a clause.

Example 3.10: The clause member(A,[B|X]) can be specialized, for example, by

instantiating B to A. We then obtain the refinement member(A, [A|X]). Another

refinement can be obtained by adding a literal to the initial clause as in

member(A,[B|X])←member(A,X).♦

We can search for a the required clause by applying repeatedly a refinement operator.

We start from the most general clause and then apply the refinement operator repeatedly

to refinements. The search process terminates when one or more clauses are found to

satisfy a given stopping criterion. This approach to the construction of a hypothesis is

referred to as the top-down approach, since it goes from the most general clause to the

more specific ones.

member(X,Y)

member(X,X) member(X,[Y|Z]) member([X|Y] ,Z) member(X,Y)←member(Y,X)

member(X,[X|Z]) member(X,[Y|Z])←member(X,Z)

Figure 3.2: Part of one refinement graph [109].

A top-down search for a clause using refinement operators corresponds to a search in a

refinement graph. A refinement graph is a directed acyclic graph, whose nodes are

44 INDUCTIVE LOGIC PROGRAMMING

clauses, and the root is the top clause. The branches of the graph correspond to

specialization operations.

Various factors affect the size and shape of the search tree:

• The top clause. If we search for clauses to define the predicate p/n, then the most

general clause is going to be p(X1,…,Xn), where each Xi is a variable [96,109]. If we

do not want to determine what the clause head predicate is, then we can start with

clause true←false [22].

• The refinement operator. There are three main properties of a refinement operator,

according to Muggleton and De Raedt [83]. The operator is globally complete if we

can obtain any clause of the language by repeatedly applying the operator to the initial

clause. The operator is locally complete if, for any clause C, ρ(C) corresponds to the

set of all of the most general specifications of C. Finally, the operator is optimal if it

does not generate any clause more than once.

• The stopping criterion. The stopping criterion determines when to stop the search in

the refinement graph. Normally, this criterion is defined in terms of the positive and

negative examples. Shapiro’s MIS system [109] stops the construction of a clause

when it is specific enough not to cover negative examples. The stopping criterion can

also demand that all the clause variables are linked [43]. Some systems use heuristics

to define the stopping criterion [96].

• The search method. The order in which the nodes of the refinement graph are

generated may also follow different strategies. The most frequently used search

methods (see Section 3.4.5) are breadth-first [109], heuristic search (particularly

greedy search methods [96,125]), and iterative deepening [22].

Methods and concepts 45

3.4.4 The lgg operator (bottom-up approach)

Under the θ-subsumption relation we can define the notion of the least general

generalization of two clauses.

Definition 3.9: Clause G is a generalization of two clauses A and B, if and only if, G θ-

subsumes A and G θ-subsumes B. ♦

Definition 3.10: A clause G is the least general generalization of clauses A and B, if

and only if, for every generalization G' of A and B, G' θ-subsumes G. We write

lgg(A,B)=G.♦

Example 3.11: The result of lgg(p(a)←q(a), p(b)←q(b)) is the clause p(X)←q(X) ♦

Plotkin, in his work about generalization under the θ-subsumption model [92,93], shows

that the lgg of two clauses exists and it is unique (up to equivalence), and describes an

algorithm to construct it.

More recently, Muggleton and Feng have popularized the lgg operator, by employing it

in their GOLEM system [82]. In this system, the positive examples are first transformed

into starting clauses which are most specific for the given predicate. Each of these

starting clauses has a given positive example in the head. The body is a finite set of

logical consequences of the background knowledge. By applying Plotkin’s lgg operator,

more general clauses are obtained from the starting ones. The most important

contribution made by this work of Muggleton and Feng, was making Plotkin’s original

ideas efficient. This was mainly achieved due to the restrictions made to the hypothesis

language. Other systems have, meanwhile, used the lgg operator [1,125].

3.4.5 Search methods

The search methods employed in ILP are basically the ones known from artificial

intelli gence. The breadth-first search method [59] is a type of brute force search where

46 INDUCTIVE LOGIC PROGRAMMING

the clause space is explored exhaustively. This is a complete search method, i.e., if an

admissible solution exists in the search space then it will be found.

To perform the search, the breadth-first method keeps a queue of clause refinements.

Initially the queue contains the top clause only. At each step, the method withdraws the

first clause in the queue and expands it into a set of clauses. All the clause refinements

resulting from the expansion are placed at the end of the queue. The expansion of a

clause is made by applying a refinement operator.

Despite being complete, the method has the disadvantage of being inefficient (in terms of

memory space and computational time). Its use is justified when the search space is made

sufficiently small considering the available computational resources, and when other

methods are not successful.

The heuristic search method is alternative to the brute force methods, in particular to

breadth-first search methods. The heuristic search method computes for every candidate

clause a value measuring how close it is from the objective. That value is calculated

through what is called a heuristic function. Comparatively to the breadth-first method,

the search is no longer blind: the most promising hypotheses are considered first.

The hill -climbing method chooses among all the clause refinements the one with the best

heuristic value. The remaining refinements are discarded. The method has no

backtracking (it is a greedy search method).

Although efficient, hill -climbing has the disadvantage of not being complete, since the

search can follow a direction without any solution (a dead-end). Quinlan’s FOIL system

[96] uses this search method. Other more sophisticated heuristic methods exist which can

overcome some of the problems of the hill -climbing method[59].

Methods and concepts 47

3.4.6 Language bias

Any basis for restricting the size of the search space or for preferring one solution over

another, apart from consistency with the observations, is called bias [73,115]. All the

learning algorithms, including the ILP ones, employ some sort of bias to perform the

search for solutions in a relatively efficient manner. The specific restrictions that are

imposed to the hypothesis language are called language bias.

The hypothesis language can be constrained in many different ways. Here are some

examples of language bias:

• Admissible vocabulary: The induced clauses can only involve predicates belonging to

a pre-defined set. This set of predicates is called the vocabulary. In some approaches,

the set of predicates admissible at a given stage is determined by other existing

predicates, as in Russel’s determinations [104].

• Depth of terms: Here, the restriction consists in limiting the depth of the terms that

occur in the clauses It intends to capture the structural complexity of terms. The

depth of variables and constants is 0. The depth of a term f(t1,…,tn), is

1+max(depth(ti)) [21,82].

• Linked clauses: A clause is linked if all i ts variables are linked. A variable is linked if it

occurs in the head of a clause or in a literal that contains a linked variable (Helft [43]).

This restriction avoids some potentially useless literals in the clause.

• Depth of a variable : The depth of variables occurring in program clauses can also be

restricted. Let p(X1,…,Xn)←L1,L2,…,Lr,… be a clause. A variable occurring in the

clause head (X1,…,Xn) has a depth of 0. A variable V whose leftmost occurrence is in

literal Lr has depth 1+d, where d is the maximum depth of the variables in Lr which

occur in p(X1,…,Xn)←L1,L2,…, Lr-1 [62].

48 INDUCTIVE LOGIC PROGRAMMING

• Recursion: Constructed programs may be non recursive. This is a very strong

restriction, obviously not very adequate to Prolog program synthesis.

• Determination: Let A←L1,L2,…,Lr,… be a clause. A variable occurring in literal Lr is

determinate if it has a unique valid substitution determined by the values of the

variables in Lr occurring in A←L1,L2,…, Lr-1. The literal Lr is determinate if all i ts

variables not appearing in A←L1,L2,…, Lr-1 are determinate. A clause is determinate if

all i ts literals are determinate [62,82]. By imposing a limit j to the maximum arity of

literals, and a limit i to the maximum depth of the variables in a determinate clause,

we obtain ij -determinate clauses.

• Types and input/output modes: Type and input/output mode declarations are also

useful for limiting the search space in ILP problems. The clauses of the hypothesis

language which do not conform to the type or mode declarations may be filtered out

[80,82,109].

Care must be taken when defining the appropriate bias. If the bias is strong, that is if it

constrains the hypothesis language a great deal, the language may be incapable of

representing a large family of concepts. However, the inductive system may be more

efficient. Inversely, if the bias is weak (not very restrictive), then the system covers a

larger spectrum of problems but at the cost of efficiency.

3.4.7 Declaring the language bias

In the light of the above, it seems that the language bias should be controlled by the user

as much as possible, rather than being static. This type of bias which is defined by the

user is called declarative bias.

The possibili ty of defining the language bias symbolically also has the advantage of

enabling the ILP system to automatically change the hypothesis language whenever

necessary. Therefore, the system may begin searching for a hypothesis in a relatively

Methods and concepts 49

simple language. If the search is unsuccessful the system moves to more complex

hypothesis languages. This scheme is called language shift or shift of bias [20].

The simplest form of declaring language bias is by setting numerical parameters. This

way, we can limit the number of clauses in a hypothesis, the number of literals in a

clause, the number of variables of a determined type, the predicate arity, the depth of

terms, etc. Such language biases are very common in ILP systems [82].

Meanwhile, other more sophisticated forms of describing the hypothesis language have

been proposed. Wirth and O'Rorke [123] proposed dependency graphs, that ill ustrate the

dependency relationships between literals. Rule models by Kietz and Wrobel [56], as well

as the clause schemata by Feng and Muggleton [34] are higher order rules that represent

sets of hypotheses. An example of a higher order rule is P(X,Z)←Q(X,Y),P(Y,Z). The

symbols P and Q are variables which represent predicates. Substituting these variables by

different predicate names we obtain different clauses. A possible substitution would give

us

descendant(X,Z)←son(X,Y),descendant(Y,Z).

Definite clause grammars or DCG, are also useful for describing the language bias. A

DCG is a Prolog program written in a special notation for the encoding of grammars

[88]. Willi am Cohen, in his Grendel system [18] used the DCG formalism to define the

admissible bodies of clauses. Klingspor [58] combined the approach of DCG with higher

order rules. Instead of directly describing the hypothesis language his grammars define a

set of higher order rules which can be instantiated. The clauses of the hypothesis

language are obtained by instantiation. Our own induction methodology described here

uses the DCG formalism to represent the program knowledge useful for program

synthesis. Another possibili ty for language bias description was presented by Bergadano

[5].

50 INDUCTIVE LOGIC PROGRAMMING

Birgit Tausend joined in a single formalism many different forms of bias representation.

Her language MILES-CTL [119] allows the description of sets of clauses by using

structures called clause templates. Inside these structures we can use predicate variables,

define types of predicates and arguments, restrict the arity of predicates, etc. Using the

MILES-CTL Tausend compares the impact of different language biases on a set of test

cases. [120].

We have identified another sort of declarative bias that is useful to the synthesis process

[14]. When the user is able to describe how an algorithm works on a particular example,

even if in an inaccurate and vague way, the system can exploit that information in order

to reduce the search effort. In Section 4.5.1 we describe how to represent this

information using what we call algorithm sketches.

3.5 State-of-the-ar t of ILP

3.5.1 Origins of ILP

Nowadays, ILP is a very active research field, and occupies a significant position within

machine learning [84]. Earlier learning from examples used zero-order languages

(conditions in the form of attribute-value pairs, decision trees) to represent the

hypotheses, or very restrictive forms of predicate calculus [66].

The works of Banerji [3], Plotkin [92,93], Michalski [67], Vere [122], Brazdil [13] and

Sammut [107], amongst others, proposed approaches to make hypothesis languages

more expressive. The motivation was to make algorithms for learning from examples

more widely applicable [106]. However, as the hypothesis language became more

expressive, the learning algorithms had to search through larger hypotheses spaces and,

in consequence, the design of these became a challenge. A unifying principle or theory

was also missing.

State-of-the-art of ILP 51

One such theory was proposed by Shapiro [109], who used definite clauses to represent

the hypotheses and a small set of operators for the generation of plausible hypotheses

within his MIS system. Towards the end of the eighties and early nineties, logic

programming was adopted as the basis of logical approaches to machine learning from

examples. Muggleton coined the term Inductive Logic Programming [77]. Various other

systems emerged.

3.5.2 Some ILP (and alike) systems

Shapiro’s MIS system is geared towards algorithmic debugging of logic programs. Logic

program synthesis from examples can be regarded as a special case of this more general

problem. For each session with MIS, some positive and negative examples must be

supplied initially. More examples get requested by the system during the inductive

process. Besides the examples, the system accepts type and input/output mode

declarations of the involved predicates. Dependency declarations between predicates are

also given to the system. Background knowledge is defined intensionally.

The systems GOLEM, by Muggleton and Feng [82], and FOIL, by Quinlan [96, 97, 98],

were quite successful due to their relative efficiency and some practical problems to

which these systems were applied. The GOLEM system induction engine is based in the

lgg operator of Plotkin [92], which was already described here (Section 3.4.4). The

system performs an incomplete bottom-up search: it constructs maximally specific

clauses from randomly chosen examples and then applies the lgg operator to obtain more

general clauses. The clauses which cover more positive examples and less negative

examples are chosen.

The FOIL system constructs each clause following a top-down approach. The top clause

is the most general clause (e.g. member(X,Y)). The system uses the hill -climbing search

method, and the heuristic function is defined in terms of an information-theoretical

measure based on the number of covered positive and negative examples. Constructed

52 INDUCTIVE LOGIC PROGRAMMING

clauses are appended to a candidate program following an AQ-like covering strategy

[67,70].

Systems GOLEM and FOIL accept ground positive and negative examples supplied by

the user. In addition to that, input/output mode declarations and dependency declarations

for every predicate are given. Both systems are non-interactive and non-incremental. In

both cases background knowledge is extensionally defined.

System Progol, by Muggleton [80], searches for every clause using a bottom-up

approach similar to GOLEM’s. It starts with a most specific clause and constructs one of

its possible generalizations. The head of the starting clause is a positive example. The

body is a subset of the model of the background knowledge. The search for the

generalization is guided by an A* like method [59]. Progol is relatively efficient when

compared to GOLEM and FOIL. It allows an intensional representation of background

knowledge.

CLINT [20] is an interactive and incremental system that constructs a theory from

ground positive and negative examples and background knowledge. Given a clausal

language L, CLINT takes each uncovered positive example e and constructs a set S of

initial clauses covering e which are maximally specific in L (according to the θ-

subsumption relation). These clauses must not cover any negative example. Afterwards,

each clause C∈S is maximally generalized by removing literals from the body of the

clause. Before removing a literal, the system queries the user about the truth value of an

example which is covered by the tentative clause but not by C. If all new examples are

positive, the generalization step is accepted, otherwise it is rejected. The negative

examples obtained in the process of generalizing a clause are used to detect and remove

possibly incorrect clauses. The user is again queried in the process.

The SYNAPSE system [38] of Pierre Flener belongs to a different class. It is exclusively

devoted to automatic programming tasks. The system synthesizes programs from ground

examples and from properties (correct but incomplete clauses), and is a hybrid of

State-of-the-art of ILP 53

different approaches to program synthesis. Calli ng it an ILP system is a little misleading.

In SYNAPSE we can find deductive synthesis, knowledge based synthesis and learning

from examples [37].

The synthesis is guided by a scheme that encodes a particular programming strategy

(divide-and-conquer, generation-and-test, producer-consumer, etc.). The program is

constructed by transforming this scheme. SYNAPSE interacts with the user, to avoid

exponential search. The SYNAPSE system does not use auxili ary programs supplied by

the user (background knowledge), but performs predicates invention.

System CRUSTACEAN [1] is a follow-up of system LOPSTER [60] and induces logic

programs of the form

p(Tb1,…,Tbn).
p(Th1,…,Thn)←p(Tr1,…Trn).

where each Txi is a term. The base clause and the recursive clauses are constructed by

structural decomposition of the given ground positive examples. Ground negative

examples are also given and are used to eliminate overgeneral candidate programs.

Decomposing an example consists of finding all the possible subterms of its arguments.

For instance, suppose we have the positive example last_of(a,[c,a]). The first argument

can be decomposed into subterm a only. The second argument [c,a] can be decomposed

into [c,a] , c, [a] , a and [] . Each subterm is obtained by applying a sequence of

decomposition operators to the initial term. This sequence is named the generating term.

The number of times the generating term is applied is called depth. Term [a] , for

instance, is obtained from [c,a] by the generating term pair(2), i.e., the function that

returns the tail of the list. The depth is 1. When the subterm is obtained by no

decomposition, the generating term is none. CRUSTACEAN obtains all the possible

decompositions of the example by combining all possible decompositions of its

arguments. One possible decomposition of the example last_of(a,[c,a]) is last_of(a,[a]).

It is obtained by the combination of generating terms (none, pair(2)) at depth 1.

54 INDUCTIVE LOGIC PROGRAMMING

Now suppose there is another positive example last_of(b,[x,y,b]). One of the

decompositions of this example is last_of(b,[b]). The corresponding generating terms are

none for the first argument, and pair(2) for the second. However, pair(2) must be

applied twice (depth 2).

CRUSTACEAN can now combine the two decompositions of the examples, since they

have the same generating terms (none,pair(2)). The result of the combination is a

program. The base clause is the lgg of the atoms which result from the application of the

generating terms to the examples. In other words, lgg(last_of(a,[a]), last_of(b,[b])),

i.e.

last_of(A,[A]).

To obtain the head of the recursive clause, we apply the generating terms to the

examples 0, 1,…, n-1 times where n is the respective depth. The resulting atoms are

last_of(a,[c,a]) for the first example, and last_of(b,[x,y,b]), last_of(b,[y,b]) for the

second example. The head of the clause is the lgg of these three atoms. The recursive

literal is obtained by applying the generating terms to the head.

last_of(A,[B,C|D])←last_of(A,[C|D]).

Obviously CRUSTACEAN does not find the right combination of generating terms of

the examples directly. All the different generating terms used to obtain all the subterms

of all the arguments of all the examples must be found. After that, the system constructs

all the possible combinations of the generating terms of the arguments for each example.

The combinations of different examples are then matched in all possible ways. Each

match is either discarded because of incompatibili ty of generating terms or results in a

program. Programs are then filtered. Redundant programs, infinitely recursive programs

and programs covering negative examples are not considered. The remaining programs

are the answer.

State-of-the-art of ILP 55

Because of the very restrictive language bias, CRUSTACEAN is not able to exploit any

sort of background knowledge.

System Collection
of examples

Strategy Background
knowledge

Example of
applications

MIS interactive,
incremental

complete search intensional prog. synthesis

GOLEM heuristic selection of
hypotheses with random
generation of seeds.
Uses lgg.

extensional biology,
mesh design,
quantitative models

FOIL covering AQ-li ke
strategy. top-down
construction of clauses.
hill -climbing.

extensional prog. synthesis

Progol covering AQ-li ke
strategy.

intensional biochemistry

CLINT interactive,
incremental

bottom-up construction
of clauses

intensional prog. synthesis
knowledge base updating
autonomous agents

SYNAPSE interactive scheme transformation. none
invents predicates

prog. synthesis

CRUSTACEAN term decomposition none prog. synthesis

Table 3.1: Main characteristics of some important ILP systems.

The systems referred above represent only a selection of the state-of-the-art in ILP.

Other systems are also of interest. This is the case of systems such as CHILLIN [125],

CLAUDIEN [22], FOCL [110], FORCE2 [12], FORTE [100], ITOU [102], MOBAL

[76], SMART [74], TIM [49], WiM [95], etc. However, our intention here is not to

make an exhaustive description of these systems.

3.5.3 Applications

Most ILP applications fall either in the area of knowledge extraction and discovery or

program synthesis. As for the applications in the area of knowledge extraction and

discovery, GOLEM, for instance, has been applied to the problems of qualitative model

construction [11], construction of temporal models for satelli te maintenance operations

[33], protein structure prediction [77], and mesh design [29]. Progol has already been

applied for knowledge extraction in biochemistry [85]. The results produced by Progol

were published in a biochemistry scientific journal [86]. Other systems also had practical

56 INDUCTIVE LOGIC PROGRAMMING

applications, as is the case of MOBAL [75] , CLAUDIEN [22], FORTE [100] and

FOCL [32].

3.5.4 Inductive program synthesis

If in the field of knowledge extraction and scientific discovery ILP is already a useful

tool, the same cannot be said with respect to program synthesis from examples (inductive

synthesis). In this field, there are still important problems to be solved before we have a

true practical application. The aim of our work is to move forward in the direction of

using inductive tools to aid in the development of small programs.

In this Section we informally show ill ustrative results of systems which are representative

of what has been achieved in the field of inductive program synthesis. The systems

referred to are MIS, GOLEM, FOIL, SYNAPSE and CRUSTACEAN.

Let us first see an example of an MIS session as given by Shapiro [109]. The task is to

synthesize predicate isort/2 which sorts a list using an insertion strategy. A definition for

isort/2 is synthesized as follows:

isort([X|Y] ,Z)←isort(Y,V),insert(X,V,Z).
isort([] ,[]).

The auxili ary predicate insert/3 is also synthesized.

insert(X,[] ,[X]).
insert(X,[Y|Z] ,[X,Y|Z])←X≤Y.
insert(X,[Y|Z] ,[Y|V])← insert(X,Z,V),Y≤X.

The session is reported in eight (!) pages which are mainly fill ed with information given

by the system describing the current situation (these descriptions must be checked by the

user), as well as with the queries asked to the user and corresponding answers. A

summary of the session indicates that 30 facts on isort/2 and insert/3 were necessary for

the synthesis. As for CPU time, 36 seconds were needed.

State-of-the-art of ILP 57

In the field of program synthesis from examples, the GOLEM system was successful in

the induction of predicates, such as of member/2, reverse/2, multiply/2 and qsort/2, but

only when the examples were carefully chosen.

The recursive clause of the predicate definition qsort/2 (quick sort) is a classical test for a

system performing synthesis from examples:

qsort([] ,[]]).
qsort([A|B] ,[C|D])←

partition(A,B,E,F),
qsort(F,G),
qsort(E,H),
append(H,[A|G] ,[C|D]).

This clause has two recursive literals, which makes it problematic for some synthesis

strategies. Furthermore, the clause has 4 literals in the body (6 if functors are not used), a

relatively large number of variables (8), and some of them have a depth of 3. GOLEM

generated the definition of ‘quick sort’ from 15 well chosen examples, in about one

hundredth of a second. The background knowledge contained 84 facts on partition/4 and

append/3. Obviously these results are not guaranteed if other examples are used.

The FOIL system was evaluated in [97] by its authors. The task for this test consisted in

synthesizing a series of predicates taken from Bratko’s “Prolog for Artificial

Intelli gence” [10]. As an example, we show the definition generated for reverse/2:

reverse(A,B)←A=B, dest(A,C,D), sublist(A,C).
reverse(A,B)←

dest(A,C,D),reverse(D,E),
append(F,D,A),append(E,F,B).

This definition was synthesized from 40 positive examples and 1561 negative examples

(see Appendix A for definitions of auxili ary predicates such as append/3, etc.). The

examples given are all the examples that involve lists of size 3 or less. Although FOIL

needs a large number of examples to generate a program, it is robust in the presence of

redundancy in the background knowledge.

58 INDUCTIVE LOGIC PROGRAMMING

System Progol synthesizes a definition of ‘quick sort’ in less than a second, given 11

positive and 12 well chosen negative examples. In [80] we can find a summary of the

results obtained from Progol in inductive synthesis.

The SYNAPSE system can synthesize programs as hard as ‘ insertion sort’ , although

yielding a different definition from the one obtained with MIS. Given 10 positive

examples, the following 3 properties

isort([X] ,[X]).
isort([X,Y] ,[X,Y])←X≤Y.
isort([X,Y] ,[Y,X])←Y>X.

and specific programming knowledge relative to this problem, a definition of isort/2 is

generated. During the synthesis process a definition for the predicate insert/3 is invented

[37, pp.209]. Thus the user does not have to provide auxili ary predicates required to

synthesize this predicate.

The system CRUSTACEAN can synthesize recursive programs with functors without

auxili ary predicates. Every program has a base clause and a recursive clause. Here is an

example:

split ([] ,[] ,[]).
split ([A,B|C] ,[A|D] ,[B|E])←

split (C,D,E).

CRUSTACEAN can generate this program from 2 positive examples and 4 negative

ones, without any further information. However, the system is restricted to a very limited

hypothesis language. The strategy used by the system is very robust with respect to the

choice of examples. In other words, the two examples given do not have to be carefully

chosen in order to synthesize the recursive program shown above.

State-of-the-art of ILP 59

3.5.5 Problems and limitations

• Intensional background knowledge. Systems GOLEM and FOIL only accept

extensional background knowledge. Extensional representation of the predicate in the

background knowledge provides greater efficiency. However, the construction and

maintenance of large background knowledge is diff icult [79]. Some systems

(CRUSTACEAN, SYNAPSE) do not even allow the use of background knowledge.

• Recursive program synthesis from sparse sets of examples. Progol, as well as

GOLEM and FOIL, have problems in synthesizing recursive logic programs from a

set of relatively small positive examples. Quinlan points out that the synthesis of

member/2 is not robust. In one experiment, it was observed that when 25% of the

positive examples were eliminated at random the induced program was still correct,

but contained three redundant clauses [97].

• Use of generic programming knowledge. The present ILP systems, with few

exceptions, perform a blind search for the target program. Few take advantage of

existing knowledge about programming. One exception is the SYNAPSE system,

which constructs the clauses following the strategy of divide-and-conquer. Even this

system does not allow the definition of new strategies without changing the code of

the system itself. In Section 4.5.1.1 we describe clause structure grammars: a

formalism to represent generic programming knowledge which enables to overcome

this shortcoming.

• Use of specific programming knowledge. If the user has some notion, however

incomplete, about the strategy that a particular program to be synthesized should

follow, he should have the opportunity of giving that information to the system. The

algorithm sketches presented in Section 4.5.1 allow this sort of information to be

conveyed to system SKILit.

• Over-generalization. The excessive number of negative examples many ILP systems

need in order to induce the target programs is a problem that has already been

60 INDUCTIVE LOGIC PROGRAMMING

recognized by this research community. The strategies that have been proposed are, in

our view, unsatisfactory. The user of a program synthesis system should be able to

represent the intended negative information in a compact way. Integrity constraints

allow this compact representation, but creates great efficiency problems. In Chapter 7

we propose an efficient algorithm that allows the use of integrity constraints in the

context of ILP.

3.6 Summary

In inductive synthesis of logic programs, ILP is a promising research area, but more

work is required before the technology is useful in practical applications. It is however

taking large steps in that direction. Before that happens, some problems have to be

solved, such as the synthesis of recursive programs from sparse sets of positive

examples, the effective use and representation of generic programming knowledge and

specific programming knowledge, as well as the use of integrity constraints for the

representation of information usually given to the system through negative examples.

In Chapters 4, 5 and 7 we address these problems and propose a program synthesis

methodology which attempts to overcome some of the current limitations of inductive

approaches to program synthesis from examples.

61

4. An Approach to Inductive Synthesis

This chapter presents an approach to logic program synthesis from incomplete

specifications. System SKIL is introduced. We describe the information that is

given to the system, and define the class of synthesizable programs. The

synthesis process and its main algorithms are described.

4.1 Introduction

In this Chapter we describe the methodology on which system SKIL is based. This is an

inductive logic programming system geared towards the synthesis of logic programs (or

simply programs) from examples of their behaviour. In terms of program synthesis we

can see SKIL as a synthesis system from incomplete specifications.

The starting point is an incomplete description of a predicate p/k. The aim is to

synthesize a program P defining p/k. This description is called a specification and

consists of positive and negative examples of that predicate, integrity constraints,

input/output mode declarations and type declarations. From this data the system

constructs a program that generalizes the positive examples, and that is consistent with

62 AN APPROACH TO INDUCTIVE SYNTHESIS

the negative examples and integrity constraints (Chapter 7). The program produced by

SKIL consists of definite clauses with no functors.

Another important element of the process is the background knowledge (BK). This is a

logic program that defines auxili ary predicates that can be used in the definition of the

predicate to be synthesized. Although it is not regarded as a language bias, the

background knowledge also affects the set of synthesizable clauses. It has a determinant

role in the selection of literals due to the clause construction strategy employed by SKIL.

Besides the specification and the background knowledge, the SKIL system exploits other

sources of information that affect the synthesis process. It is the case of the algorithm

sketches and the clause structure grammar (CSG). The clause structure grammar can be

seen as a way of defining the language bias, for it defines the set of clauses synthesizable

by the system.

SKIL

Speci f i cat i on
• Pos. exampl es
• Neg. exampl es
• I nt .Const r ai nts

Program P

Programmi ng
knowl edge

• CSG
• Sketches

Background
knowl edge

Figure 4.1: Framework of the SKIL system

4.2 Overview

We first describe the input of SKIL. What is a specification (Section 4.3), what can be

background knowledge (Section 4.4) and how is programming knowledge represented

Specifi cation 63

(Section 4.5). Within the programming knowledge Section we define algorithm sketches

and explain the role of clause structure grammars. In Section 4.6 we characterize the

programs SKIL can synthesize.

The process of synthesizing a logic program is described in detail in Section 4.7. There

we describe the algorithms for program construction (SKIL) and clause construction.

We present the sketches refinement operator and the notion of relevant sub-model. We

also describe the depth-bounded interpreter used in the interpretation of background

knowledge and constructed programs, and how the clause structure grammars are used

within the refinement operator. The Section ends with a description of type checking in

SKIL.

In Section 4.9 we show a synthesis session with SKIL and in the remaining three

Sections we discuss limitations of the methodology, related work and give a brief

summary of this Chapter.

4.3 Specification

The specification supplied to the SKIL system is incomplete. The program behaviour

that is not described in the specification is inferred. The specification describes one single

predicate p/k to be defined as program P.

Given predicate p/k, a specification is defined as a tuple (T,M,E+,E–,IC) where

• T is the type declaration for predicate p/k;

• M is the input/output mode declaration for p/k;

• E+ is a set of positive examples of p/k;

• E– is a set of negative examples of p/k;

• IC is a set of integrity constraints restricting p/k.

64 AN APPROACH TO INDUCTIVE SYNTHESIS

The Figure 4.2 below, shows the typical format of a specification given to SKIL. The

notation has a Prolog-like syntax: mode and type declarations, examples, and integrity

constraints are represented as clauses.

mode(p(m1, …,mk)).
type(p(t1,…,tk)).

% positive examples
p(…).
…
p(…).

% negative examples
–p(…).
…
–p(…).

% integrity constraints
p(…),…,q(…)→r(…),…,s(…).
…

Figure 4.2: Typical format of a specification for predicate p/k.

4.3.1 Objective of the synthesis methodology

Given background knowledge BK and a specification (T,M,E+,E–,IC) describing

predicate p/k, SKIL constructs program P defining p/k. The program has, ideally, the

following properties:

• All the positive examples are covered:

 P ∪ BK |– E+

• No negative example is covered:

 P ∪ BK |–/ e– for all e–∈E–

Specifi cation 65

• The constructed program satisfies the integrity constraints (this condition is checked

with some degree of uncertainty due to the Monte Carlo strategy employed, as we

will l ater see in Chapter 7).

 P ∪ BK |–/ (Body, not Head) for all I∈IC, I has the form Body→Head.

4.3.2 Examples, modes, types, integrity constraints

The positive examples given to SKIL are ground atoms. The negative examples are

ground atoms marked with a ‘–’ sign. The mode declaration of a predicate p/k assigns to

each one of the k arguments an input or output direction. The input arguments are

marked with a ‘+’ sign, and the output ones a ‘–’ sign.

A positive example of the predicate reverse/2, that reverses a list, can be

reverse([2,1] ,[1,2]). This positive example determines that the program to synthesize

should output that the reverse of list [2,1] is list [1,2] . A negative example of the same

relation is –reverse([0,3] ,[0,3]).

The input/output mode declaration is

mode(reverse(+,–)).

The meaning of this input/output declaration is that a query to the program which defines

the predicate reverse/2 must have the first argument instantiated before being executed,

as in ←reverse([2,4,3] ,X).

The type declaration associates to each argument an identifier that represents the

assigned type. The types considered here include lists (li st identifier), integers (int

identifier), etc. (Appendix B). In the case of predicate reverse/2, the type declaration is

type(reverse(list,li st)). The type declarations facili tate the process of induction, but they

are optional. In Figure 4.3 we see an example of a specification.

66 AN APPROACH TO INDUCTIVE SYNTHESIS

mode(reverse(+,–)).
type(reverse(list,li st)).

% positive examples
reverse([] ,[]).
reverse([1] ,[1]).
reverse([1,2] ,[2,1]).

% negative examples
–reverse([] ,[1]).
–reverse([1,2] ,[1,2]).
–reverse([1,2,3] ,[2,1,3]).

% integrity constraints
reverse([A,B] ,[C,D])-->A=D.
reverse([A,B] ,[C,D])-->B=C.

Figure 4.3: Example of a specification for the predicate reverse/2.

Integrity constraints are non-ground clauses containing negative information just like

negative examples do. Every negative example can be transformed into an integrity

constraint. To make the description of the method clearer, we will separate the

description of how negative examples and integrity constraints are handled. The latter

issue will be described in Chapter 7.

4.4 Background knowledge

The background knowledge supplied to the SKIL system is a Prolog program that

defines the auxili ary predicates which can be invoked by the program to synthesize.

Background knowledge clauses can contain functors and negation. Figure 4.4 shows the

sort of auxili ary programs that can be found in the background knowledge.

addlast([] ,X,[X]).

Programming knowledge 67

addlast([A|B] ,X,[A|C])←
addlast(B,X,C).

null ([]).

dest([A|B] ,A,B).

const([A|B] ,A,B).

Figure 4.4: An example of background knowledge

Among the predicates defined in the background knowledge, the user can indicate which

are the admissible predicates for a given synthesis task. This is done through a

declaration that is given to the system, jointly with the specification. Let us see an

example.

adm_predicates(reverse/2, [const/3,dest/3,null/1,addlast/3,reverse/2]).

The above declaration indicates that the system can induce a definition for the predicate

reverse/2 with clauses involving predicates const/3, dest/3, null/1, addlast/3 and

reverse/2, and only these predicates. The admissible predicate declaration defines the

vocabulary for the synthesis task.

4.5 Programming knowledge

Besides the information contained in the specification and the background knowledge,

SKIL employs other sources of auxili ary knowledge, such as sketches, which contain

specific knowledge for every synthesis task and the clause structure grammar, which

contains generic programming knowledge. This body of information is what we call

programming knowledge.

These elements are obviously not considered part of the specification itself. They should

instead be regarded as tools used to accomplish the synthesis task. While the examples

68 AN APPROACH TO INDUCTIVE SYNTHESIS

and integrity constraints indicate what is intended to be synthesized, the sketches and

grammars indicate how the synthesis should or can be done. This distinction between the

‘what’ and the ‘how’ of the synthesis process has been pointed out in Chapter 0.

4.5.1 Algorithm sketches

The user of a synthesis system may know which particular predicates are involved and

how those predicates contribute to the derivation of a given positive example. If this sort

of knowledge exists, then it is of interest that the synthesis system is able to exploit it.

This knowledge is communicated to the system through an algorithm sketch. The SKIL

system is able to exploit algorithm sketches supplied by the user [14]. We should stress,

however, that algorithm sketches are not mandatory input.

4.5.1.1 What is an algorithm sketch?

Informally, an algorithm sketch represents the explanation of a positive example in terms

of relational links from the input to the output arguments of the example. Formally, an

algorithm sketch relative to a program P is a ground clause whose head is a positive

example of a predicate p/k defined in P, and the body contains literals which explain the

output arguments of the example from the input arguments. When part of the

explanation is not known, the arguments are linked by special li terals called sketch

literals. The remaining literals, involving admissible predicates are called operational

literals. The predicates used in sketch literals (sketch predicates) start with the $

character. These sketch predicates also have an input/output mode.

Definition 4.1: Let α be a set of literals, t is a directionally linked term in α with respect

to a set of terms T if and only if t ∈ T or t is an output argument of some literal L∈α and

all the input arguments of L are directionally linked in α with respect to T.♦

Please note that in the following we use a clause-like notation for representing sets of

literals. Therefore, the sequence L1,L2,…,Ln represents the set of literals {L1,L2,…,Ln} .

Programming knowledge 69

Example 4.1: The term e is directionally linked with respect to {a,b} in the set of literals

p(+a,–c),q(+b,–d),r(+c,+d,–e). The link is graphically represented in Figure 4.5.

 a b

 c d

 e

Figure 4.5: Linking terms {a,b} to term e.

In the same set of literals we can find other links. For example, the term b is directionally

linked with respect to {b} .♦

Definition 4.2: A set of literals α is a relational li nk from a set of terms T1 to a set of

terms T2 if and only if every term t occurring in α is directionally linked in α with respect

to T1 and every term in T2 occurs in α .♦

Example 4.2: A relational link links terms T1 to terms T2 and contains no literals with

terms that are not linked with respect to T1. The set α = p(+a,–b),q(+c,–d) is not a

relational link from {a} to { d} because c is not directionally linked in α. However it is a

relational link from {a,c} to any subset of { a,b,c,d} .

The set of literals p(+a,–c),q(+b,–d),r(+c,+d,–e) is a relational link from {a,b} to any

subset of { a,b,c,d,e} .♦

Definition 4.3: A term t is directionally linked in a clause H←β, where β is a set of

literals, if and only if there is a relational link α⊆β from the input arguments of H to t.♦

Definition 4.4: A clause H←α is a directionally linked clause if all output arguments of

H are directionally linked terms in α with respect to the set of input arguments of H.♦

70 AN APPROACH TO INDUCTIVE SYNTHESIS

Definition 4.5: An algorithm sketch is a directionally linked ground clause of the form

H←L1,L2,..,Ln with n≥1, where H is a positive example of some predicate to be defined,

and the literals L1,L2,…,Ln can be either operational li terals or sketch literals. ♦

Sketch literals are employed to link arguments that otherwise would remain unlinked.

Syntactically they are distinguished by predicate symbols like $Px, where x is a positive

integer.

Example 4.3:Let rv([3,2,1] ,[1,2,3]) be a positive example of predicate rv(+,–). The

following clause is a sketch.

r v(+[3,2,1] ,–[1,2,3])←

$P1(+[3,2,1] ,–3,–[2,1]),rv(+[2,1] ,–[1,2]),$P2(+3,+[1,2] ,-[1,2,3]).

This sketch involves two sketch predicates $P1 and $P2, and one operational predicate

rv/2. It can be seen as an explanation of how to reverse list [3,2,1] : “first obtain 3 and

[2,1] (it is not described how), reverse [2,1] , and combine the result of the latter with 3

to obtain [1,2,3] (again, somehow)” .

In the above sketch, the input list [3,2,1] is linked to [1,2,3] . Figure 4.6 shows a

graphical representation of the sketch.

 [3,2,1]

 3

 [1,2]

 [2,1]

 [1,2,3]

 rv/2

Figure 4.6: Graphical representation of one sketch.

♦

Programming knowledge 71

4.5.1.2 Positive examples are black box sketches

Any positive example can be regarded as a sketch containing no information about how

the output arguments can be obtained from the input ones. The link between input and

output arguments is then done by a single sketch literal whose only purpose is to make

the missing connections explicit.

Definition 4.6: When the body of the sketch contains just one sketch literal, the sketch is

called a black box sketch. The black box sketch associated to a positive example

p(t1,…,tk) has the form

p(t1,…,tk)←$P(t1,…tk).

where $P(t1,…tk) is a sketch literal with the same arguments of the positive example and

$P/k is a predicate with the same input/ output mode of p/k.♦

4.5.1.3 Sketches as refinements

An algorithm sketch can also be seen as an internal representation of a clause that is

being built according to a strategy of argument linking. The search for an adequate

operational sketch is done in a space of algorithm sketches starting from an initial sketch

and by employing a specific refinement operator. In that perspective, each clause is

obtained by transforming an operational sketch which explains a given positive example.

Definition 4.7: An algorithm sketch is an operational sketch if it has no sketch literals.♦

Definition 4.8: The process of replacing the sketch literals of a sketch by operational

literals so that an operational sketch is obtained is called sketch consolidation .♦

The program synthesis methodology described in this Chapter follows a strategy of

sketch consolidation. When a sketch is fully consolidated, each term and each literal in

the sketch are operationally linked.

72 AN APPROACH TO INDUCTIVE SYNTHESIS

Definition 4.9: A term t is operationally linked in a sketch H←β if and only if there is a

relational link α⊆β from the input arguments of H to t and α contains operational li terals

only.♦

Definition 4.10: A literal L is operationally linked in a sketch Sk if and only if all the

input arguments of L are operationally linked in Sk.♦

Although a sketch is represented as a clause, and can therefore be viewed as a set of

literals, we will define the sketch consolidation algorithms assuming a given ordering of

the literals in the body if the sketch. This will be done only for the sake of clarity.

Definition 4.11: A sketch H←α is a syntactically ordered sketch if and only if the

following conditions are true:

1) Every operationally linked literal appears to the left of any non-operationally

linked literal.

2) Every operationally linked operational li teral appears to the left of any sketch

literal.♦

Example 4.4: The sketch

r v(+[3,2,1] ,–[1,2,3])←

$P1(+[3,2,1] ,–3,–[2,1]),rv(+[2,1] ,–[1,2]),$P2(+3,+[1,2] ,-[1,2,3]).

is syntactically ordered. The sketch

r v(+[3,2,1] ,–[1,2,3])←

rv(+[2,1] ,–[1,2]),$P1(+[3,2,1] ,–3,–[2,1]), $P2(+3,+[1,2] ,-[1,2,3]).

is not ordered. Literal $P1(+[3,2,1] ,–3,–[2,1]) is operationally linked, even though it is

not an operational li teral. Therefore it should be to the left of literal rv(+[2,1] ,–[1,2])

that is not operationally linked.

Class of synthesizable programs 73

The sketch

r v(+[3,2,1] ,–[1,2,3])←

$P2(+3,+[1,2] ,-[1,2,3]),$P1(+[3,2,1] ,–3,–[2,1]),rv(+[2,1] ,–[1,2]).

is not ordered either. Literal $P2(+3,+[1,2] ,-[1,2,3]) is not operationally linked (none of

its input terms is directionally linked) and appears to the left of $P1(+[3,2,1] ,–3,–[2,1]).

♦

4.5.2 Clause structure grammars

Another important source of information for our program synthesis methodology, and

which is not part of the specification, is the clause structure grammar. The clause

structure grammar contains programming knowledge and, for that reason, is not specific

to the synthesis task of any particular predicate. Instead it is generic for a certain class of

programs. One particular clause structure grammar can be used to synthesize divide-and-

conquer programs, while another can describe generate-and-test programs. In our

methodology, clause structure grammars are described using the definite clause grammar

(DCG) notation [88]. CSG are described in Section 4.7.5.

Algorithm sketches, as well as clause structure grammars, make the synthesis task easier

to accomplish. Obviously, the user has to take some time giving this information to the

system. However, the clause grammars are potentially reusable (as shown) and not

particular to a given program.

4.6 Class of synthesizable programs

The programs synthesized by our methodology consist of clauses with one literal in the

head and without negated literals in the body. In other words, they are definite programs.

The produced logic programs do not have functors nor constants. The arguments of the

literals in the clauses are always uninstantiated variables. The need for functors is

74 AN APPROACH TO INDUCTIVE SYNTHESIS

eliminated by using appropriate predicates. The process of transforming a program which

contains function symbols into an equivalent one without function symbols is called

flattening [102]. For example, the sequence of literals p([A|B]),q(B) that contains a

structured term (the list [A|B]) can be represented by p(X),decomp(X,Y,Z),q(Z). The

predicate decomp/3 decomposes a list X in head Y and tail Z. As we will see later,

various auxili ary predicates similar to decomp/3 will be used to aid the in the synthesis

task. The definitions of these auxili ary predicates are added to the background

knowledge and supplied to the system.

Constants are handled in a similar way. Predicates such as null/1 or zero/1 can be used to

introduce into the clauses the constants [] (the empty list) and 0 (number zero),

respectively.

The choice of a functor free language is not fundamental, in the sense that the

methodology could be adapted to work with functors. However, the approach chosen

has the advantage that it simplifies the clause refinement operation, and, consequently,

the synthesis algorithms.

Nevertheless, flattened clauses produced by SKILit can be automatically unflattened by

the system for presentation. Some of the synthesized programs shown here are presented

in their unflattened form.

4.7 The synthesis of a logic program

The synthesis methodology employed by system SKIL takes as input a set of positive

examples E+, negative examples E–, integrity constraints IC on a predicate p/k, a

(possibly empty) initial program P0 and background knowledge BK. The output is a logic

program P that defines predicate p/k. The system uses a covering strategy which works

as follows.

The synthesis of a logic program 75

For each uncovered positive example e∈E+, SKIL tries to construct a new clause, so that

when added to P, e gets covered (see Algorithm 1). Clause construction is done in

procedure ClauseConstruction (Algorithm 2). When this procedure fails to construct a

new clause, the empty set (∅) is returned. In this case, program P remains therefore

unchanged, and Algorithm 1 moves on to the next positive example.

Procedure SKIL
input: E+,E–,IC, P0, BK
output: P
P := P0

for each e ∈ E+ where P ∪BK ∪ E+-{ e} |–/ e
NewClause := ClauseConstruction (e,E+-{ e} ,E–,IC,P,BK)
P := P ∪ NewClause

next
return P

Algorithm 1: Construction of a program by SKIL

Program P can be initially empty, but may already contain some clauses which define

predicate p/k. These initial clauses can be supplied by the user, or by another procedure

invoking SKIL, as is the case of algorithm SKILit presented in Chapter 5. The initial

program is P0. Algorithm 1 shows the details of the covering procedure.

4.7.1 The clause constructor

Each clause is constructed to cover a particular positive example of the predicate to be

synthesized. That example serves as a seed in the construction process, since its

arguments are used to guide the selection of literals in the clause body.

The clause construction strategy is based on the search of a relational li nk between the

input arguments of the example and the output arguments. This link is made by the

admissible auxili ary predicates. In the case of recursive programs, the predicate to

synthesize is itself an admissible predicate. The predicate being synthesized is partially

defined by the positive examples E+ and possibly by existing clauses (for example in P0).

76 AN APPROACH TO INDUCTIVE SYNTHESIS

When the procedure ClauseConstruction is invoked by Algorithm 1 the example e to be

covered and the set of remaining positive examples E+-{ e} are passed as separate

arguments. Using the examples in E+-{ e} in the process of clause construction enables

SKIL to induce recursive clauses.

The clause returned is extracted from the relational link, i.e., from the sequence of literals

that link the input arguments of the positive example to its output arguments. This last

step involves mainly transforming constants into variables.

Example 4.5: Suppose we have the following scenario:

Positive example (with mode declaration):

mode(grandfather(+,-)).
grandfather(tom,bob).

Background knowledge (with mode declarations):

mode(father(+,-)). mode(mother(+,-)).
father(tom,anne). mother(anne,bob).
father(tom,jack). mother(anne,chris).

To construct a clause that covers the given positive example we will try to link the input

argument (tom) with the output argument (bob). The sequence of literals

father(tom,anne),mother(anne,bob) establishes that link and can be regarded as a sort of

explanation of the positive example.

Now, with the positive example and that sequence of literals we will construct the

instantiated candidate clause (sketch)

grandfather(tom,bob)←father(tom,anne),mother(anne,bob)

from which we extract the clause

grandfather(X,Z)←father(X,Y),mother(Y,Z)

by replacing constants with variables. ♦

The synthesis of a logic program 77

The process of constructing a clause that, together with the background knowledge,

covers a given positive example, consists mainly in the consolidation of a sketch

associated to that example. The sketch associated to an example e is either supplied by

the user or a black box sketch of the form e←$P(…) which is automatically generated by

the system (see Section 4.5.1).

The consolidation of a sketch is done using a breadth-first search strategy. The objective

is to obtain what is called an operational sketch, i.e., a sketch without sketch literals. The

search is conducted using a refinement operator ρ, which provides the set of refinements

of every sketch. A sketch refinement is also a sketch. The search starts with the sketch

associated to the positive example.

Procedure ClauseConstruction
input: e,E+,E–,IC,P,BK
output: Cl (the new clause)
Sketch := AssociatedSketch(e)
Q := [Sketch]
repeat

if Q = ∅ then return ∅
Sk := first sketch in Q
if Sk is an operational sketch then

Cl := Variabili ze(Sk)
if { Cl} ∪P∪BK∪E+ covers e and
 { Cl} ∪P∪BK∪E+ does not cover any e∈E– and
 { Cl} ∪P∪BK∪E+ does not violate IC

then return { Cl}
end if

end if
Q := Q - Sk
NewSk := ρ(Sk,P,BK,E+) (Algorithm 3)
Q := Q after appending NewSk to the end of Q

always

Algorithm 2: Generation of a clause through the refinement of a sketch

The search stops when an operational sketch is found which satisfies the stopping

criterion. The clause returned is obtained by replacing the sketch terms with variables (a

78 AN APPROACH TO INDUCTIVE SYNTHESIS

process we call variabili zation). Variabili zation of the clause is done by function

Variabili ze described in Section 4.7.1.1.

The procedure ClauseConstruction (Algorithm 2) initializes a queue Q of refinements

with the sketch associated to the example given as input. In every iteration of the

‘repeat’ cycle, the first sketch in Q is removed, and a set of its refinements is

constructed. The sketches in the refinement set are placed at the end of Q.

As we can see, the repeat cycle may terminate for different reasons. Ideally, it stops

when an operational sketch is found. From that sketch is extracted a clause that covers

the positive example and does not violate the integrity constraints or cover any negative

example. In order not to violate the negative examples, {Cl} ∪P∪BK∪E+ cannot

intensionally cover any of them. Integrity constraints are checked by the module

MONIC, described in Chapter 7. When the refinement queue Q becomes empty

Algorithm 2 stops as well. In this case, the empty set is returned.

In the current implementation of the SKIL system, the number of refinements

constructed during the generation of a clause is also controlled. For that, we impose a

limit on the number of refinements constructed. This parameter is called effort limit. Its

default value is of 300 refinements, but it can be set using a specific declaration. When

the effort limit is reached, the construction of the clause terminates, and the empty set is

returned.

4.7.1.1 Variabili zation

The variabili zation of a sketch consists of replacing the terms occurring in the sketch by

variables. This replacement can be done using different variabili zation strategies. Here

we describe two of them: the simple variabili zation strategy and the complete

variabili zation strategy.

To variabili ze a sketch using the simple variabili zation strategy, each term is replaced

with a variable. The same variable corresponds to different occurrences of the same term.

The synthesis of a logic program 79

For example, the clause extracted from the sketch p(a,z)←q(a,c),t(a,c,z) is

p(A,Z)←q(A,C),t(A,C,Z). This is the simplest variabili zation method which assumes that

two different variables correspond to two different terms. Under this assumption the

variabili zation of a sketch is unique.

The complete variabili zation procedure returns, for each sketch, the set of clauses that

have that sketch as an instance. The complete variabili zation of sketch

p(a,z)←q(a,c),t(a,c,z) is a set of 20 clauses including

p(A,Z)←q(A,C),t(A,C,Z),

p(A,Z)←q(B,C),t(A,C,Z),

p(A,Z)←q(A,C),t(B,C,Z),

p(A,Z)←q(A,C),t(A,D,Z),

etc.

If the function Variabili ze uses the complete variabili zation procedure then it returns a

set of clauses instead of just one. In this case the stopping conditions of Algorithm 2

must be checked for each clause resulting from the variabili zation. The algorithm stops if

one of the clauses satisifies the conditions. The result of ClauseConstruction is then the

set of variabili zations (clauses) satisfying the stopping criterion.

In the current implementation of SKIL only the simple variabili zation procedure is

available. The variabili zation strategy can, however, be an option of the user. Other

variabili zation strategies could also be devised.

4.7.2 The refinement operator

The set of refinements of a sketch Sk is given by the refinement operator ρ (Algorithm

3). This operator takes Sk and selects one sketch literal $P(X,Y) to consolidate (X

represents the set of input arguments and Y the output). The job of the refinement

operator is to find all possible replacements for this sketch literal. Each replacement is

80 AN APPROACH TO INDUCTIVE SYNTHESIS

made of an operational li teral and a new sketch literal. Ultimately, the sketch literal

$P(X,Y) can also be removed.

The refinement operator always consolidates the sketch from input to output, i.e., it only

introduces operational li terals whose input arguments are linked to the input arguments

of the head of the sketch via operational li terals only. Therefore, the selected $P(X,Y)

must be a literal whose input arguments X are operationally linked terms within the

sketch. If more than one such sketch literal exists, the leftmost one is chosen for

refinement. To simpify the description of Algorithm 3 we assume that the sketch to

refine is syntactically ordered (Section 4.5.1). This means that the selected $P(X,Y) is

always the leftmost sketch literal.

Procedure ρ
input: algorithm sketch Sk

P,BK,E+

output: a set of sketch refinements of Sk
Sk := e←α,$P(X,Y),β where

α and β are literal sequences,
$P(X,Y) is the leftmost sketch literal whose

input arguments are directionally linked terms.
X is the set of its input arguments,
Y is the set of its output arguments,

if there is no $P(X,Y) in those conditions return ∅
RelMod := RelevantSubModel(X,P,BK,E+,e←α)
NewLiterals := { (Pred(XM,YM),$Pnew(X∪YM, Y–YM)) |

Pred(XM,YM)∈RelMod and $Pnew is a new sketch literal }
Refin := { e←α,γ,β | γ ∈ NewLiterals }
if Y=∅ then Refin := Refin ∪ { e←α,β }
return Refin

Algorithm 3: Refinement Operator

Having identified the sketch literal $P(X,Y) to refine, the method constructs a set of

atoms that belong to the model of P∪BK∪E+. Each of these atoms has as input

arguments terms in X. This set of atoms is the relevant sub-model (see Algorithm 4).

The synthesis of a logic program 81

Each element Pred(XM,YM) of the relevant sub-model ModRel will correspond to one

refinement. For that, the sketch literal is replaced by a conjunction Pred(XM,YM),

$Pnew(XPnew,YPnew), where $Pnew is the new sketch predicate. The new sketch literal

represents new consolidation opportunities in subsequent refinement steps. The set of

input terms XPnew includes the terms in X and in YM. The set of output terms YPnew includes

the terms in Y that are not operationally linked yet.

If the set of output terms Y in $P(X,Y) is empty the refinement obtained by simply

removing this sketch literal is also returned. Making one sketch literal disappear allows

SKIL to move on to the next sketch literal and eventually consolidate the whole sketch.

Example 4.6: Let Sk be the sketch

grandfather(+tom,–bob)←father(+tom,–anne),$P1(+tom,+anne,–bob).

Sk has one sketch literal ($P1(+tom,+anne,–bob)). Each element of the set of

refinements is constructed by replacing this sketch literal by a conjunction of an

operational li teral and of a new sketch literal. Here is the refinement set, using the

predicates defined in Example 4.5:

Refin = { (grandfather(+tom,–bob)←
father(+tom,–anne),
mother(+anne,–bob),
$P2(+tom,+anne,+bob).),

(grandfather(+tom,–bob)←
father(+tom,–anne),
mother(+anne,–chris),
$P3(+tom,+anne,+chris,–bob).) }

♦

4.7.3 The relevant sub-model

The operational li terals that replace the sketch literal, correspond to a set RelMod of

ground facts derived from the program P∪BK∪E+. This RelMod set is a relevant subset

of the model of P∪BK∪E+ (which we call the relevant sub-model) and is constructed as

82 AN APPROACH TO INDUCTIVE SYNTHESIS

follows (see Algorithm 4). For each admissible predicate we construct queries using

input arguments of the sketch literal. The queries are posed to the program P∪BK∪E+

using a depth-bounded program interpreter (Section 4.7.4). The set of answers given by

the interpreter is the intended sub-model RelMod.

Procedure RelevantSubModel
input: X, P,BK,E+,e←α
output: RelMod a relevant sub-model of P∪BK∪E+

RelMod := ∅
Predicates := PredicatesToFollow(e←α)
for each Pred∈Predicates

Queries := { Pred(Xp,Yp) | Xp⊆X, Yp are variables }
Atoms := { Qθ | Q∈Queries and θ ∈Int(P∪BK∪E+ ,Q, |–) }
RelMod := RelMod∪Atoms

next
RelMod := RelMod–α (eliminates literal repetitions)
RelMod := Prune(RelMod, e←α)
return RelMod

Algorithm 4: Construction of the relevant sub-model

Example 4.7: The input arguments { tom, anne} of the sketch literal $P1(+tom, +anne,

-bob) in the following sketch

grandfather(+tom,-bob)←
father(+tom,-anne),
$P1(+tom,+anne,-bob).

are used to formulate queries involving the admissible predicates father/2 and mother/2

(assuming that these are admissible predicates). Taking the definitions for these

predicates given for Example 4.5, we get the following set of possible queries

Queries = { father(tom,X), father(anne,X), mother(tom,X), mother(anne,X) }

The first and fourth query get two answer substitutions each. The second and third

queries get no answers. The set of facts constructed from the answers is

Facts = { father(tom,anne), father(tom,jack),

The synthesis of a logic program 83

mother(anne,bob), mother(anne,chris) }

The relevant sub-model is

RelMod = { father(tom,jack), mother(anne,bob), mother(anne,chris)}

It should be stressed that father(tom,anne) was excluded from the relevant sub-model as

it is already in the sketch being refined.♦

Why are we interested in a sub-model of P∪BK∪E+? The background knowledge BK

enables the introduction of auxili ary predicates. The positive examples E+ enable the

introduction of recursive literals. The previously induced clauses in P speed up the

induction of recursive clauses. Although we can learn recursive clauses from relevant

sub-models of BK∪E+ only (without P), this would make the success of the system very

much dependent on the choice of the positive examples. This issue will be elaborated in

the following Chapter.

Algorithm 4 removes from the relevant sub-model atoms that already exist as literals in

the sketch that is being refined. This control avoids the unnecessary repetition of literals

in the final clause.

4.7.3.1 Pruning

The function Prune is made of two different heuristic steps described below. A non-

heuristic version of Algorithm 4 can be obtained by removing the call to the function

Prune.

First heuristic step:

RelMod := RelMod–{ e' | e' has the same predicate as e
and its input arguments are
a subset of the input arguments of e}

Second heuristic step:

RelMod := RelMod–{ L | L introduces terms produced by e←α }

84 AN APPROACH TO INDUCTIVE SYNTHESIS

In the first heuristic step, atoms corresponding to recursive literals that are potential

sources for non-termination are removed. The criterion is that all the atoms whose input

arguments are a subset of the input arguments of the head of the sketch are removed.

Thus, we will not have such clauses as p(X)←p(X) nor as p(X,Y)←p(Y,X). This is an

elementary control of non-termination, which does not avoid all undesirable situations. In

any case, the program interpreter used in SKIL has itself a mechanism to prevent non-

termination: the control of the depth of demonstrations.

The second heuristic step removes from the relevant sub-model atoms that try to re-

introduce terms already existing in e←α. The set of output terms of an atom L in the

relevant sub-model must be disjoint from the set of produced terms in e←α.

Definition 4.12: Given a clause e←α, and the input/output mode declarations of the

predicates involved, the set of terms produced by the clause is

in(e) ∪ { directionally linked terms of α with respect to in(e) }

where in(e) is the set of input terms of the head of the clause. The set of terms produced

by e←α is denoted by produced(e←α). ♦

So, any atom L of the relevant sub-model generated by Algorithm 4 must satisfy the

following condition:

out(L) ∩ produced(e←α) = ∅

where out(L) denotes the set of output terms of atom L.

Atoms not satisfying this restriction are discarded because, after variabili zation of the

sketch, they would correspond to potentially useless literals. This is a reasonable

heuristic since the aim of the refinement process is to produce the output terms of the

example, and it is typically unnecessary to produce each term more than once. However,

The synthesis of a logic program 85

under this heuristic and given one example, some clauses covering it may not be

synthesizable.

Example 4.8: Let e←α in Algorithm 4 be rv(+[3,2] ,–[2,3])←dest(+[3,2] ,–3,–[2]). In

this case the atom rv(+[2] ,–[2]) will not be in RelMod because

out(rv(+[2] ,–[2])) = { [2] }

produced(rv(+[3,2] ,–[2,3])←dest(+[3,2] ,–3,–[2])) = { [3,2] , 3, [2] }

{ [2] } ∩ { [3,2] , 3, [2] } = { [2] } ≠ ∅

Therefore the clause rv(A,B)←dest(A,C,D), rv(D,D), const(B,C,D) is never synthesized.

♦

The use of this filter reduces the number of possible sketch refinements at each

refinement step, as well as the branching factor of the search process thus increasing

efficiency.

However, this filter has the disadvantage of causing incompleteness in the clause

construction.

Example 4.9: Suppose that example e1 is rv([1,2] ,[2,1]). The recursive clause is

rv(A,B)←dest(A,C,D),rv(D,E),addlast(E,C,B).

The sketch that SKIL should find is

rv([1,2] ,[2,1])←dest([1,2] ,1,[2]),rv([2] ,[2]),addlast([2] ,1,[2,1]).

This sketch is never produced by SKIL from example rv([1,2] ,[2,1]). When SKIL

refines rv([1,2] ,[2,1])←dest([1,2] ,1,[2]),$Px(…), the atom rv([2] ,[2]) is not allowed

into the relevant sub-model because it attempts to re-introduce the term [2] .♦

86 AN APPROACH TO INDUCTIVE SYNTHESIS

4.7.4 The depth bounded interpreter

SKIL’s synthesis methodology employs SLD/SLDNF resolution in the following

situations:

• Tests for the coverage of positive and negative examples;

• Construction of the relevant sub-model.

The SLD-resolution may give rise to practical problems due to the possibili ty of having

infinite or too long computations. To guarantee the termination of the synthesis process,

the program interpreter used by SKIL employs a mechanism that controls the depth of

each refutation.

Definition 4.13: Let D be a derivation of a program P. The invocation level of an

occurrence Ci of a clause C∈P in a derivation D is defined as invl(Ci,D):

invl(Ci,D) = 0 if Ci is in the first step of the derivation, i.e., D = ((Q,Ci,θ),…).

invl(Ci,D) = k+1 if Ci resolves with a literal first appearing in resolvent Rj+1 in D,

Rj+1 is obtained by resolving Rj and Cj, and invl(Cj,D)=k. ♦

Example 4.10: Consider the following zero-order program:

a←b,a. C1

a←c. C2

b. C3

c. C4

One possible derivation is shown in Figure 4.7.

The synthesis of a logic program 87

←a

←b,a

←a

←b,a

←a

←c

�

C1

C3

C1

C3

C2

C4

Figure 4.7: One derivation of the program.

Symbolically, the derivation is represented by

D = ((←a,C1,1), (←b,a, C3,1), (←a, C1,2), (←b,a, C3,2), (←a, C2,1), (←c,C4,1), �)

(substitutions are not considered since they are not needed) where Ck,i represents the i-th

occurrence of clause Ck.

The invocation level of C1,1 is 0 since it is in the first step of the derivation. The

invocation level of C3,1 is 1

invl(C3,1,D) = 1+invl(C1,1, D)

since C3,1 resolves with literal b introduced by C1,1. The invocation level of C1,2 is also 1.

As for the rest of the derivation,

invl(C3,2,D) = 2 = 1+invl(C1,2, D) = 1+1

invl(C2,1,D) = 2 = 1+invl(C1,2, D) = 1+1

invl(C4,1,D) = 3 = 1+invl(C2,1, D) = 1+2

♦

88 AN APPROACH TO INDUCTIVE SYNTHESIS

Now we can define the depth of a refutation in terms of the maximum invocation level of

a clause on all the derivations of an SLD tree.

Definition 4.14: Let P be a definite logic program and ←Q a query. The refutation

depth, refdepth(←Q,P), of ←Q from P is the maximum invocation level of all clause

occurrences in the SLD derivation tree T of ←Q:

refdepth(←Q,P) = max({ invl(Ci,D) | D is a branch of T and Ci occurs in D })

♦

The two above notions can be extended to SLDNF resolution in a natural way.

The depth-bounded interpreter answers only those queries which admit a refutation with

depth smaller then a given limit h. When the depth of a demonstration goes beyond the

limit, the interpreter fails.

Definition 4.15: Let P be a program and ←Q a query, a depth-bounded interpreter of

limit h is the operator,

Int(P,←Q, |– h) = { θ | P |– h Qθ }

where |– h represents the derivabili ty relation

P |– h Q if and only if P |– Q and refdepth(←Q,P) ≤ h.

♦

In ILP approaches it is common to find some sort of control of the computation depth.

The interpreter used in SKIL employs a control mechanism similar the one used by

Shapiro for MIS [109] to diagnose cyclic programs. Muggleton and Feng used the

notion of h-easy model to construct subsets of a program model [82].

The synthesis of a logic program 89

Definition 4.16: Given a logic program P, an atom q is h-easy with respect to P if and

only if there is a derivation of q from P involving at most h resolution steps. The

Herbrand h-easy model of P is the set of all the instances of atoms h-easy with respect to

P.

The h-easy model of a program P corresponds, in broad terms, to the set of facts which

can be derived with a depth-bounded interpreter. To guarantee that the h-easy model is

finite, program clauses should be range restricted.

The h-easy approach was criticized by de Raedt who, instead, proposed to limit the

complexity of the terms involved in each computation [21].

Definition 4.17: An atom f(t1,…,tn) is h-complex if and only if for all i: 1≤i≤n: depth of

term ti≤h (page 47).♦

An h-complex model of a program P corresponds to the set of atoms which have a

derivation from P involving only h-complex terms. A program P is h-conform if, for

every h-complex atom q, the SLD tree for deriving q from P only contains h-complex

atoms.

Although it seems simple to adopt the h-complex approach for controlli ng termination in

SKIL, we believe that the practical results obtained by the synthesis method would not

be much different if the h-complex approach was adopted. On the other hand, a

complexity-bound interpreter would be computationally heavier. For h-conform

programs the control of complexity could be done statically. Unfortunately, for a

program to be h-conform, severe syntactic restrictions must be imposed. One of those

conditions is that all variables occurring in the body of a clause also occur in the head.

This is not adequate for our purposes.

90 AN APPROACH TO INDUCTIVE SYNTHESIS

4.7.5 Vocabulary and clause structure grammar (CSG)

The admissible predicates that can be used to obtain the sub-model are given by the

function PredicatesToFollow invoked by Algorithm 4. Those predicates are determined,

beforehand, by the admissible predicates declaration. They constitute the vocabulary

available for clause construction. The function PredicatesToFollow can be defined in a

simple form, returning the set of vocabulary predicates. This is the solution usually

adopted by ILP systems.

However, it is sensible that the semi-automatic development of programs should explore

programming knowledge [38,111]. The knowledge relative to the processing of

structured objects such as lists could include, for example, the following. If we want to

process an object using a procedure P, we decompose that object into parts, invoke the

same procedure recursively, and combine the partial solutions. The SKIL system allows

this kind of programming knowledge to be expressed as a clause structure grammar

(CSG).

A clause structure grammar defines the admissible sequences of predicate names in the

body of synthesized clauses. Such CSG's are expressed in definite clause grammar

(DCG) notation [88].

The top rules of the CSG's used here have the form

body(P)-->L1(<O1>,<N1>),…,recurs(<Or>,<Nr>,P),…,Ln(<On>,<Nn>).

where for each Li(<Oi>,<Ni>)

• Li is the name of a group of literals (e.g. test literals, decomposition literals, etc.),

• <Oi> is either * or +. The symbol * means that the sequence of literals can be empty.

The symbol + means that there should be at least one literal in the sequence.

• <Ni> is an integer greater than 0, which limits the maximum admissible number of

literals in the group.

The synthesis of a logic program 91

• P is a DCG variable.

The group recurs is a special group for recursive literals. The only predicate admissible

in this group is the predicate being synthesized. Its name is carried in variable P.

For each Li the CSG contains a set of rules of the form

Li(_,N)-->lit_Li,{N>0}.
Li(_,N)-->lit_Li,{N2 is N-1},Li(+,N2).
Li(* ,N)-->[] .

lit_Li-->[<P1>] ;...;[<Pk>] .

where each <Pi> is a predicate of the group Li, lit_Li is a DCG predicate name, and N,

N2 are DCG variables.

The recurs special a group is defined with the set of rules

recurs(_,N,P)-->lit_recurs(P),{N>0}.
recurs(_,N,P)-->lit_recurs(P),{N2 is N-1},recurs(+,N2,P).
recurs(* ,N,P)-->[] .

lit_recurs(P)-->[P] .

Example 4.11: The CSG shown here describes a set of recursive clauses. It starts by

defining several groups of literals. The first group decomposes certain arguments of the

clause head in sub-terms (using predicates like dest/3, which separate a list into head and

body). The second group contains test literals. The third group allows the introduction of

recursive literals. Finally, the fourth group consists of composition literals, whose

purpose is to construct the output arguments from terms obtained by previous literals

(using predicates like append/3). The general structure of the recursive clause is

described in the following way:

body(P)-->decomp(+,2),test(* ,2),recurs(* ,2,P),comp(* ,2).

92 AN APPROACH TO INDUCTIVE SYNTHESIS

where the argument P passes the name of the predicate in the head (for example

member/2 if we are synthesizing member). The maximum number of literals of any given

group is 2. All the groups of literals may be empty except for the decomp group. The

decomposition group is defined following the model defined above:

decomp(_,N)-->lit_decomp,{N>0}.
decomp(_,N)-->lit_decomp,{N2 is N-1},decomp(+,N2).
decomp(* ,N)-->[] .

lit_decomp-->[dest/3] ;[pred/2] ;[partb/4] .

The group of recursive literals is also defined as above. The test and composition groups

are defined similarly to the decomposition group. Below we show only the lit_test and

lit_comp rules.

lit_test-->[null/1] ;[memberb/2] .
lit_comp-->[appendb/3] ; [addlast/3] ;[const/3] .

Some clauses admited by this CSG (assuming in this example that we are synthesizing

rv/2) would have the form

rv(_,_)←dest(_,_,_),rv(_,_).
rv(_,_)←pred(_,_,_),rv(_,_).
rv(_,_)←dest(_,_,_),rv(_,_),addlast(_,_,_).

Some clauses not admited by the CSG:

rv(_,_)←rv(_,_).

Clauses must have at least one decomposition literal.

rv(_,_)←rv(_,_),dest(_,_,_),rv(_,_).

No clause can have a decomposition literal between two recursive literals.

rv(_,_)←dest(_,_,_),dest(_,_,_),dest(_,_,_).

The synthesis of a logic program 93

The maximum number of decomposition literals is 2.♦

When Algorithm 4 invokes the function PredicatesToFollow, with the part of the sketch

e←α to the left of the literal $P(…) as an argument, it generates the set of admissible

predicate names which, according to the CSG, can follow α. The CSG does not restrict

the literal arguments. It simply defines acceptable predicate chains that can appear in the

literals of the body of a clause.

It would be relatively simple to extend the CSG to restrict the arguments of the literals

also. However, we prefer to adopt this simple solution since it makes CSGs easier to

write and maintain. In any case, the choice of literal arguments is restricted by the clause

construction mechanism that always follows some relational link and takes the types of

the predicates into account.

The function PredicatesToFollow invokes the predicate body/3 defined by the CSG in

the following way: the first argument is instantiated to the name of the predicate to be

defined; the second argument is a list whose first elements represent the sequence of the

predicate names in α. The next element of that list is a variable, which will be instantiated

with the predicate name that can follow in the sequence. The rest of the list is a non-

instantiated variable. The third argument is an empty list.

Example 4.12: e←α is the clause

sort([2,1] ,[1,2])←dest([2,1] ,2,[1]).

Thus, given the CSG from Example 4.11, the set of predicates that can follow is {dest/3,

partb/4, sort/2} . This is equivalent to collecting the answers obtained by the query.

←body(sort/2,[dest/3,PRED|_] ,[]).

Variable PRED will be successively unified with dest/3, partition/4 and sort/2. If we

considered all the vocabulary predicates, independently of CSG, then the set of

PredicatesToFollow would be

94 AN APPROACH TO INDUCTIVE SYNTHESIS

{ dest/3, partb/4, null/1, memberb/2, sort/2,const/3, appendb/3,addlast/3}

♦

Clause structure grammars enable the description of an adequate language bias. The

method is quite powerful since each grammar can be highly reusable. The same grammar

can cover a large class of predicate definitions.

4.7.6 Type checking

The types declared in the specification are also checked during the construction of the

relevant sub-model. This step was not explicitly included in Algorithm 4 for the sake of

clarity. In reality, the set of queries constructed by the instruction

Queries := { Pred(Xp,Yp) | Xp⊆X, Yp are variables }

of Algorithm 4 excludes those queries whose input arguments do not conform to the

type declaration. For that, SKIL checks if every input term is in the domain of the

corresponding type. In other words, the system checks whether the n-tuple of the query

arguments is compatible with the type declarations (Section 3.2.4). This checking is

made using the type definitions (see Appendix B). For the predicates whose type is not

declared any input terms are accepted.

4.8 Properties of the refinement operator

In this Section we discuss some theoretical properties of SKIL’s refinement operator.

We are mainly interested in determining if the refinement operator can always find a

clause covering a given example if the clause is in the search space.

Given a program P and an example e(X,Y) such that in(e(X,Y))=X and out(e(X,Y))=Y, if

there is a relational link α from X to Y such that P|– α, then SKIL’s refinement operator

(ρ) finds it.

Properties of the refinement operator 95

If we have a positive example with no sketch associated, the refinement operator ρ starts

with the black box sketch e(X,Y)←$P1(X,Y) and finds all the refinements

e(X,Y)←p(X2,Y2),$P2(X3,Y3) such that P|– p(X2,Y2) and X2⊆X, where $P2(X3,Y3) is a

new sketch literal whose arguments (X3,Y3) are a combination of (X,Y) and (X2,Y2).

The repeated application of ρ gives all the relational links from X to Y. If there is one

sketch associated, the refinement operator handles each sketch literal in a similar way.

Given a program P and a sketch Sk such that, if there is a clause C that is a

variabili zation of a consolidation of Sk then SKIL can find that clause.

Now we give a formal account of what has been stated above. We show that SKIL’s

refinement operator can find all the interesting operational refinements of a given sketch.

As a consequence SKIL can find all the variabili zations of those refinements. We start by

defining the concept of consolidation. The interesting refinements of a sketch will be its

consolidations.

Note that in the following we use a clause-like notation for representing sets of literals.

The sequence α1,α2 represents the set of literals α1∪α2, where α1 and α2 are sets of

literals. The sequence L,α represents the set {L} ∪α, where L is a single literal and α is a

set of literals.

Definition 4.18: A set of literals α is a consolidation of a set β of operational or sketch

literals, denoted α∠β iff:

a) α=β;

b) β is of the form $P(X,Y) and α is a relational link from the set of terms SX⊆X to the

set of terms SY⊇Y;

c) β is of the form (L,β2), where L is an operational or sketch literal, α is of the form

(α1,α2), α1∠L and α2∠β2.♦

Intuitively, a set of literals is a consolidation of a sketch literal $P(X,Y) if it produces all

the output terms Y of $P(X,Y) from a subset of its input terms X. Note that the empty set

96 AN APPROACH TO INDUCTIVE SYNTHESIS

is an acceptable consolidation for any sketch literal with no output terms. The notion of

consolidation is recursively extended to arbitrary sets of literals.

Example 4.13: Suppose we have two predicates p(+,–) and q(+,–,–). The set of literals

p(a,b),q(b,c,d) is one possible consolidation of the sketch literal $P1(+a,–c,–d) since

there is a relational link from {a} to { c,d} . We also have that p(+a,–b),q(+b,–c,–d) is

one consolidation of $P2(+a,–c) since, in particular, there is a relational link from {a} to

{ c} . The empty set is one consolidation of $P3(+a,+b). Another consolidation of this

sketch literal is p(+a,–b),p(+b,–c).

One consolidation of p(+a,–b),$P4(+b,-d),p(+d,–f) is p(+a,–b),p(+b,–c),$P5(+b,+c,–

d),p(+d,–f).♦

One sketch is a consolidation of another sketch if both have the same head and there is a

relation of consolidation between their bodies.

Definition 4.19: Let S1 and S2 be two sketches. S2 is a consolidation of S1, denoted S2∠S1, iff

S1=(H←α1), S2=(H←α2) and α2∠α1.♦

A sketch refinement operator produces consolidations of one sketch.

Definition 4.20: A sketch refinement operator (SRO) ρ is an operator that, given a

sketch S, returns a set of sketches, denoted by ρ(S), where for all S'∈ρ(S) we have that

S’∠S.♦

SKIL’s refinement operator has four arguments: ρ(S,P0,BK ,E+). The first argument is

the sketch to refine. The others are the initial program P0, the background knowledge BK

and the positive examples E+. In this section we consider these last three arguments as

one single program P = P0∪BK∪E+. For the same reason we invoke RelevantSubModel

with the empty set in the third and fourth arguments. As shorthand for ρ(S,P0,BK ,E+)

we write ρ(S).

Properties of the refinement operator 97

Definition 4.21: The set of refinements of a sketch S obtained by iterated application of

a SRO ρ is denoted as ρ*(S) = { S} ∪ρ(S)∪ρ2(S)∪ρ3(S)∪….♦

We now define the notion of completeness of a sketch refinement operator in terms of

the notion of consolidation.

Definition 4.22: Let ρ be a SRO, SS a set of sketches, S1 a syntactically ordered sketch

in SS, and S2 an operational sketch in SS such that S2∠S1. The SRO ρ is complete in SS

iff S2∈ρ*(S1).♦

Theorem 4.1: Given a program P, SKIL's refinement operator, ρ, is complete in the set

of sketches SS={ S | for every operational li teral L in the body of S, P|–L } .

Proof: Let S be an operational sketch in SS and S1 an arbitrary sketch in SS such that

S∠S1. We must prove that S∈ρ*(S1),.

If S1 has no sketch literals then, by definition of consolidation S=S1. By definition of ρ*,

we have that S∈ρ*(S1).

If S1 has at least one sketch literal, then S1 is of the form H←α1,$P(X,Y),β3, where α1 is

a sequence of operational li terals. By definition of consolidation S is of the form

H←α1,α2,α3, where α2∠$P(X,Y) and α3∠β3.

If α2=∅ then the set of output terms Y must be empty, otherwise we would not have that

α2∠$P(X,Y). In this case (H←α1,β3) ∈ ρ(H←α1,$P(X,Y),β3) since, if Y is empty, one of

the refinements is obtained by eliminating the sketch literal $P(X,Y).

If α2∠$P(X,Y) and α2≠∅ then there must be an operational li teral L∈α2 such that

in(L)⊆X. Suppose there is no such literal, then no term in Y is directionally linked in α2

with respect to X which contradicts α2∠$P(X,Y).

98 AN APPROACH TO INDUCTIVE SYNTHESIS

Since P|–L we have that L∈ RelevantSubModel(X,P,∅,∅, H←α1). This is justified by

the fact that the relevant sub-model is obtained by constructing all queries with all

allowed predicates for H←α1 with all the possible combinations of input arguments

taken from X. Therefore (H←α1,L,$P2(X∪in(L),Y-out(L)),β3) ∈ρ(S1).

Now let α2’ be α2 without L. We have that α2’∠$P2(X∪in(L),Y-out(L)) because α2 links

SX2∪out(L) ⊆ X∪out(L) to SY2-out(L)⊇Y-out(L). Therefore we can reason for α2’ as

we did for a2 and conclude that H←α1,α2,β3 ∈ ρn+1(S1) assuming that α has n literals.

Applying the same reasoning to the other sketch literals of S1 as we did for $P(X,Y) we

can conlude that H←α1,α2,α3 ∈ ρk(H←α1,$P(X,Y),β3), for some integer k, i.e.,

S∈ρ*(S1).♦

If a clause structure grammar G is considered, the set of sketches SS is restricted to the

sketches admited by G.

Theorem 4.2: Given a program P, a sketch S and a clause C = HC←BC, if there is a

substitution θ such that Cθ∠S and P|–BCθ, then SKIL can find clause C, assuming that

the complete variabili zation (Section 4.7.1.1) technique is used.

Proof: By the completeness of ρ and the assumption that P|–BCθ we have that Cθ∈ρ*(S).

Therefore SKIL can find the sketch Cθ and as a consequence it can find all the

variabili zations of Cθ including the clause C.♦

4.9 A session with SKIL

We start by using the SKIL system to synthesize the predicate rv/2. This examples helps

to ill ustrate how the system works when well-chosen positive and negative examples are

provided, and when a background knowledge program and a clause structure grammar

are given. The result is a recursive program. At the end the system indicates the CPU

time taken (in seconds) and the total number of sketch refinements constructed.

A session with SKIL 99

Specification

mode(rv(+,-)).
type(rv(li st,li st)).

rv([] ,[]).
rv([1,2,3] ,[3,2,1]).
rv([2,3] ,[3,2]).

-rv([1,2] ,[1,2]).
-rv([1,2,3] ,[2,1,3]).
-rv([1,2,3] ,[2,3,1]).
-rv([1,2,3,4] ,[3,4,2,1]).

Programming knowledge

background_knowledge(li st). % Appendix A
clause_structure(decomp_test_rec_comp_2). % Appendix C
adm_predicates(rv/2, [const/3,dest/3,null/1,addlast/3,rv/2]).

SKIL output:

?- skil (rv/2).

example to cover: rv([] ,[])
clause c(12) generated after 2 refinements:
rv(A,A)←
 null (A).

example to cover: rv([1,2,3] ,[3,2,1])
clause c(13) generated after 32 refinements:
rv(A,B)←
 dest(A,C,D),
 rv(D,E),
 addlast(E,C,B).

example to cover: rv([2,3] ,[3,2])
example covered by existing clause c(13)
Program generated (prv):

c(12):rv(A,A)←
 null (A).
c(13):rv(A,B)←

100 AN APPROACH TO INDUCTIVE SYNTHESIS

 dest(A,C,D),
 rv(D,E),
 addlast(E,C,B).

34 refinements (total)
2.200 secs

The background knowledge (li st) contains the definitions and declarations of type and

mode of auxili ary predicates (Appendix A). The clause structure grammar uses a divide-

and-conquer strategy as the one shown in Example 4.11 (Appendix C). Each recursive

clause has in the body a sequence of decomposition literals, test literals, recursive literals,

and composition literals.

By running SKIL with the same data, but without using a CSG, we obtain the same

program. Nevertheless, the number of refinements increases to 60 (almost doubles) in a

relatively simple problem. The processing time is also higher (about 2.7 seconds).

Type declarations also affect the system performance. We experimented removing only

the type declaration for the auxili ary predicate addlast/3. The number of refinements was

84 (instead of 34) and the time spent was 3.5 seconds.

The choice of the predicates declared as admissible also affects the amount of search.

This influence can either be positive, reducing the number of considered refinements, as

well as negative, increasing that number. By including, for example, the predicate

append/3 in the admissible predicate declaration, we obtain the same result after 86

refinements and 3.6 seconds.

If, instead of the three positive examples, SKIL is given the first positive example and

one sketch, as shown below, the same program is synthesized after 9 refinements and in

2/3 of the time.

rv([] ,[]). % positive example
sketch(rv([1,2,3] ,[3,2,1])←

$P1([1,2,3] ,1,[2,3]), rv([2,3] ,[3,2]), $P2([3,2] ,1,[3,2,1])).

Limitations 101

4.10 Limitations

As shown above, the SKIL system was able to synthesize a recursive definition for rv/2

from three well-chosen positive examples. Whatever the presentation order of these three

examples, the final result of SKIL always included the two clauses c(12) and c(13). Some

sequences give rise to a third clause, which is redundant in respect to the other two. The

synthesis CPU time measured also fluctuates from experiment to experiment. In any

case, this set of positive examples seems sufficient to induce the two relevant clauses.

We will now try a slightly different set of positive examples.

rv([] ,[]).
rv([1,2,3] ,[3,2,1]).
rv([4,5] ,[5,4]).

In this case, the program synthesized by SKIL is

c(12):rv(A,A)←
 null (A).

c(14):rv(A,B)←
 dest(A,C,D),
 dest(D,E,F),
 addlast(F,E,D),
 addlast(D,C,B).

This program does not cover the example rv([1,2,3] ,[3,2,1]) given. The search for a

clause that covers this example terminates after exhausting the set of sketch refinements

within the language bias. In particular, SKIL is not able to induce the recursive clause

c(13) generated in the earlier run.

The recursive clause does not appear because the example rv([2,3] ,[3,2]) is missing. In

fact, SKIL has problems in generating recursive definitions from a set of positive

examples which are not well-chosen, due to the strategy of searching for relational links.

For this reason, we propose an iterative induction strategy that is capable of synthesizing

102 AN APPROACH TO INDUCTIVE SYNTHESIS

recursive clauses from sets of positive examples analogous to the one presented above.

This is described in the next Chapter.

4.11 Related work

4.11.1 Linked terms

In 1977 Steven Vere [122] studied the problem of the induction of relational productions

from examples in presence of a set of relevant facts (background knowledge) by linking

terms in different literals. According to Vere, a relational production has the form α←β,

where α and β are conjunctions of literals. In order to incorporate background

knowledge literals into a conjunction of foreground literals, Vere proposed the notion of

association chain. Two literals L1, L2 have an association if the Ai,j(L1,L2) i-th term of L1

is equal to j-th term of L2. An association chain is a sequence of associations Ai1,i2

(L1,L2), Ai3,i4(L2,L3),…, Ain,in+1
(Ln-1,Ln), where for even r, ir ≠ ir+1.

 next(2,3),next(3,4),next(4,5)

Figure 4.8:A Vere chain of associations example.

Figure 4.8 shows an example of one Vere’s association chain. For the sake of clarity, we

use Prolog notation instead of Vere’s. A counterexample of an association chain is

next(2,3),next(3,4),odd(3). For a recent ILP approach to productions see [23].

Although association chains and the relational links described here have similar spirit,

they represent different concepts. A relational link is defined in terms of input/output

arguments and intends to connect two sets of terms: the set of input arguments and the

set of output arguments. An association chain connects two literals. In an association

Related work 103

chain there is at most one connection between any two literals. Relational links are more

complex since a literal may be connected to many others.

Richards and Mooney use relational pathfinding in the system FORTE [100] within a

clause specialization method. The idea of this technique is to consider the set of terms in

a logic program’s Herbrand base as a hypergraph of terms linked by the relations

(predicates) defined in the program. For example, given a positive example

uncle(arthur,charlotte), the search for a clause is made by expanding every term from

the example. For that one considers the known data about the parent/2 relation:

parent(cristopher,arthur).
parent(penelope,arthur).
parent(cristopher,victoria).
parent(penelope, victoria).
parent(victoria, charlotte).
parent(james, charlotte).
parent(victoria, colin).
parent(james, colin).

The expansion of the term arthur leads to the new terms {christopher, penelope} (facts

parent(cristopher,arthur) and parent(penelope,arthur)). The expansion of the term

charlotte leads to { victoria, james} (facts parent(victoria, charlotte) and parent(james,

charlotte)). There is no intersection between the two term sets obtained in the expansion.

By expanding the terms that resulted from the expansion of arthur we will obtain

(finally) the term victoria (either fact parent(cristopher,victoria) or parent(penelope,

victoria)). We have, therefore, an intersection between the set of terms obtained from

arthur, { chistopher, penelope} ∪ { victoria} , and from charlotte, { victoria, james} ,

which corresponds to a relational path. This path can be arranged into

uncle(arthur,charlotte)←parent(christopher,arthur),

parent(cristopher,victoria), parent(victoria, charlotte).

which corresponds to the clause

104 AN APPROACH TO INDUCTIVE SYNTHESIS

uncle(X,Y)←parent(Z,X),parent(Z,W),parent(W,Y).

The relational pathfinding (RP) technique is different from the relational linking

technique used within the SKIL system in various aspects. In first place, SKIL strongly

explores the input/output modes of the predicates involved in the definition. We can say

that SKIL carries out a sort of directed relational pathfinding search. Secondly, in the

FORTE system, when the RP method produces a clause which is over-general, the

specialization of that clause is generated using a hill -climbing strategy, identical to FOIL

[96]. In SKIL, the construction of a clause is made using only one specialization operator

(Algorithm 3) which searches for relational links taking into account negative examples

and integrity constraints. We have, therefore, a simpler clause construction algorithm

which avoids the disadvantages of the hill -climbing method (cf. Section 3.4.5).

4.11.2 Generic programming knowledge

As already mentioned in Chapter 3, various generic programming knowledge

representation formalisms have been proposed for the inductive construction of logic

programs. Namely the dependency graphs by Wirth and O’Rorke [123], the rule models

by Kietz and Wrobel [56], and the clause schemata by Feng and Muggleton [34]. Cohen

[18] and Klingspor [58] also used the DCG notation to represent language bias in their

systems.

The clause structure grammars used in SKIL are less expressive in comparison to other

formalisms, particularly Cohen’s DCGs, because they do not enable restricting the

arguments of the literals of the induced clauses. The simplicity of CSGs is, however,

advantageous particularly in what concerns construction and maintenance by the user.

4.12 Summary

The system SKIL synthesizes definite logic programs without functors or constants from

a given specification, background knowledge and programming knowledge. The

Summary 105

specification contains positive examples, negative examples, integrity constraints,

input/output mode and type declarations for the predicate to synthesize. Programming

knowledge consists of clause structure grammars and algorithm sketches.

The synthesis of a logic program in SKIL proceeds by constructing one clause at a time.

Each clause is constructed starting from an algorithm sketch associated to a given

positive example. The construction strategy consolidates the sketch by seeking a

relational link between the arguments of the literal in the head of the sketch. A candidate

clause is extracted from the consolidated sketch through a variabili zation operation.

Candidates that cover any negative example are discarded. To find the appropriate

sketch one explores the space of sketch refinements which is expanded using a sketch

refinement operator. The clause structure grammar allows the definition of the structure

of the clause to synthesize. The refinement operator takes this information into account.

The notion of sketch consolidation is formally defined and is related with the notion of

sketch refinement. It is shown that the sketch refinement operator is complete with

respect to operational consolidations of one sketch, assuming that no pruning is being

done in the relevant sub-model. Assuming that the complete variabili ation is enforced we

characterize the set of clauses that can be found by SKIL.

The main limitation of SKIL, which is shared by many other ILP systems, is the fact that

it requires well-chosen examples in order to synthesize a recursive definition. This

problem is addressed in the next Chapter where we introduce iterative induction.

107

5. I terative Induction

This Chapter describes the problem of inducing recursive clauses and various

approaches to this problem. We present the iterative induction method and the

implemented system SKILit. This system is able to synthesize recursive

definitions from sparse sets of positive examples. This solves the main

limitation of system SKIL, presented in the previous Chapter.

5.1 Introduction

The induction of recursive definitions from positive examples is a difficult task for a

typical ILP system. On the one hand, we have systems which require that the examples

supplied are chosen with care (the so called good examples [63]). On the other hand,

there are systems which do not require carefully chosen examples but only synthesize a

small class of logic programs, which allows the use of specific strategies to search for

recursive definitions ([1, 12, 49]. The SKILit system, presented in this Chapter, is

108 ITERATIVE INDUCTION

capable of synthesizing recursive definitions from examples which pose difficulties to

other systems.

The SKILit system is an extension of the SKIL system, and uses an iterative induction

strategy to synthesize recursive definitions from a set of examples chosen without prior

knowledge of the required results.

5.2 Induction of recursive clauses

The possibili ty of defining concepts recursively in a concise and elegant way is one of the

most attractive features of logic programming. Nevertheless, recursion is also a source of

many practical and theoretical problems. In inductive logic programming, the problem of

inducing recursive definitions from a set of naturally chosen examples is well known. In

this Chapter we analyse this problem in detail, and describe our contribution to tackle it,

by means of iterative induction.

The existing systems which induce recursive clauses from examples in a non-interactive

fashion (without an oracle) can be divided in two groups according to approach they

adopt. The first group includes approaches in which the positive examples do not affect

the clause search space, which is explored exhaustively. Examples are used instead to

define the stopping criterion (WiM [95], FORCE2 [12]). These can be regarded as brute

force methods and are sometimes called model-driven methods. This approach has the

advantage of being more robust with respect to variations in the initial set of examples,

but the disadvantage of not exploiting those variations to accelerate the search.

The second group includes systems which generate the required clauses from positive

examples and, in some cases, from background knowledge (SKIL and [1, 80, 82, 96]).

In these systems, the examples are used to make heuristic-based decisions, thus reducing

the initial search space. Therefore, these systems are less robust with respect to

variations in the set of positive examples comparatively to the brute force methods. The

Induction of recursive clauses 109

main advantage of this second approach is efficiency. These methods are sometimes

called data-driven methods [1], as opposed to the model-driven ones.

For all the data-driven methods, it is important to consider a model M of the set of

examples E+ and of the background knowledge BK (that is, the set of facts that can be

inferred from E+∪BK).

5.2.1 Complete/sparse sets of examples

The FOIL system [12] can synthesize the definition of member/2 if it is given all the facts

about this predicate involving some list (e.g. [1,2,3]) and all i ts sub-structures. All these

examples make possible the task of selecting the most appropriate literals. The results of

FOIL get worse when the set of examples is not complete [97]. The reason why FOIL

requires all these examples is that its heuristic function for selecting the best literal to add

in each refinement step is computed in terms of the number of covered examples. Since

coverage tests are extensional, the example sets must be complete. The GOLEM system

has the same limitation.

Example 5.1: Clause member(A,[B|Y])←member(A,Y) only covers extensionally the

positive example member(2,[1,2,3]) if the positive example member(2,[2,3]) is also

given.♦

Informally, and following Quinlan’s terminology, we say that a set of positive examples

is complete with respect to a set of clauses, if each example is extensionally covered by

one of the clauses. A set of examples which is not complete is a sparse set of examples.

Example 5.2: Given the program that defines the predicate member/2,

member(A,[A|B]). (C1)
member(A,[B|C])← (C2)

member(A,C).

110 ITERATIVE INDUCTION

A set of examples which includes member(2,[1,3,2]) should also have member(2,[3,2])

and member(2,[2]) to be complete ♦

The fact that FOIL and GOLEM need a set of complete examples to synthesize the

required set of clauses makes the task of inducing recursive programs hard. It is not

expected, in a realistic situation, that the user supplies unnecessarily large sets of

examples. ILP systems should be able to handle sparse sets of examples.

5.2.2 Basic representative set (BRS)

C. Ling [63] used the notion of basic representative set (BRS) to define what is a set of

good examples for the induction of a logic program. For some ILP systems, a BRS is a

necessary condition to synthesize a program. This is the case of all systems which employ

extensional coverage tests. A program P can never extensionally cover a set of examples

which does not include a BRS of P. This limitation includes systems such as FOIL,

GOLEM, Progol, amongst others. The SKILit system does not require a basic

representative set to synthesize a program.

A set of positive examples which is complete relatively to a set of clauses, contains at

least one basic representative set (BRS) of those clauses.

Definition 5.1: A basic representative set of a program P is any set S of ground atoms

obtained from a true ground instance (in the minimal model of P) of each clause C∈P.♦

Since a clause in a logic program may have many true instances, the program may also

have many basic representative sets.

Example 5.3: Given the program which defines the predicate member/2, (see Example

5.2) a basic representative set of that program is

{ member(1,[1,2]), member(4,[2,3,4]), member(4,[3,4])}

which corresponds to the true instantiation

Induction of recursive clauses 111

member(1,[1,2]).
member(4,[2,3,4])←member(4,[3,4]).

Another BRS for the same program is

{ member(3,[2,3,4]), member(3,[3,4])}

The latter set has two examples only since member(3,[3,4]) belongs to both clauses in

the following instantiation.

member(3,[3,4]).
member(3,[2,3,4])←member(3,[3,4]).

If one of the examples is removed from any of the BRS above it is no longer a BRS.♦

Definition 5.2: Let C be a clause of a program P, a basic representative set of clause C

with respect to P, denoted by BRSC(C,P), is a set of ground atoms obtained from a

ground instance of C which is true in the minimal model of P. The example which

corresponds to the full instantiation of the head of C is a representative example of C

with respect to P. ♦

By definition, a program’s BRS may include examples of different predicates. However,

for convenience, whenever we refer to a BRS of a program P defining predicate p/k, we

will consider only the examples in the BRS which are relative to p/k. The elements of the

BRS relative to other predicates are assumed to be extensionally or intensionally given as

background knowledge.

5.2.3 Resolution path

Inductive synthesis may also take advantage when the given positive examples include at

least a set of examples involved in one derivation. The set of atoms involved in the

derivation of a fact is called resolution path or resolution chain.

The elements of a basic representative set relative to the same clause, belong to the same

path (or chain) of resolution.

112 ITERATIVE INDUCTION

Definition 5.3: Let e be an example, P a program, and D = ((R1,C1,θ1), (R2,C2,θ2), …

(Rn,Cn,θn), �), where R1 = ←e and Ci ∈ P, the derivation of e from P, the resolution

path of e with respect to P, RP(e,P) is the set of atoms

RP(e,P) =

n

∪
i=1

 atoms(Ri)θ1θ2…θn

where atoms(R) represents the set of atoms in resolvent R. ♦

The resolution path of an example e with respect to a program P corresponds to the set

of facts used to prove e from P. The elements of one basic representative set of a clause

C are in the same resolution path. If e is a representative example of clause C ∈ P, and D

= ((←e,C,θ1), … , (Rn,Cn,θn), �), is a derivation of e from P, the set of literals in

Cθ1θ2…θn is a BRSC(C,P).

Example 5.4: Let us consider the program for member/2 defined in Example 5.2 and the

example member(4,[3,2,4]). To prove this fact we construct the derivation below.

←member(4,[3,2,4]). C2

←member(4,[2,4]). C2

←member(4,[4]). C1

�

Figure 5.1: Derivation of a positive example.

This derivation is symbolically represented, omitting substitutions, by

D = ((←member(4,[3,2,4]),C2), (←member(4,[2,4]),C2), (←member(4,[4]),C1))

Induction of recursive clauses 113

The resolution path is now obtained by collecting the atoms in the resolvents of the

derivation.

RP(member(4,[3,2,4]),P) =
{ member(4,[3,2,4])} ∪ {member(4,[2,4])} ∪ {member(4,[4])}

So, the examples in the resolution path of member(4,[3,2,4]) are {member(4,[3,2,4]),

member(4,[2,4]), member(4,[4])} .♦

Some methods, such as the inversion of implication by Muggleton [77] or the one used

by system LOPSTER [60] (which employs a technique called sub-unification) do not

require a BRS to induce a recursive clause. All they need is a representative example of

that clause and another example in the resolution path representing the recursive literal.

In the case of these two methods we are assuming that only one recursive literal is

needed since the LOPSTER system only synthesizes clauses with at most one recursive

literal. In the description of the algorithm for the inversion of implication this limitation is

not mentioned, but it seems implicit.

Example 5.5: To induce the program in Example 5.2 it would be sufficient for a

program like LOPSTER to have the examples member(4,[3,2,4]) and member(4,[4]).

We should stress that these two examples are not a BRS of the program.♦

For the system CRUSTACEAN (a follow-up of LOPSTER) the representative examples

of a recursive clause do not have to belong to the same resolution path [1]. The

technique used by this system to discover recursion consists in the analysis of the

structure of the terms which are arguments of the examples.

Example 5.6: To induce the program in Example 5.2 the examples member(4,[3,2,4])

and member(1,[2,1]) would be sufficient for a program like CRUSTACEAN. Notice that

the second example is not in the resolution path of the first one. ♦

114 ITERATIVE INDUCTION

5.3 I terative induction

How does the SKIL system induce a recursive clause? Let us take a look at a particular

situation. If it is given the positive examples

member(2,[3,2]).
member(2,[2]).

SKIL induces the program

member(A,B)←dest(B,C,D),member(A,D).
member(A,B)←dest(B,A,C).

This is a good result, since we have a recursive program that, given the definition of

dest/3 (Appendix A), covers the two positive examples. The second example is

representative of the base clause, and the two are representative of the recursive clause.

These two examples are a BRS of the induced program, and as a consequence, they are

in the same resolution path.

If, however, we substitute one of the examples shown earlier by a somewhat different

one, obtaining

member(2,[3,2]).
member(7,[7,1]).

the induced program is now

member(A,B)←dest(B,C,D),dest(D,A,E). (Prop1)
member(A,B)←dest(B,A,C). (Prop2)

We lost the recursive clause. However, this program induced by SKIL is not totally

uninteresting. Even though the program is not recursive, each one of its clauses is a

property of the concept of member. The first property, for example, says that every

second element of a list is a member of that list. These properties which generalize the

examples initially supplied to the system can now be exploited in the search for recursive

clauses. Let us see how.

The SKILit algorithm 115

The reason why SKIL does not find the recursive clause from the examples

{ member(2,[3,2]), member(7,[7,1])} is as follows: To generate a recursive clause from

the example member(2,[3,2]) SKIL must construct the sketch

member(2,[3,2])←dest([3,2] ,3,[2]),member(2,[2]).

For that, it is necessary that each atom in the body of the sketch is in the model of

{ member(7,[7,1])} ∪BK. However, this is not the case. The atom member(2,[2]) is not

in the model. For this reason, the recursive clause is not constructed.

The only reason for that atom not to be in the model, is that it is not one of the initial

positive examples given to the system. Nevertheless, after the first passage of SKIL

through the positive examples, the two properties Prop1, Prop2 emerge. One of them

covers the missing example (member(2,[2]) ∈ M(BK∪{ Prop1, Prop2})). In other

words, the crucial example that was not in the initial data can be abduced by the SKIL

system itself. As a consequence, SKIL now has the information to generate the recursive

clause. Indeed, the recursive clause is generated during the second pass through the

examples thanks to the properties generated earlier.

By generalizing this process we obtain an iterative algorithm which invokes SKIL in

every iteration. We call this method iterative induction.

5.4 The SKIL it algor ithm

The SKILit algorithm (iterative SKIL) constructs logic programs using the iterative

induction method. SKIL is invoked by SKILit as a sub-module which goes through the

positive examples attempting to construct new clauses. Algorithm 5 describes this

procedure in detail.

The SKILit algorithm starts with program P0, which is initially empty. In the first

iteration, SKILit constructs program P1. The clauses in P1 generalize some positive

examples and are typically non-recursive. In general, it is diff icult to introduce recursion

116 ITERATIVE INDUCTION

at this level, due to the lack of crucial positive examples among the given ones. It is

likely, therefore, that the clauses in P1 are defined using auxili ary predicates only (i.e.,

without recursive literals).

Procedure SKILit
input: E+, E– (positive and negative examples)

BK (background knowledge).
output: P (logic program)
i := 0
P0 := ∅
repeat

Pi+1 := SKIL(E+,E–, Pi,BK)
i := i+1

until Pi+1 does not contain new clauses with respect to Pi

P := TC(Pi+1,BK,E+,E–)
return P

Algorithm 5: Iterative induction

In a second iteration, program P2 is induced. Here, it is more likely that recursion

appears, since P1 covers some crucial examples that were missing in the first iteration.

Analogously, as P2 covers more facts, other interesting recursive clauses may appear in

the next iterations. The process stops when one of the iterations does not introduce new

clauses. After the last iteration, the algorithm TC (theory compressor) is invoked. This

module eliminates redundant clauses, which are typically properties induced in initial

iterations and subsequently made redundant by recursive clauses.

5.4.1 Good examples

The method of iterative induction synthesizes program P by constructing a sequence of

programs P0, P1, …,Pn where P0 = ∅ and Pn = P. Each Pi is obtained by appending to

Pi-1 one or more clauses (with the exception of Pn which is equal to Pn-1). Therefore, and

since we are dealing with definite programs, we have that

M(Pi ∪ BK) ⊇ M(Pi-1 ∪ BK), 1 ≤ i ≤ n

The SKILit algorithm 117

Since the model of Pi∪BK grows with i and, in each iteration i clause construction

depends on the model of Pi-1∪BK∪E+, the probabili ty of synthesising the required

recursive clause in a given iteration is at least as high as in the preceding iterations. But

which initial set of examples should be given so that our method of iterative induction

would induce the required recursive clause? How do we characterize a set of good

examples?

As we saw on Section 5.3, iterative induction does not need a basic representative set of

examples to synthesize a recursive clause. However, to synthesize a clause, the method

needs all the atoms in a BRSC of that clause. Note that this does not imply that the set of

initial examples must contain a BRSC. Let us then see which examples should be given.

Let us analyze the case of a recursive clause C = (l1←…,l2,…) with a single recursive

literal l2. Let { e1, e2} be the sub-set of a BRSC relative to predicate p/k defined in C. To

synthesize C, iterative induction needs example e1 and another example ê2, which acts as

substitute for e2. Example ê2 should be representative of a clause Cp that (together with

BK) covers e2 (the letter p was chosen since Cp is regarded as a property, and we will

assume for now that Cp is non-recursive). Therefore, a set of good examples to

synthesize C is { e1, ê2} . Iterative induction synthesizes Cp from ê2 in iteration i. In

iteration i+1 it synthesizes C from e1 and Cp.

Example 5.7: Let us consider the following program P

member(A,B)←dest(B,A,C). (C1)
member(A,B)←dest(B,C,D),member(A,D). (C2)
dest([A|B] ,A,B). (C3)

One possible BRSC of C2 is { e1 = member(3,[1,2,3,4]), e2 = member(3,[2,3,4])} . A

non-recursive clause Cp covering e2 is

member(A,B)←dest(B,C,D),dest(D,A,E).

118 ITERATIVE INDUCTION

There are many examples covered by Cp which can figure as ê2. One of them is, for

instance, member(5,[2,5]). We then have a set of good examples for iterative induction {

e1 = member(3,[1,2,3,4]), ê2 = member(3,[2,5])} . ♦

For each example e2 there are several non-recursive clauses which cover that example.

The example itself may be regarded as a ground unit clause. In order to characterize the

acceptable examples ê2, given a representative example e2 of a clause we will show how

to construct the non-recursive clause Cp.

Let P be a program and e2 an example covered by that program. We can, by applying

resolution to the clauses of P, obtain a non-recursive clause Cp which covers e2. Let D be

a refutation ((←e2,C1,θ1), (R2,C2,θ2),…, (Rn,Cn,θn), �) of e2 from P. The clause Cp is

obtained by transforming clause C1 according to the sequence of derivation steps in D,

skipping those which resolve recursive literals. The process is described in detail below.

First we remove from D all the derivation steps involving clauses which are not defining

predicate p/k. We also remove the first derivation step from D. In what is now the first

derivation step (Rj,Cj,θj), we replace Rj with C1. We resolve a negative literal of C1 with

the positive literal of Cj thus obtaining the derivation step (C1,Cj,σj). By applying the

remaining steps of D we get as result a clause Cp. This is a non-recursive clause covering

e2.

Example 5.8: Continuing with Example 5.7 we will show how a clause Cp is constructed

from P. The derivation D of e2, omitting the substitutions, is

((←member(3,[2,3,4]), C2),

 (←dest([2,3,4] ,A,B),member(3,B), C3),

 (←member(3,[3,4]), C1), �)

(see Figure 5.2).

The SKILit algorithm 119

We now remove the first step involving clause (C2) to the derivation. We do the same to

the step involving C3 since this clause is not defining member/2. We are left with the step

involving C1. By resolving C2 with C1 we obtain the non-recursive clause Cp covering

e2.

member(A,B)←dest(B,C,D),dest(D,A,E).

♦

←member(3,[2,3,4]) C2

←dest([2,3,4] ,A,B),member(3,B) C3

←member(3,[3,4]) C1

�

Figure 5.2: Derivation D of the example e2.

An important question must be answered now:

• Given any example ê2 covered by clause Cp as constructed above does iterative

induction always give a clause covering e2?

In general, given an example ê2 covered by a clause covering another example e2, the

method of iterative induction may synthesize a clause Ĉp not covering e2 (although

experience tells us that in most cases it does). This is because the algorithm that

constructs the programs in each iteration (SKIL, Algorithm 1) uses a covering strategy.

If an example is covered SKIL does not try to find another alternative clause to cover it.

Therefore the first clause found is the one that stays. This problem caused by the

covering strategy suggests a more powerful (yet heavier) non-covering strategy. This

alternative strategy will be described below in Section 5.4.2.

120 ITERATIVE INDUCTION

The analysis done so far applies to a clause with a single recursive literal. If clause C has

more than one recursive literal we need an example analogous to ê2 for each of those

literals. Since the BRSC of a clause with k recursive literals C = (l1←…,l2,…,lk+1,…)

contains k+1 examples { e1, e2,…, ek+1} , iterative induction needs a set of examples {e1,

ê2,…, êk+1} to be successful. Each example ̂ei represents a clause Ci covering ei , 2 ≤ i ≤

k+1.

For each BRSC { e1, e2,…, ek+1} of a clause C in a program P we have a family of sets of

good examples. We call each one of these sets a BRSCI (clause basic representative set

of examples for iterative induction). Each BRSCI {e1, ê2,…, êk+1} is obtained from the

BRSC by replacing one or more examples ei 2≤i≤k+1, with an example ̂ei covered by a

non-recursive clause obtained by resolution from P as described above.

Note however, that since SKILit is iterative, the auxili ary property Cp may itself be a

recursive clause. In that case the set of good examples to generate the target recursive

clause C must include one set of good examples to generate Cp.

Example 5.9: We can synthesize a recursive definition of member/2 from the following

examples:

member(2,[1,3,2,4]).
member(5,[5,6]).
member(6,[1,2,3,4,5,6]).

-member(2,[]).
-member(2,[3]).
-member(2,[1,4,3]).
-member(2,[1,4]).

Using the CSG ´decomp_test_rec_comp_2’ in the first iteration it is only possible to

generate the non-recursive clause

member(A,[A|B]).

Its representative example is member(5,[5,6]). In the second iteration SKILit obtains the

clause

The SKILit algorithm 121

member(A,[B,C|D])←member(A,D).

This is a recursive property of member/2 generated from example member(2,[1,3,2,4])

and the first clause. The two clauses still do not cover example member(6,[1,2,3,4,5,6]).

From this example and from the recursive property another recursive clause appears in

the third iteration:

member(A,[B|C])←member(A,C).

The three initial positive examples are a set of good examples to synthesize this clause.♦

Since program P is not known before being synthesized, how can we construct a

BRSCI? A good strategy is to give a series of positive examples whose input terms

increase in complexity (in case we are in presence of structured terms, such as lists) or in

value (in case we are dealing with an ordered domain, such as integers) starting with the

most simple case (list [] , integer 0) and ending up with reasonably complex terms (lists

of length 4 or less, integers up to 4). For each level of complexity we should provide

examples which represent different cases. For example sort([1,2] ,[1,2]) and

sort([2,1] ,[1,2]) represent two possible cases for sorting lists of length 2. One exchanges

the elements of the input list and the other does not.

5.4.2 Pure iterative strategy

As we saw above, when the default covering strategy is used we cannot guarantee that

SKILit always finds some clause Cp given any example ê2 covered by that clause. For

that reason we introduce here a new iterative strategy.

At each iteration, SKILit tries to construct a new clause for each positive example,

covered or uncovered. Note that with the covering strategy SKILit does not use covered

examples to generate new clauses. The process stops when no new clauses are found in

one iteration. Termination is guaranteed if the clause language is finite, as it usually is. In

any case it can be made finite by defining an appropriate clause structure grammar.

122 ITERATIVE INDUCTION

We call this procedure the pure iterative strategy. If the complete variabili zation method

is in use each example may give in each iteration a set of clauses instead of just one. The

induction strategy is chosen through a declaration in the specification and it corresponds

to turning on or off the covering condition in Algorithm 1 (clause constructor).

Example 5.10: Here we show how the covering and pure iterative strategies may have

different results. The task consists of the multiple synthesis of predicates sort/2 and

insert/3. The specification contains information relative to both predicates (see Section

5.5.3). We give the same input to SKILit with each of the strategies on and compare the

results.

Input:

sort([3,2,1] ,[1,2,3]).
insert(2,[1] ,[1,2]).
insert(6,[] ,[6]).
sort([] ,[]).
insert(1,[2] ,[1,2]).
sort([5,4] ,[4,5]).

-insert(2,[1] ,[2,1]).
-insert(1,[2] ,[2,1]).
-insert(3,[1,2] ,[3,1,2]).
-insert(3,[1,2] ,[1,3,2]).
-sort([1,2] ,[2,1]).
-sort([1,3,2] ,[1,3,2]).
-sort([3,2,1] ,[2,3,1]).
-sort([3,2,4,1] ,[2,3,4,1]).
-sort([2,3,1] ,[2,3,1]).

environment(li st).
csg(decomp_test_rec1_comp_2).
adm_predicates(sort/2,

[dest/3,const/3,insert/3,sort/2,'< '/2,null/1]).
adm_predicates(insert/3,

[dest/3,const/3,'< '/2,null/1,insert/3]).

% choose strategy as appropriate.
strategy(pure_iterative).
strategy(covering).

Output, covering strategy:

sort([] ,[]).
sort([A,B|C] ,D)←insert(B,[A,B|C] ,E), insert(A,[B|C] ,D).

insert(A,[B] ,[B,A]) ←B<A.
insert(A,[] ,[A]).
insert(A,[B|C] ,[A,B|C]) ←A<B.

The SKILit algorithm 123

Number of iterations: 2
575 refinements (total)
4.64 secs

Output, pure iterative strategy

sort([] ,[]) .
sort([A,B|C] ,D) ←insert(B,[A,B|C] ,E), insert(A,[B|C] ,D).
sort([A,B] ,C) ←insert(A,[B] ,C).
sort([A|B],C) ←←sort(B,D), insert(A,D,C).

insert(A,[B] ,[B,A]) ← B<A.
insert(A,[] ,[A]).
insert(A,[B|C],[A,B|C]) ←←A<B.
insert(A,[B|C],[B|D]) ←←B<A, insert(A,C,D).
insert(A,[] ,[A]).
insert(A,[B] ,[A,B]) ← A<B.
insert(A,[B] ,[B|C]) ← B<A, insert(A,[] ,C).

Number of iterations: 5
2230 refinements (total)
35.37 secs

These results are produced without TC. Note that, given the positive examples in that

specific order, the covering strategy is able to find a non-recursive program that covers

all of them except sort([3,2,1] ,[1,2,3]) (there is no clause in the search space that covers

this example). The pure iterative strategy finds alternative clauses, and among them some

recursive ones. The final program (in bold) can be found by a compression module like

TC. Note that heuristic pruning of the relevant sub-model and the simple variabili zation

technique were used in this example. ♦

We now characterize the set of clauses that SKILit can generate using pure iterative

induction.

Theorem 5.1: Let S be a sketch, P a program, G a clause structure grammar and C a

clause. If Cθ∠S (Cθ is a consolidation of S) for some substitution θ, and the set of

124 ITERATIVE INDUCTION

clauses accepted by G is finite, then SKILit, with the pure iterative strategy, no pruning

heuristics and complete variabili zation outputs C in finite time given S, P and G.

Proof: If Cθ∠S then, by the completeness of the sketch refinement operator, Cθ∈ρ*(S).

Since G accepts only a finite set of clauses then ρ*(S) is finite. Using the pure iterative

strategy SKILit constructs all the consolidations of S and eventually finds the sketch Cθ.

One of its variabili zations is necessarily C. Therefore C is output in finite time by SKILit

with the pure iterative strategy.♦

As a consequence, given the set of examples { e1, ê2} , and background knowledge BK if

there is a non-recursive clause Cp that together with BK covers ê2 then SKILit generates

that clause. If there is a recursive clause C with a BRSC { e1, e2} and Cp∪BK covers e2

then SKILit generates C from {e1, ê2} . Similarly, we can have multiple recursive literals

in clause C or a chain of recursive properties as in Example 5.9.

5.4.3 SKILit architecture

The diagram in Figure 5.3 shows the relationship between the main modules in the

SKILit system. Each arrow shows module dependencies. The module at the top is

SKILit (Algorithm 5), which iteratively calls the sub-system SKIL (Algorithm 1) and also

employs the theory compressor TC.

The TC module is the program compressor (or theory compressor). The logic program

obtained through iterative induction may contain clauses (properties) which, although

useful to the induction process, are not necessary in the final program. Some may even

be undesirable, causing non-termination. In any case, it is important to eliminate these

clauses for reasons of efficiency and readabili ty. This is the role of TC.

Example sessions 125

SK I L i t
(al g 5)

SK I L
(al g 1)

T C
(theory

compressor)

Cl auseConstr uctor
(al g 2)

ρ (ref i n. op.)
(al g 3)

M ONI C
(al g 6)

Rel evant Sub-
model
(al g 4)

CSG
I nter pr eter

Depth-bounded
I nter pr eter

Figure 5.3: The SKILit system architecture

The Theory Compressor gets as input a program induced by the iterative induction

method, and selects a subset of its clauses. For that, it uses a strategy of sub-theory

selection. It identifies useful sub-programs of the whole induced program. From the

combination of those sub-programs, it constructs a final program which maximises a

combination of criteria. The criteria are defined in terms of positive example coverage,

compression, and solution length [15]. The theory compressor is not described in detail

in this thesis.

5.5 Example sessions

Here we show examples that demonstrate SKILit’s abili ties in the synthesis of recursive

predicates from sparse sets of examples. The predicate union/3 has two interdependent

126 ITERATIVE INDUCTION

recursive clauses. The predicate qsort/2 has one clause with two recursive literals. We

also show how to use SKILit in a multi-predicate synthesis task. For these sessions,

system SKILit used the covering strategy, heuristic pruning and simple variabili zation.

5.5.1 Synthesis of union/3

We show an example of synthesis of a definition of the predicate union/3 from positive

and negative examples and programming knowledge. The given examples have been

chosen following the strategy described earlier, varying the complexity of input terms.

Notice, however, that the positive examples are not a basic representative set of the

program, neither belong to the same resolution path.

Specification:

mode(union(+,+,-)).
type(union(list,li st,li st)).

union([] ,[2,3] ,[2,3]).
union([2] ,[2,3] ,[2,3]).
union([2] ,[3,4] ,[2,3,4]).
union([2,3] ,[4,2,5] ,[3,4,2,5]).
union([2,3] ,[4,5] ,[2,3,4,5]).

-union([2] ,[3,4] ,[3,4]).
-union([2,3] ,[2] ,[2]).
-union([2] ,[1,2] ,[2,1,2]).
-union([2,3] ,[4] ,[2,4]).

Background and programming knowledge:

background_knowledge(list).
adm_predicates(union/3,

[dest/3,const/3,null/1,union/3,member/2,notmember/2]).
clause_structure(decomp_test_rec_comp_2).

Synthesized program (before elimination of redundant clauses):

c(17):union([] ,A,A).
c(18):union([A] ,B,B)← % redundant
 member(A,B).
c(19):union([A] ,B,[A|B])← % redundant
 notmember(A,B).

Example sessions 127

c(20):union([A|B] ,C,D)←
 member(A,C),
 union(B,C,D).
c(21):union([A|B] ,C,[A|D])←
 notmember(A,C),
 union(B,C,D).

Number of iterations: 2
408 refinements (total)
18.22 secs

The synthesized program contains 3 clauses (c(17), c(20), c(21)), two of which are

recursive. The module of theory compression TC, eliminates two redundant clauses

(c(18) and c(19)). These are intermediate clauses which serve as properties and are

fundamental in the synthesis of the recursive clauses. The clauses are presented

unflattened. Unflattening is done by SKILit only to improve the readabili ty of the results.

Predicate notmember/2 is employed since SKILit does not induce clauses with negated

literals. Even though this limitation of SKILit would be simple to overcome, the search

would become somewhat heavier and the results could be different.

5.5.2 Synthesis of qsort/2

The synthesis of the definition of the quicksort sorting algorithm is a classical challenge

for systems which synthesize recursive definitions. For this reason, we show the result

obtained by SKILit on this task. What determines that the sorting algorithm constructed

by SKILit is quicksort, and not another one, are the admissible auxili ary predicates and

the clause structure grammar.

Specification:

mode(qsort(+,-)).
type(qsort(li st,li st)).

qsort([] ,[]).
qsort([3,1] ,[1,3]).
qsort([3,2,5,1,4] ,[1,2,3,4,5]).

-qsort([2,1] ,[2,1]).
-qsort([1,2] ,[2,1]).
-qsort([3,1,2] ,[1,3,2]).
-qsort([3,2,1] ,[2,1,3,1]).
-qsort([2,3,1] ,[2,3,1]).
-qsort([3,2,1] ,[2,1,3]).

128 ITERATIVE INDUCTION

Background and programming knowledge:

background_knowledge(li st).
adm_predicates(qsort/2,

[dest/3,const/3,partb/4,appendb/3,qsort/2,'< '/2,null/1]).
clause_structure(decomp_test_rec_comp_2). % Appendix C

%parameters
max_num_of_refinement_nodes(2500).

Synthesized program (before elimination of redundant clauses):

c(18):qsort([] ,[]).
c(19):qsort([A,B] ,[B,A])← % redundant
 B<A.
c(20):qsort([A|B] ,C)←
 partb(A,B,D,E),
 qsort(D,F),
 qsort(E,G),
 appendb(F,[A|G] ,C).

Number of iterations: 2
2780 refinements (total)
386.415 secs

Once more, an intermediate property is synthesized (clause c(19)), which is eliminated by

the TC module.

5.5.3 Multi-predicate synthesis

Here we show how SKILit can synthesize a two-predicate program. The predicates to

define are sort/2 and insert/3. The specification includes positive and negative examples

from both predicates as well as mode and type declarations. The clause structure

grammar is one, but each predicate has a different list of auxili ary predicates. These are

all defined in the background knowledge li st.

Input:

Example sessions 129

mode(sort(+,-)).
type(sort(li st,li st)).

mode(insert(+,+,-)).
type(insert(int,li st,li st)).

sort([3,2,1] ,[1,2,3]).
insert(6,[] ,[6]).
sort([] ,[]).
insert(1,[2] ,[1,2]).
sort([5,4] ,[4,5]).
insert(2,[1] ,[1,2]).

-insert(2,[1] ,[2,1]).
-insert(1,[2] ,[2,1]).
-insert(3,[1,2] ,[3,1,2]).
-insert(3,[1,2] ,[1,3,2]).
-sort([1,2] ,[2,1]).
-sort([1,3,2] ,[1,3,2]).
-sort([3,2,1] ,[2,3,1]).
-sort([3,2,4,1] ,[2,3,4,

background_knowledge(li st).
clause_structure(decomp_test_rec1_comp_2).
adm_predicates(sort/2,[dest/3,const/3,insert/3,sort/2,'< '/2,null/1]).
adm_predicates(insert/3,[dest/3,const/3,'< '/2,null/1,insert/3]).

In the output (SKILit’s trace) we can see the order by which clauses have been

generated. In the first iteration we have base clauses and useful properties for both

predicates. The recursive clause of insert/3 is also synthesized in the first iteration. In the

second iteration we have the recursive clause for sort/2.

Output:

Iteration #1

example to cover: sort([3,2,1] ,[1,2,3])
 empty queue.

example to cover: insert(6,[] ,[6])
clause c(26) generated after 7 refinements:
insert(A,[] ,[A]).

example to cover: sort([] ,[])
clause c(27) generated after 2 refinements:
sort([] ,[]).

example to cover: insert(1,[2] ,[1,2])

130 ITERATIVE INDUCTION

clause c(28) generated after 47 refinements:
insert(A,[B|C] ,[A,B|C])←
 A<B.

example to cover: sort([5,4] ,[4,5])
clause c(29) generated after 101 refinements:
sort([A,B] ,C)←
 insert(B,[A] ,C).

example to cover: insert(2,[1] ,[1,2])
clause c(30) generated after 105 refinements:
insert(A,[B|C] ,[B|D])←
 B<A,
 insert(A,C,D).

Iteration #2

example to cover: sort([3,2,1] ,[1,2,3])
clause c(31) generated after 14 refinements:
sort([A|B] ,C)←
 sort(B,D),
 insert(A,D,C).

example to cover: insert(6,[] ,[6])
example covered by existing clause c(26)

example to cover: sort([] ,[])
example covered by existing clause c(27)

example to cover: insert(1,[2] ,[1,2])
example covered by existing clause c(28)

example to cover: sort([5,4] ,[4,5])
example covered by existing clause c(29)

example to cover: insert(2,[1] ,[1,2])
example covered by existing clause c(30)

Synthesized Program:

c(27):sort([] ,[]).

Limitations 131

c(29):sort([A,B] ,C)← % redundant
 insert(B,[A] ,C).

c(31):sort([A|B] ,C) ←
 sort(B,D),
 insert(A,D,C).

c(26):insert(A,[] ,[A]).

c(28):insert(A,[B|C] ,[A,B|C]) ←
 A<B.

c(30):insert(A,[B|C] ,[B|D]) ←
 B<A,
 insert(A,C,D).

Number of iterations: 2
351 refinements (total)

Although SKILit is able to perform multiple predicate synthesis, we have not carefully

evaluated our methodology in this sort of tasks. In particular, no systematic empirical

evaluation was done to quantify the succes and limitations of our approach to multiple

predicate synthesis. We intend to do this in the future.

5.6 Limitations

In this section we describe the main limitations of the inductive synthesis approach.

5.6.1 Specific programs

The programs synthesized by SKILit are sometimes more specific than those which

would be constructed by other systems able to induce recursive definitions from sparse

sets of positive examples, as it is the case of CRUSTACEAN.

Example 5.11: Given the positive examples

132 ITERATIVE INDUCTION

member(2,[1,2,3]).
member(3,[5,4,3]).

SKILit generates program:

member(X,[Y,X|Z]).
member(X,[Y|Z])←member(X,Z).

Other systems, such as CRUSTACEAN, synthesize a more general program.

member(X,[X|Z]).
member(X,[Y|Z])←member(X,Z).

SKILit’s program does not cover the example member(2,[2,1]), while the second

program does.♦

This feature of SKILit can be regarded as a limitation relatively to other systems.

However, there is no guarantee that the program that the user has in mind is the more

general one, instead of the other. In other words, this characteristic of SKILit is

sometimes a limitation, but other times it can be an advantage. An evidence of that is that

SKILit competes well with CRUSTACEAN, as we can see in Section 6.4.1.

5.6.2 Variable splitt ing

The breadth-first search performed by SKILit while attempting to construct a clause, is

sustainable due to some options taken to reduce the search space. One of these options

involves the transformation of constants into variables, which we call variabili zation,

occurring in Algorithm 2. Given a fully instantiated clause, the aim of variabili zation is to

find one or more clauses which have the initial one as an instance.

The process of simple variabili zation currently implemented in SKILit is efficient (see

Section 4.7.1.1). Moreover, the variabili zation of a particular sketch results in only one

clause, which avoids the problem usually referred to as variable splitti ng [102]. This fact

helps controlli ng the branching factor of the search tree. The disadvantage of this simple

variabili zation process is that it does not take into account the fact that the same constant

Limitations 133

may correspond to two different variables. This may prevent the synthesis of some

desirable clauses. As it has been mentioned before, the complete variabili zation process

solves this problem.

Example 5.12: According to the process employed by SKILit, the variabili zation of the

clause

p(a,z)←q(a,c),t(a,c,z). (1)

is obtained by replacing all the occurrences of a constant with the same variable.

Different variables correspond to different constants. The result is

p(A,Z)←q(A,C),t(A,C,Z).

This variabili zation process is simple and efficient, and has only one clause as a result.

However, the clause

p(A,Z)←q(B,C),t(A,C,Z).

also has the clause (1) as instance. A variabili zation process giving, as a result, the set of

all the clauses with clause (1) as an instance would produce a long list of clauses

including

p(A,Z)←q(A,C),t(B,C,Z).

p(A,B)←q(C,D),t(E,F,G).

etc.♦

The simple variabili zation process avoids the problem usually referred to as variable

splitti ng [102]. Therefore, we can drastically reduce the branching factor of the

refinement tree. As noted earlier, the complete variabili zation process could be given as

an option.

134 ITERATIVE INDUCTION

5.7 Related work

5.7.1 Closed-loop learning

Michalski describes in [68] the notion of a closed-loop learning system as a learning

system able to use the learned concepts as input in another learning phase. If the learnt

concepts are not internally exploited by the system, then it is called an open-loop system.

Michalski stresses that contrary to human learning systems, the machine learning systems

are typically open-loop systems. The iterative induction method follows the philosophy

of closed-loop systems in the process of learning recursive clauses. The clauses learnt in

initial iterations are employed by the learning process in the following ones.

One of the three induction strategies which Shapiro’s MIS system [109] can use is the

adaptive strategy. In this case, MIS works as a closed-loop system, using the induced

clauses to aid the induction of new clauses, as it happens in iterative induction. In the

MIS system, the search for clauses is exhaustive, whilst in SKILit the search is guided by

the examples through the sketch consolidation strategy. On the other hand, SKILit can

start the search for a clause starting from any sketch, whilst MIS always sets out from

the empty clause.

The CHILLIN [125] and RTL systems [40] also use an iterative strategy for the

induction of recursive clauses. However, there seem to exist significant differences

between these approaches and the iterative induction method we propose.

The system CHILLIN interleaves a clause generalization phase with a clause

specialization phase. These two phases are repeated until no further compaction of the

program is possible. The generalization phase uses the least general generalization

operator. The specialization phase employs a top-down search guided by a heuristic

similar to that of FOIL [96]. Even though this heuristic works well with a relatively large

set of examples, it does not seem adequate for the synthesis of recursive definitions from

a small set of examples.

Related work 135

The RTL system uses an iterative method for the definition of recursive definitions. In

the first step, the system produces non-recursive definitions, which are subsequently

transformed into recursive ones. SKILit proceeds in an analogous way, since it

frequently also starts by first producing non-recursive definitions. However, it is diff icult

to foresee which results RTL would obtain with small sets of positive examples. In [40]

no experimental results are given which could answer this question. However, we believe

that RTL would not give very good results with small example sets since it also employs

a FOIL-like heuristic.

5.7.2 Sparse example sets

We have already referred here approaches to the synthesis of recursive clauses from a

sparse small set of positive examples (Section 5.2). Systems like FORCE2 [12],

LOPSTER [60], and CRUSTACEAN [1] are devoted to that specific problem. Although

efficient, these systems induce a very restricted class of programs. CRUSTACEAN, for

instance, induces programs of the form

p(…).
p(…)←p(…).

and does not allow the use of background knowledge predicates. The class of programs

synthesizable by FORCE2 is described by

p(…)←q1(…),…qn(…).
p(…)←r1(…),…,rm(…),p(…).

Each predicate qi and r j is a background knowledge predicate. An important negative

aspect of FORCE2 is that the user must indicate which examples are covered by the base

clause and which are not.

As it was described SKILit can induce programs with variable number of recursive and

non-recursive clauses and a variable number of recursive literals. Another important

feature of SKILit which is not shared by those approaches is that its result is not

136 ITERATIVE INDUCTION

necessarily a recursive program (unless the clause structure grammar imposes that). A

non recursive solution is output whenever appropriate. Recursive solutions appear only if

they involve shorter clauses than non-recursive ones.

Systems TIM [49] and SMART [74] also present approaches to the problem of learning

recursive definitions from sparse example sets. They were not known, however, before

SKILit was first presented [53].

The system SMART of Mofizur et al. is able to induce theories consisting of one base

clause and one recursive clause. While the base clause is induced using a term

decomposition process akin to CRUSTACEAN’s, the recursive clause is built in a top

down fashion following somewhat MIS [109]. The system restricts the search by

examining variable dependencies. The system is capable of learning the definitions of

various list processing predicates from small sets of examples. The class of target

programs is, however, more restricted than in SKILit.

System TIM, instead of looking for regularities within the terms in the examples as

CRUSTACEAN, constructs explanations of the examples in terms of background

knowledge. These explanations are referred to as saturations. After saturations have

been constructed for all positive examples TIM looks for regularities in pairs of

saturations and uses those to generate the recursive clause. The search for common path

structure is expensive, but it can lead to quite good results. Comparing experimental

results of TIM and SKILit conducted in similar conditions (but not necessarily the same),

we conclude that there is no clear winner. In any case some programs are outside TIM’s

scope altogether. TIM constructs definitions syntactically similar to the ones of

FORCE2.

Notice that both SMART and TIM assume that the solution is a recursive program,

contrary to SKILit.

Summary 137

5.8 Summary

System SKILit is an extension of the SKIL system, presented earlier. SKILit uses an

iterative induction strategy which enables the synthesis of recursive definitions from a

sparse set of positive examples.

The iterative induction consists in repeatedly invoking SKIL using the clauses produced

in one iteration as input for the subsequent iterations. In the first iterations, non-recursive

clauses that generalize some of the positive example typically arise. These clauses are

called properties and serve to support the introduction of recursive literals in the

following iterations.

The iterative induction strategy overcomes the problem of inducing recursive clauses

from sparse sets of positive examples. We characterized the sets of good examples for

the synthesis of recursive clauses using iterative induction and described two alternative

strategies: the covering strategy and the pure iterative strategy. We showed which

clauses are output by SKILit using the pure iterative strategy.

139

6. Empir ical Evaluation

In this Chapter, we present an empirical evaluation of the SKILit system. We

describe an evaluation methodology and show results of some experiments.

Comparative experiments between SKILit and other systems are also presented.

This Chapter summarizes the experiments conducted to obtain an empirical evaluation of

the SKILit system. The objective of the evaluation is to provide supporting evidence

concerning the advantages and disadvantages of the SKILit methodology and system.

More specifically, we want to validate the system adequacy to the synthesis of recursive

logic programs from sparse sets of positive examples. The experimental methodology

described here attempts to simulate a human user of a synthesis system who does not

know the target programs beforehand.

The questions we want to answer are the following:

• What is the performance of SKILit in the synthesis of (recursive) definitions from

sparse sets of positive examples?

• How does SKILit compare to other state-of-the-art ILP systems?

140 EMPIRICAL EVALUATION

To answer these questions we used the experimental methodology described in the next

Section. Until recently, proposed ILP systems were usually not systematically tested

following an experimental methodology. Instead, the virtues and weaknesses of the

systems were described with the help of some chosen examples [20,38,109]. This is

obviously not sufficient. However, some recent approaches to the problem of recursive

definition induction from sparse sets of examples adopted a systematic evaluation

methodology in order to test the robustness of the proposed systems to variations in the

choice of the positive and negative examples [1, 49, 125].

6.1 Experimental methodology

We have decided to adapt an evaluation strategy which is commonly used in ML to the

needs of ILP. Each experiment consists of making the inductive synthesis system (for

example, SKILit) run through a set of positive and negative examples, called the training

set. The resulting logic program is then evaluated through another set of positive and

negative examples, called the test set. The evaluation through the test set is essentially

done in terms of the number of positive and negative examples covered by the induced

program (Figure 6.1).

To evaluate the robustness of the synthesis system with respect to the choice of training

examples, a series of experiments (10 or 20 repetitions) are performed. For each

experiment, the training set is randomly constructed from a universe of positive examples

and a universe of negative examples which are defined a priori. The training set is given

as a specification to SKILit. The resulting synthesized program is then evaluated on a

test set. Each test set is also randomly constructed from universes of positive and

negative examples. While a new training set is constructed for each experiment, the test

set remains the same for the whole series of experiments for the same predicate.

The universe of positive examples of a given relation is a subset of elements of that

relation. The probabili ty of extracting each example in that universe is also established.

Experimental methodology 141

The universe of negative examples contains elements which do not belong to the

relation.

The evaluation of the system’s performance in one experiment consists of calculating the

success rate of the induced program with respect to the test set, measuring the CPU5

time spent by the system during the induction. For each series of experiments we also

measure the percentage of programs which have success rate equal to 1 (i.e., are error

free). This measurement is called the percentage of test-perfect programs.

Other measurements are made for each experiment such as counting the number of

clauses in each program. However, such results are not reported here.

6.1.1 Success rate, test-perfect programs and CPU time

The success rate of a logic program P with respect to a test set TS with #E– negative

examples and #E+ positive examples is

sr(P,TS) = cov(P,E+)+(#E-- cov(P,E-))
#E++#E-

5 Central Processor Unit.

Uni verse of
Posi t i ve

Exampl es

Uni verse of
Negat i ve
Exampl es

Trai ni ng
Set

Test
Set

SKI L i t

Synthesi zed
Program

I nterpreter Eval uat i on

Figure 6.1: Experimental Methodology

142 EMPIRICAL EVALUATION

where cov(P,E*) is the number of positive or negative examples covered by P. The

coverage test is intensional, and is conducted with a depth-bounded interpreter (Section

4.7.4).

After measuring the success rate of each induced program P1, P2,…, Pn, using a test set

TS in a series of n experiments, we can calculate the percentage of test-perfect

programs.

tpp(SynthProgs,TS) = #({P | sr(P,TS)=1, P∈SynthProgs })
n

 × 100%

where SynthProgs = { P1, P2,…, Pn } , and # is the cardinality of a set.

The percentage of test-perfect programs estimates the probabili ty of obtaining a correct

program by running SKILit once. In our opinion it is important to consider the

percentage of test-perfect programs, and not just the average success rate. We want to

distinguish a situation where a system synthesizes an acceptable program in 90% of the

cases from the one where a program with a success rate of 0.90 is always synthesized. In

our opinion, the first situation is preferable when the application is program synthesis.

The CPU time spent for each experiment was measured on a SUN computer with a

SPARC10 processor. SKILit was implemented with the Yap Prolog compiler [2].

6.1.2 The universe of positive examples

The distribution of positive examples p(X1,…,Xk) of a relation p/k in a universe of

positive examples is defined in terms of the distributions of the types of each argument

Xi. A type which corresponds to a set of non-structured terms, such as int (0, 1, 2,…, 9),

has a uniform distribution over a finite subset. A structured type, such as li st, has a

uniform distribution over its dimension up to a certain limit. In the case of a list, the

dimension is its length. A list with a length greater then the limit is not considered. The

length of list [] is 0 and the length of a list [X|Y] is 1+length of Y. The universe of

Experimental methodology 143

positive examples involving structures with dimension smaller or equal to 4 is called

U4(+). The universe of positive examples involving structures with dimensions greater or

equal to 3 and less or equal to 5, is called U3:5(+). To choose the subterms of a

structured term we consider the type of the subterm.

We can also have positive examples where only the input arguments are restricted in

dimension. The universe U2i(+) is made of positive examples where the maximum

dimension of input arguments is 2.

The extraction of a positive example p(X1,…,Xk) is made by extracting every term Xi of

type Ti according to the distribution of Ti. The p(X1,…,Xk) which do not belong to the

relation are obviously not considered. The task of extracting a positive example is

simplified by taking advantage of the predicate p/k mode declaration. This way, one only

extracts the input terms, whereby the output terms are determined by these. In case the

predicate is not deterministic, the output terms should be randomly chosen among the

various possible answers.

6.1.3 The universe of negative examples

In our experiments, we initially considered two sorts of negative examples: random and

‘near misses’ . We will now describe the two sorts of examples.

A random negative example p(X1,…,Xk) is generated in an analogous way to a positive

example, i.e., extracting every term Xi according to the distribution of its type Ti and

checking that it is in fact a negative example of the relation. The universe of random

negative examples involving lists with lengths equal or less than 4 is called U4(-).

The negative examples we call ‘near misses’ are syntactically close to positive examples,

but lying out of the relation. The extraction of a ‘near miss’ is made by syntactically

corrupting a positive example and checking that the resulting fact does not belong to the

relation. The applicable corruption operations on a positive example are defined a priori.

A list, for example, is corrupted by randomly erasing an element, adding an element, or

144 EMPIRICAL EVALUATION

switching two consecutive elements. The choice of the corruption operation is also

random. The universe of ‘near miss’ negative examples involving lists of lengths, equal

or less than 4, is called Unm4(-). Similarly we can have Unm3:5(-), Unm2i(-), etc.

Random negative examples are simpler to generate than near misses, since they require

less processing. In our opinion, however, near misses tend to simulate better the kind of

negative examples a real user would give. For that reason we only report here the results

obtained with near miss negative examples.

6.1.4 The SKILit parameters

For every experiment it is important to take into account the state of the SKILit

parameters.

parameter default value meaning

solver_depth 6 controls the interpreter depth in the

coverage tests.

max_num_of_refine

ment_nodes

300 maximum number of refinements generated

during the construction of a clause.

dcg decomp_test_rec_comp_2 the clause structure grammar used to define

the language bias.

Table 6.1: SKILit parameters.

When the parameter values for an experiment are not explicitly mentioned, the default

values are assumed.

6.1.5 Predicates used in the experiments

The predicates used for evaluation are some common list processing predicates.

Experimental methodology 145

• member(int,li st): This predicate is true if the integer in the first argument is contained

in the list in the second argument.

• last_of(int,li st): The integer is the last element of the list.

• delete(int,li st,li st): The second list is obtained from the first by removing the first

occurrence of the integer from it. If the integer is not in the first list, the predicate

fails.

• rv(list,li st): The second list has the same elements of the first one in reversed order.

• append(list,li st,li st): The third list is obtained by concatenating the first list with the

second one.

• split (li st,li st,li st): The second list contains the elements which are in odd positions in

the first list. The third list contains the elements that are in even positions in the first

list.

• union(list,li st,li st): Each list represents a set and is assumed to have no repeated

elements. The third list contains all the elements from the first two lists, without

repetitions.

The definitions of all the above predicates are shown in Appendix A.

6.1.6 Overview of the experiments conducted

In the first series of experiments SKILit described in Section 6.2 was evaluated on its

own. The negative examples used were near misses. The positive examples used for

testing are more complex than the ones used for training. The reason for this is that more

demanding test sets (U3:5(+)) reduce the possibili ty of having a not so good program (in

the sense that it would not be accepted by a human programmer) achieve a high success

rate. This option was motivated by the results we obtained on some early experiments

not reported here (see Appendix D). In those experiments less demanding test sets

146 EMPIRICAL EVALUATION

(U4(+)) were used and we observed that some programs synthesized by SKILit achieved

maximum success rate, despite being clearly imperfect. In Section 6.3 we describe

experiments with the synthesis of predicate union/3 that describe some limitations of the

evaluation methodology as well as of the synthesis methodology. In Section 6.4 we give

results of experiments comparing SKILit with the systems CRUSTACEAN and Progol.

In Section 6.5 we show the results of other experiments conducted with SKILit.

6.2 Results with SKIL it

In this series of experiments we evaluate the performance of system SKILit with respect

to the number of randomly chosen positive and negative training examples on some

relatively simple predicates (append/3, delete/3, last_of/2, member/2, rv/2, split/3). The

positive training examples are withdrawn from the universe U4(+) of every relation, and

the negative examples from the universe Unm4(-). Regarding the test sets, positive

examples were randomly extracted from the universe U3:5(+).

6.2.1 Success rate

Figure 6.2 shows the learning curves for the average success rate obtained by SKILit for

each one of the six predicates considered. For each predicate, four curves are presented.

One for 0 negative examples, the others for 5, 20 and 100. Every curve shows the

average success rate obtained over 10 repetitions for 2, 3, 5, 10 and 20 positive

examples.

For five out of the six predicates considered in this experiment, SKILit was able to reach

a success rate equal to 1 with 20 positive examples and 100 negative examples. One

exception was the predicate append/3 that remained at a maximum level of 0.85.

Some simpler predicates (delete/3, last_of/2, member/2, split/3) reached the maximum

success rate with 10 positive examples and 5 negative. The system can obtain good

results, in terms of success rate, even in the absence of training negative examples. This

Results with SKILit 147

is fundamentally due to the following reason. The various sources of bias used by SKILit

(clause structure grammar, background knowledge, parameters, clause construction

strategies, etc.) are sufficient to eliminate many definitions that cover test negative

examples. This is the case of the induction of predicate member/2, for instance, where

excellent results are obtained with 10 positive examples and 0 negative ones. For almost

all predicates we observe in these experiments little or no variation in the success rate

with respect to the number of negative training examples.

append/3

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te 100

20

5

0

delete/3

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te 100

20

5

0

last_of/2

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te 100

20

5

0

member/2

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te 100

20

5

0

rv/2

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te 100

20

5

0

split/3

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te 100

20

5

0

Figure 6.2: Success Rate vs. the number of training examples.

148 EMPIRICAL EVALUATION

6.2.2 Percentage of test-perfect programs

In Figure 6.3 we show the learning curves for the percentage of test perfect programs.

append/3

0

50

100

2 3 5 10 20

positive examples

%
 t

es
t-

p
er

fe
ct

p

ro
g

ra
m

s

100

20

5

0

delete/3

0
20
40
60
80

100

2 3 5 10 20

positive examples
%

 t
es

t-
p

er
fe

ct

p
ro

g
ra

m
s

100

20

5

0

last_of/2

0

50

100

2 3 5 10 20

positive examples

%
 t

es
t-

p
er

fe
ct

p

ro
g

ra
m

s 100

20

5

0

member/2

0

50

100

2 3 5 10 20

positive examples

%
 t

es
t-

p
er

fe
ct

p

ro
g

ra
m

s 100

20

5

0

rv/2

0
20
40
60
80

100

2 3 5 10 20

positive examples

%
 t

es
t-

p
er

fe
ct

p

ro
g

ra
m

s

100

20

5

0

split/3

0
20
40
60
80

100

2 3 5 10 20

positive examples

%
 t

es
t-

p
er

fe
ct

p

ro
g

ra
m

s

100

20

5

0

Figure 6.3: Percentage of test-perfect programs vs. the number of training examples.

Contrary to the success rate, the percentage of test-perfect programs varies noticeably

with the number of negative examples. This happens, for instance, with the predicates

append/3, last_of/2 and rv/2. Furthermore, these predicates obtain 0% of test-perfect

programs when 0 negative examples are supplied. Once again, the system rapidly

converges towards 100% when the number of examples increases. The exception is still

the predicate append/3.

Results with SKILit 149

6.2.3 CPU time

The average CPU time spent for the various experiments is shown in Figure 6.4.

append/3

0

20

40

60

80

2 3 5 10 20
positive examples

ti
m

e

100

20

5

0

delete/3

0

10

20

30

40

50

2 3 5 10 20
positive examples

ti
m

e

100

20

5

0

last_of/2

0

20

40

60

80

100

2 3 5 10 20
positive examples

ti
m

e

100

20

5

0

member/2

0

5

10

15

20

2 3 5 10 20
positive examples

ti
m

e

100

20

5

0

rv/2

0

50

100

150

200

250

2 3 5 10 20
positive examples

ti
m

e

100

20

5

0

split/3

0

5

10

15

20

25

2 3 5 10 20
positive examples

ti
m

e

100

20

5

0

Figure 6.4: Spent CPU time (seconds).

We can observe some irregularity in the time curves relative to the number of examples.

However, SKILit behaves well as the number of positive and negative training examples

grows. In most cases, the CPU time does not dramatically increase with the number of

training examples. The CPU time SKILit spends seems to be more affected by the quality

of positive examples rather than their quantity.

150 EMPIRICAL EVALUATION

6.3 Experiments with union/3

Systematic evaluation following the methodology described before has also been carried

out with other predicates. For some of them (factorial/2, extNth/2, noneiszero/1), results

were somewhat similar to the ones presented for the six predicates used earlier.

However, for more complex predicates, such as union/3, quicksort/2 (qsort/2), insert/3

and partition/4, good positive examples and/or good negative examples are hard to

generate randomly in our methodology. These predicates have sometimes more than one

recursive clause or more than one base clause, each of which involving one particular test

literal. Others have more than one recursive literal.

This does not necessarily mean that our synthesis methodology needs carefully chosen

examples for those predicates. It may also be the case that simulating a human user by

randomly generating examples is harder for more complex predicates. For example,

many of the negative examples randomly generated for predicate union/3 tend to be

variants of a few different cases. On the other hand some important negative examples

are unlikely to be randomly generated. We should note that the process of random

generation of examples was the same for all the predicates evaluated (from member/2 to

partition/4).

We will now describe some experiments conducted with the synthesis of predicate

union/3 which help describing some of these difficulties.

We ran SKILit on sets of 30 randomly generated positive examples and 100 negative

examples. Positive examples were taken from the universe U2i(+), and negative

examples from the universe Unm2i(-). Test examples were taken from U3:5(+) and

Unm2i(-). The number of repetitions per experiment was 50.

With randomly constructed training sets, SKILit did not synthesize one test perfect

program in 50 runs (Table 6.2). We can improve the results by changing the clause

structure grammar so that every clause is forced to have at least one test literal (the

Experiments with union/3 151

previous clause structure grammar allowed clauses without test literals). The new CSG is

called decomp_+test_rec_comp_2. In 50 runs, SKILit finds 3 test-perfect programs.

Positive Negative CSG success test-perfect time
random near misses decomp_test_rec_comp_2 0.532 0 570.484
random near misses decomp_+test_rec_comp_2 0.585 6 543.441
random 9 chosen decomp_test_rec_comp_2 0.753 34 204.748
random 9 chosen decomp_+test_rec_comp_2 0.740 34 130.772
5 chosen near misses decomp_test_rec_comp_2 0.794 58 63.106
5 chosen near misses decomp_+test_rec_comp_2 0.821 64 50.838

Table 6.2: Experimental results for union/3.

Are these bad results due to the lack of good positive examples or good negative

examples? To answer this question we ran SKILit again with 50 sets of 30 random

positive examples. However this time 9 negative examples were manually chosen. The

results improved clearly independently of the grammar used. For the clause structure

grammar decomp_+test_rec_comp_2, however, the CPU time spent was considerably

less (Table 6.2). The chosen positive and negative examples are shown in Table 6.3.

Chosen positive examples Chosen negative examples
union([] ,[2,3] ,[2,3]).
union([2] ,[2,3] ,[2,3]).
union([2] ,[3,4] ,[2,3,4]).
union([2,3] ,[4,2,5] ,[3,4,2,5]).
union([2,3] ,[4,5] ,[2,3,4,5]).

-union([2] ,[1,2] ,[2,1,2]).
-union([2] ,[3,4] ,[3,4]).
-union([3] ,[2] ,[3]).
-union([2,3] ,[2] ,[2]).
-union([2,3] ,[4] ,[3,4]).
-union([2,3] ,[4] ,[2,4]).
-union([2] ,[2] ,[2,2]).
-union([2,1] ,[2] ,[2,1,2]).
-union([1,2] ,[1,2] ,[1,1,2]).

Table 6.3: Chosen positive and negative examples used in the experiments.

We then picked 5 chosen positive examples (Table 6.3) and ran SKILit with 50 sets of

100 random negative examples. The results obtained are quite good with the usual clause

structure grammar and still improve if we use the grammar that imposes test literals. We

can conclude that it is likely (34%) to find good random sets of positive examples when

good negative ones are manually chosen. It is also likely (58%, 64%) to find good

152 EMPIRICAL EVALUATION

random sets of negative examples when good positive ones are given. However, finding

two good random sets simultaneously has low probabili ty (0%, 6%) (Table 6.2).

One possible direction is to give the user more powerful means to transmit negative

examples to the system. This motivated our work with integrity constraints, presented in

the next Chapter.

6.4 Compar ison with other systems

Here we concentrate on comparing SKILit with CRUSTACEAN and Progol, since these

two systems seem to be representative of the state-of-the-art. Nevertheless, other

previously described works, are also relevant.

6.4.1 CRUSTACEAN

A comparison between the SKILit system and the CRUSTACEAN system, conducted

on some predicates whose results appear in [53], is summarised in Table 6.4 and shown

graphically in Figure 6.5. The values shown for CRUSTACEAN were taken from [1].

The values for SKILit were obtained from experiments performed by us in conditions, as

identical as possible, to those described by Aha et al. For this reason we should consider

these values only as indicative. Anyhow, in the presence of a rather reduced number of

positive and negative examples, the SKILit system obtains success rate results

comparable to the CRUSTACEAN system. Taking into account that SKILit uses a much

weaker language bias than CRUSTACEAN (which implies a larger search space and a

wider applicabili ty) it is an important result (see Section 3.5.4).

Comparison with other systems 153

Table 6.4: SKILit’s success rate vs. CRUSTACEAN’s

For each predicate we varied the number of positive examples between 2 and 5, whilst

the number of negative examples was kept constant (=10). The positive examples were

extracted from the universe U4(+). For the negative examples we used the universe

Unm4(+). The results show averages obtained over 5 runs.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2
append/3

3 5 2
delete/3

3 5 2
rv/2

3 5 2
member/2

3 5 2
last_of/2

3 5

SKILit

CRUST ACEAN

Figure 6.5: Success rates of SKILit vs. CRUSTACEAN

6.4.2 Progol

To compare SKILit with the system Progol [80], we decided to take one of the input

files distributed with Progol itself. This file contains 17 positive examples and 8 negative

ones for predicate append/3. With these examples, the Progol version that was available

to us, perfectly synthesizes a definition of append/3. The comparison experiment with

SKILit consisted in running both systems over 20 sub-sets of those 17 positive examples.

These subsets were randomly constructed and supplied to each system, together with all

the negative examples. The results are shown in Table 6.5.

SKILit CRUSTACEAN
number of training positive examples
2 3 5 2 3

append/3 0.76 0.80 0.89 0.63 0.74
delete/3 0.75 0.88 1.00 0.62 0.71
rv/2 0.66 0.85 0.87 0.80 0.86
member/2 0.70 0.89 0.95 0.65 0.76
last_of/2 0.71 0.72 0.94 0.74 0.89

154 EMPIRICAL EVALUATION

Table 6.5: Comparison between SKILit and Progol for predicate append/3.
(The first column shows the number of positive examples)

The same results are represented graphically in Figure 6.6.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3 5 7 9 11 13 15 17

number of positive examples

su
cc

es
s

ra
te

SKILit

Progol

0

10

20

30

40

50

60

70

80

90

100

3 5 7 9 11 13 15 17

number of positive examples

%
 o

f t
es

t-
pe

rf
ec

t p
ro

gr
am

s

SKILit

Progol

Figure 6.6: Comparison between SKILit and Progol for append/3.

Comparing the percentages of the test-perfect programs obtained by each system, we

observe that SKILit gets better results. Taking into account that we are in a program

synthesis context, this is a very positive result. With respect to the success rate, SKILit

seems to achieve better results when tackling very small sets of examples (3 to 7

examples).

Success Rate Standard Deviation % Test-perfects
SKILit Progol SKILit Progol SKILit Progol

3 0.625 0.500 0.217 0.000 25 0
5 0.750 0.525 0.250 0.109 50 5
7 0.800 0.699 0.245 0.244 60 35
9 0.900 0.949 0.200 0.150 80 85

11 0.975 0.945 0.109 0.149 95 60
13 0.850 0.996 0.229 0.006 70 70
15 0.975 0.998 0.109 0.006 95 90
17 1.000 0.998 0.000 0.006 100 90

Other Experiments 155

6.5 Other Experiments

In this Section we show some isolated experiments conducted with SKILit with manually

selected positive and negative examples. These experiments serve to ill ustrate the class of

programs SKILit is able to induce.

Note that in all these experiments the same clause structure grammar has been used

(decomp_test_rec_comp_2), unless stated otherwise. This is the same grammar used in

all the other experiments reported in this thesis.

The background knowledge is either ‘ integer’ or ‘ list’ depending on the admissible

predicates. Unfortunately, a list of the admissible predicates has to be given to SKILit.

This is an important limitation that we must investigate in the future.

6.5.1 Factorial

Predicate factorial(X,Y) is true if Y = X!.

Input:

mode(factorial(+,-)).
factorial(2,2).
factorial(3,6).
factorial(4,24).

-factorial(3,3).
-factorial(4,12).

background_knowledge(integer).
adm_predicates(factorial/2,[succ/2,pred/2,zero/1,multb/3,factorial/2]).
clause_structure(decomp_test_rec_comp_2).

Output:

factorial(A,A)←pred(A,B),pred(B,C),zero(C).
factorial(A,B)←pred(A,C),factorial(C,D),multb(D,A,B).

Number of iterations: 3
507 refinements (total)

156 EMPIRICAL EVALUATION

6.5.2 Multiply

Predicate multiply(A,B,C) instantiates C with A*B.

Input:

mode(multiply(+,+,-)).
type(multiply(int,int,int)).

multiply(0,4,0).
multiply(1,5,5).
multiply(2,3,6).
multiply(3,4,12).

-multiply(2,2,2).
-multiply(3,3,6).
-multiply(2,2,5).
-multiply(2,2,6).
-multiply(2,2,8).
-multiply(2,3,4).

background_knowledge(integer).
adm_predicates(multiply/3,[pred/2,succ/2,zero/1,plus/3,one/1,multiply/3]).
clause_structure(decomp_test_rec_comp_2).

Output:

multiply(A,B,A)←zero(A).
multiply(A,B,C)←pred(A,D), multiply(D,B,E), plus(E,B,C).

Number of iterations: 3
795 refinements (total)

Properties generated (discarded by TC):

multiply(1,A,A).

6.5.3 Insert

Predicate insert(I,L1,L2) inserts an integer I into a sorted list L1 obtaining L2 so that L2

is sorted.

Input:

mode(insert(+,+,-)).
type(insert(int,li st,li st)).

-insert(2,[1] ,[2,1]).
-insert(1,[2] ,[2,1]).

Other Experiments 157

insert(2,[] ,[2]).
insert(1,[2] ,[1,2]).
insert(2,[1] ,[1,2]).
insert(3,[1,5] ,[1,3,5]).

-insert(3,[1,2] ,[3,1,2]).
-insert(3,[1,2] ,[1,3,2]).

background_knowledge(li st).
adm_predicates(insert/3,[dest/3,const/3,'< '/2,null/1,insert/3]).
clause_structure(decomp_test_rec_comp_2).

Output:

insert(A,[] ,[A]).
insert(A,[B|C] ,[A,B|C])←A<B.
insert(A,[B|C] ,D)←insert(A,C,E),insert(B,E,D).

This definition of insert/3 seems logically correct. Computationally it has the following

problem. Posing to the program the query

←insert(8,[1,3,5,7] ,R).

we get a series of identical answers

R = [1,3,5,7,8] ;
R = [1,3,5,7,8] ;
R = [1,3,5,7,8] ;
R = [1,3,5,7,8] ;
R = [1,3,5,7,8] ;
R = [1,3,5,7,8]
....

This kind of computational problem could be easily detected by limiting the number of

identical answers obtained on the training examples. This filter, however, is not currently

implemented in SKILit.

If we change the CSG so that double recursion is not allowed

(decomp_test_rec1_comp_2, Appendix C) we get the following definition for insert/3:

insert(A,[] ,[A]).

158 EMPIRICAL EVALUATION

insert(A,[B|C] ,[A,B|C])←A<B.
insert(A,[B|C] ,[B|D])←B<A,insert(A,C,D).

6.5.4 Partition

The predicate partition(I,L,S,G) splits list L into two lists S and G, so that S contains the

elements of L smaller or equal to I, and G contains the elements of L greater than I.

Input:

mode(partition(+,+,-,-)).
mode(partition(int,li st,li st,li st)).

partition(2,[] ,[] ,[]).
partition(4,[2,6] ,[2] ,[6]).
partition(3,[1,2,5] ,[1,2] ,[5]).
partition(3,[6,2,5] ,[2] ,[6,5]).

-partition(2,[2] ,[2] ,[2]).
-partition(2,[1,3,4] ,[1,4] ,[3,4]).
-partition(2,[3,1] ,[3] ,[1]).
-partition(2,[1,0] ,[1] ,[0]).
-partition(2,[4,5] ,[4] ,[5]).
-partition(4,[1,2] ,[1] ,[2]).
-partition(2,[3] ,[3] ,[]).
-partition(2,[1] ,[] ,[1]).

background_knowledge(list).
adm_predicates(partition/4,[dest/3,const/3,null/1,'< '/2,partition/4]).
clause_structure(decomp_test_rec_comp_2).

max_num_of_refinement_nodes (1000).

Output:

partition(A,[] ,[] ,[]).
partition(A,[B|C] ,[B|D] ,E)←B<A, partition(A,C,D,E).
partition(A,[B|C] ,D,[B|E])←A<B,partition(A,C,D,E).

Properties generated:

partition(A,[B,C] ,[B] ,[C])←B<A,A<C.

6.5.5 Insertion sort

Predicate isort(A,B) sorts list A. List B is the sorted list. The admissible predicates

chosen (insertb/3) determine the sorting strategy.

Related work concerning evaluation 159

Input:

mode(isort(+,-)).
type(isort(li st,li st)).

isort([] ,[]).
isort([2,1] ,[1,2]).
isort([3,2,1] ,[1,2,3]).

-isort([1,2] ,[2,1]).
-isort([1,3,2] ,[1,3,2]).
-isort([3,2,1] ,[2,3,1]).
-isort([3,2,4,1] ,[2,3,4,1]).

background_knowledge(li st).
adm_predicates(isort/2,[dest/3,const/3,insertb/3,isort/2,'< '/2,null/1]).
clause_structure(decomp_test_rec_comp_2).

Output:

isort([] ,[]).
isort([A|B] ,C)←isort(B,D),insertb(A,D,C).

Number of iterations: 3
193 refinements (total)

Properties generated:

isort([A,B] ,C)←insertb(A,[B] ,C).

6.6 Related work concerning evaluation

Some ILP systems have been empirically evaluated in a systematic way by their authors.

Next we describe the most relevant pieces of work here.

In 1993 Quinlan presented his “Midterm Report” where system FOIL is evaluated [97]

using an experimental methodology considered to be “more pragmatic” than the usually

used for machine learning/ILP systems. Quinlan criticized in particular the fact that many

systems have been evaluated using a very limited background knowledge, as well as a set

of carefully chosen training examples. The evaluation methodology adopted by Quinlan

consists of making the system synthesize a series of list processing predicates from

160 EMPIRICAL EVALUATION

Bratko’s book, “Prolog Programming for Artificial Intelli gence” [10]. The background

knowledge is initially empty and accumulates the predicates as it learns.

With respect to the training examples, Quinlan considers the set of lists with length three

or less, and with elements from the set {1,2,3}. This set of lists is called universe U3.

Another set, universe U4, has lists of length four or less and elements in {1,2,3,4}. For

each relation and for each universe he constructed the set of positive examples belonging

to the relation involving the lists in that universe. Those that do not belong to the relation

constitute the set of negative examples. All the positive examples are assigned for

training, as well as all the negative examples up to the limit of 90 000 examples. The

results obtained are considered satisfactory for most of the predicates.

In relation to Quinlan’s work, we would like to point out the following. In spite of the

fact that the training sets are not carefully chosen, they are complete for each universe

considered (U3, U4). This fact facili tates the induction of recursive definitions. In an

inductive synthesis setting, where the user manually supplies the examples, one cannot

expect the training sets to be complete. Instead, the training sets tend to be small and

sparse.

In 1994 Aha et al. [1] evaluated the CRUSTACEAN system using randomly selected

training sets, in order to demonstrate that the system can synthesize recursive definitions

from a small (and sparse) set of examples. For each predicate, CRUSTACEAN’s

performance (success rate) was measured with training sets of 2 to 3 positive examples

and 10 negative examples, all of which were randomly chosen. The performance values

are obtained from an average of 10 runs for a given number of positive examples. The

predicates involved are append/3, delete/3, extractNth/3, factorial/2, last_of/2,

member/2, noneIsZero/1, plus/3, reverse/2 and split/3.

Our experimental methodology is largely based on this work. Their evaluation already

confronts an induction system to situations where the training sets are not complete, but

sparse. The methodology’s main limitation is, in our view, its diff icult application to

Related work concerning evaluation 161

systems with a wider set of synthesizable programs than CRUSTACEAN. A system like

SKILit, for example, which can induce a great variety of clauses, requires negative

examples that can eliminate over-general programs. It is unlikely that these negative

examples are randomly generated in the methodology of Aha et al.

163

7. Integr ity Constraints

In this Chapter we introduce the integrity checking algorithm MONIC which

uses a Monte Carlo strategy to search for inconsistencies between a program

and integrity constraints. MONIC is efficient, sound, but incomplete. MONIC

is integrated with the SKILit system and we present experimental results

regarding the synthesis of programs from positive examples and integrity

constraints.

7.1 Introduction

Typical ILP systems accept ground negative examples only. In our view, a ground atom

conveys very little information when it is given as a negative example. The practical

result of this is that the number of negative examples given to a system tends to be high.

The fact that ILP systems usually require a large number of negative examples is the

main problem tackled in this Chapter.

To ill ustrate this problem we present two examples referred to in the literature.

164 INTEGRITY CONSTRAINTS

• According to the “mid-term report” by Quinlan [97] the FOIL system learns the

predicate reverse/2 using 1560 to 92796 negative examples.

• Zelle et al. [125] refers that the CHILLIN system learns the predicate member/2 with

an average accuracy of around 50% given more than 80 negative examples.

These facts restrict the applicabili ty of ILP systems, especially when the examples are

manually supplied by the user, as it happens in program synthesis.

The problem of the excessive number of negative examples has already drawn some

attention from the ILP community. Some systems like FORCE2 [12], LOPSTER [60]

and CRUSTACEAN [1] use a very restrictive language bias, which reduces the number

of negative examples required. However, these systems seem difficult to extend to cope

with a greater variety of logic programs. The FOIL system [96] allows the use of a

closed world assumption. If a fact is not given to the system explicitly as a positive

example, it is then considered a negative example. This technique is not practical in many

learning situations because it forces the user to supply a set of complete positive

examples.

A promising alternative relies on the use of integrity constraints. These are first order

logic clauses of the form a∧…∧b→c∨…∨d, that can be used to transmit to the system

some conditions that the predicate to synthesize should respect, as it happens with

negative examples. The main difference is that the integrity constraints enable a more

compact representation than atomic negative examples. Luc de Raedt suggested that an

ILP system could use constraints to verify the generated programs [21].

In spite of the fact that integrity constraints are not normal program clauses, the SLDNF

proof procedure can be used to check whether a logic program satisfies an integrity

constraint, by transforming the constraint into a query, and posing that query to the logic

program. This strategy, however, suffers from severe efficiency problems, since finding a

violating instance of the constraint may involve trying all i ts possible instantiations. Other

The number of negative examples 165

more sophisticated special integrity constraint handlers, like SATCHMO [65], still seem

computationally too heavy for practical use in ILP.

We propose a new method to handle integrity constraints. It enables the use of

constraints in ILP systems without high efficiency costs. Experimental results show that

we can induce quite accurate recursive logic programs rather efficiently this way. In fact,

in our experiments, we observed that for the same level of accuracy, our system runs

faster with integrity constraints than with negative examples.

Our integrity constraint checker (MONIC) uses a ‘Monte Carlo’ strategy. To check

whether a program P satisfies an integrity constraint I, it randomly generates a number of

logical consequences of P and verifies if they satisfy I. This is a very efficient way to

handle constraints. Unfortunately our constraint checker is also incomplete. However,

we can control the level of incompleteness by varying the number of logical

consequences sampled from P.

7.2 The number of negative examples

As it was already referred in Chapter 5, many ILP systems require an excessive number

of positive examples to induce predicate definitions. This a serious problem and a barrier

to the usabili ty of ILP systems, especially in the program synthesis context. System

SKILit handles the lack of crucial training positive examples by generating properties.

These are clauses that capture regularities within the positive examples, generalize them,

and enable the introduction of recursive clauses.

What about negative examples? Giving all the crucial negative examples to an ILP

system can also be tedious, as there can be a large number of them. One ground negative

example conveys little information to the system. Besides, the user does not know which

negative examples are more appropriate for the synthesis task. Thus she/he tends to give

the system more negative examples than necessary.

166 INTEGRITY CONSTRAINTS

7.3 Integr ity constraints

A property can represent a set of positive examples. Likewise, the negative examples can

also be replaced by, or complemented with, more expressive clauses. Such clauses are

called integrity constraints.

Example 7.1: We can express that no term is member of the empty list through the

integrity constraint member([] ,X)→false. ♦

Example 7.2: The clause sort(X,Y)→sorted(Y), represents an integrity constraint which

expresses the condition “the second argument of predicate sort/2 is a sorted list” .

Likewise, we can say that the list Y is a permutation of list X with

sort(X,Y)→permutation(X,Y).♦

Integrity constraints, like negative examples, can be used by an ILP system to detect or

reject over-general programs. In fact, the negative examples can be seen as a special case

of integrity constraints. For example, member([] ,2)→false represents the negative

example member([] ,2). An integrity constraint intensionally represents a possibly infinite

set of negative examples and can express the negative information in shorter terms than

ground negative examples.

Definition 7.1: An integrity constraint is a first order clause of the form

A1∨…∨An∨¬B1∨…∨¬Bm. The Ai and the Bi are atoms. The Ai are called positive

conditions and the Bi , negative conditions of the constraint.♦

Note that A1∨…∨An∨¬B1∨…∨¬Bm can be written as B1∧…∧Bm→A1∨…∨An. Here, we

will adopt a Prolog-like notation as we did for other clauses6. The disjunction and

conjunction operators are replaced by commas as in B1,…,Bm→A1,…,An. The commas

on the antecedent side represent conjunctions. Those on the consequent side represent

Integrity constraints 167

disjunctions. As we did for program clauses, we will keep the arrow (→). Negation is

interpreted as negation as failure.

Example 7.3: The integrity constraint

union(A,B,C),member(X,C)→member(X,A),member(X,B)

expresses the condition that if X belongs to the list in the third argument of union/3

(output argument) then it is either a member of the list in the first argument or of the list

on the second one (one of the input arguments).♦

Integrity constraints are generally defined as range restricted clauses [21,105]. In this

work we do not consider this restriction, since the programs we synthesize are not range

restricted either.

Positive and negative examples can also be represented as integrity constraints. A

positive example p corresponds to the constraint true→p. A negative example n is

represented as the constraint n→false. Although examples and constraints can

theoretically be handled in a uniform way, we do it separately since we use different

strategies to handle positive examples, negative examples and integrity constraints.

7.3.1 Constraint satisfaction

In order to avoid the induction of over-general programs, an ILP system should test the

candidate program against the integrity constraints on certain occasions. If a candidate

program P satisfies the integrity constraints, then it is accepted and the induction process

proceeds to the next phase.

6 Obviously, constraints are more expressive than Prolog Clauses since the first can have more than one literal in
the head.

168 INTEGRITY CONSTRAINTS

We now define the notions of satisfaction, violation and violating instance of an

integrity constraint [21]. The agent that verifies the constraint satisfaction will be called

integrity constraint checker or simply integrity checker.

Definition 7.2: Given a constraint B1,…,Bm→A1,…,An and a program P, the constraint is

satisfied by P if and only if the query ←B1,…,Bm,not A1,…,not An fails on P. If P does

not satisfy I we say that P violates the constraint I. If IT is a set of integrity constraints,

P satisfies IT if it satisfies all the constraints in IT.♦

Definition 7.3: If I is an integrity constraint B1,…,Bm→ A1,…,An, Iθ is a violating

instance of I if and only if θ is a possible answer substitution for the query

←B1,…,Bm,not A1,…,not An, when presented to P.♦

Example 7.4: The integrity constraint sort(X,Y)→sorted(Y) is not satisfied by program

{ sort(X,X)} ∪ {definition of sorted/1} . We can check that by transforming the constraint

into the query

←sort(X,Y),not sorted(Y).

This query succeeds on { sort(X,X)} ∪ {definition of sorted/1} with the answer

substitution { X/[1,0] , Y/[1,0] } . Thus, a violating instance is

sort([1,0] ,[1,0])→sorted([1,0]).

♦

Given Definition 7.2, we can check whether a program P satisfies a constraint by

transforming the constraint into a query and posing that query to P, using SLDNF.

Although this is a simple way to check consistency, it is potentially inefficient. It is

convenient because it does not require special theorem provers. Its inefficiency is due to

the generate-and-test nature of SLD(NF).

MONIC and the Monte Carlo strategy 169

Example 7.5: Integrity constraint sort(X,Y)→sorted(Y) can be transformed into a query

←sort(X,Y),not sorted(Y). To check the consistency of the constraint and a program P,

we pose the query to P. SLDNF constructs all possible instantiations of the literal

sort(X,Y) and, for each value of Y, it tests whether or not it is a sorted list (assuming X

and Y range over lists). When an unsorted list is found, we have a violating instance of

the constraint. This can be very inefficient. Suppose we are considering that X and Y

range over lists of length 0,1,2,3 and 4, with integer elements from {0,1,…,9}. This

represents a universe of more than 10000 lists. To answer such a query, SLDNF may

have to try all possible values. This problem gets exponentially hard as the arity of the

predicate in the first literal increases. ♦

Relatively little attention has been given to integrity constraints in the field of machine

learning, inductive logic programming included. Luc De Raedt employed integrity

constraints in his system CLINT [21]. The constraints were transformed into queries and

confronted with the induced programs, as suggested by Definition 7.2. For this reason,

the search for a violating instance is inefficient. If any violating instance is found, CLINT

attempts to determine which predicate is incorrectly defined with the help of an oracle.

One can find other integrity checkers in the logic programming literature, such as

SATCHMO [65], and the one by Sadri and Kowalski [105]. The problem with this sort

of integrity checkers is their inefficiency.

7.4 MONIC and the Monte Car lo strategy

In this Section we describe MONIC (Monte Carlo Integrity Checker), a Monte Carlo

method7 [103] which handles integrity constraints. The method is incorporated within

7 According to Rubinstein [103], the designation “Monte Carlo” was introduced by von Neumann and Ulam during
the World War II, as code for the secret work being carried out at Los Alamos, while the Method of Monte Carlo
was applied to problems related to the atomic bomb. Nowadays, still according to Rubinstein, it is still t he most
powerful and the most used method in complex simulation problems with a broad scope of appli cation.

170 INTEGRITY CONSTRAINTS

system SKILit. As seen in Chapter 5 SKILit constructs a logic program P by adding one

clause C at a time to an initial theory P0. Algorithm 6 describes the induction process and

shows where the integrity check is made.

P := P0

while P does not satisfy some stopping criterion
construct new clause C
if P ∪ {C} ∪ BK satisfies integrity constraints

P := P ∪ {C}
end if

end while

Algorithm 6: High level description of SKILit

In each cycle, after the generation of a clause C, there is a consistency check which

involves the new program P ∪ {C} . This new program is accepted only if it satisfies the

integrity constraints. We now describe how the integrity constraints are processed.

7.4.1 Operational integrity constraints

MONIC processes integrity constraints of the form A1,…,An→B1,…,Bm, as defined

earlier. Furthermore, two conditions are imposed to an integrity constraint I given in the

specification of a program P defining a predicate p/k.

1. The leftmost literal of the antecedent, should be a positive literal with predicate p/k.

2. If I is transformed into query Q of the form ←B1,…,Bm,not A1,…,not An and the input

arguments of B1 are instantiated, then the query should be an acceptable query with

respect to the input/output modes of the predicates in Q.

A query ←L, where L is either p(X1,…,Xn) or not p(X1,…,Xn), is acceptable if every

input argument Xi is fully instantiated. A query ←p(X1,…,Xn), MoreLiterals is

acceptable if, after instantiation of all arguments Xi, the query ←MoreLiterals is

acceptable, where MoreLiterals is a conjunction of literals. A query ←not p(X1,…,Xn),

MONIC and the Monte Carlo strategy 171

MoreLiterals is acceptable if the query ←MoreLiterals is acceptable. Checking the

acceptabili ty of a query is trivial given the input/output mode declarations of the involved

predicates. This condition guarantees that the input/output mode of the involved

predicates will be respected.

The first condition guarantees that the integrity constraint restricts predicate p/k, since

the literal with the predicate p/k is found in the antecedent of the constraint. The fact that

this literal must be in the leftmost position allows the search for a violating instance of

the integrity constraint to start from a ground logical consequence of program P.

The integrity constraints accepted by MONIC are restrictive in the sense defined by De

Raedt [21]. In this type of restrictions, the literals relative to the predicate to be induced

are in the antecedent. An example of a restrictive integrity constraint relative to predicate

union/3 is

union(A,B,C),member(X,A)→member(X,C).

This constraint says that if list C is the union of lists A and B, then every element X of A

should be an element of C.

An integrity constraint which has the predicate to be induced in the consequent is called

generative. An example of a generative constraint relatively to predicate union/3 is

true→union(A,A,A). Here we do not consider this sort of constraints, although it seems

possible to extend our integrity checker to handle them.

7.4.2 The algorithm for constraint checking

Our consistency checking algorithm (MONIC) takes a particular program P defining

some predicate p/k and a set of integrity constraint IT, and gives one of two possible

answers. Either P and IT are inconsistent (some I∈IT is violated), or P and IT are not

found to be inconsistent, and are considered probably consistent.

172 INTEGRITY CONSTRAINTS

The Monte Carlo method is based on the random generation of facts concerning the

predicate p/k which are logical consequences of the program P. Each of these facts is

used to search for an instance of some I∈IT which is logically false. If such a violating

instance is found, we can be sure that P and IT are inconsistent. if no violating instance

of some I∈IT is found, after a limited number of attempts we stop. In that case, P and IT

are not found to be inconsistent, but only probably consistent.

The random generation of ground logical consequences of P is central to the algorithm,

and deserves some more attention. To obtain fact f, such that P |– f, we start with the

most general term p(X1,…,Xk) of p/k (X1,…Xk are variables). For clarity, we assume k=2

in the following. Let us also suppose mode(p(+,-)), and type(p(typeX,typeY)), for the

most general term p(X,Y). We now want a query ←p(X,Y), where X is bound to a term

of type typeX (remember that X is an input argument). For that, X unifies with a term tin

of type typeX. After querying program P, variable Y is bound to a term tout. Fact f is

p(tin,tout).

The random nature of f comes from the choice of the input arguments. Each term of a

given type is sampled from a given population of terms with a fixed distribution (see

Section 7.4.3).

Given a fact, we unify it with the leftmost literal in the antecedent of each I∈IT. The

constraint can now be transformed into an acceptable query. The query posed to P either

succeeds or fails. Success means that a violating instance of I was found, and so P and I

are inconsistent. Failure means that, although no violating instance was found, P and I

can still be inconsistent. However, the more facts fail to violate I, the more likely it is that

P and I are consistent. Further on, in Section 7.7.1, a probabili stic measure of this

likeliness is given.

input: Program P defining the predicate p/k;
 Mode and type declarations of predicate p/k;
 A set of integrity constraints IT;
 Integer n.

MONIC and the Monte Carlo strategy 173

output: One of { inconsistent, probably consistent}

1. Generate query Q
p(X,Y) is the most general term of p/k

(X represents the input arguments, Y the output ones)
For each variable Vi∈X, randomly instantiate it with ti of type type(Vi);
θin = { Vi/ti}
Q := ←P(X,Y)θin

2. Pose query Q to P
If Q fails then return to step 1
Else we obtain an answer substitution θout

(if there are alternative answer substitutions, we consider each
one of them)

3. Generate fact f
f = P(X,Y)θinθout

4. For each I∈IT, search a violating instance of I.
Transform I into a query ←L,MoreLiterals
θuni is the unifier of the leftmost literal L and f
Pose query ← MoreLiteralsθuni to P
If the query succeeds then P violates I

Store f as a negative example
Return ‘ inconsistent’

5. After n queries return ‘probably consistent’
 Otherwise return to step 1.

Algorithm 7: MONIC: The integrity checker.

Example 7.6: The program P below, contains an incorrect definition of rv/2 which is

supposed to reverse the order of the elements of a given list. Definitions for append/3

and last_of/2 are also given as part of the background knowledge.

mode(rv(+,-)).
type(rv(list,li st)).
rv([A,B|C] ,[B,A|C]).
rv([A|B] ,C)←rv(B,D),append(D,[A] ,C).

mode(append(+,+,-)).
type(append(list,li st,li st)).
append([] ,A,A).
append([A|B] ,C,[A|D])←append(B,C,D).

mode(last_of(+,-)).

174 INTEGRITY CONSTRAINTS

type(last_of(li st,int)).
last_of([X] ,X).
last_of([X|Y] ,Z)←last_of(Y,Z).

The following integrity constraint I imposes that for every fact rv(X,Y), the first element

of list X is the last element of list Y.

rv(X,Y), X=[A|B] → last_of(Y,A).

We will now follow one iteration of the constraint checker MONIC (Algorithm 7).

Step 1: rv(X,Y) is the most general term;

X is the only input argument and has type li st;

A random choice of a term of type li st gives t=[4,1,5] ;

The query Q is ←rv([4,1,5] ,X).

Step 2: The query Q succeeds on P and we obtain θout={ X/[1,4,5] } .

Step 3: f is rv([4,1,5] ,[1,4,5]).

Step 4: I is turned into the query

←rv([4,1,5] ,[1,4,5]), [4,1,5]=[4|[1,5]] , not last_of([4,1,5] ,4).

The query succeeds. I is violated.

Store rv([4,1,5] ,[1,4,5]) as a negative example.

Return ‘ inconsistent’ . ♦

7.4.3 Types and distr ibutions

Random facts are obtained by randomly generating the input arguments of a query which

is placed upon a program P. The random generation of each argument is made according

to a distribution defined for the type of that argument. Here, a distribution is associated

to every type. The distribution can be pre-defined in the ILP system, or it can be defined

by the user himself. Presently, we define the distribution of a type by specifying the

probabili ty of obtaining terms of length 0, 1, 2, etc. An alternative for the definitions of

type distribution are the stochastic logic programs by Muggleton [81].

Evaluation 175

Example 7.7: In our experiments we defined the distribution for the set of lists of length

0 to 4, with elements 0 to 9, as follows.

Probabilit y(length of list L=n) = 0.2 for n=0,…,4.

Probabilit y(any element of a list L is d)=0.1 for d=0,…,9.

As a consequence, 0.2 is the probabili ty of obtaining an empty list ([]). The probabili ty of

obtaining the list [3] is 0.2×0.1=0.02. ♦

Although MONIC requires that a particular distribution must be defined for each type,

the choice of the distributions does not seem difficult. In fact, the distributions we used

in the experiments were practically our first choice.

7.5 Evaluation

We conducted some experiments to evaluate SKILit’s performance when combined with

the MONIC module for integrity constraint checking. In the first experiments (Section

7.5.1) we chose the predicates append/3 and rv/2 and for each one of them tried different

sets of integrity constraints. The evaluation methodology is identical to that described in

Section 6.2, except that here the integrity constraints are also given. In Section 7.5.2 we

describe experiments with the predicate union/3. In all the experiments the number of

queries generated by Algorithm 7 (Integer n) was 100.

7.5.1 append/3 and rv/2

For the predicate append/3 the following four sets of integrity constraints were used (see

Appendix A for the definitions of member/2 and sublist/2):

ic1: append(X,Y,Z),member(A,X)→member(A,Z).
append(X,Y,Z),member(A,Y)→member(A,Z).

ic2: append(X,Y,Z),sublist([A,B] ,X)→sublist([A,B] ,Z).

176 INTEGRITY CONSTRAINTS

append(X,Y,Z),sublist([A,B] ,Y)→sublist([A,B] ,Z).

ic3: append(X,Y,Z),sublist(A,X)→sublist(A,Z).
append(X,Y,Z),sublist(A,Y)→sublist(A,Z).

ic4: append(X,Y,Z),sublist(A,X)→sublist(A,Z).
append(X,Y,Z),sublist(A,Y)→sublist(A,Z).
append([_|_] ,X,X)→false.

We now explain in words the meaning of some of the constraints. The first constraint in

ic1, for instance, says that if list Z is the result of appending lists X and Y, then any

element A of X should be an element of Z. The second constraint in ic2 says that if A and

B are two consecutive elements of list Y, they should be two consecutive elements of list

Z. The third constraint of ic4 says that if we append a list with at least one element

([_|_]) to list X, we should never obtain the same list X.

For rv/2 we have two sets of constraints

ic1: rv(X,Y),sublist([A,B] ,X)→sublist([B,A] ,Y).

ic2: rv(X,Y),length(X,N)→length(Y,N).
rv(X,Y),member(A,X)→member(A,Y).
rv(X,Y),member(A,Y)→member(A,X).

The first constraint says that if list Y is the result of reversing list X then any two

consecutive elements of X should be consecutive but in reverse order in Y. The first

constraint in ic2 says that the reversed list has the same length as the original one.

In the experiments conducted, the system SKILit + MONIC obtains better results in

terms of success rate than SKILit with negative examples (Section 6.2). For the integrity

constraint in ic1, the synthesis of rv/2 reaches 100% success rate with only 10 randomly

chosen positive examples. The results with the predicate append/3 also beat the results

obtained with negative examples, mainly for the sets of integrity constraints ic1 and ic2

(see Figure 7.1).

Evaluation 177

append/3

0

0,2

0,4

0,6

0,8

1

2 3 5 10 20

positive exam ples

su
cc

es
s

ra
te ic1

ic2

ic3

ic4

rv/2

0
0,2
0,4
0,6
0,8

1

2 3 5 10 20

positive examples

su
cc

es
s

ra
te

ic1

ic2

Figure 7.1: SKILit + MONIC: obtained success rate.

In terms of percentage of test-perfect programs synthesized, the results were also better

than the ones obtained with negative examples for most of the integrity constraint sets

chosen. This means that when the user has integrity constraints available, the chance of

synthesizing the intended program increases (see Figure 7.2)

append/3

0
20
40
60
80

100

2 3 5 10 20

positive exam ples

%
 t

es
t-

p
er

fe
ct

p

ro
g

ra
m

s

ic1

ic2

ic3

ic4

rv/2

0
20
40
60
80

100

2 3 5 10 20

positive exam ples

%
 t

es
t

p
er

fe
ct

p

ro
g

ra
m

s

ic1

ic2

Figure 7.2: SKILit + MONIC: percentages of test-perfect program.

Similarly as with positive and negative examples, the choice of adequate integrity

constraint is very important. The set of constraints ic2 for the predicate rv/2 did not

obtain good results, because those constraints do not cover many important negative

examples, such as rv([1,2] ,[1,2]) (they only say that the two arguments of rv(X,Y)

should have the same number of elements and that every element of the input list is an

element of the output list and vice versa).

178 INTEGRITY CONSTRAINTS

append/3

0

10

20

30

40

50

60

2 3 5 10 20
positive exam ples

ti
m

e

ic1

ic2

ic3

ic4

rv/3

0

10

20
30

40

50

60

2 3 5 10 20
positive exam ples

ti
m

e ic1

ic2

Figure 7.3: SKILit + MONIC: CPU time spent (seconds).

As we can see in Figure 7.3 the cost of using integrity constraints, in terms of time spent

to synthesize a definition, is comparable or better to the exclusive use of negative

examples (Section 6.2).

7.5.2 union/3

For the predicate union/3 we used two sets of integrity constraints.

ic1: union(A,B,C),member(X,A)→member(X,C).
union(A,B,C),member(X,B)→member(X,C).
union([X|B] ,C,D),member(X,C),D=[X|E]→ C=[X|F] .

ic2: union(A,B,C),member(X,A) →member(X,C).
union(A,B,C),member(X,B) → member(X,C).
union(A,B,C),member(X,A),member(X,B),append(A,B,C) → false.

In ic1 the first constraint says that, for every fact union(A,B,C), every element of the list

A must be in C. The second constraint says that every element of B must be in C. The

third constraint applies when the first element X of the first input list is a member of the

other input list (C) and the first element of the output list (D). In this case X must also be

the first element of C (union([1] ,[1,2] ,[1,2]) is a positive example while

union([1] ,[2,1] ,[1,2,1]) is a negative one).

Related work 179

In ic2, the first two constraints are the same as in ic1. The third constraint says that if A

and B have a common element then the result of union/3 must be different from the

result of appending the two lists (union([2] ,[1,2] ,[1,2]) and append([2] ,[1,2] ,[2,1,2])).

These experiments with union/3 were conducted in a setting similar to the one used in

Section 6.3. For each set of constraints, we ran SKILit+MONIC 50 times giving each

time 30 positive examples randomly taken from U2i(+). No negative examples were

given. We also used two different clause structure grammars: decomp_test_rec_comp_2,

and decomp_+test_rec_comp_2 which forces synthesized clauses to have test literals.

constraint set CSG success test-terfect time
ic2 decomp_test_rec_comp_2 0.689 24 251.802
ic1 decomp_test_rec_comp_2 0.758 38 147.188
ic2 decomp_+test_rec_comp_2 0.780 44 122.487

Table 7.1: Experiments with union/3 and integrity constraints.

The results are shown in Table 7.1. The success and percentage of test-perfect programs

obtained with the integrity constraints in ic1 and ic2 were clearly higher than the results

obtained with random negative examples (Table 6.2), and very similar to the ones

obtained with the manually chosen negative examples. In the case of ic2 with the

decomp_+test_rec_comp_2 CSG, the results obtained were clearly better than the ones

with chosen negative examples. The synthesis time was comparable to the experiments in

Section 6.3.

7.6 Related work

There are other procedures for integrity constraint checking. Sadri and Kowalski

proposed a proof procedure that checks integrity constraint satisfaction, given a logic

program and a set of constraints [105]. This procedure verifies if an update to the

program violates any of the constraints. In case there is only one integrity constraint, the

method of Sadri and Kowalski is equivalent to SLDNF-resolution (Section 3.2.3).

Another theorem-prover, SATCHMO, was proposed by Manthey and Bry [65].

180 INTEGRITY CONSTRAINTS

This kind of integrity checkers uses a systematic approach to search for inconsistencies.

To find a violating instance of an integrity constraint, a large number of possible

instantiations must be considered. The Monte Carlo strategy only considers a sample of

those instantiations which drastically reduces the search effort for a violating instance of

the integrity constraint.

Luc De Raedt used integrity constraints in system CLINT [21]. In his work, an integrity

constraint is checked by transforming it into a query and posing it to the generated

program.

7.7 Discussion

7.7.1 The number of queries

The proposed integrity checker finds a violating instance of an integrity constraint I by

generating a limited number of queries. Each query is posed to program P. From the

answers the integrity checker obtains facts. With these facts we try to obtain a violating

instance of constraint I. If such an instance is found, we can be certain that the program

and the constraint are inconsistent; otherwise, we cannot be sure they are consistent.

MONIC is thus incomplete.

Nevertheless, the binomial distribution tells us that the probabili ty, after n queries, of

finding an inconsistency is α = (1-p)n , where p is the probabili ty of a given query

obtained from I and posed to program P to succeed. This distribution tells us that, after n

successful queries, the higher the value of n, the more probable it is that P and I are

consistent.

Intuitively, the value of p measures the consistency level of the integrity constraint with

the program P. The actual value of p is unknown. However, we can choose a lower limit

for p meaning that if there is an inconsistency, then at least 100 × p% of the queries give

a violating instance of I. We call this the “integrity constraint generality assumption” .

Discussion 181

After n non-violating queries, and given a value for p, we can be 100 × (1-α)% sure that

P and I are consistent.

Unfortunately, the user cannot say, a priori, whether this assumption will be verified or

not, since that depends on P, which is unknown. We can, however, have an intuitive

notion of the generality of a given constraint, and, therefore, prefer more ‘general’

constraints, such as sort(X,Y)→sorted(Y), to more ‘specific’ ones, such as

sort([2,3] ,[3,2])→false.

7.7.2 Soundness and completeness

When MONIC finds a violating instance of an integrity constraint, that means that the

program does not satisfy the constraint. In that sense MONIC is correct or sound, since

it does not find false inconsistencies. However, MONIC is only as correct as the proof

procedure that it is using to answer the queries. To guarantee the integrity of the proof

procedure a safe computational rule should be used [46].

As we previously saw, MONIC may not find a violating instance even if one does exist.

For this reason, it is incomplete. However, when MONIC does not find an inconsistency

we have an associated confidence level (α). Moreover, we can control this confidence

level by choosing an appropriate number of queries.

7.7.3 Limitations

The inclusion of integrity constraints in specifications, independently of the constraint

checking method employed, represents an additional effort for the user, since writing a

set of adequate integrity constraints can be as complex as writing the program itself.

However, the inclusion of integrity constraints in the specification is optional. If they are

easy to express, they can be exploited by the system. Otherwise the system can use

negative examples only.

182 INTEGRITY CONSTRAINTS

The most important limitations, specific to our Monte Carlo approach, are the

incompleteness of the search for a violating instance (discussed in Section 7.7.2), the

need of associating distribution of probabili ty functions to the involved types (Section

7.4.3), and the fact that the method does not cope with all integrity constraints (Section

7.4.1).

Even though the distributions associated to types can affect the behaviour of the method,

we did not have to make any tuning of this distribution in order to achieve the obtained

results. For this reason, and in practical terms, this limitation does not seem to be

significant.

The restrictive integrity constraints handled by MONIC seem the most adequate for the

representation of negative information in a context of synthesis from incomplete

specifications. For this reason, we did not consider other sorts of constraints. Such an

extension could be considered in the future.

183

8. Conclusion

8.1 Summary

In this thesis we present a methodology for the automatic construction of logic

programs. This methodology is the basis of system SKILit. To obtain a program P the

user supplies certain information to the system describing some aspects of that program.

The system assumes that the information given is incomplete. From this information,

which we call specification, SKILit builds a program P' which satisfies the specification.

In case P' does not satisfy the user, he/she can supply more data to the specification and

rerun SKILit. SKILit is inductive, for it starts from a given incomplete specification S

and synthesizes a program P which may have logical consequence not described in S. In

short, SKILit is a system for the inductive synthesis of logic programs from incomplete

specifications (Chapters 4 and 5). A specification given to SKILit contains different sorts

of data. The core of the specification is composed of the positive examples and the

negative examples.

The iterative induction strategy used by SKILit (Chapter 5) helped find an answer for an

important limitation of many ILP systems, representing state-of-the-art such as GOLEM

184 CONCLUSION

[82], FOIL [96] and Progol [80]. Unlike these systems, SKILit is capable of synthesizing

recursive programs from sparse sets of positive examples. To be successful in the

synthesis task, the user of SKILit does not have to supply a list of examples as complete

as possible, nor to guess the examples according to possible resolution paths of the

target program. Assuming that the user gives complete sets of examples or examples

computationally related to each other would be against the spirit of programming by

examples. Iterative induction represents an advance in the state of the art of recursive

program synthesis.

While being able to cope with incomplete sets of examples, SKILit has a quite wide class

of synthesizable programs. Other systems previous to SKILit, like LOPSTER [60],

FORCE2 [12] and CRUSTACEAN [1], are also capable of synthesizing recursive

definitions from few examples. However, all of them synthesize programs within a very

restricted and well defined class. The strategies used by these systems, however

interesting, force them to strongly restrict the language bias. Programs such as

quicksort/2, which has two recursive literals in a clause, and union/3 that has two

recursive clauses were synthesized by SKILit, but are not synthesizable by the systems

mentioned above.

The class of programs synthesizable by SKILit for a given synthesis task can be defined

by a clause structure grammar (CSG). Although it is not strictly necessary, a CSG

enables a more efficient construction of the intended program. A CSG serves to transmit

to SKILit a certain programming strategy, such as “divide-and-conquer” , “generation-

and-test” , etc. Since each strategy serves a vast set of programs, the CSG are highly

reusable.

The background knowledge (BK) has an important role in the synthesis process. The

predicates defined in the BK determine the vocabulary which SKILit will use in the

construction of clauses. Therefore, an adequate background knowledge can turn a hard

synthesis task into an easy one. On the other hand, an unsuccessful attempt may be due

to insufficient background knowledge (Section 4.8).

Summary 185

The construction of a clause is made by searching for a relational li nk between the input

arguments and the output arguments of a positive example. This strategy employed by

SKILit enables the background knowledge to constrain the construction of a clause since

only the logical consequences of the BK, the positive examples and of the clauses

meanwhile synthesized by SKILit can be part of the link.

The clause construction strategy used by SKILit allows the BK to be defined

intensionally (Section 4.4) as any Prolog program. Intensional BK makes the

construction and maintenance of auxili ary predicates much easier.

The user of SKILit can specify the intended program entirely by examples. However,

other means of specification are available. A sketch (Section 4.5.1), for example,

provides abstracted information about how a particular example is processed. SKILit

explores the given sketches by consolidating and transforming them into operational

clauses (Chapter 5). Sketches and examples are handled in a uniform way. The sketch

refinement operator employed by SKILit is shown to be complete under appropriate

assumptions.

A system demanding an excessive number of positive examples is as inadequate for

program synthesis, as a system which demands an excessive number of negative

examples. For that reason, we have extended SKILit with the integrity checker MONIC

which is capable of handling integrity constraints. Due to its expressiveness, an integrity

constraint can replace a large number of ground negative examples.

The Monte Carlo strategy which was designed to handle constraints seems quite

efficient, which makes it appropriate in an inductive synthesis context. Other existing

approaches to integrity checking are heavier and could be impractical in this context.

186 CONCLUSION

8.2 Open problems

SKILit did not yet result in a useful support tool for a logic programming environment.

However, we took some steps in the direction of making the inductive approach to

program synthesis feasible. Many important problems still have to be solved. The

solutions we propose could, of course, be improved. In this Section we discuss some

unresolved problems and the research lines they can lead to.

8.2.1 The selection of auxiliary predicates

An inductive synthesis system should have a quite rich background knowledge, so that it

could be used in a wide variety of problems. In the experiments usually carried out with

ILP systems, the BK defines the exact set of auxili ary predicates needed so that the

synthesis task would succeed.

Even though the strategy of following a relational link enables SKILit to filter many

irrelevant auxili ary predicates, the system's performance degrades when the number of

admissible auxili ary predicates is very large (Section 3.4.5). The solution adopted here

involves the user who indicates to the system which are the admissible predicates to be

considered. It is obvious that this is not entirely satisfactory, as it places a burden on the

user.

SKILit also fails if the BK predicates are insufficient, because it cannot invent predicates.

Predicate invention is a difficult task in itself [114]. Nevertheless, it would be worthwhile

to extend SKILit, because a practical system should try to fill i n the gaps within BK.

8.2.2 Interaction

When the specification supplied by the user is insufficient for SKILit to build an adequate

program, the solution is to examine SKILit’s results and change the specification

accordingly.

Evaluation of the approach 187

The synthesis system should guide the user in the construction and refinement of the

specification. Interactive systems typically suggest the user which examples to supply

during the synthesis process itself, freeing the user from the difficult task of guessing

which are good and bad examples. Unfortunately, interactive systems tend to ask too

many questions during the synthesis session, disturbing the user. For that reason, we

have adopted a non interactive solution.

Nevertheless, it would be important for a system such as SKILit to have some interactive

tools for evaluating the produced programs, as well as for the debugging of

specifications. This sort of post-synthesis interaction would be less disturbing for the user

because it would be restricted to the situations in which the final induced program is

either incorrect or incomplete.

8.2.3 Many examples

SKILit is guided towards the synthesis from small sets of examples. Each clause is

constructed to cover one positive example, and the remaining positive examples are not

directly taken into account. SKILit explores the internal structure of the example itself,

but ignores the patterns which may be common to different examples. For that reason

SKILit may have difficulties in adequately coping with large quantities of data.

8.3 Evaluation of the approach

The experiments with SKILit, carried out in Chapter 6, showed that the system is

capable of synthesizing list handling predicates from sets of naturally chosen positive

examples. The so called natural choice of examples was simulated by randomly

extracting examples from a given universe with a pre-defined distribution.

188 CONCLUSION

8.4 Main contr ibutions to the state-of-the-ar t

We presented the notion of algorithm sketch as a formalism for partially describing

computations. We defined the notions of skecth refinement and sketch consolidation and

presented a refinement operator that finds all the operational consolidations of one

sketch. This refinement operator is the basis of the inductive engine of our logic program

synthesis methodology.

The iterative induction developed and employed in SKILit allows the synthesis of

recursive definitions from small and sparse sets of examples. This is an important result,

considering that SKILit does not impose very strong constraints upon the class of

synthesizable programs. In particular, SKILit does not assume that the target program is

recursive (unless the clausal grammar states otherwise). Recursive solutions are preferred

to non-recursive ones only if the latter involve shorter clauses. This is an important

feature that we do not find, for instance, in CRUSTACEAN, TIM or SYNAPSE. SKILit

can also cope with very small sets of examples, because the methodology does not

depend on some coverage-based or information gain oriented heuristic (Section 3.4.5).

The class of synthesizable programs can be defined through a clause structure grammar.

This grammar allows the representation of generic programming knowledge, and

restricts the search space. This results in more efficient induction. Nevertheless, the

methodology is able to work without any grammar.

The clause structure grammars employed in SKILit allow the definition of admissible

predicate sequences in the body of induced clauses. The arguments of those predicates

are handled by relational linking. The advantage is that clause structure grammars are

easy to define and maintain.

Finally, the Monte Carlo strategy adapted to the integrity checking allows the

specification to include integrity constraints. These can be much more expressive than

traditional negative examples, enabling the user to write more concise specifications. The

The Future 189

main advantage of our MONIC integrity checker is its efficiency. Using SKILit+MONIC,

induction from a specification with positive examples and constraints is not significantly

more time consuming than using plain SKILit to induce from positive and negative

examples.

8.5 The Future

In the near future, SKILit could benefit from a more efficient re-implementation. It

would also be advantageous to have other search strategies besides the one used, to

enable coping with large numbers of examples, using large background knowledge

programs, and synthesizing more complex clauses. It would be important that the system

could work with little negative information (negative examples or integrity constraints).

The methodology could also better exploit the information contained in algorithm

sketches.

The ideal future for a system like SKILit would be its integration into a program

development environment where it could be a tool among others. A graphical interface

that minimised the user’s efforts in building an incomplete specification and allowing the

description of algorithm sketches would be crucial. It would also be important to have

the possibili ty of communicating with other development tools, from simple text editors

to static and dynamic program analysis modules.

Inductive programming techniques may in the future be useful for naïve and experienced

programmers. Programming by example may be an important specification paradigm for

naïve programmers that need programming for interfacing with complex applications of

daily use like word processors, spreadsheets or database management systems. Inductive

techniques will keep unwilli ng programmers away from code as much as possible.

Experienced programmers may benefit from tools based on programming by example

embedded in enhanced text editors. Incomplete specifications may be attached to the

code and be used for program synthesis and verification.

190 CONCLUSION

In its core, automatic program synthesis will have to be more knowledge based. Different

aspects of programming knowledge will be encoded as input for the synthesis systems.

These different types of knowledge will be, on the one hand, separately represented and

on the other will have to be combined to obtain, for each task, an integrated solution. In

this thesis we followed this direction focussing on two types of programming knowledge:

specific knowledge (sketches) and generic knowledge (structure grammars).

Automatic programming systems will have to have knowledge about auxili ary programs

and about synthesized programs. Having a list of background predicates is not enough,

especially if it is a very long list. An automatic programming system should, for example,

easily recognize positive examples of a program it already knows.

To sum up, automatic programming provides very relevant research challenges. Their

relevance derives from the importance of programming itself. Any tool or methodology

that makes programming easier means that more powerful applications may appear.

Either because the development of the application was made simpler or because its

interface made it easier to use. More powerful and easier to use applications mean that

computer-aided tasks (programming included) will be accomplished more efficiently,

leaving whoever has to fulfil those tasks with more precious spare time.

191

References

[1] Aha, D. W., Lapointe, S., Ling, C. X., Matwin S (1994): “Inverting Implication with
Small Training Sets” . Proceedings of the European Conference on Machine
Learning, ECML-94. Ed. F. Bergadano, L. De Raedt. Springer Verlag.

[2] Azevedo, R., Costa, V.S., Damas, L., Reis, R. (1990): “YAP Reference Manual” .
Centro de Informática da Universidade do Porto.

[3] Banerji, R. B. (1964): “A Language for the Description of Concepts” . General
Systems, 9, pp. 135-141.

[4] Baroglio, C., Giordana, A., Saitta, L. (1992): “Learning Mutually Dependent
Relations” . Journal of Intelli gent Information Systems, 1, pp. 159-176. Kluwer
Academic Publishers, Boston.

[5] Bergadano, F., (1993): “Towards an Inductive Logic Programming Language”.
Deliverable no. TO1 of ILP project.

[6] Bergadano, F., Gunetti, D. (1993): “The Difficulties of Learning Logic Programs
with Cut” . Journal of Artificial Intelli gence Research 1, pp. 91-107.

[7] Biermann, A. W., (1978): “The inference of regular LISP Programs from
Examples” . IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-8,
No. 8, August 1978.

[8] Biermann, A. W., (1990): “Automatic Programming”. Encyclopedia of Artificial
Intelli gence. Ed. Stuart C. Shapiro. Wiley Interscience.

[9] Blum, L. and Blum, M. (1975): “Toward a Mathematical Theory of Inductive
Inference”. Information and Control, 28, pp. 125-155.

[10] Bratko, I. (1986): Prolog Programming for Artificial Intelli gence. Addison-Wesley.
[11]Bratko, I., Muggleton, S., Varšek, A. (1992): “Learning Qualitative Models of

Dynamic Systems”. Inductive Logic Programming. Ed. S. Muggleton. Academic
Press.

[12] Brazdil, P., Jorge, A. (1992): “Modular Approach to ILP: Learning from interaction
between Modules” . Logical Approaches to Machine Learning, Workshop notes.
ECAI 92.

[13] Brazdil, P. (1981): A Model for Error Detection and Correction. PhD Thesis.
University of Edinburgh.

[14] Brazdil, P., Jorge, A. (1994): “Learning by Refining Algorithm Sketches” .
Proceedings of ECAI-94. Ed. T. Cohn. Wiley.

[15] Brazdil, P., Jorge, A. (1997): “Induction with Subtheory Selection” . ECML 97 -
Poster Papers. Ed. M. van Someren, G. Widmer. Laboratory of Intelli gent Systems,
Faculty of Informatics and Statistics, University of Economics, Prague.

[16] Buntine, W. (1988): “Generalized Subsumption and its Application to Induction and
Redundancy” . Artificial Intelli gence 36, pp 149-176, Elsevier Sience Publishers
B.V. (North Holland).

192 REFERENCES

[17] Calejo, M. (1991): A Framework for Declarative Prolog Debugging. PhD Thesis.
Universidade Nova de Lisboa.

[12] Cohen, W. W. (1993): “Pac_learning a restricted class of recursive logic programs”.
Proceedings of the third International Workshop on Inductive Logic Programming
(pp. 73-86). Bled, Slovenia. J. Stefan Institute.

[18] Cohen, W. W. (1993): “Rapid prototyping of ILP systems using explicit bias” .
Proceedings of 1993 IJCAI Workshop on ILP.

[19] Cypher, A. (Ed.) (1993): Watch What I Do: Programming by Demonstration. MIT
Press.

[20] De Raedt, L. (1991): Interactive Concept Learning. PhD thesis. Katholieke
Universiteit Leuven.

[21] De Raedt, L. (1991): Interactive Theory Revision: An Inductive Logic
Programming Approach. Academic Press.

[22] De Raedt, L., Bruynooghe, M. (1993): “A theory of Clausal Discovery” .
Proceedings of IJCAI-93. Chamberry, France.

[23] De Raedt, L., Idestam-Almquist, P, Sablon, G (1997): “θ-subsumption for
Structural Matching” . Proceedings of ECML-97. Prague. M. van Someren, G.
Widmer (Ed.). Springer.

[24] De Raedt, L. Lavrac, N. (1995): “Multiple Predicate Learning in two Inductive
Logic Programming settings” . Journal of Pure and Applied Logic, 4(2):227-254.

[25] De Raedt, L., Lavrac, N., Dzeroski, S. (1993): “Multiple Predicate Learning” .
Proceedings of IJCAI-93. Chamberry. France. R. Bajcsy (Ed.). Morgan Kaufmann.

[26] Devill e, Y. (1990): Logic Programming, Systematic Program Development.
Addison-Wesley Publishing Company.

[27] Devill e, Y., Lau, K.,(1994): “Logic Program Synthesis” . The Journal of Logic
Programming, special issue Ten Years of Logic Programming, volumes 19,20,
May/July 1994.

[28] Dill er, A. (1991): Z, an introduction to formal methods. Wiley.
[29]Dolšak, B. and Muggleton, S. (1992): “The Application of Inductive Logic

Programming to Finite Element Mesh Design” . Inductive Logic Programming. Ed.
S. Muggleton. Academic Press.

[30] Dromey, G. (1989): Program Derivation, the development of programs from
specification. Addison-Wesley.

[31] Ducassé, M. (1994): “Logic Programming Environments: Dynamic Program
Analysis and Debugging” . The Journal of Logic Programming, special issue Ten
Years of Logic Programming, volumes 19,20, May/July 1994.

[32] Esposito, F., Malerba, G., Semeraro, G. and Pazzani, M. (1993): “Document
understanding: a machine learning approach” . Real-World Applications of Machine
Learning, Workshop notes. Ed. Y. Kodratoff, P. Langley. ECML-93, Vienna.

[33]Feng, C. (1992): “Inducing Temporal Fault Diagnostic Rules from a Qualitative
Model” . Inductive Logic Programming. Ed. S. Muggleton. Academic Press.

[34]Feng, C. and Muggleton, S. (1992): “Towards Inductive Generalization in Higher
Order Logic”. Proceedings of the Ninth International Workshop ML92. Ed. Derek
Sleeman and P. Edwards. Morgan Kaufmann.

REFERENCES 193

[35] Fisher, A., (1988): CASE: Using Software Development tools. Wiley.
[36] Flach, P. (1995): Conjectures: an inquiry concerning the logic of induction. PhD

Thesis. ITK dissertation series - 1.
[37] Flener, P. (1995): Logic Program Synthesis From Incomplete Information. Kluwer

Academic Publishers.
[38] Flener, P., Devill e, Y. (1992): “Logic Program Synthesis from Incomplete

Specifications” . Research Report RR 92-22. Université Catholique de Louvain,
Unite d'Informatique.

[39] Flener, P., Popelínský, L., (1994): “On the use of Inductive Reasoning in Program
Synthesis: Prejudice and Prospects” . Joint Proc. of LOPSTR’94 and META’94,
LNCS, Springer-Verlag.

[40] Giordana, A., Saitta, L., Baroglio, C. (1993): “Learning Simple Recursive
Theories” . Proceedings of the 7th International Symposium, ISMIS’93. Lecture
Notes in Artificial Intelli gence. Springer-Verlag.

[41] Grobelnik, M. (1992): “MARKUS: An Optimal Model Inference System”.
Proceedings on ECAI-92 Workshop on Logical Approaches to Machine Learning.
Rouveirol, C. (Ed.).

[42] Heidorn, G. E. (1975): “Automatic Programming Through Natural Language
Dialogue: A Survey” . [99].

[43] Helft, N. (1987): “Inductive Generalization: a Logical Framework” . Proceedings of
EWSL 87. Ed. I. Bratko, N. Lavrac. Sigma Press.

[44] Helft, N. (1989): “Induction as nonmonotonic inference”. Proceedings of the 1st
International Conference on Principles of Knowledge Representation and
Reasoning, pp 149-156. Morgan-Kaufmann.

[45] Hoare, C.A.R (1986): “Mathematics of Programming”. BYTE 11(8).
[46] Hogger, C. J. (1990): Essentials of Logic Programming. Graduate texts in

computer science series. Oxford University Press.
[47] Idestam-Almquist, P. (1993): “Generalization under implication by recursive anti-

unification” . Proceedings of ILP-93. Technical Report. Jozef Stefan Institute.
[48] Idestam-Almquist, P. (1993): Generalization of Clauses. PhD thesis. Report Series

No. 93-025. Stockholm University, Royal Institute of Technology, Department of
Computer and Systems Sciences.

[49] Idestam-Almquist, P. (1995): “Efficient Induction of Recursive Definitions by
Structural Analysis of Saturations” . Proceedings of the Fifth International
Workshop on Inductive Logic Programming. Ed. L. De Raedt. Scientific Report.
Departement of Computer Science, K.U. Leuven.

[50] Jaquet, J.-M. (Ed.) (1993): Constructing Logic Programs. Wiley Professional
Computing. Wiley.

[51] Jazza, A. (1995): “Toward Better Software Automation” . Software Engineering
Notes, vol. 20 no. 1. ACM SIGSOFT.

[52] Joch, A. (1995): “How Software doesn’t work” . BYTE, 20(12).
[53] Jorge, A. and Brazdil, P. (1996): “Architecture for Iterative Learning of Recursive

Definitions” . Advances in Inductive Logic Programming. Ed. Luc De Raedt. IOS
Press.

194 REFERENCES

[54] Jorge, A. and Brazdil, P. (1996): “Integrity Constraints in ILP using a Monte Carlo
approach” . Inductive Logic Programming, 6th International Workshop, ILP-96. Ed.
Stephen Muggleton. LNAI 1314. Springer..

[55] Jülli g, R. K. (1993): “Applying Formal Software Synthesis” . IEEE Software. Vol.
10, No. 3, pp. 11-22.

[56]Kietz, J. and Wrobel, S. (1992): “Controlli ng the Complexity of Learning in Logic”.
Inductive Logic Programming. Ed. Stephen Muggleton. Academic Press Limited.

[57]Kijsirikul, B., Numao M. and Shimura, M. (1992): “Discrimination-Based
Constructive Induction of Logic Programs”. Proceedings of AAAI-92. Morgan-
Kaufmann.

[58]Klingspor, V. (1994): “GRDT: Enhancing Model-Based Learning for Its Application
in Robot Navigation” . Proceedings of the Fourth International Workshop on
Inductive Logic Programming (ILP-94). GMD-Studien Nr. 237. GMD, Alemanha.

[59]Korf, R. E., (1990): “Search” . Encyclopedia of Artificial Intelli gence. Ed. Stuart C.
Shapiro. Wiley Interscience.

[60] Lapointe, S., Matwin, S., (1992): “Sub-unification: A tool for efficient induction of
recursive programs”. Proceedings of the Ninth International Conference on
Machine Learning (pp. 273-281). Aberdeeen, Scotland. Morgan Kaufmann.

[61] Lavrac, N., Dzeroski, S. (1992): “Inductive Learning of Relations from Noisy
Examples” . Inductive Logic Programming. Ed. S. Muggleton. Academic Press
Limited.

[62] Lavrac, N., Dzeroski, S. (1994): Inductive Logic Programming: Techniques and
Applications. Elli s Horwood.

[63] Ling, C. X., (1991): “Inductive Learning From Good Examples” . 12th International
Joint Conference on Artificial Intelli gence. Ed. J. Mylopoulos, R. Reiter. Morgan
Kaufmann.

[64] Lloyd, J. W., (1987) Foundations of Logic Programming (second, extended
edition). Springer-Verlag.

[65] Manthey, R., Bry, F. (1988): “SATCHMO: a theorem prover implemented in
Prolog” . Proceedings of CADE 88 (9th Conference on Automated Deduction).
Springer-Verlag.

[66] Michalski, R. S. (1983): “A Theory and Methodology of Inductive Learning” . [69].
[67] Michalski, R. S. (1990): “Learning, Machine”. Encyclopedia of Artificial

Intelli gence. Ed. S. Shapiro. Wiley Inter-Science.
[68] Michalski, R. S. (1994): “Inferential Theory of Learning: Developing Foundations

for Multistrategy Learning” . Machine Learning, A Multistrategy Approach, Volume
IV. Ed. Ryszard Michalski, Gheorghe Tecuci. Morgan Kaufmann.

[69] Michalski, R. S., Carbonell, J. and Mitchell, T. (1983) Machine Learning: An
Artificial Intelli gence Approach. Tioga Publishing Company.

[70] Michalski, R. S., Larson, J. B. (1978): “Selection of most representative training
examples and incremental generation of VL1 hypotheses: The underlying
methodology and description of programs ESEL and AQ11”. Technical report 867.
Computer Science Department, University of Illi nois, Urbana-Champaign.

REFERENCES 195

[71] Minker, J. (Ed.) (1988): Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers.

[72] Mitchell, T. (1982): “Generalization as Search” . Artificial Intelli gence, 18, pp. 203-
226.

[73] Mitchell, T. (1990): “The need for biases in learning generalizations” . Readings in
Machine Learning. Ed. J. Shavlik and T. Dietterich. Morgan Kaufmann.

[74] Mofizur, C. R. and Numao, M. (1995): “Top-down Induction of Recursive
Programs from Small Number of Sparse Examples” . Proceedings of the Fifth
International Workshop on Inductive Logic Programming. Ed. L. De Raedt.
Scientific Report. Departement of Computer Science, K.U. Leuven.

[75] Morik, K., Potamias, G. and Moustakis, V. (1993): “Knowledgeable Learning Using
MOBAL - A Case Study in A Medical Domain” . Real-World Applications of
Machine Learning, Workshop notes. Ed. Y. Kodratoff, P. Langley. ECML-93,
Viena.

[76] Morik, K., Wrobel, S., Kietz, J. and Emde, W. (1993): Knowledge Acquisition and
Machine Learning: Theory Methods and Applications. Academic Press.

[77] Muggleton, S. (1994): “Inverting Implication” . Preliminary version.
[78] Muggleton, S. (1992): “Inductive Logic Programming”. Inductive Logic

Programming. Ed. S. Muggleton. Academic Press. Also in Proceedings of the First
International Conference on Algorithmic Learning Theory, Ohmsha, Tokyo, 1990.

[79] Muggleton, S. (1993): “Inductive Logic Programming: derivations, successes and
shortcomings” . Proceedings of ECML-93. Ed. P. Brazdil. Springer-Verlag.

[80] Muggleton, S. (1995): “Inverse Entailment and Progol” . New Generation
Computing Journal, vol. 13, May 1995.

[81] Muggleton, S. (1995): “Stochastic Logic Programs: extended abstract” .
Proceedings of ILP-95. Ed. Luc De Raedt. Scientific Report. Katholiek Universiteit
Leuven.

[82] Muggleton, S., Feng, C. (1990): “Efficient Induction of Logic Programs”.
Proceedings of the 1st Conference on Algorithmic Learning Theory, Ohmsha,
Tokyo.

[83] Muggletton, S., De Raedt, L., (1994): “Inductive Logic Programming”. The Journal
of Logic Programming, special issue Ten Years of Logic Programming. Vol. 19,20,
May/July 1994.

[84] Muggleton, S., Mizoguchi, F. and Furukawa, K. (1995): Preface of the Special Issue
on Inductive Logic Programming, New Generation Computing. Vol. 13, Nos. 3,4.
Springer-Verlag.

[85] Muggleton, S., King, R., Sternberg, M. (1992): “Protein secondary structure
prediction using logic”. Proceedings of the 2nd International Workshop on ILP.
Muggleton, S. (Ed.). Report ICOT-TM 1182, pp. 228-259.

[86] Muggleton, S., King, R., Sternberg, M. (1992): “Protein secondary structure
prediction using logic”. Protein Engineering. 7:647-657.

[87] Nienhuys-Cheng, S-H., de Wolf, R. (1995): “Least Generalizations and Greatest
Specializations of Sets of Clauses” . Journal of Artificial Intelli gence Research.
Volume 4, pp 341-363.

196 REFERENCES

[88] O’Keefe, R. (1990): The Craft of Prolog. MIT Press.
[89] Olsson, R. (1995): “Inductive Functional Programming Using Incremental Program

Transformation” . Artificial Intelli gence 74, pp 55-81. Elsevier.
[90] Paakki, J., Gyimóthy, T. and Horváth, T. (1994): “Effective Algorithm Debugging

for Inductive Logic Programming”. Proceedings of the Fourth International
Workshop on Inductive Logic Programming (ILP-94). GMD-Studien Nr. 237.
GMD, Alemanha.

[91] Pereira, L. M. and Calejo, M. (1989): “Algorithmic Debugging of Prolog Side-
Effects” . Proceedings of EPIA 89, ed. by J. P. Martins and E. Morgado, Lecture
Notes in Artificial Intelli gence, Springer-Verlag.

[92] Plotkin, G. (1969): “A note on inductive generalization” . Machine Intelli gence 5.
Ed. B. Meltzer, D. Michie. Edinburgh University Press.

[93] Plotkin, G. (1971): “A further note on inductive generalization” . Machine
Intelli gence 6. Ed. B. Meltzer, D. Michie. Edinburgh University Press.

[94] Popelínský, L., Flener P, Stepánková O, (1994) “ILP and Automatic Programming:
Towards Three Approaches” . Proceedings of the 4th International Workshop on
Inductive Logic Programming. Volume 237, GMD-Studien.

[95] Popelinský, L., Stpánková, O. (1995): “WiM: A study on top-down ILP program”.
Proceedings of AIT’95 Workshop. Brno. ISBN 80-214-0673-9.

[96] Quinlan, J. R. (1990): “Learning Logical Definitions from Relations” . Machine
Learning 5(3), pp.239-266.

[97]Quinlan, J. R. and Cameron-Jones, R. M. (1993): “FOIL: A Midterm Report” .
Proceedings of the European Conference on Machine Learning ECML-93. Ed. P.
Brazdil. Springer-Verlag.

[98] Quinlan, J. R. and Cameron-Jones, R. M. (1995): “Induction of Logic Programs:
FOIL and related systems”. New Generation Computing, Special issue on Inductive
Logic Programming, 13(3-4).

[99] Rich, C. and Waters, R. (Eds.) (1986): Readings in Artificial Intelli gence and
Software Engineering. Morgan Kaufmann.

[100] Richards, B., Mooney, R. (1995): “Refinement of First-Order Horn Clause Domain
Theories” . Machine Learning,Vol.19, No.2. Kluwer Academic Publishers.

[101] Richards, B., Mooney, R. (1992): “Learning relations by pathfinding” . Proceedings
of the Tenth National Conference on Artificial Intelli gence. MIT Press.

[102] Rouveirol, C. (1992): “Extensions of Inversion of Resolution Applied to Theory
Completion” . Proceedings of the 1st International Workshop on Inductive Logic
Programming. Technical Report. LIACC, Universidade do Porto.

[103] Rubinstein, R. (1981): Simulation and the Monte Carlo Method. John Wiley &
Sons.

[104] Russel, S., Subramanian, G. (1990): “Mutual Constraints on Representation and
Inference”. Machine Learning, Meta-Reasoning and Logics. Ed. P. Brazdil, K.
Konolige. Kluwer Academic Press.

[105] Sadri, F., Kowalski, R. (1988): “A Theorem Proving Approach to Database
Integrity” . Deductive Databases and Logic Programming. Ed. Jack Minker.
Morgan Kaufmann Publishers.

REFERENCES 197

[106] Sammut, C. (1993): “The Origins of Inductive Logic Programming: A Prehistoric
Tale”. Proceedings of ILP-93. Technical report. Jozef Stefan Institute.

[107] Sammut, C., Banerji, R. (1986): “Learning Concepts by asking Questions” .
Machine Learning: An Artificial Intelli gence Approach, Vol. 2. Ed. R. Michalski, J.
Carbonell, T. Mitchel. Morgan Kaufmann.

[108] Sernadas, A., Sernadas, C. and Costa, J.F. (1995): “Object-Specification Logic”.
Journal of Logic and Computation 5(5), pp. 603-630.

[109] Shapiro, E. Y., (1982) Algorithmic Program Debugging. MIT Press.
[110] Silverstein, G. and Pazzani, M. (1989): “Relational Clichés: constraining

constructive induction during relational learning” . Proceedings of the Sixth
International Workshop on Machine Learning, Evanston, Illi nois. Kaufmann.

[111] Smith, D. R., (1990): “KIDS: A Semiautomatic Program Development System”.
IEEE Trans. on Software Engineering, Vol. 16 No. 9.

[112] Solomonoff, R. J. (1964): “A formal Theory of Inductive Inference, Part I” .
Information and Control, 7, pp. 1-22.

[113] Sommervill e, I., (1989): Software Engineering (third edition). Addison-Wesley
Publishers Ltd.

[114] Stahl, I. (1993): “Predicate Invention in ILP - an Overview”. Proceedings of
ECML-93. Ed. P. Brazdil. Springer-Verlag.

[115] Stahl, I. (1995): “The Appropriateness of Predicate Invention as Bias Shift
Operation in ILP”. Machine Learning, 20. pp.95-117.

[116] Sterling, L., Shapiro, E. Y., (1986) The Art of Prolog: Advanced Programming
Techniques. MIT Press.

[117] Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., Underwood, I., (1994):
“Deductive composition of Astronomical Software from Subroutine Libraries” .
Proceedings of the Twelfth International Conference on Automated Deduction.
Nancy, France. A. Bundy (Ed.). LNAI 814. Springer Verlag.

[118] Summers, P. (1977): “A Methodology for LISP Program Construction from
Examples” . Journal of the Association for Computing Machinery, Vol. 24, No. 1.

[119] Tausend, B. (1994): “Representing Biases for Inductive Logic Programming”.
Proceedings of ECML-94. Ed. F. Bergadano, L. De Raedt. Springer-Verlag.

[120] Tausend, B. (1994): “Biases and Their Effects in Inductive Logic Programming”.
Proceedings of ECML-94. Ed. F. Bergadano, L. De Raedt. Springer-Verlag.

[121] Ullman, J. (1989): Principles of Databases and Knowledge Base Systems.
Volumes I and II . Computer Science Press.

[122] Vere, S. (1977): “Induction of Relational Productions in the Presence of
background Knowledge”. Proceedings of the Fifth International Joint Conference
in Artificial Intelli gence.

[123] Wirth, R. and O’Rorke (1992): “Constraints for predicate invention” . Inductive
Logic Programming. Ed. S. Muggleton. Academic Press.

[124] Wrobel, S. (1994): Concept Formation and Knowledge Revision. Kluwer
Academic Publishers.

[125] Zelle, J. M., Mooney, R. J., Konvisser, J. B., (1994): “Combining Top-down and
Bottom-up Techniques in Inductive Logic Programming”. Proceedings of the

198

Eleventh International Conference on Machine Learning ML-94, Morgan-
Kaufmann.

199

Annex

Appendix A

Predicates in background knowledge li st:

mode(const(+,+,-)).
type(const(list,int,li st)).

const(A,B,C)←A=[B|C] .

mode(dest(+,-,-)).
type(dest(li st,int,li st)).

dest(A,B,C)←A=[B|C] .

mode(null (+)).
type(null (li st)).

null ([]).

mode(addlast(+,+,-)).
type(addlast(li st,int,li st)).

addlast([] ,X,[X]).
addlast([A|B] ,X,[A|C])←

addlast(B,X,C).

mode(appendb(+,+,-)).
type(appendb(list,li st,li st)).

appendb([] ,A,A).
appendb([A|B] ,C,[A|D])←

appendb(B,C,D).

% predicate append/3 has a definiton equivalent to appendb/3.

mode(delete(+,+,-)).
type(delete(elem,list,li st)).

200 ANNEX

delete(A,[A|B] ,B).
delete(A,[B|C] ,[B|D])←

delete(A,C,D).

mode(last_of(-,+)).
type(last_of(elem,list)).

last_of(A,[A]).
last_of(A,[C|D])←last_of(A,D).

mode(memberb(-,+)).
type(memberb(elem,list)).

memberb(A,[A|B]).
memberb(A,[B|C])←

memberb(A,C).

% predicate member/2 has a definition equivalent to memberb/2.

mode(notmember(+,+)).
type(notmember(elem,list)).

notmember(A,B)←memberb(A,B).

mode(partb(+,+,-,-)).
type(part(int,li st,li st,li st)).

% predicate partition/4 has a definition equiavalent to partb/4.

partb(A,[B|C] ,[B|D] ,E)←
A>B,partb(A,C,D,E).

partb(A,[B|C] ,D,[B|E])←
A=< B,partb(A,C,D,E).

partb(A,[] ,[] ,[]).

mode(rv(+,-)).
type(rv(list,li st)).

rv([] , []).
rv([C|D] , B) ←
 rv(D,E),
 addlast(E,C,B).

ANNEX 201

mode(singleton(+)).
type(singleton(list)).

singleton([X]).

mode(sort(+,-)).
type(sort(li st,li st)).

sort([A|B] ,C)←
part(A,B,E,F),
sort(E,G),sort(F,H),
append(G,[A|H] ,C).

sort([] ,[]).

mode(split (+,-,-)).
type(split (li st,li st,li st)).

split ([] ,[] ,[]).
split ([A,B|D] ,[A|E] ,[B|F])←split (D,E,F).

mode(union(+,+,-)).
type(union(list,li st,li st)).

union([] ,A,A).
union([A|B] ,C,D)←

member(A,C),!,
union(B,C,D).

union([A|B] ,C,[A|D])←
union(B,C,D).

mode(insertb(+,+,-)).
type(insertb(int,li st,li st)).

insertb(A,[] ,[A]).
insertb(A,[B|C] ,[A,B|C])←A<B.
insertb(A,[B|C] ,[B|D])←B<A,insertb(A,C,D).

Predicates in background knowledge integer:

mode(pred(+,-)).
type(pred(int,int)).

202 ANNEX

pred(X,Y)←Y is X-1,X>0.

mode(succ(+,-)).
type(succ(int,int)).

succ(X,Y)←Y is X+1.

mode(zero(+)).
type(zero(int)).

zero(0).

mode(one(+)).
type(one(int)).

one(1).

mode(plus(+,+,-)).
type(plus(int,int,int)).

plus(X,Y,Z)←Z is Y+X.

mode(multb(+,+,-)).
type(multb(int,int,int)).

multb(X,Y,Z)←Z is X*Y.

%predicate multiply/3 is equivalent to multb/3.

mode(even(-)).
type(even(peano)).

even(0).
even(s(s(X)))←even(X).

mode(odd(+)).
type(odd(peano)).

odd(s(0)).
odd(s(s(X)))← odd(X).

Other predicates:

ANNEX 203

sorted([]).
sorted([A]).
sorted([A,B|C])←

A=< B,
sorted([B|C]).

sublist(A,B)←
prefix(A,B).

sublist(A,[B|C])←
sublist(A,C).

prefix([] ,A).
prefix([A|B] ,[A|C])←

prefix(B,C).

Appendix B

Definitions of types:

int(X)←member(X,[0,1,2,3,4,5,6,7,8,9]).

letter(X)←member(X,[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z]).

li st([]).
li st([A|B])←int(A),li st(B).

peano(0).
peano(s(X))←peano(X).

Appendix C

‘ decomp_test_rec_comp_2’

body(P)-->decomp(+,2),test(* ,2),recurs(* ,2,P),comp(* ,2).
body(P)-->test(+,2),comp(* ,2).

decomp(_,N)-->lit_decomp,{N>0}.
decomp(_,N)-->lit_decomp,{N2 is N-1},decomp(+,N2).
decomp(* ,N)-->[] .

204 ANNEX

lit_decomp-->[dest/3] ;[pred/2] ;[partb/4] .

test(_,N)-->lit_test,{N>0}.
test(_,N)-->lit_test,{N2 is N-1},test(+,N2).
test(* ,N)-->[] .

lit_test-->[null/1] ;[memberb/2] ;[notmemberb/2] ;[zero/1] .

comp(_,N)-->lit_comp,{N>0}.
comp(_,N)-->lit_comp,{N2 is N-1},comp(+,N2).
comp(* ,N)-->[] .

lit_comp-->[appendb/3] ;[insertb/3] ;[addlast/3] ;[const/3] .

recurs(_,N,P)-->lit_recurs(P),{N>0}.
recurs(_,N,P)-->lit_recurs(P),{N2 is N-1},rec(+,N2,P).
recurs(* ,N,P)-->[] .

lit_recurs(P)-->[P] .

‘ decomp_+test_rec_comp_2’

body(P)-->decomp(+,2),test(+,2),rec(* ,2,P),comp(* ,2).
body(P)-->test(+,2),comp(* ,2).

Otherwise identical to decomp_test_rec_comp_2.dcg.

‘ decomp_test_rec1_comp_2’

body(P)-->decomp(+,2),test* ,2),rec(* ,1,P),comp(* ,2).
body(P)-->test(+,2),comp(* ,2).

Otherwise identical to decomp_test_rec_comp_2.dcg.

205

List of Figures

Figure 1.1: Our work and related fields. 2

Figure 3.1: Derivation Graph 30

Figure 3.2: Part of one refinement graph [108]. 43

Figure 4.1: Framework of the SKIL system 62

Figure 4.2: Typical format of a specification for predicate p/k. 64

Figure 4.3: Example of a specification for the predicate reverse/2. 66

Figure 4.4: An example of background knowledge 67

Figure 4.5: Linking terms {a,b} to term e. 69

Figure 4.6: Graphical representation of one sketch. 70

Figure 4.7: One derivation of the program. 87

Figure 4.8:A Vere chain of associations example. 102

Figure 5.1: Derivation of a positi ve example. 112

Figure 5.2: Derivation D of the example e2. 119

Figure 5.3: The SKILit system architecture 125

Figure 6.1: Experimental Methodology 141

Figure 6.2: Success Rate vs. the number of training examples. 147

Figure 6.3: Percentage of test-perfect programs vs. the number of training examples. 148

Figure 6.4: Spent CPU time (seconds). 149

Figure 6.5: Success rates of SKILit vs. CRUSTACEAN 153

Figure 6.6: Comparison between SKILit and Progol for append/3. 154

Figure 7.1: SKILit + MONIC: obtained success rate. 177

Figure 7.2: SKILit + MONIC: percentages of test-perfect program. 177

Figure 7.3: SKILit + MONIC: CPU time spent (seconds). 178

206

List of Algor ithms

Algorithm 1: Construction of a program by SKIL 75

Algorithm 2: Generation of a clause through the refinement of a sketch 77

Algorithm 3: Refinement Operator 80

Algorithm 4: Construction of the relevant sub-model 82

Algorithm 5: Iterative induction 116

Algorithm 6: High level description of SKILit 170

Algorithm 7: MONIC: The integrity checker. 173

List of Examples

Example 2.1: 16

Example 3.1: 25

Example 3.2: 28

Example 3.3: 30

Example 3.4: 32

Example 3.5: 33

Example 3.6: 36

Example 3.7: 37

Example 3.8: 38

Example 3.9: 41

Example 3.10: 43

Example 3.11: 45

Example 4.1: 68

Example 4.2: 69

Example 4.3: 70

Example 4.4: 72

Example 4.5: 76

Example 4.6: 81

Example 4.7: 82

Example 4.8: 85

Example 4.9: 85

Example 4.10: 86

207

Example 4.11: 91

Example 4.12: 93

Example 4.13: 96

Example 5.1: 109

Example 5.2: 109

Example 5.3: 110

Example 5.4: 112

Example 5.5: 113

Example 5.6: 113

Example 5.7: 117

Example 5.8: 118

Example 5.9: 120

Example 5.10: 122

Example 5.11: 131

Example 5.12: 133

Example 7.1: 166

Example 7.2: 166

Example 7.3: 167

Example 7.4: 168

Example 7.5: 169

Example 7.6: 173

Example 7.7: 175

List of Definitions

Definition 3.1: 31

Definition 3.2: 36

Definition 3.3: 37

Definition 3.4: 40

Definition 3.5: 41

Definition 3.6: 42

Definition 3.7: 42

Definition 3.8: 43

Definition 3.9: 45

Definition 3.10: 45

208

Definition 4.1: 68

Definition 4.2: 69

Definition 4.3: 69

Definition 4.4: 69

Definition 4.5: 70

Definition 4.6: 71

Definition 4.7: 71

Definition 4.8: 71

Definition 4.9: 72

Definition 4.10: 72

Definition 4.11: 72

Definition 4.12: 84

Definition 4.13: 86

Definition 4.14: 88

Definition 4.15: 88

Definition 4.16: 89

Definition 4.17: 89

Definition 4.18: 95

Definition 4.19: 96

Definition 4.20: 96

Definition 4.21: 97

Definition 4.22: 97

Definition 5.1: 110

Definition 5.2: 111

Definition 5.3: 112

Definition 7.1: 166

Definition 7.2: 168

Definition 7.3: 168

209

Index

—θθ—

θ-subsumption, 41

—A—

adaptive strategy, 134

admissible predicates in SKIL, 67

arguments, 24

input, 33

output, 33

arity, 24

association chain, 102

atom, 24

automatic programming, 12, 15

—B—

background knowledge

extensional, 35

intensional, 35, 59

basic representative set, 110

bias, 47

declarative, 48

language, 47

bottom-up approach in ILP, 42

—C—

CASE, 13

code generators, 14

clause, 24

definite, 25

ground, 25

indefinite, 25

linked, 47

recursive, 25

clause schemata, 49

clause structure grammar, 73, 90

clause templates, 50

CLINT, 39, 169, 180

closed world assumption, 164

closed-loop system, 134

compatible

with a type declaration, 32, 94

completeness

in ILP, 36

MONIC, 181

of a sketch refinement operator, 97

concept language, 34

consolidation, 95

coverage

extensional, 36

intensional, 36

covering strategy, 119

CRUSTACEAN, 53, 58, 113, 131, 152

—D—

DCG, 49, 73

debugging, 17

definite clause grammar, 49

dependency graphs, 49

derivation, 28

determinations, 47

directionall y li nked clause, 69

210 INDEX

—E—

effort limit, 78

environments

program development, 15, 19

example

negative, 34

positi ve, 34

explanation, 35

—F—

flattening, 74

FOIL, 46, 51, 104, 134, 159, 184

formal methods, 14

functor, 24

—G—

generali zation

least general, 42

operator, 40

generali zed subsumption, 41

GOLEM, 45, 51, 109, 183

good examples, 110

—H—

hill -climbing, 46

hypothesis

generali zation relation, 40

language, 34

—I—

i j-determinate clauses, 48

incrementalit y, 39

inductive program synthesis from incomplete

specifications, 34

inductive synthesis, 17, 34

input/output modes (or simply modes) of a predicate,

33

integrity constraint, 33, 37, 164, 166

generative, 171

restrictive, 171

satisfaction of, 168

violating instance, 168

interaction, 39

interactive system, 39

inverting impli cation, 113

iterative induction, 108

—L—

language shift, 49

learning from examples, 34

least general generali zation, 42, 45

literal, 24

logic program synthesis, 16

—M—

MIS, 17, 39, 44, 51, 88, 134

mode declaration, 48

Monte Carlo

method of, 169

most general unifier, 28

multi -predicate synthesis, 39, 128

—N—

noise, 39

INDEX 211

—O—

operator

generali zation, 40

speciali zation, 40

oracle, 39

—P—

predicate invention, 39

Progol, 52, 110, 153, 184

program synthesis, 15

from examples, 34

programming knowledge, 59, 67, 90, 104

proof procedure, 28

SLD, 28

SLDNF, 164

property, 52, 114

pure iterative strategy, 122

—Q—

query, 27

acceptable, 170

queue, 46

—R—

refinement of a clause, 43

refinement operator, 43

globall y complete, 44

locall y complete, 44

of SKIL, 77, 94

relational li nk, 69, 75

relational pathfinding, 103

relational production, 102

relevant sub-model, 80

rule models, 49

—S—

safe computational rule, 181

scheme

SYNAPSE, 53

search

breadth-first, 45, 77

greedy, 46

heuristic, 46

top-down, 43

semantics

non-monotonic, 35

normal, 35

set of examples

basic representative, 110

complete, 109

sparse, 59, 109

single predicate synthesis, 39

sketch

algorithm, 68, 70

associated to an example, 71

black box, 71

consolidation, 71

literals, 68

operational, 71, 77

operational lit erals, 68

predicates, 68

syntacticall y ordered, 72

sketch refinement operator, 96

SKIL, 61

specification, 63

SKILit, 115

SLD resolution, 28

SLDNF resolution, 28

soundness, 36

speciali zation

212 INDEX

most general, 42

operator, 40

specification

complete, 16

formal, 14, 16

incomplete, 16, 61

informal, 16

substitution, 27

answer, 27

sub-unification, 113

success rate, 141

SYNAPSE, 39, 52

—T—

TC, 116, 124

term, 24

depth of a, 47

test-perfect programs

percentage of, 142

T-impli cation, 41

top-down approach in ILP, 42

type, 32

declaration, 32, 48

—U—

unifier, 27

—V—

variabili zation, 78

complete, 78

simple, 78

variable

depth of a, 47

variable splitti ng, 133

vocabulary, 47, 90

