Approximation Algorithms and Inapproximability

Ana Paula Tomás

Department of Computer Science, Faculty of Sciences Center of Mathematics University of Porto, Portugal

January 2021

A.P.Tomás (DCC-CMUP)

CC4010 - Approximation/Inapproximability

January 2021 1 / 25

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances *I* of Π are a subset of Σ^{*} (i.e., encoded as a language over Σ). $val(S, I) \in \mathbb{Q}_0^+$ is the value of the feasible solution *S* and S(I) is the set of feasible solutions. The goal is to find $OPT(I) = \min_{S \in S(I)} val(S, I)$ for a minimization problem, and $OPT(I) = \max_{S \in S(I)} val(S, I)$ for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

- given $x \in \Sigma^*$, we can check if x is an instance of Π in poly(|x|) time;
- |S| is poly(|I|), for each I and $S \in S(I)$;
- there is a poly-time decision procedure that decides if $x \in S(I)$, for *I* and $x \in \Sigma^*$;
- val(I, S) is a poly-time computable function.

 $\mathcal{L}(\Pi, B) = \{I : OPT(I) \le B\}$, the **decision version** of a NPO minimization problem Π , belongs to NP. When the decision version is NP-hard the optimization problem is called an **NP-hard optimization problem**. If Π is an NP-hard NPO problem, its decision version $\mathcal{L}(\Pi, B)$ is NP-complete.

イロト 不得 トイヨト イヨト 二日

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances *I* of Π are a subset of Σ^{*} (i.e., encoded as a language over Σ). $val(S, I) \in \mathbb{Q}_0^+$ is the value of the feasible solution *S* and S(I) is the set of feasible solutions. The goal is to find $OPT(I) = \min_{S \in S(I)} val(S, I)$ for a minimization problem, and $OPT(I) = \max_{S \in S(I)} val(S, I)$ for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

- given $x \in \Sigma^*$, we can check if x is an instance of Π in poly(|x|) time;
- |S| is poly(|I|), for each I and $S \in S(I)$;
- there is a poly-time decision procedure that decides if x ∈ S(I), for I and x ∈ Σ^{*};
- *val*(*I*, *S*) is a poly-time computable function.

 $\mathcal{L}(\Pi, B) = \{I : OPT(I) \le B\}$, the **decision version** of a NPO minimization problem Π , belongs to NP. When the decision version is NP-hard the optimization problem is called an **NP-hard optimization problem**. If Π is an NP-hard NPO problem, its decision version $\mathcal{L}(\Pi, B)$ is NP-complete.

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances *I* of Π are a subset of Σ^{*} (i.e., encoded as a language over Σ). $val(S, I) \in \mathbb{Q}_0^+$ is the value of the feasible solution *S* and S(I) is the set of feasible solutions. The goal is to find $OPT(I) = \min_{S \in S(I)} val(S, I)$ for a minimization problem, and $OPT(I) = \max_{S \in S(I)} val(S, I)$ for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

- given $x \in \Sigma^*$, we can check if x is an instance of Π in poly(|x|) time;
- |S| is poly(|I|), for each I and $S \in S(I)$;
- there is a poly-time decision procedure that decides if x ∈ S(I), for I and x ∈ Σ^{*};
- *val*(*I*, *S*) is a poly-time computable function.

 $\mathcal{L}(\Pi, B) = \{I : OPT(I) \le B\}$, the **decision version** of a NPO minimization problem Π , belongs to NP. When the decision version is NP-hard the optimization problem is called an **NP-hard optimization problem**. If Π is an NP-hard NPO problem, its decision version $\mathcal{L}(\Pi, B)$ is NP-complete.

Approximation Algorithms

Approximation ratio

The approximation ratio of an algorithm \mathcal{A} for a **minimization problem** is $\alpha_{\mathcal{A}} = \max_{I} \frac{\mathcal{A}(I)}{OPT(I)}$, where $\mathcal{A}(I)$ is the value of the solution \mathcal{A} returns for instance *I*. So, $\mathcal{A}(I) \leq \alpha_{\mathcal{A}} OPT(I)$. For a **maximization problem**, $\alpha_{\mathcal{A}} = \max_{I} \frac{OPT(I)}{\mathcal{A}(I)}$, so that $\mathcal{A}(I) \geq \frac{1}{\alpha_{\mathcal{A}}} OPT(I)$.

By this definition, $\alpha_{\mathcal{A}} \ge 1$ even for maximization problems. On an input of size *n*, the ratio $\alpha_{\mathcal{A}}$ can be a function $\alpha_{\mathcal{A}}(n)$. If the function is constant, i.e., does not depend on *n*, then \mathcal{A} is a constant factor approximation algorithm.

The class APX and APX-hard problems

APX is the class of NPO problems for which there are constant factor polynomial time approximation algorithms. An NPO problem is APX-bard if there is a constant c > 0 such that an

approximation ratio of $1 + \epsilon$ cannot be guaranteed by any polynomial-time algorithm, unless P = NP.

Approximation Algorithms

Approximation ratio

The approximation ratio of an algorithm \mathcal{A} for a minimization problem is $\alpha_{\mathcal{A}} = \max_{I} \frac{\mathcal{A}(I)}{OPT(I)}$, where $\mathcal{A}(I)$ is the value of the solution \mathcal{A} returns for instance *I*. So, $\mathcal{A}(I) \leq \alpha_{\mathcal{A}} OPT(I)$. For a maximization problem, $\alpha_{\mathcal{A}} = \max_{I} \frac{OPT(I)}{\mathcal{A}(I)}$, so that $\mathcal{A}(I) \geq \frac{1}{\alpha_{\mathcal{A}}} OPT(I)$.

By this definition, $\alpha_{\mathcal{A}} \ge 1$ even for maximization problems. On an input of size *n*, the ratio $\alpha_{\mathcal{A}}$ can be a function $\alpha_{\mathcal{A}}(n)$. If the function is constant, i.e., does not depend on *n*, then \mathcal{A} is a constant factor approximation algorithm.

The class APX and APX-hard problems

APX is the class of NPO problems for which there are constant factor *polynomial time* approximation algorithms.

An NPO problem is APX-hard if there is a constant $\epsilon > 0$ such that an approximation ratio of $1 + \epsilon$ cannot be guaranteed by any polynomial-time algorithm, unless P = NP.

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of $(1 + \varepsilon)$ -approximation algorithms A_{ε} for problem Π , over all $0 < \varepsilon < 1$.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size, for all ε . (the time complexity can be exponential in $1/\varepsilon$)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size and also polynomial in $1/\varepsilon$, for all ε .

[Arora et al., FOCS'92] If there is a PTAS for some APX-hard problem, P=NP.

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of $(1 + \varepsilon)$ -approximation algorithms A_{ε} for problem Π , over all $0 < \varepsilon < 1$.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size, for all ε .

(the time complexity can be exponential in $1/\varepsilon$)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size and also polynomial in $1/\varepsilon$, for all ε .

[Arora et al., FOCS'92] If there is a PTAS for some APX-hard problem, P=NP.

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of $(1 + \varepsilon)$ -approximation algorithms A_{ε} for problem Π , over all $0 < \varepsilon < 1$.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size, for all ε .

(the time complexity can be exponential in $1/\varepsilon$)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size and also polynomial in $1/\varepsilon$, for all ε .

[Arora et al., FOCS'92] If there is a PTAS for some APX-hard problem, P=NP.

A D b 4 A b

2-approximation algorithm for VERTEX COVER

VERTEXCOVER asks for a *minimum cardinality vertex-cover* of a given undirected graph G = (V, E). A **vertex-cover** of *G* is a subset $S \subseteq V$ such that for each edge $(u, v) \in E$, either $u \in S$ or $v \in S$, or both.

- Given *G* and $k \in \mathbb{N}$ as input, deciding if *G* has a vertex-cover *S* of size $|S| \le k$ is a well-known **NP-complete** problem.
- VERTEXCOVER is APX-complete (i.e., APX-hard and belongs to APX).

```
2-approximation for VERTEXCOVER

S := \emptyset

while (E \neq \emptyset) do

remove an edge e = (u, v) from E

remove all edges incident to u or v

S := S \cup \{u, v\}

return S
```

Proof: The algorithm yields a vertex-cover *S* in poly-time. The selected edges *e* do not share endpoints (they form a matching *M* of *G*). If *S*^{*} is an optimal vertex-cover, $|S^*| \ge |M| = |S|/2$, since each edge in *M* is covered by a distinct vertex of *S*^{*}. Thus, $|S| \le 2|S^*|$.

2-approximation algorithm for VERTEX COVER

VERTEXCOVER asks for a *minimum cardinality vertex-cover* of a given undirected graph G = (V, E). A **vertex-cover** of *G* is a subset $S \subseteq V$ such that for each edge $(u, v) \in E$, either $u \in S$ or $v \in S$, or both.

- Given *G* and $k \in \mathbb{N}$ as input, deciding if *G* has a vertex-cover *S* of size $|S| \le k$ is a well-known **NP-complete** problem.
- VERTEXCOVER is APX-complete (i.e., APX-hard and belongs to APX).

2-approximation for VERTEXCOVER

```
S := \emptyset

while (E \neq \emptyset) do

remove an edge e = (u, v) from E

remove all edges incident to u or v

S := S \cup \{u, v\}

return S
```

 $\begin{array}{l} \textbf{Proof:} \ensuremath{ \ \ red } \text{Proof:} \ensuremath{ \ \$

2-approximation for VERTEX COVER (by LP rounding)

Consider VERTEXCOVER as a boolean linear programming problem.

 $\begin{array}{l} \text{minimize } \sum_{v \in V} x_v \\ \begin{cases} x_u + x_v \geq 1, \text{ for all } (u, v) \in E \\ x_v \in \{0, 1\}, \text{ for all } v \in V \end{array}$

- It is known that its linear relaxation, i.e., the problem we obtain if we replace the domain constraint x_v ∈ {0,1} by x_v ∈ [0,1], for all v, can be solved in polynomial time. Let x* be its optimal solution.
- The boolean solution given by $x_v = 1$ if $x_v^* \ge 1/2$ and $x_v = 0$ if $x_v^* < 1/2$, for all $v \in V$, is a **feasible solution to VERTEXCOVER**. In fact, for each edge (u, v), either $x_u^* \ge 1/2$ or $x_v^* \ge 1/2$ (otherwise, $x_u^* + x_v^* \ge 1$ would be violated). So, $S = \{v \in V \mid x_v = 1\}$ is a vertex-cover.
- If S^* is a minimum vertex-cover, then $|S| \le 2|S^*|$. In fact, by construction $|S| \le 2 \sum_{v \in V} x_v^*$, and $\sum_{v \in V} x_v^* \le |S^*|$ because the optimal solution of the relaxation cannot be worse then the value of any other of its solutions (therefore, of the boolean solution induced by S^*).

Minimum vertex-cover is APX-hard

Some known inapproximability bounds for minimum vertex cover on graphs:

- It is hard to approximate to within 2 ε, for any constant ε > 0, if the unique games conjecture is true (S.Khot & O.Regev, 2008).
- Håstad (J.ACM, 2001) showed that it is NP-hard to approximate within constant factors less than 7/6. This factor was improved by Dinur and Safra (STOC'2002) to $10\sqrt{5} 21 \approx 1.36$.

• If the graph has degree bounded by 3, it cannot be approximated within $100/99 - \epsilon$, for $\epsilon > 0$, unless P=NP; $53/52 - \epsilon$ if the degree is bounded by 4. [Chlebík & Chlebíková, FCT 2003]. Improved to $1.0101215 - \epsilon$ and $1.0194553 - \epsilon$. (Chlebík & Chlebíková, TCS 354, 320–338, 2006);

Unique games conjecture: https://en.wikipedia.org/wiki/Unique_games_conjecture

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a **complete** undirected weighted graph G = (V, E, d) such that $d : E \to \mathbb{R}^+_0$, find an Hamiltonian cycle C^* in G such that $d(C^*) = \sum_{e \in C^*} d(e)$ is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d satisfies $d(x, y) \le d(x, z) + d(z, y)$, for all $x, y, z \in V$.

The approximation algorithms we will introduce for the metric TSP make use of the following property.

Property

Given any walk $\gamma = (x_1, x_2, x_3, \dots, x_{p-1}, x_p)$, with $p \ge 3$, we can replace (x_{i-1}, x_i, x_{i+1}) by (x_{i-1}, x_{i+1}) , to obtain a walk γ' from x_1 to x_p such that $d(\gamma) \le d(\gamma')$, with 1 < i < p.

Proof: (x_{i-1}, x_{i+1}) is an edge of *G*, because *G* is a complete graph. Thus, γ' is a walk in *G*. By the triangle inequality, $d(\gamma') = d(\gamma) + d(x_{i-1}, x_{i+1}) - (d(x_{i-1}, x_i) + d(x_i, x_{i+1})) \le d(\gamma).$

CC4010 - Approximation/Inapproximability

January 2021 8 / 25

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a **complete** undirected weighted graph G = (V, E, d) such that $d : E \to \mathbb{R}^+_0$, find an Hamiltonian cycle C^* in G such that $d(C^*) = \sum_{e \in C^*} d(e)$ is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d satisfies $d(x, y) \le d(x, z) + d(z, y)$, for all $x, y, z \in V$.

The approximation algorithms we will introduce for the metric TSP make use of the following property.

Property

Given any walk $\gamma = (x_1, x_2, x_3, \dots, x_{p-1}, x_p)$, with $p \ge 3$, we can replace (x_{i-1}, x_i, x_{i+1}) by (x_{i-1}, x_{i+1}) , to obtain a walk γ' from x_1 to x_p such that $d(\gamma) \le d(\gamma')$, with 1 < i < p.

Proof: (x_{i-1}, x_{i+1}) is an edge of *G*, because *G* is a complete graph. Thus, γ' is a walk in *G*. By the triangle inequality, $d(\gamma') = d(\gamma) + d(x_{i-1}, x_{i+1}) - (d(x_{i-1}, x_i) + d(x_i, x_{i+1})) \le d(\gamma)$.

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP

Construct a minimum spanning tree (MST) T^* of *G*; Double every edge of *T* to get an **eulerian graph**; Find an Eulerian tour *W* on this graph (e.g., induced by a traversal of *T* in depth-first order); Let *C* be the list of vertices obtained by deleting all duplicates in *W* (keep the last vertex); Return *C*.

Proof: *C* is an Hamiltonean cycle in *G* and, by the triangle inequality, $d(C) \le 2d(T^*)$ (to remove a duplicate, we replaced two edges in *W* by a single one in *C*). If *C*^{*} is the optimal cycle, $d(C) \le 2d(C^*)$ because if we delete an edge *e* from *C*^{*} we get a spanning tree *T* with $d(T^*) \le d(T) = d(C^*) - d(e) \le d(C^*)$. Therefore, $d(C) \le 2d(T^*) \le 2d(C^*)$.

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP

Construct a minimum spanning tree (MST) T^* of *G*; Double every edge of *T* to get an **eulerian graph**; Find an Eulerian tour *W* on this graph (e.g., induced by a traversal of *T* in depth-first order); Let *C* be the list of vertices obtained by deleting all duplicates in *W* (keep the last vertex); Return *C*.

Proof: *C* is an Hamiltonean cycle in *G* and, by the triangle inequality, $d(C) \le 2d(T^*)$ (to remove a duplicate, we replaced two edges in *W* by a single one in *C*). If C^* is the optimal cycle, $d(C) \le 2d(C^*)$ because if we delete an edge *e* from C^* we get a spanning tree *T* with $d(T^*) \le d(T) = d(C^*) - d(e) \le d(C^*)$. Therefore, $d(C) \le 2d(T^*) \le 2d(C^*)$.

Metric TSP is in APX

1.5-approximation for the metric TSP

Christofides algorithm for the Metric TSP:

- Find a minimum spanning tree *T*^{*} of *G*.
- Instead of duplicating all edges of T* (to form an Eulerian circuit), take the set of nodes O that have odd degree. (Recall that a graph has an Eulerian circuit iff every node has even degree). For the set O, find a matching M* of minimum weight in G. (Note that M* exists because |O| is always even and G is complete).
- Add *M* to *T*^{*} to obtain a subgraph *G'* of *G*, with *V* as vertex set and that has an Eulerian circuit. Find an Eulerian circuit C_e in *G'*.
- Visit C_e , eliminating duplicates to produce an Hamiltonean cycle C.

Theorem: Every step can be carried out in a polynomial time and $d(C) \leq 1.5d(C^*)$. A sketch of the proof: Given an optimal solution C^* to the TSP, we can start from a vertex in O and remove from C^* all the vertices in $V \setminus O$. This gives a cycle C_O such that $d(C^*) \geq d(C_O)$, by the triangle inequality. C_O consists of two disjoint matchings, say M_1 and M_2 , for the nodes in O. Since M^* is minimum, $d(C_O) = d(M_1) + d(M_2) \geq 2d(M^*)$. Therefore, $d(M^*) \leq 0.5d(C_O) \leq 0.5d(C^*)$. Moreover, $d(T^*) \leq d(C^*)$ (when we remove an edge from C^* , we get a supporting tree). Thus, $d(C) \leq d(T^*) + d(M^*) \leq 1.5d(C^*)$.

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted graph G = (V, E, d) such that $d : E \to \mathbb{R}^+_0$, find an Hamiltonian cycle C^* in G such that $d(C^*) = \sum_{e \in C^*} d(e)$ is minimum.

Inapproximability of the general TSP

If $P \neq NP$, there is no polynomial time $\alpha(n)$ -approximation algorithm for TSP, for any polynomial time computable function $\alpha(n)$, where n = |V|.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let G = (V, E) be an undirected graph. Construct a complete graph G' = (V, E') from V, and define d(e) = 1 if $e \in E$ and $d(e) = \alpha(n)n + 1$ if $e \notin E$, for each $e \in E'$. Suppose A is a polynomial time $\alpha(n)$ -approximation algorithm for TSP. Run A on G'. If G has an Hamiltonean cycle C^* , then A must return a cycle C in G' such that $d(C) \leq \alpha(n)d(C^*) = \alpha(n)n$. If G has no Hamiltonean cycle, then A must return a cycle C in G' such that $d(C) \geq (\alpha(n)n + 1) + (n - 1) > \alpha(n)n$, because C must have at least one edge $e \notin E$ (i.e., with $d(e) = \alpha(n)n + 1$). Thus, we can use A to decide the existence of an hamiltonian cycle in G. Therefore, A cannot exist if $P \neq NP$.

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted graph G = (V, E, d) such that $d : E \to \mathbb{R}^+_0$, find an Hamiltonian cycle C^* in G such that $d(C^*) = \sum_{e \in C^*} d(e)$ is minimum.

Inapproximability of the general TSP

If $P \neq NP$, there is no polynomial time $\alpha(n)$ -approximation algorithm for TSP, for any polynomial time computable function $\alpha(n)$, where n = |V|.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let G = (V, E) be an undirected graph. Construct a complete graph G' = (V, E') from V, and define d(e) = 1 if $e \in E$ and $d(e) = \alpha(n)n + 1$ if $e \notin E$, for each $e \in E'$. Suppose A is a polynomial time $\alpha(n)$ -approximation algorithm for TSP. Run A on G'. If G has an Hamiltonean cycle C^* , then A must return a cycle C in G' such that $d(C) \leq \alpha(n)d(C^*) = \alpha(n)n$. If G has no Hamiltonean cycle, then A must return a cycle C in G' such that $d(C) \geq (\alpha(n)n + 1) + (n - 1) > \alpha(n)n$, because C must have at least one edge $e \notin E$ (i.e., with $d(e) = \alpha(n)n + 1$). Thus, we can use A to decide the existence of an hamiltonian cycle in G. Therefore, A cannot exist if $P \neq NP$.

BIN PACKING: Approximation and Inapproximability

- NP-hardness by reduction from PARTITION
- Inapproximability to $3/2 \varepsilon$, for $\varepsilon > 0$, if P=NP, by reduction from PARTITION
- Belongs to APX: 2-approximation algorithms (proof for First Fit Strategy); mention 3/2-approximation for "first fit decreasing"

Please refer to:

- http://ac.informatik.uni-freiburg.de/lak_teaching/ ws11_12/combopt/notes/bin_packing.pdf
- https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking
- http://ac.informatik.uni-freiburg.de/lak_teaching/ ws07_08/algotheo/Slides/13_bin_packing.pdf

$O(\log n)$ -approximation for the SET COVER

MIN-SET-COVER Given a collection \mathcal{F} of nonempty subsets of $A = \{a_1, \ldots, a_n\}$, find a covering $C^* \subseteq \mathcal{F}$ of A such that $|C^*|$ is minimum (if we consider all possible coverings $C \subseteq \mathcal{F}$).

GREEDY APPROXIMATION ALGORITHM: while there are uncovered elements, selects the set that covers the maximum number of uncovered elements.

$O(\log n)$ -approximation for the SET COVER (cont.)

Lemma

Suppose there are *k* sets covering everything. After *t* choices, the greedy algorithm has at most $(1 - 1/k)^t$ fraction uncovered.

Proof:

If C is a covering with |C| = k, there is at least a set C_i in C such that $|C_i| \ge n/k$ (Pigeon's hole principle).

Since the first set selected by the **greedy** algorithm, say F_1 , must have at least $|C_i|$ elements, there remain at most n - n/k elements uncovered after the first iteration, i.e., (1 - 1/k)n elements uncovered.

Let $\mathcal{F}' = \{F_j \setminus F_1 \mid F_j \in \mathcal{F}, F_j \setminus F_1 \neq \emptyset\}$ and $\mathcal{C}' = \{C_i \setminus F_1 \mid C_i \in \mathcal{C}, C_i \setminus F_1 \neq \emptyset\}.$

Clearly, $\mathcal{C}' \subseteq \mathcal{F}'$ and $|\mathcal{C}'| \leq k$ and we can use \mathcal{C}' to cover $A \setminus F_1$. If we note that $(1 - 1/|\mathcal{C}'|) \leq (1 - 1/k)$, the result follows.

3

イロト 不得 トイヨト イヨト

$O(\log n)$ -approximation for the SET COVER (cont.)

Lemma

Suppose there are *k* sets covering everything. After *t* choices, the greedy algorithm has at most $(1 - 1/k)^t$ fraction uncovered.

Proposition

The greedy algorithm is a $(1 + \ln n)$ approximation algorithm.

Proof: Let k^* be the optimal value. Once we have < 1/n fraction uncovered, we are done.

Since
$$e^x = \sum_{n \in \mathbb{N}} x^n / n!$$
, we have $1 - 1/k^* < e^{-1/k^*}$ and $(1 - 1/k^*)^t < (e^{-1/k^*})^t$.
Thus, $e^{-t/k^*} < 1/n$ if $t > (\ln n) k^*$.

So, the greedy algorithm performs at most $\lfloor (\ln n)k^* \rfloor + 1$ iterations (and adds a set to the covering per iteration). Hence, $|C_{greedy}| \le (1 + \ln n)k^*$.

$O(\log n)$ -approximation for the SET COVER (cont.)

It can be proved in fact that:

Theorem: GREEDY-SET-COVER is a polynomial time α – approximation algorithm, where

$$\alpha = H\left(\max\left\{|S| : S \in F\right\}\right) \tag{2}$$

and H(d) = the d^{th} harmonic number, which is equal to $1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{d} = \sum_{i=1}^{d} \frac{1}{i} = \log d + O(1)$ (from equation (A.7) in Appendix A).

Check CLRS or https://www.cs.dartmouth.edu/~ac/Teach/ CS105-Winter05/Notes/wan-ba-notes.pdf

Art Gallery Problems (AGP) – Guarding an art gallery

Shortest Path / Visibility graph

• Visibility is central to many areas: sensor networks, wireless networks, security and surveillance, and architectural design.

• An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)

How many guards are always sufficient to guard any polygon with *n* vertices (with a 360° view, unlimited range)?

Art Gallery Problems (AGP) – Guarding an art gallery

- Visibility is central to many areas: sensor networks, wireless networks, security and surveillance, and architectural design.
- An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)

How many guards are always sufficient to guard any polygon with n vertices (with a 360° view, unlimited range)?

< ロ > < 同 > < 回 > < 回 >

Chvatal's art gallery theorem (1975)

To cover a polygon of *n* vertices, $\lfloor \frac{n}{3} \rfloor$ stationary guards are always sufficient (and occasionally necessary).

"A proof from THE BOOK" by Fisk (1978):

- The polygon may be partitioned into n 2 triangles by adding n – 3 internal diagonals.
 The dual graph of a triangulated simple polygon is a tree.
- The triangulation graph can always be 3-coloured. (adjacent vertices must have distinct colour)
- Vertices having the same colour form a guard set.
- One of the colours is used by at most [n/3] vertices. Place guards at these vertices.

< ロ > < 同 > < 回 > < 回 >

Chvatal's art gallery theorem (1975)

To cover a polygon of *n* vertices, $\lfloor \frac{n}{3} \rfloor$ stationary guards are always sufficient (and occasionally necessary).

"A proof from **THE BOOK**" by **Fisk** (1978):

- The polygon may be partitioned into n 2 triangles by adding n – 3 internal diagonals.
 The dual graph of a triangulated simple polygon is a tree.
- The triangulation graph can always be 3-coloured. (adjacent vertices must have distinct colour)
- Vertices having the same colour form a guard set.
- One of the colours is used by at most [n/3] vertices. Place guards at these vertices.

For orthogonal polygons (Kahn, Klawe and Kleitman, 1980, O'Rourke, 1983)

To cover a polygon of *n* vertices, $\lfloor \frac{n}{4} \rfloor$ stationary guards are always sufficient (and occasionally necessary).

Extensions

- Polygons with or without holes;
- Different types of guards: stationary guards (point guards, vertex guards), mobile guards (edge guards), ...;
- Distinct notions of visibility: (un)limited range, 2π or α -view ($\pi/2$ or π -floodlights), ...

References: books by O'Rourke, Ghosh...; surveys by Shermer, Urrutia...; two handbooks; several papers

Some Art Gallery theorems:

- $\lceil \frac{n+h}{3} \rceil$ point guards are always sufficient and occasionally necessary.
- To guard an orthogonal polygon with *n* vertices and *h* holes, $\lfloor \frac{n}{4} \rfloor$ point guards or $\lfloor \frac{n}{3} \rfloor$ vertex guards are always sufficient.
- Always sufficient and occasionally necessary
 - $\lfloor \frac{n}{4} \rfloor$ mobile guards for a *n*-vertex simple polygon;
 - $\lfloor \frac{3n+4}{16} \rfloor$ mobile or edge guards for a *n*-vertex orthogonal polygon;
 - $\lfloor \frac{3n+4h+4}{16} \rfloor$ mobile guards for an orthogonal polygon with *n* vertices and *h* holes.

Ο...

How many guards are always sufficient?

Two classical AGP theorems for *n*-vertex simple polygons: $\lfloor n/3 \rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; $\lfloor n/4 \rfloor$ for orthogonal polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?

NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker, 1995]. APX-hard [Eidenbenz et al., 2001]. Could it be solved exactly in poly-time for some subclasses?

How many guards are always sufficient?

Two classical AGP theorems for *n*-vertex simple polygons: $\lfloor n/3 \rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; $\lfloor n/4 \rfloor$ for orthogonal polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon *P*?

NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker, 1995]. APX-hard [Eidenbenz et al., 2001]. Could it be solved exactly in poly-time for some subclasses?

< ロ > < 同 > < 回 > < 回 >

How many guards are always sufficient?

Two classical AGP theorems for *n*-vertex simple polygons: $\lfloor n/3 \rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; $\lfloor n/4 \rfloor$ for orthogonal polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon *P*?

NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker, 1995]. APX-hard [Eidenbenz et al., 2001].

Could it be solved exactly in poly-time for some subclasses?

How many guards are always sufficient?

Two classical AGP theorems for *n*-vertex simple polygons: $\lfloor n/3 \rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; $\lfloor n/4 \rfloor$ for orthogonal polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon *P*?

NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker, 1995]. APX-hard [Eidenbenz et al., 2001]. Could it be solved exactly in poly-time for some subclasses?

O(log n)-approximation algorithm for MVG by Ghosh

MVG is **NP-hard** optimization problem [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker, 1995]. Can we find approximate solutions with provable quality?

The problem is APX-hard [Eidenbenz et al., 2001].

• The algorithm by Ghost (1987, 2010):

- Consider the decomposition induced by the visibility regions to reduce MINIMUM VERTEX GUARD to MINIMUM SET COVER;

- The greedy algorithm for MINIMUM SET COVER gives approximation ratio $O(\log n)$.

– Running time: $\mathcal{O}(n^5 \log n)$, improved to $\mathcal{O}(n^4)$ for simple polygons and $\mathcal{O}(n^5)$ for polygons with holes.

An anytime algorithm for MVG

MINIMUM VERTEX GUARD (MVG): What is the fewest number of vertex guards needed for an given polygon *P*?

[Tomás, Bajuelos & Marques (2003, 2006)]: MVG by sucessive approximations.

Transform MVG instances into MINIMUM SET COVER using a partition of P. Refine the initial partition to tight upper and lower bounds for OPT(P):

 $OPT_{\Box}(\Gamma_i) \leq OPT_{\Box}(\Gamma_{i+1}) \leq OPT(P) \leq OPT_{\Box}(\Pi_{i+1}) \leq OPT_{\Box}(\Pi_i),$

where Γ_i is the set of pieces of the current partition Π_i that are known to be not visible by sections, up to iteration *i*.

January 2021 23 / 25

An anytime algorithm for MVG (cont.)

```
MINVERTEXGUARD(P)

\Pi := DECOMPOSE(P)

(each piece must be \Box-visible to at least one vertex)

Compute G_v^t, G_v^s, for all vertices v

Compute G_R^t and G_R^s for all R \in \Pi

\Gamma := \Gamma_0^\Pi

while (OPT_\Box(\Gamma) < OPT_\Box(\Pi)) do

\Gamma, \Pi := REFINE(\Pi).
```

- □-visibility disallows cooperation: a guard □-sees a piece only if it sees it completely. *OPT*_□(Π) optimal number for Π under □-visibility.
- G_{v}^{t} , G_{v}^{s} the pieces that vertex v sees totally and partially; G_{R}^{t} , G_{R}^{s} the vertices that see piece R totally and partially.
- Γ₀ ⊆ {*R* | *R* is not visible by sections} ⊆ Π
 (Γ the pieces that we know already that cannot be guarded in cooperation)

MVG by Sucessive Approximations

For the sequence $(\Gamma_i, \Pi_i)_{i \ge 0}$, it holds:

$OPT_{\Box}(\Gamma_i) \leq OPT_{\Box}(\Gamma_{i+1}) \leq OPT(P) \leq OPT_{\Box}(\Pi_{i+1}) \leq OPT_{\Box}(\Pi_i)$

An "anytime algorithm": at each iteration, can return a solution; if it is not optimal, it can find better solutions if we let the algorithm continue to run. Not an approximation algorithm (see below).

 $\Gamma_0 = \{R_1, R_2, R_5, R_7, R_8\}$ and $OPT_{\Box}(\Pi_0) = 3 > 2 = OPT_{\Box}(\Gamma_0)$.

By refining Piece 4 (i.e., R_4), we get $\Gamma_1 = \{R_1, R_2, R_5, R_7, R_8, R_b, R_c, R_d\}$ and, when we solve optimization problems (using a solver), we get $OPT_{\Box}(\Pi_1) = OPT_{\Box}(\Gamma_1) = 2$.