
Approximation Algorithms and Inapproximability

Ana Paula Tomás

Department of Computer Science, Faculty of Sciences
Center of Mathematics

University of Porto, Portugal

January 2021

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 1 / 25

NPO, APX, APX-hard problems

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ? (i.e., encoded
as a language over Σ). val(S, I) ∈ Q+

0 is the value of the feasible solution S and S(I)
is the set of feasible solutions. The goal is to find OPT (I) = minS∈S(I) val(S, I) for a
minimization problem, and OPT (I) = maxS∈S(I) val(S, I)) for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

given x ∈ Σ?, we can check if x is an instance of Π in poly(|x |) time;

|S| is poly(|I|), for each I and S ∈ S(I);

there is a poly-time decision procedure that decides if x ∈ S(I), for I and x ∈ Σ?;

val(I,S) is a poly-time computable function.

L(Π,B) = {I : OPT (I) ≤ B}, the decision version of a NPO minimization problem Π,
belongs to NP. When the decision version is NP-hard the optimization problem is
called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its
decision version L(Π,B) is NP-complete.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 2 / 25

NPO, APX, APX-hard problems

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ? (i.e., encoded
as a language over Σ). val(S, I) ∈ Q+

0 is the value of the feasible solution S and S(I)
is the set of feasible solutions. The goal is to find OPT (I) = minS∈S(I) val(S, I) for a
minimization problem, and OPT (I) = maxS∈S(I) val(S, I)) for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

given x ∈ Σ?, we can check if x is an instance of Π in poly(|x |) time;

|S| is poly(|I|), for each I and S ∈ S(I);

there is a poly-time decision procedure that decides if x ∈ S(I), for I and x ∈ Σ?;

val(I,S) is a poly-time computable function.

L(Π,B) = {I : OPT (I) ≤ B}, the decision version of a NPO minimization problem Π,
belongs to NP. When the decision version is NP-hard the optimization problem is
called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its
decision version L(Π,B) is NP-complete.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 2 / 25

NPO, APX, APX-hard problems

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ? (i.e., encoded
as a language over Σ). val(S, I) ∈ Q+

0 is the value of the feasible solution S and S(I)
is the set of feasible solutions. The goal is to find OPT (I) = minS∈S(I) val(S, I) for a
minimization problem, and OPT (I) = maxS∈S(I) val(S, I)) for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

given x ∈ Σ?, we can check if x is an instance of Π in poly(|x |) time;

|S| is poly(|I|), for each I and S ∈ S(I);

there is a poly-time decision procedure that decides if x ∈ S(I), for I and x ∈ Σ?;

val(I,S) is a poly-time computable function.

L(Π,B) = {I : OPT (I) ≤ B}, the decision version of a NPO minimization problem Π,
belongs to NP. When the decision version is NP-hard the optimization problem is
called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its
decision version L(Π,B) is NP-complete.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 2 / 25

NPO, APX, APX-hard problems

Approximation Algorithms

Approximation ratio

The approximation ratio of an algorithm A for a minimization problem is
αA = maxI

A(I)
OPT (I) , where A(I) is the value of the solution A returns for

instance I. So, A(I) ≤ αAOPT (I). For a maximization problem,
αA = maxI

OPT (I)
A(I) , so that A(I) ≥ 1

αA
OPT (I).

By this definition, αA ≥ 1 even for maximization problems. On an input of size n, the
ratio αA can be a function αA(n). If the function is constant, i.e., does not depend
on n, then A is a constant factor approximation algorithm.

The class APX and APX-hard problems

APX is the class of NPO problems for which there are constant factor
polynomial time approximation algorithms.
An NPO problem is APX-hard if there is a constant ε > 0 such that an
approximation ratio of 1 + ε cannot be guaranteed by any polynomial-time
algorithm, unless P = NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 3 / 25

NPO, APX, APX-hard problems

Approximation Algorithms

Approximation ratio

The approximation ratio of an algorithm A for a minimization problem is
αA = maxI

A(I)
OPT (I) , where A(I) is the value of the solution A returns for

instance I. So, A(I) ≤ αAOPT (I). For a maximization problem,
αA = maxI

OPT (I)
A(I) , so that A(I) ≥ 1

αA
OPT (I).

By this definition, αA ≥ 1 even for maximization problems. On an input of size n, the
ratio αA can be a function αA(n). If the function is constant, i.e., does not depend
on n, then A is a constant factor approximation algorithm.

The class APX and APX-hard problems

APX is the class of NPO problems for which there are constant factor
polynomial time approximation algorithms.
An NPO problem is APX-hard if there is a constant ε > 0 such that an
approximation ratio of 1 + ε cannot be guaranteed by any polynomial-time
algorithm, unless P = NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 3 / 25

NPO, APX, APX-hard problems

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of
(1 + ε)-approximation algorithms Aε for problem Π, over all 0 < ε < 1.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size, for all ε.
(the time complexity can be exponential in 1/ε)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size and also
polynomial in 1/ε, for all ε.

[Arora et al., FOCS’92] If there is a PTAS for some APX-hard problem, P=NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 4 / 25

NPO, APX, APX-hard problems

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of
(1 + ε)-approximation algorithms Aε for problem Π, over all 0 < ε < 1.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size, for all ε.
(the time complexity can be exponential in 1/ε)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size and also
polynomial in 1/ε, for all ε.

[Arora et al., FOCS’92] If there is a PTAS for some APX-hard problem, P=NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 4 / 25

NPO, APX, APX-hard problems

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of
(1 + ε)-approximation algorithms Aε for problem Π, over all 0 < ε < 1.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size, for all ε.
(the time complexity can be exponential in 1/ε)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size and also
polynomial in 1/ε, for all ε.

[Arora et al., FOCS’92] If there is a PTAS for some APX-hard problem, P=NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 4 / 25

Minimum Vertex Cover for Graphs Approximations Algorithm for Vertex Cover

2-approximation algorithm for VERTEX COVER
VERTEXCOVER asks for a minimum cardinality vertex-cover of a given
undirected graph G = (V ,E). A vertex-cover of G is a subset S ⊆ V such
that for each edge (u, v) ∈ E , either u ∈ S or v ∈ S, or both.

Given G and k ∈ N as input, deciding if G has a vertex-cover S of size
|S| ≤ k is a well-known NP-complete problem.

VERTEXCOVER is APX-complete (i.e., APX-hard and belongs to APX).

2-approximation for VERTEXCOVER

S := ∅
while (E 6= ∅) do

remove an edge e = (u, v) from E
remove all edges incident to u or v
S := S ∪ {u, v}

return S

Proof: The algorithm yields a vertex-cover S

in poly-time. The selected edges e do not

share endpoints (they form a matching M of

G). If S? is an optimal vertex-cover,

|S?| ≥ |M| = |S|/2, since each edge in M

is covered by a distinct vertex of S?. Thus,

|S| ≤ 2|S?|.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 5 / 25

Minimum Vertex Cover for Graphs Approximations Algorithm for Vertex Cover

2-approximation algorithm for VERTEX COVER
VERTEXCOVER asks for a minimum cardinality vertex-cover of a given
undirected graph G = (V ,E). A vertex-cover of G is a subset S ⊆ V such
that for each edge (u, v) ∈ E , either u ∈ S or v ∈ S, or both.

Given G and k ∈ N as input, deciding if G has a vertex-cover S of size
|S| ≤ k is a well-known NP-complete problem.

VERTEXCOVER is APX-complete (i.e., APX-hard and belongs to APX).

2-approximation for VERTEXCOVER

S := ∅
while (E 6= ∅) do

remove an edge e = (u, v) from E
remove all edges incident to u or v
S := S ∪ {u, v}

return S

Proof: The algorithm yields a vertex-cover S

in poly-time. The selected edges e do not

share endpoints (they form a matching M of

G). If S? is an optimal vertex-cover,

|S?| ≥ |M| = |S|/2, since each edge in M

is covered by a distinct vertex of S?. Thus,

|S| ≤ 2|S?|.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 5 / 25

Minimum Vertex Cover for Graphs Approximations Algorithm for Vertex Cover

2-approximation for VERTEX COVER (by LP rounding)

Consider VERTEXCOVER as a boolean linear programming problem.

minimize
∑

v∈V xv{
xu + xv ≥ 1, for all (u, v) ∈ E
xv ∈ {0,1}, for all v ∈ V

It is known that its linear relaxation, i.e., the problem we obtain if we
replace the domain constraint xv ∈ {0,1} by xv ∈ [0,1], for all v , can be
solved in polynomial time. Let x? be its optimal solution.

The boolean solution given by xv = 1 if x?v ≥ 1/2 and xv = 0 if x?v < 1/2,
for all v ∈ V , is a feasible solution to VERTEXCOVER. In fact, for each
edge (u, v), either x?u ≥ 1/2 or x?v ≥ 1/2 (otherwise, x?u + x?v ≥ 1 would
be violated). So, S = {v ∈ V | xv = 1} is a vertex-cover.

If S? is a minimum vertex-cover, then |S| ≤ 2|S?|. In fact, by construction
|S| ≤ 2

∑
v∈V x?v , and

∑
v∈V x?v ≤ |S?| because the optimal solution of

the relaxation cannot be worse then the value of any other of its
solutions (therefore, of the boolean solution induced by S?).

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 6 / 25

Minimum Vertex Cover for Graphs Inapproximability Bounds

Minimum vertex-cover is APX-hard

Some known inapproximability bounds for minimum vertex cover on
graphs:

It is hard to approximate to within 2− ε, for any constant ε > 0, if the
unique games conjecture is true (S.Khot & O.Regev, 2008).

Håstad (J.ACM, 2001) showed that it is NP-hard to approximate within
constant factors less than 7/6. This factor was improved by Dinur and
Safra (STOC’2002) to 10

√
5− 21 ≈ 1.36.

If the graph has degree bounded by 3, it cannot be approximated within
100/99− ε, for ε > 0, unless P=NP; 53/52− ε if the degree is bounded
by 4. [Chlebík & Chlebíková, FCT 2003]. Improved to 1.0101215− ε and
1.0194553− ε. (Chlebík & Chlebíková, TCS 354, 320–338, 2006);

Unique games conjecture: https://en.wikipedia.org/wiki/Unique_games_conjecture

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 7 / 25

https://en.wikipedia.org/wiki/Unique_games_conjecture

Traveling Salesman Problem (TSP) Metric TSP is in APX

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d
satisfies d(x , y) ≤ d(x , z) + d(z, y), for all x , y , z ∈ V .

The approximation algorithms we will introduce for the metric TSP make use
of the following property.

Property

Given any walk γ = (x1, x2, x3, . . . , xp−1, xp), with p ≥ 3, we can replace
(xi−1, xi , xi+1) by (xi−1, xi+1), to obtain a walk γ′ from x1 to xp such that
d(γ) ≤ d(γ′), with 1 < i < p.

Proof: (xi−1, xi+1) is an edge of G, because G is a complete graph. Thus, γ′ is a walk in G. By the triangle inequality,

d(γ′) = d(γ) + d(xi−1, xi+1)− (d(xi−1, xi) + d(xi , xi+1)) ≤ d(γ).

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 8 / 25

Traveling Salesman Problem (TSP) Metric TSP is in APX

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d
satisfies d(x , y) ≤ d(x , z) + d(z, y), for all x , y , z ∈ V .

The approximation algorithms we will introduce for the metric TSP make use
of the following property.

Property

Given any walk γ = (x1, x2, x3, . . . , xp−1, xp), with p ≥ 3, we can replace
(xi−1, xi , xi+1) by (xi−1, xi+1), to obtain a walk γ′ from x1 to xp such that
d(γ) ≤ d(γ′), with 1 < i < p.

Proof: (xi−1, xi+1) is an edge of G, because G is a complete graph. Thus, γ′ is a walk in G. By the triangle inequality,

d(γ′) = d(γ) + d(xi−1, xi+1)− (d(xi−1, xi) + d(xi , xi+1)) ≤ d(γ).

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 8 / 25

Traveling Salesman Problem (TSP) Metric TSP is in APX

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP

Construct a minimum spanning tree (MST) T ? of G; Double every edge of T
to get an eulerian graph; Find an Eulerian tour W on this graph (e.g.,
induced by a traversal of T in depth-first order); Let C be the list of vertices
obtained by deleting all duplicates in W (keep the last vertex); Return C.

Proof: C is an Hamiltonean cycle in G and, by the triangle inequality, d(C) ≤ 2d(T ?)

(to remove a duplicate, we replaced two edges in W by a single one in C). If C? is the
optimal cycle, d(C) ≤ 2d(C?) because if we delete an edge e from C? we get a
spanning tree T with d(T ?) ≤ d(T) = d(C?)− d(e) ≤ d(C?). Therefore,
d(C) ≤ 2d(T ?) ≤ 2d(C?).

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 9 / 25

Traveling Salesman Problem (TSP) Metric TSP is in APX

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP

Construct a minimum spanning tree (MST) T ? of G; Double every edge of T
to get an eulerian graph; Find an Eulerian tour W on this graph (e.g.,
induced by a traversal of T in depth-first order); Let C be the list of vertices
obtained by deleting all duplicates in W (keep the last vertex); Return C.

Proof: C is an Hamiltonean cycle in G and, by the triangle inequality, d(C) ≤ 2d(T ?)

(to remove a duplicate, we replaced two edges in W by a single one in C). If C? is the
optimal cycle, d(C) ≤ 2d(C?) because if we delete an edge e from C? we get a
spanning tree T with d(T ?) ≤ d(T) = d(C?)− d(e) ≤ d(C?). Therefore,
d(C) ≤ 2d(T ?) ≤ 2d(C?).

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 9 / 25

Traveling Salesman Problem (TSP) Metric TSP is in APX

1.5-approximation for the metric TSP

Christofides algorithm for the Metric TSP:

Find a minimum spanning tree T ? of G.

Instead of duplicating all edges of T ? (to form an Eulerian circuit), take the set of
nodes O that have odd degree. (Recall that a graph has an Eulerian circuit iff
every node has even degree). For the set O, find a matching M? of minimum
weight in G. (Note that M? exists because |O| is always even and G is complete).

Add M to T ? to obtain a subgraph G′ of G, with V as vertex set and that has an
Eulerian circuit. Find an Eulerian circuit Ce in G′.

Visit Ce, eliminating duplicates to produce an Hamiltonean cycle C.

Theorem: Every step can be carried out in a polynomial time and d(C) ≤ 1.5d(C?).
A sketch of the proof: Given an optimal solution C? to the TSP, we can start from a vertex inO and remove from C? all the

vertices in V \ O. This gives a cycle CO such that d(C?) ≥ d(CO), by the triangle inequality. CO consists of two disjoint

matchings, say M1 and M2, for the nodes in O. Since M? is minimum, d(CO) = d(M1) + d(M2) ≥ 2d(M?). Therefore,

d(M?) ≤ 0.5d(CO) ≤ 0.5d(C?). Moreover, d(T?) ≤ d(C?) (when we remove an edge from C?, we get a supporting tree).

Thus, d(C) ≤ d(T?) + d(M?) ≤ 1.5d(C?).

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 10 / 25

Traveling Salesman Problem (TSP) Inapproximability of the general TSP

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

Inapproximability of the general TSP

If P 6= NP, there is no polynomial time α(n)-approximation algorithm for TSP,
for any polynomial time computable function α(n), where n = |V |.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let G = (V , E) be an undirected graph. Construct a complete
graph G′ = (V , E′) from V , and define d(e) = 1 if e ∈ E and d(e) = α(n)n + 1 if e /∈ E , for each e ∈ E′.

SupposeA is a polynomial time α(n)-approximation algorithm for TSP. RunA on G′. If G has an Hamiltonean cycle C?, thenA

must return a cycle C in G′ such that d(C) ≤ α(n)d(C?) = α(n)n. If G has no Hamiltonean cycle, thenA must return a cycle

C in G′ such that d(C) ≥ (α(n)n + 1) + (n − 1) > α(n)n, because C must have at least one edge e /∈ E (i.e., with

d(e) = α(n)n + 1). Thus, we can useA to decide the existence of an hamiltonian cycle in G. Therefore,A cannot exist if

P 6= NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 11 / 25

Traveling Salesman Problem (TSP) Inapproximability of the general TSP

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

Inapproximability of the general TSP

If P 6= NP, there is no polynomial time α(n)-approximation algorithm for TSP,
for any polynomial time computable function α(n), where n = |V |.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let G = (V , E) be an undirected graph. Construct a complete
graph G′ = (V , E′) from V , and define d(e) = 1 if e ∈ E and d(e) = α(n)n + 1 if e /∈ E , for each e ∈ E′.

SupposeA is a polynomial time α(n)-approximation algorithm for TSP. RunA on G′. If G has an Hamiltonean cycle C?, thenA

must return a cycle C in G′ such that d(C) ≤ α(n)d(C?) = α(n)n. If G has no Hamiltonean cycle, thenA must return a cycle

C in G′ such that d(C) ≥ (α(n)n + 1) + (n − 1) > α(n)n, because C must have at least one edge e /∈ E (i.e., with

d(e) = α(n)n + 1). Thus, we can useA to decide the existence of an hamiltonian cycle in G. Therefore,A cannot exist if

P 6= NP.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 11 / 25

Approximation Algorithms for Bin Packing

BIN PACKING: Approximation and Inapproximability

NP-hardness by reduction from PARTITION

Inapproximabiity to 3/2− ε, for ε > 0, if P=NP, by reduction from
PARTITION

Belongs to APX: 2-approximation algorithms (proof for First Fit Strategy);
mention 3/2-approximation for “first fit decreasing”

Please refer to:

http://ac.informatik.uni-freiburg.de/lak_teaching/
ws11_12/combopt/notes/bin_packing.pdf

https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking

http://ac.informatik.uni-freiburg.de/lak_teaching/
ws07_08/algotheo/Slides/13_bin_packing.pdf

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 12 / 25

http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking
http://ac.informatik.uni-freiburg.de/lak_teaching/ws07_08/algotheo/Slides/13_bin_packing.pdf
http://ac.informatik.uni-freiburg.de/lak_teaching/ws07_08/algotheo/Slides/13_bin_packing.pdf

Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER

MIN-SET-COVER Given a collection F of nonempty subsets of
A = {a1, . . . ,an}, find a covering C? ⊆ F of A such that |C?| is minimum (if
we consider all possible coverings C ⊆ F).

GREEDY APPROXIMATION ALGORITHM: while there are uncovered elements, selects
the set that covers the maximum number of uncovered elements.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 13 / 25

Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER (cont.)

Lemma

Suppose there are k sets covering everything. After t choices, the greedy algorithm
has at most (1− 1/k)t fraction uncovered.

Proof:
If C is a covering with |C| = k , there is at least a set Ci in C such that |Ci | ≥ n/k
(Pigeon’s hole principle).

Since the first set selected by the greedy algorithm, say F1, must have at least |Ci |
elements, there remain at most n − n/k elements uncovered after the first iteration,
i.e., (1− 1/k)n elements uncovered.

Let F ′ = {Fj \ F1 | Fj ∈ F ,Fj \ F1 6= ∅} and C′ = {Ci \ F1 | Ci ∈ C,Ci \ F1 6= ∅}.

Clearly, C′ ⊆ F ′ and |C′| ≤ k and we can use C′ to cover A \ F1. If we note that
(1− 1/|C′|) ≤ (1− 1/k), the result follows.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 14 / 25

Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER (cont.)

Lemma

Suppose there are k sets covering everything. After t choices, the greedy algorithm
has at most (1− 1/k)t fraction uncovered.

Proposition

The greedy algorithm is a (1 + ln n) approximation algorithm.

Proof: Let k? be the optimal value. Once we have < 1/n fraction uncovered, we are
done.

Since ex =
∑

n∈N xn/n!, we have 1− 1/k? < e−1/k?

and (1− 1/k?)t < (e−1/k?

)t .

Thus, e−t/k?

< 1/n if t > (ln n) k?.

So, the greedy algorithm performs at most b(ln n)k?c+ 1 iterations (and adds a set to
the covering per iteration). Hence, |Cgreedy | ≤ (1 + ln n)k?.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 15 / 25

Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER (cont.)

It can be proved in fact that:

Check CLRS or https://www.cs.dartmouth.edu/~ac/Teach/
CS105-Winter05/Notes/wan-ba-notes.pdf

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 16 / 25

https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/wan-ba-notes.pdf
https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/wan-ba-notes.pdf

Guarding and Visibility Problems Art Gallery Problems (AGP)

Art Gallery Problems (AGP) – Guarding an art gallery

The region visible to v
Shortest Path / Visibility graph

Visibility is central to many areas: sensor networks, wireless
networks, security and surveillance, and architectural design.
An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)
How many guards are always sufficient to guard any polygon with n
vertices (with a 360◦ view, unlimited range)?

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 17 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Art Gallery Problems (AGP) – Guarding an art gallery

The region visible to v
Shortest Path / Visibility graph

Visibility is central to many areas: sensor networks, wireless
networks, security and surveillance, and architectural design.
An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)
How many guards are always sufficient to guard any polygon with n
vertices (with a 360◦ view, unlimited range)?

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 17 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Chvatal’s art gallery theorem (1975)

To cover a polygon of n vertices, bn
3c stationary guards are always

sufficient (and occasionally necessary).

“A proof from THE BOOK” by Fisk (1978):

The polygon may be partitioned into n − 2
triangles by adding n−3 internal diagonals.
The dual graph of a triangulated simple
polygon is a tree.

The triangulation graph can always be
3-coloured. (adjacent vertices must have distinct colour)

Vertices having the same colour form a
guard set.

One of the colours is used by at most bn/3c
vertices. Place guards at these vertices.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 18 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Chvatal’s art gallery theorem (1975)

To cover a polygon of n vertices, bn
3c stationary guards are always

sufficient (and occasionally necessary).

“A proof from THE BOOK” by Fisk (1978):

The polygon may be partitioned into n − 2
triangles by adding n−3 internal diagonals.
The dual graph of a triangulated simple
polygon is a tree.

The triangulation graph can always be
3-coloured. (adjacent vertices must have distinct colour)

Vertices having the same colour form a
guard set.

One of the colours is used by at most bn/3c
vertices. Place guards at these vertices.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 18 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

For orthogonal polygons (Kahn, Klawe and Kleitman, 1980, O’Rourke, 1983)

To cover a polygon of n vertices, bn
4c stationary guards are always

sufficient (and occasionally necessary).

Extensions

Polygons with or without holes;
Different types of guards: stationary guards (point guards, vertex
guards), mobile guards (edge guards), . . . ;
Distinct notions of visibility: (un)limited range, 2π or α-view
(π/2- or π-floodlights), . . .

References: books by O’Rourke, Ghosh. . . ; surveys by Shermer, Urrutia. . . ; two handbooks; several papers

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 19 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Some Art Gallery theorems:

Any polygon with n vertices and h holes can always be guarded with b n+2h
3 c

vertex guards. Conjecture (Shermer): b n+h
3 c (Still open for h > 1)

d n+h
3 e point guards are always sufficient and occasionally necessary.

To guard an orthogonal polygon with n vertices and h holes, b n
4 c point guards or

b n
3 c vertex guards are always sufficient.

Always sufficient and occasionally necessary

b n
4c mobile guards for a n-vertex simple polygon;
b 3n+4

16 c mobile or edge guards for a n-vertex orthogonal polygon;
b 3n+4h+4

16 c mobile guards for an orthogonal polygon with n vertices
and h holes.

. . .

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 20 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Stationary guards, unlimited
visibility range, magnitude 2π.
Two points p and q in P see each
other if pq ∩ Ext(P) = ∅.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: bn/3c guards are
sufficient and occasionally necessary [Chvátal, 1975]; bn/4c for orthogonal
polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?
NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker,
1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 21 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Stationary guards, unlimited
visibility range, magnitude 2π.
Two points p and q in P see each
other if pq ∩ Ext(P) = ∅.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: bn/3c guards are
sufficient and occasionally necessary [Chvátal, 1975]; bn/4c for orthogonal
polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?
NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker,
1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 21 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Stationary guards, unlimited
visibility range, magnitude 2π.
Two points p and q in P see each
other if pq ∩ Ext(P) = ∅.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: bn/3c guards are
sufficient and occasionally necessary [Chvátal, 1975]; bn/4c for orthogonal
polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?
NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker,
1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 21 / 25

Guarding and Visibility Problems Art Gallery Problems (AGP)

Stationary guards, unlimited
visibility range, magnitude 2π.
Two points p and q in P see each
other if pq ∩ Ext(P) = ∅.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: bn/3c guards are
sufficient and occasionally necessary [Chvátal, 1975]; bn/4c for orthogonal
polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?
NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker,
1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 21 / 25

Guarding and Visibility Problems Approximation algorithms

O(log n)-approximation algorithm for MVG by Ghosh

MVG is NP-hard optimization problem [Lee & Lin, 1986], even for
ortho-polygons [Schuchardt & Hecker, 1995].
Can we find approximate solutions with provable quality?

The problem is APX-hard [Eidenbenz et al., 2001].

The algorithm by Ghost (1987, 2010):
– Consider the decomposition induced by the
visibility regions to reduce MINIMUM VERTEX
GUARD to MINIMUM SET COVER;
– The greedy algorithm for MINIMUM SET
COVER gives approximation ratio O(log n).
– Running time: O(n5 log n), improved to O(n4)
for simple polygons and O(n5) for polygons with
holes.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 22 / 25

Guarding and Visibility Problems Approximation algorithms

An anytime algorithm for MVG

MINIMUM VERTEX GUARD (MVG): What is the fewest number of vertex
guards needed for an given polygon P?

[Tomás, Bajuelos & Marques (2003, 2006)]: MVG by sucessive approximations.

Transform MVG instances into MINIMUM SET COVER using a partition of P.
Refine the initial partition to tight upper and lower bounds for OPT (P):

OPT�(Γi) ≤ OPT�(Γi+1) ≤ OPT (P) ≤ OPT�(Πi+1) ≤ OPT�(Πi),

where Γi is the set of pieces of the current partition Πi that are known to be
not visible by sections, up to iteration i .

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 23 / 25

Guarding and Visibility Problems Approximation algorithms

An anytime algorithm for MVG (cont.)

MINVERTEXGUARD(P)
Π := DECOMPOSE(P)
(each piece must be �-visible to at least one vertex)
Compute Gt

v , Gs
v , for all vertices v

Compute Gt
R and Gs

R for all R ∈ Π
Γ := ΓΠ

0
while (OPT�(Γ) < OPT�(Π)) do

Γ,Π := REFINE(Π).

�-visibility disallows cooperation: a guard �-sees a piece only if it sees it
completely. OPT�(Π) optimal number for Π under �-visibility.

Gt
v , Gs

v the pieces that vertex v sees totally and partially;
Gt

R , Gs
R the vertices that see piece R totally and partially.

Γ0 ⊆ {R | R is not visible by sections} ⊆ Π

(Γ the pieces that we know already that cannot be guarded in cooperation)

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 24 / 25

Guarding and Visibility Problems Approximation algorithms

MVG by Sucessive Approximations

For the sequence (Γi ,Πi)i≥0, it holds:

OPT�(Γi) ≤ OPT�(Γi+1) ≤ OPT (P) ≤ OPT�(Πi+1) ≤ OPT�(Πi)

An “anytime algorithm”: at each iteration, can return a solution; if it is not optimal, it can find better solutions if we let the algorithm

continue to run. Not an approximation algorithm (see below).

Γ0 = {R1,R2,R5,R7,R8} and OPT�(Π0) = 3 > 2 = OPT�(Γ0).
By refining Piece 4 (i.e., R4), we get Γ1 = {R1,R2,R5,R7,R8,Rb,Rc ,Rd} and, when
we solve optimization problems (using a solver), we get OPT�(Π1) = OPT�(Γ1) = 2.

A.P.Tomás (DCC-CMUP) CC4010 - Approximation/Inapproximability January 2021 25 / 25

	NPO, APX, APX-hard problems
	Minimum Vertex Cover for Graphs
	Approximations Algorithm for Vertex Cover
	Inapproximability Bounds

	Traveling Salesman Problem (TSP)
	Metric TSP is in APX
	Inapproximability of the general TSP

	Approximation Algorithms for Bin Packing
	Approximation Algorithm for Set Cover
	Art Gallery Problems - optimal solutions
	Guarding and Visibility Problems

