Approximation Algorithms and Inapproximability

Ana Paula Tomás

Department of Computer Science, Faculty of Sciences
Center of Mathematics
University of Porto, Portugal

January 2021

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ^{\star} (i.e., encoded as a language over $\Sigma)$. val $(S, I) \in \mathbb{Q}_{0}^{+}$is the value of the feasible solution S and $\mathcal{S}(I)$ is the set of feasible solutions. The goal is to find $O P T(I)=\min _{S \in \mathcal{S}(I)} v a l(S, I)$ for a minimization problem, and $\left.\operatorname{OPT}(I)=\max _{S \in \mathcal{S}(I)} \operatorname{val}(S, I)\right)$ for a maximization problem.

$\mathcal{L}(\Pi, B)=\{I: O P T(I) \leq B\}$, the decision version of a NPO minimization problem Π, belongs to NP. When the decision version is NP-hard the optimization problem is called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its decision version $\mathcal{L}(\Pi, B)$ is NP-complete.

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ^{\star} (i.e., encoded as a language over $\Sigma)$. val $(S, I) \in \mathbb{Q}_{0}^{+}$is the value of the feasible solution S and $\mathcal{S}(I)$ is the set of feasible solutions. The goal is to find $O P T(I)=\min _{S \in \mathcal{S}(I)} v a l(S, I)$ for a minimization problem, and $\left.\operatorname{OPT}(I)=\max _{S \in \mathcal{S}(I)} \operatorname{val}(S, I)\right)$ for a maximization problem.
Π is a NP optimization problem (Π is in NPO) if:

- given $x \in \Sigma^{\star}$, we can check if x is an instance of Π in poly $(|x|)$ time;
- $|S|$ is poly $(||\mid)$, for each $/$ and $S \in \mathcal{S}(I)$;
- there is a poly-time decision procedure that decides if $x \in \mathcal{S}(I)$, for I and $x \in \Sigma^{\star}$;
- $\operatorname{val}(I, S)$ is a poly-time computable function.

$\mathcal{L}(\Pi, B)=\{I: O P T(I) \leq B\}$, the decision version of a NPO minimization problem Π,

 belongs to NP. When the decision version is NP-hard the optimization problem is called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its decision version $\mathcal{L}(\Pi, B)$ is NP-complete.
NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ^{\star} (i.e., encoded as a language over $\Sigma)$. val $(S, I) \in \mathbb{Q}_{0}^{+}$is the value of the feasible solution S and $\mathcal{S}(I)$ is the set of feasible solutions. The goal is to find $O P T(I)=\min _{S \in \mathcal{S}(I)} v a l(S, I)$ for a minimization problem, and $\left.O P T(I)=\max _{S \in \mathcal{S}(I)} \operatorname{val}(S, I)\right)$ for a maximization problem.
Π is a NP optimization problem (Π is in NPO) if:

- given $x \in \Sigma^{\star}$, we can check if x is an instance of Π in poly $(|x|)$ time;
- $|S|$ is poly $(||\mid)$, for each I and $S \in \mathcal{S}(I)$;
- there is a poly-time decision procedure that decides if $x \in \mathcal{S}(I)$, for I and $x \in \Sigma^{\star}$;
- $\operatorname{val}(I, S)$ is a poly-time computable function.
$\mathcal{L}(\Pi, B)=\{I: O P T(I) \leq B\}$, the decision version of a NPO minimization problem Π, belongs to NP. When the decision version is NP-hard the optimization problem is called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its decision version $\mathcal{L}(\Pi, B)$ is NP-complete.

Approximation Algorithms

Approximation ratio
The approximation ratio of an algorithm \mathcal{A} for a minimization problem is $\alpha_{\mathcal{A}}=\max _{I} \frac{\mathcal{A}(I)}{O P T(I)}$, where $\mathcal{A}(I)$ is the value of the solution \mathcal{A} returns for instance I. So, $\mathcal{A}(I) \leq \alpha_{\mathcal{A}} O P T(I)$. For a maximization problem, $\alpha_{\mathcal{A}}=\max , \frac{\operatorname{OPT}(I)}{\mathcal{A}(I)}$, so that $\mathcal{A}(I) \geq \frac{1}{\alpha_{\mathcal{A}}} \operatorname{OPT}(I)$.

By this definition, $\alpha_{\mathcal{A}} \geq 1$ even for maximization problems. On an input of size n, the ratio $\alpha_{\mathcal{A}}$ can be a function $\alpha_{\mathcal{A}}(n)$. If the function is constant, i.e., does not depend on n, then \mathcal{A} is a constant factor approximation algorithm.

The class APX and APX-hard problems
APX is the class of NPO problems for which there are constant factor
polynomial time approximation algorithms.
An NPO problem is APX-hard if there is a constant $\epsilon>0$ such that an
approximation ratio of $1+\epsilon$ cannot be guaranteed by any polynomial-time algorithm, unless $P=N P$.

Approximation Algorithms

Approximation ratio

The approximation ratio of an algorithm \mathcal{A} for a minimization problem is $\alpha_{\mathcal{A}}=\max _{I} \frac{\mathcal{A}(I)}{O P T(I)}$, where $\mathcal{A}(I)$ is the value of the solution \mathcal{A} returns for instance I. So, $\mathcal{A}(I) \leq \alpha_{\mathcal{A}} O P T(I)$. For a maximization problem, $\alpha_{\mathcal{A}}=\max , \frac{\operatorname{OPT}(I)}{\mathcal{A}(I)}$, so that $\mathcal{A}(I) \geq \frac{1}{\alpha_{\mathcal{A}}} \operatorname{OPT}(I)$.

By this definition, $\alpha_{\mathcal{A}} \geq 1$ even for maximization problems. On an input of size n, the ratio $\alpha_{\mathcal{A}}$ can be a function $\alpha_{\mathcal{A}}(n)$. If the function is constant, i.e., does not depend on n, then \mathcal{A} is a constant factor approximation algorithm.

The class APX and APX-hard problems
APX is the class of NPO problems for which there are constant factor polynomial time approximation algorithms.
An NPO problem is APX-hard if there is a constant $\epsilon>0$ such that an approximation ratio of $1+\epsilon$ cannot be guaranteed by any polynomial-time algorithm, unless $\mathrm{P}=\mathrm{NP}$.

Approximation Schemes

Approximation Scheme
An approximation scheme for an optimization problem Π is a family of $(1+\varepsilon)$-approximation algorithms A_{ε} for problem Π, over all $0<\varepsilon<1$.

Polynomial Time Approximation Scheme (PTAS)
A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size, for all
(the time complexity can be exponential in 1 ,

Fully Polynomial Time Approximation Scheme (FPTAS)
A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size and also polynomial in $1 / \varepsilon$, for all
[Arora et al., FOCS'92] If there is a PTAS for some APX-hard problem, P=NP.

Approximation Schemes

Approximation Scheme
An approximation scheme for an optimization problem Π is a family of $(1+\varepsilon)$-approximation algorithms A_{ε} for problem Π, over all $0<\varepsilon<1$.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size, for all ε. (the time complexity can be exponential in $1 / \varepsilon$)

Fully Polynomial Time Approximation Scheme (FPTAS)
A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size and also polynomial in $1 / \varepsilon$, for all
[Arora et al., FOCS'92] If there is a PTAS for some APX-hard problem, P=NP.

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of $(1+\varepsilon)$-approximation algorithms A_{ε} for problem Π, over all $0<\varepsilon<1$.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size, for all ε.

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme such that the time complexity of A_{ε} is polynomial in the input size and also polynomial in $1 / \varepsilon$, for all ε.
[Arora et al., FOCS'92] If there is a PTAS for some APX-hard problem, $\mathrm{P}=\mathrm{NP}$.

2-approximation algorithm for VERTEX COVER

VertexCover asks for a minimum cardinality vertex-cover of a given undirected graph $G=(V, E)$. A vertex-cover of G is a subset $S \subseteq V$ such that for each edge $(u, v) \in E$, either $u \in S$ or $v \in S$, or both.

- Given G and $k \in \mathbb{N}$ as input, deciding if G has a vertex-cover S of size $|S| \leq k$ is a well-known NP-complete problem.
- VertexCover is APX-complete (i.e., APX-hard and belongs to APX).

Proof: The algorithm yields a vertex-cover S

in poly-time. The selected edges e do not
share endpoints (they form a matching M of

2-approximation algorithm for VERTEX COVER

VertexCover asks for a minimum cardinality vertex-cover of a given undirected graph $G=(V, E)$. A vertex-cover of G is a subset $S \subseteq V$ such that for each edge $(u, v) \in E$, either $u \in S$ or $v \in S$, or both.

- Given G and $k \in \mathbb{N}$ as input, deciding if G has a vertex-cover S of size $|S| \leq k$ is a well-known NP-complete problem.
- VertexCover is APX-complete (i.e., APX-hard and belongs to APX).

2-approximation for VERTEXCOVER
$S:=\emptyset$
while $(E \neq \emptyset)$ do remove an edge $e=(u, v)$ from E remove all edges incident to u or v $S:=S \cup\{u, v\}$
return S

Proof: The algorithm yields a vertex-cover S in poly-time. The selected edges e do not share endpoints (they form a matching M of $G)$. If S^{\star} is an optimal vertex-cover,
$\left|S^{\star}\right| \geq|M|=|S| / 2$, since each edge in M is covered by a distinct vertex of S^{\star}. Thus, $|S| \leq 2\left|S^{\star}\right|$.

2-approximation for VERTEX COVER (by LP rounding)

Consider VertexCover as a boolean linear programming problem.

$$
\begin{aligned}
& \text { minimize } \sum_{v \in V} x_{v} \\
& \left\{\begin{array}{l}
x_{u}+x_{v} \geq 1, \text {, for all }(u, v) \in E \\
x_{v} \in\{0,1\}, \text { for all } v \in V
\end{array}\right.
\end{aligned}
$$

- It is known that its linear relaxation, i.e., the problem we obtain if we replace the domain constraint $x_{v} \in\{0,1\}$ by $x_{v} \in[0,1]$, for all v, can be solved in polynomial time. Let x^{\star} be its optimal solution.
- The boolean solution given by $x_{v}=1$ if $x_{v}^{\star} \geq 1 / 2$ and $x_{V}=0$ if $x_{v}^{\star}<1 / 2$, for all $v \in V$, is a feasible solution to VertexCover. In fact, for each edge (u, v), either $x_{u}^{\star} \geq 1 / 2$ or $x_{v}^{\star} \geq 1 / 2$ (otherwise, $x_{u}^{\star}+x_{v}^{\star} \geq 1$ would be violated). So, $S=\left\{v \in V \mid x_{v}=1\right\}$ is a vertex-cover.
- If S^{\star} is a minimum vertex-cover, then $|S| \leq 2\left|S^{\star}\right|$. In fact, by construction $|S| \leq 2 \sum_{v \in V} x_{V}^{\star}$, and $\sum_{v \in V} x_{v}^{\star} \leq\left|S^{\star}\right|$ because the optimal solution of the relaxation cannot be worse then the value of any other of its solutions (therefore, of the boolean solution induced by S^{\star}).

Minimum vertex-cover is APX-hard

Some known inapproximability bounds for minimum vertex cover on graphs:

- It is hard to approximate to within $2-\varepsilon$, for any constant $\varepsilon>0$, if the unique games conjecture is true (s.Khot \& O.Regev, 2008).
- Håstad (J.ACM, 2001) showed that it is NP-hard to approximate within constant factors less than 7/6. This factor was improved by Dinur and Safra (stoc'2002) to $10 \sqrt{5}-21 \approx 1.36$.
- If the graph has degree bounded by 3 , it cannot be approximated within $100 / 99-\epsilon$, for $\epsilon>0$, unless $\mathrm{P}=$ NP; 53/52- ϵ if the degree is bounded by 4. [Chlebik \& Chlebikovà, FCT 2003]. Improved to $1.0101215-\epsilon$ and $1.0194553-\epsilon$. (Chlebik \& Chlebiková, TCS 354, 320-338, 2006);

Unique games conjecture: https://en.wikipedia.org/wiki/Unique_games_conjecture

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted graph $G=(V, E, d)$ such that $d: E \rightarrow \mathbb{R}_{0}^{+}$, find an Hamiltonian cycle C^{\star} in G such that $d\left(C^{\star}\right)=\sum_{e \in C^{\star}} d(e)$ is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d satisfies $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in V$.

The approximation algorithms we will introduce for the metric TSP make use of the following property.

Property
Given any walk $\gamma=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p-1}, x_{p}\right)$, with $p \geq 3$, we can replace $\left(x_{i-1}, x_{i}, x_{i+1}\right)$ by $\left(x_{i-1}, x_{i+1}\right)$, to obtain a walk γ^{\prime} from x_{1} to x_{p} such that
\square

Proof: $\left(x_{i-1}, x_{i+1}\right)$ is an edge of G, because G is a complete graph. Thus, γ^{\prime} is a walk in G. By the triangle inequality,

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted graph $G=(V, E, d)$ such that $d: E \rightarrow \mathbb{R}_{0}^{+}$, find an Hamiltonian cycle C^{\star} in G such that $d\left(C^{\star}\right)=\sum_{e \in C^{\star}} d(e)$ is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d satisfies $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in V$.

The approximation algorithms we will introduce for the metric TSP make use of the following property.

Property

Given any walk $\gamma=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p-1}, x_{p}\right)$, with $p \geq 3$, we can replace $\left(x_{i-1}, x_{i}, x_{i+1}\right)$ by $\left(x_{i-1}, x_{i+1}\right)$, to obtain a walk γ^{\prime} from x_{1} to x_{p} such that $d(\gamma) \leq d\left(\gamma^{\prime}\right)$, with $1<i<p$.

Proof: $\left(x_{i-1}, x_{i+1}\right)$ is an edge of G, because G is a complete graph. Thus, γ^{\prime} is a walk in G. By the triangle inequality, $d\left(\gamma^{\prime}\right)=d(\gamma)+d\left(x_{i-1}, x_{i+1}\right)-\left(d\left(x_{i-1}, x_{i}\right)+d\left(x_{i}, x_{i+1}\right)\right) \leq d(\gamma)$.

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP
Construct a minimum spanning tree (MST) T^{\star} of G; Double every edge of T to get an eulerian graph; Find an Eulerian tour W on this graph (e.g., induced by a traversal of T in depth-first order); Let C be the list of vertices obtained by deleting all duplicates in W (keep the last vertex); Return C.

Proof: C is an Hamiltonean cycle in G and, by the triangle inequality, $d(C) \leq 2 d\left(T^{*}\right)$ (to remove a duplicate, we replaced two edges in W by a single one in C). If C^{\star} is the optimal cycle, $d(C) \leq 2 d\left(C^{\star}\right)$ because if we delete an edge e from C^{\star} we get a spanning tree T with $d\left(T^{\star}\right) \leq d(T)=d\left(C^{\star}\right)-d(e) \leq d\left(C^{\star}\right)$. Therefore,

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP

Construct a minimum spanning tree (MST) T^{\star} of G; Double every edge of T to get an eulerian graph; Find an Eulerian tour W on this graph (e.g., induced by a traversal of T in depth-first order); Let C be the list of vertices obtained by deleting all duplicates in W (keep the last vertex); Return C.

Proof: C is an Hamiltonean cycle in G and, by the triangle inequality, $d(C) \leq 2 d\left(T^{\star}\right)$ (to remove a duplicate, we replaced two edges in W by a single one in C). If C^{\star} is the optimal cycle, $d(C) \leq 2 d\left(C^{\star}\right)$ because if we delete an edge e from C^{\star} we get a spanning tree T with $d\left(T^{\star}\right) \leq d(T)=d\left(C^{\star}\right)-d(e) \leq d\left(C^{\star}\right)$. Therefore, $d(C) \leq 2 d\left(T^{\star}\right) \leq 2 d\left(C^{\star}\right)$.

1.5-approximation for the metric TSP

Christofides algorithm for the Metric TSP:

- Find a minimum spanning tree T^{\star} of G.
- Instead of duplicating all edges of T^{\star} (to form an Eulerian circuit), take the set of nodes \mathcal{O} that have odd degree. (Recall that a graph has an Eulerian circuit iff every node has even degree). For the set \mathcal{O}, find a matching M^{\star} of minimum weight in G. (Note that M^{\star} exists because $|O|$ is always even and G is complete).
- Add M to T^{\star} to obtain a subgraph G^{\prime} of G, with V as vertex set and that has an Eulerian circuit. Find an Eulerian circuit \mathcal{C}_{e} in G^{\prime}.
- Visit \mathcal{C}_{e}, eliminating duplicates to produce an Hamiltonean cycle \mathcal{C}.

Theorem: Every step can be carried out in a polynomial time and $d(\mathcal{C}) \leq 1.5 d\left(\mathcal{C}^{\star}\right)$.
A sketch of the proof: Given an optimal solution C^{\star} to the $T S P$, we can start from a vertex in \mathcal{O} and remove from C^{\star} all the vertices in $V \backslash \mathcal{O}$. This gives a cycle $\mathcal{C}_{\mathcal{O}}$ such that $d\left(\mathcal{C}^{\star}\right) \geq d\left(\mathcal{C}_{\mathcal{O}}\right)$, by the triangle inequality. $\mathcal{C}_{\mathcal{O}}$ consists of two disjoint matchings, say M_{1} and M_{2}, for the nodes in O. Since M^{\star} is minimum, $d\left(\mathcal{C}_{\mathcal{O}}\right)=d\left(M_{1}\right)+d\left(M_{2}\right) \geq 2 d\left(M^{\star}\right)$. Therefore, $d\left(M^{\star}\right) \leq 0.5 d\left(\mathcal{C}_{\mathcal{O}}\right) \leq 0.5 d\left(\mathcal{C}^{\star}\right)$. Moreover, $d\left(T^{\star}\right) \leq d\left(\mathcal{C}^{\star}\right)$ (when we remove an edge from \mathcal{C}^{\star}, we get a supporting tree). Thus, $d(\mathcal{C}) \leq d\left(T^{\star}\right)+d\left(M^{\star}\right) \leq 1.5 d\left(\mathcal{C}^{\star}\right)$.

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted graph $G=(V, E, d)$ such that $d: E \rightarrow \mathbb{R}_{0}^{+}$, find an Hamiltonian cycle C^{\star} in G such that $d\left(C^{\star}\right)=\sum_{e \in C^{\star}} d(e)$ is minimum.

Inapproximability of the general TSP
If $P \neq N P$, there is no polynomial time $\alpha(n)$-approximation algorithm for TSP, for any polynomial time computable function $\alpha(n)$, where $n=|V|$.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let $G=(V, E)$ be an undirected graph. Construct a complete
graph $G^{\prime}=\left(V, E^{\prime}\right)$ from V, and define $d(e)=1$ if $e \in E$ and $d(e)=$
Suppose \mathcal{A} is a polynomial time $\alpha\left(n\right.$)-approximation algorithm for TSP. Run \mathcal{A} on G^{\prime}. If G has an Hamiltonean cycle C^{\star}, then \mathcal{A} must return a cycle C in G^{\prime} such that $d(C) \leq \alpha(n) d\left(C^{*}\right)=\alpha(n) n$. If G has no Hamiltonean cycle, then \mathcal{A} must return a cycle

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted graph $G=(V, E, d)$ such that $d: E \rightarrow \mathbb{R}_{0}^{+}$, find an Hamiltonian cycle C^{\star} in G such that $d\left(C^{\star}\right)=\sum_{e \in C^{\star}} d(e)$ is minimum.

Inapproximability of the general TSP

If $P \neq N P$, there is no polynomial time $\alpha(n)$-approximation algorithm for TSP, for any polynomial time computable function $\alpha(n)$, where $n=|V|$.

Proof: By reduction from the Hamiltonian Cycle Problem. Let $G=(V, E)$ be an undirected graph. Construct a complete graph $G^{\prime}=\left(V, E^{\prime}\right)$ from V, and define $d(e)=1$ if $e \in E$ and $d(e)=\alpha(n) n+1$ if $e \notin E$, for each $e \in E^{\prime}$.

Suppose \mathcal{A} is a polynomial time $\alpha(n)$-approximation algorithm for TSP. Run \mathcal{A} on G^{\prime}. If G has an Hamiltonean cycle C^{\star}, then \mathcal{A} must return a cycle C in G^{\prime} such that $d(C) \leq \alpha(n) d\left(C^{\star}\right)=\alpha(n) n$. If G has no Hamiltonean cycle, then \mathcal{A} must return a cycle C in G^{\prime} such that $d(C) \geq(\alpha(n) n+1)+(n-1)>\alpha(n) n$, because C must have at least one edge $e \notin E$ (i.e., with $d(e)=\alpha(n) n+1$). Thus, we can use \mathcal{A} to decide the existence of an hamiltonian cycle in G. Therefore, \mathcal{A} cannot exist if $P \neq N P$.

BIN PACKING: Approximation and Inapproximability

- NP-hardness by reduction from PARTITION
- Inapproximabiity to $3 / 2-\varepsilon$, for $\varepsilon>0$, if $\mathrm{P}=\mathrm{NP}$, by reduction from PARTITION
- Belongs to APX: 2-approximation algorithms (proof for First Fit Strategy); mention 3/2-approximation for "first fit decreasing"

Please refer to:

- http://ac.informatik.uni-freiburg.de/lak_teaching/ ws11_12/combopt/notes/bin_packing.pdf
- https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking
- http://ac.informatik.uni-freiburg.de/lak_teaching/ ws07_08/algotheo/Slides/13_bin_packing.pdf

$O(\log n)$-approximation for the SET COVER

Min-Set-Cover Given a collection \mathcal{F} of nonempty subsets of $A=\left\{a_{1}, \ldots, a_{n}\right\}$, find a covering $C^{\star} \subseteq \mathcal{F}$ of A such that $\left|C^{\star}\right|$ is minimum (if we consider all possible coverings $C \subseteq \mathcal{F}$).

Greedy Approximation Algorithm: while there are uncovered elements, selects the set that covers the maximum number of uncovered elements.

$O(\log n)$-approximation for the SET COVER (cont.)

Lemma

Suppose there are k sets covering everything. After t choices, the greedy algorithm has at most $(1-1 / k)^{t}$ fraction uncovered.

Proof:

If \mathcal{C} is a covering with $|\mathcal{C}|=k$, there is at least a set C_{i} in \mathcal{C} such that $\left|C_{i}\right| \geq n / k$ (Pigeon's hole principle).

Since the first set selected by the greedy algorithm, say F_{1}, must have at least $\left|C_{i}\right|$ elements, there remain at most $n-n / k$ elements uncovered after the first iteration, i.e., $(1-1 / k) n$ elements uncovered.

Let $\mathcal{F}^{\prime}=\left\{F_{j} \backslash F_{1} \mid F_{j} \in \mathcal{F}, F_{j} \backslash F_{1} \neq \emptyset\right\}$ and $\mathcal{C}^{\prime}=\left\{C_{i} \backslash F_{1} \mid C_{i} \in \mathcal{C}, C_{i} \backslash F_{1} \neq \emptyset\right\}$.
Clearly, $\mathcal{C}^{\prime} \subseteq \mathcal{F}^{\prime}$ and $\left|\mathcal{C}^{\prime}\right| \leq k$ and we can use \mathcal{C}^{\prime} to cover $A \backslash F_{1}$. If we note that $\left(1-1 /\left|\mathcal{C}^{\prime}\right|\right) \leq(1-1 / k)$, the result follows.

$O(\log n)$-approximation for the SET COVER (cont.)

Lemma

Suppose there are k sets covering everything. After t choices, the greedy algorithm has at most $(1-1 / k)^{t}$ fraction uncovered.

Proposition

The greedy algorithm is a $(1+\ln n)$ approximation algorithm.
Proof: Let k^{\star} be the optimal value. Once we have $<1 / n$ fraction uncovered, we are done.

Since $e^{x}=\sum_{n \in \mathbb{N}} x^{n} / n!$, we have $1-1 / k^{\star}<e^{-1 / k^{\star}}$ and $\left(1-1 / k^{\star}\right)^{t}<\left(e^{-1 / k^{\star}}\right)^{t}$.
Thus, $e^{-t / k^{\star}}<1 / n$ if $t>(\ln n) k^{\star}$.
So, the greedy algorithm performs at most $\left\lfloor(\ln n) k^{\star}\right\rfloor+1$ iterations (and adds a set to the covering per iteration). Hence, $\left|\mathcal{C}_{\text {greedy }}\right| \leq(1+\ln n) k^{\star}$.

$O(\log n)$-approximation for the SET COVER (cont.)

It can be proved in fact that:

Theorem: Greedy-Set-Cover is a polynomial time α-approximation algorithm, where

$$
\begin{equation*}
\alpha=H(\max \{|S|: S \in F\}) \tag{2}
\end{equation*}
$$

and $H(d)=$ the $d^{t h}$ harmonic number, which is equal to $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{d}=\sum_{i=1}^{d} \frac{1}{i}=$ $\log d+O(1)$ (from equation (A.7) in Appendix A).

Check CLRS or https://www.cs.dartmouth.edu/~ac/Teach/
CS105-Winter05/Notes/wan-ba-notes.pdf

Art Gallery Problems (AGP) - Guarding an art gallery

The region visible to v

Shortest Path / Visibility graph

- Visibility is central to many areas: sensor networks, wireless networks, security and surveillance, and architectural design.
- An art gallery can be viewed as a polygon with or without holes.

> The classical Art Gallery Problem by Victor Klee (1973)
> How many guards are always sufficient to guard any polygon with n vertices (with a 360° view, unlimited range)?

Art Gallery Problems (AGP) - Guarding an art gallery

The region visible to v

Shortest Path / Visibility graph

- Visibility is central to many areas: sensor networks, wireless networks, security and surveillance, and architectural design.
- An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)
How many guards are always sufficient to guard any polygon with n vertices (with a 360° view, unlimited range)?

Chvatal's art gallery theorem (1975)
To cover a polygon of n vertices, $\left\lfloor\frac{n}{3}\right\rfloor$ stationary guards are always sufficient (and occasionally necessary).
"A proof from THE BOOK" by Fisk (1978):

- The polygon may be partitioned into $n-2$ triangles by adding $n-3$ internal diagonals.
The dual graph of a triangulated simple polygon is a tree.
- The triangulation graph can always be 3-coloured. (adjacent vertices must have distinct colour)
- Vertices having the same colour form a guard set.
- One of the colours is used by at most $\lfloor n / 3 \mid$
 vertices. Place guards at these vertices.

Chvatal's art gallery theorem (1975)

To cover a polygon of n vertices, $\left\lfloor\frac{n}{3}\right\rfloor$ stationary guards are always sufficient (and occasionally necessary).
"A proof from THE BOOK" by Fisk (1978):

- The polygon may be partitioned into $n-2$ triangles by adding $n-3$ internal diagonals. The dual graph of a triangulated simple polygon is a tree.
- The triangulation graph can always be 3-coloured. (adjacent vertices must have distinct colour)
- Vertices having the same colour form a guard set.
- One of the colours is used by at most $\lfloor n / 3\rfloor$
 vertices. Place guards at these vertices.

For orthogonal polygons (Kahn, Klawe and Kleitman, 1980, O'Rourke, 1983)
To cover a polygon of n vertices, $\left\lfloor\frac{n}{4}\right\rfloor$ stationary guards are always sufficient (and occasionally necessary).

Extensions

- Polygons with or without holes;
- Different types of guards: stationary guards (point guards, vertex guards), mobile guards (edge guards), ...;
- Distinct notions of visibility: (un)limited range, 2π or α-view ($\pi / 2$ - or π-floodlights), \ldots

References: books by O'Rourke, Ghosh... ; surveys by Shermer, Urrutia. . . ; two handbooks; several papers

Some Art Gallery theorems:

- Any polygon with n vertices and h holes can always be guarded with $\left\lfloor\frac{n+2 h}{3}\right\rfloor$ vertex guards. Conjecture (Shermer): $\left\lfloor\frac{n+h}{3}\right\rfloor$ (Still open for $h>1$)
- $\left\lceil\frac{n+h}{3}\right\rceil$ point guards are always sufficient and occasionally necessary.
- To guard an orthogonal polygon with n vertices and h holes, $\left\lfloor\frac{n}{4}\right\rfloor$ point guards or $\left\lfloor\frac{n}{3}\right\rfloor$ vertex guards are always sufficient.
- Always sufficient and occasionally necessary

- $\left\lfloor\frac{3 n+4}{16}\right\rfloor$ mobile or edge guards for a n-vertex orthogonal polygon;
- ไ $\left.\frac{3 n+4 h+4}{16}\right\rfloor$ mobile guards for an orthogonal polygon with n vertices and h holes.
Stationary guards, unlimited visibility range, magnitude 2π. Two points p and q in P see each other if $\overline{p q} \cap \operatorname{Ext}(P)=\emptyset$.

> How many guards are always sufficient?
> Two classical AGP theorems for n-vertex simple polygons: $\lfloor n / 3\rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; $\lfloor n / 4\rfloor$ for orthogonal polygons [Kahn, Klawe \& Kleitman, 1983].

> What is the fewest number needed for an given polygon P ?
> NP-hard [Lee \& Lin, 1986], even for ortho-polygons [Schuchardt \& Hecker, 1995]. APX-hard [Eidenbenz et al., 2001].
> Could it be solved exactly in poly-time for some subclasses?

Stationary guards, unlimited visibility range, magnitude 2π. Two points p and q in P see each other if $\overline{p q} \cap \operatorname{Ext}(P)=\emptyset$.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: $\lfloor n / 3\rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; [n/4] for orthogonal polygons [Kahn, Klawe \& Kleitman, 1983].

Stationary guards, unlimited

 visibility range, magnitude 2π. Two points p and q in P see each other if $\overline{p q} \cap \operatorname{Ext}(P)=\emptyset$.How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: $\lfloor n / 3\rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; [n/4] for orthogonal polygons [Kahn, Klawe \& Kleitman, 1983].

What is the fewest number needed for an given polygon P ?
NP-hard [Lee \& Lin, 1986], even for ortho-polygons [Schuchardt \& Hecker, 1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

Stationary guards, unlimited

 visibility range, magnitude 2π. Two points p and q in P see each other if $\overline{p q} \cap \operatorname{Ext}(P)=\emptyset$.How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: $\lfloor n / 3\rfloor$ guards are sufficient and occasionally necessary [Chvátal, 1975]; [n/4] for orthogonal polygons [Kahn, Klawe \& Kleitman, 1983].

What is the fewest number needed for an given polygon P ?
NP-hard [Lee \& Lin, 1986], even for ortho-polygons [Schuchardt \& Hecker, 1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

O(log $n)$-approximation algorithm for MVG by Ghosh

MVG is NP-hard optimization problem [Lee \& Lin, 1986], even for ortho-polygons [Schuchardt \& Hecker, 1995].
Can we find approximate solutions with provable quality?

- The problem is APX-hard [Eidenbenz et al., 2001].
- The algorithm by Ghost $(1987,2010)$:
- Consider the decomposition induced by the visibility regions to reduce Minimum Vertex Guard to Minimum Set Cover;
- The greedy algorithm for Minimum Set

Cover gives approximation ratio $O(\log n)$.

- Running time: $\mathcal{O}\left(n^{5} \log n\right)$, improved to $\mathcal{O}\left(n^{4}\right)$
 for simple polygons and $\mathcal{O}\left(n^{5}\right)$ for polygons with holes.

An anytime algorithm for MVG

Minimum Vertex Guard (MVG): What is the fewest number of vertex guards needed for an given polygon P ?
[Tomás, Bajuelos \& Marques $(2003,2006)]$: MVG by sucessive approximations.

Transform MVG instances into Minimum Set Cover using a partition of P. Refine the initial partition to tight upper and lower bounds for OPT (P) :

$$
O P T_{\square}\left(\Gamma_{i}\right) \leq O P T_{\square}\left(\Gamma_{i+1}\right) \leq O P T(P) \leq O P T_{\square}\left(\Pi_{i+1}\right) \leq O P T_{\square}\left(\Pi_{i}\right),
$$

where Γ_{i} is the set of pieces of the current partition Π_{i} that are known to be not visible by sections, up to iteration i.

An anytime algorithm for MVG (cont.)

```
MinVertexGuard \((P)\)
    \(\Pi:=\operatorname{Decompose}(P)\)
    (each piece must be \(\square\)-visible to at least one vertex)
    Compute \(G_{v}^{t}, G_{v}^{s}\), for all vertices v
    Compute \(G_{R}^{t}\) and \(G_{R}^{s}\) for all \(R \in \Pi\)
    \(\Gamma:=\Gamma_{0}^{\Pi}\)
    while ( \(\left.O P T_{\square}(\Gamma)<O P T_{\square}(П)\right)\) do
        Г, П := REFINE(П).
```

- \square-visibility disallows cooperation: a guard \square-sees a piece only if it sees it completely. $O P T_{\square}(\Pi)$ optimal number for Π under \square-visibility.
- G_{v}^{t}, G_{v}^{s} the pieces that vertex v sees totally and partially; G_{R}^{t}, G_{R}^{s} the vertices that see piece R totally and partially.
- $\Gamma_{0} \subseteq\{R \mid R$ is not visible by sections $\} \subseteq \square$
(Γ the pieces that we know already that cannot be guarded in cooperation)

MVG by Sucessive Approximations

For the sequence $\left(\Gamma_{i}, \Pi_{i}\right)_{i \geq 0}$, it holds:

$$
O P T_{\square}\left(\Gamma_{i}\right) \leq O P T_{\square}\left(\Gamma_{i+1}\right) \leq O P T(P) \leq O P T_{\square}\left(\Pi_{i+1}\right) \leq O P T_{\square}\left(\Pi_{i}\right)
$$

An "anytime algorithm": at each iteration, can return a solution; if it is not optimal, it can find better solutions if we let the algorithm continue to run. Not an approximation algorithm (see below).

$\Gamma_{0}=\left\{R_{1}, R_{2}, R_{5}, R_{7}, R_{8}\right\}$ and $O P T_{\square}\left(\Pi_{0}\right)=3>2=O P T_{\square}\left(\Gamma_{0}\right)$.
By refining Piece 4 (i.e., R_{4}), we get $\Gamma_{1}=\left\{R_{1}, R_{2}, R_{5}, R_{7}, R_{8}, R_{b}, R_{c}, R_{d}\right\}$ and, when we solve optimization problems (using a solver), we get $O P T_{\square}\left(\Pi_{1}\right)=O P T_{\square}\left(\Gamma_{1}\right)=2$.

