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NPO, APX, APX-hard problems

NP Optimization Problems (the class NPO)

Π is an optimization problem. The instances I of Π are a subset of Σ? (i.e., encoded
as a language over Σ). val(S, I) ∈ Q+

0 is the value of the feasible solution S and S(I)
is the set of feasible solutions. The goal is to find OPT (I) = minS∈S(I) val(S, I) for a
minimization problem, and OPT (I) = maxS∈S(I) val(S, I)) for a maximization problem.

Π is a NP optimization problem (Π is in NPO) if:

given x ∈ Σ?, we can check if x is an instance of Π in poly(|x |) time;

|S| is poly(|I|), for each I and S ∈ S(I);

there is a poly-time decision procedure that decides if x ∈ S(I), for I and x ∈ Σ?;

val(I,S) is a poly-time computable function.

L(Π,B) = {I : OPT (I) ≤ B}, the decision version of a NPO minimization problem Π,
belongs to NP. When the decision version is NP-hard the optimization problem is
called an NP-hard optimization problem. If Π is an NP-hard NPO problem, its
decision version L(Π,B) is NP-complete.
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NPO, APX, APX-hard problems

Approximation Algorithms

Approximation ratio

The approximation ratio of an algorithm A for a minimization problem is
αA = maxI

A(I)
OPT (I) , where A(I) is the value of the solution A returns for

instance I. So, A(I) ≤ αAOPT (I). For a maximization problem,
αA = maxI

OPT (I)
A(I) , so that A(I) ≥ 1

αA
OPT (I).

By this definition, αA ≥ 1 even for maximization problems. On an input of size n, the
ratio αA can be a function αA(n). If the function is constant, i.e., does not depend
on n, then A is a constant factor approximation algorithm.

The class APX and APX-hard problems

APX is the class of NPO problems for which there are constant factor
polynomial time approximation algorithms.
An NPO problem is APX-hard if there is a constant ε > 0 such that an
approximation ratio of 1 + ε cannot be guaranteed by any polynomial-time
algorithm, unless P = NP.
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NPO, APX, APX-hard problems

Approximation Schemes

Approximation Scheme

An approximation scheme for an optimization problem Π is a family of
(1 + ε)-approximation algorithms Aε for problem Π, over all 0 < ε < 1.

Polynomial Time Approximation Scheme (PTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size, for all ε.
(the time complexity can be exponential in 1/ε)

Fully Polynomial Time Approximation Scheme (FPTAS)

A polynomial time approximation scheme for Π is an approximation scheme
such that the time complexity of Aε is polynomial in the input size and also
polynomial in 1/ε, for all ε.

[Arora et al., FOCS’92] If there is a PTAS for some APX-hard problem, P=NP.
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Minimum Vertex Cover for Graphs Approximations Algorithm for Vertex Cover

2-approximation algorithm for VERTEX COVER
VERTEXCOVER asks for a minimum cardinality vertex-cover of a given
undirected graph G = (V ,E). A vertex-cover of G is a subset S ⊆ V such
that for each edge (u, v) ∈ E , either u ∈ S or v ∈ S, or both.

Given G and k ∈ N as input, deciding if G has a vertex-cover S of size
|S| ≤ k is a well-known NP-complete problem.

VERTEXCOVER is APX-complete (i.e., APX-hard and belongs to APX).

2-approximation for VERTEXCOVER

S := ∅
while (E 6= ∅) do

remove an edge e = (u, v) from E
remove all edges incident to u or v
S := S ∪ {u, v}

return S

Proof: The algorithm yields a vertex-cover S

in poly-time. The selected edges e do not

share endpoints (they form a matching M of

G). If S? is an optimal vertex-cover,

|S?| ≥ |M| = |S|/2, since each edge in M

is covered by a distinct vertex of S?. Thus,

|S| ≤ 2|S?|.
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Minimum Vertex Cover for Graphs Approximations Algorithm for Vertex Cover

2-approximation for VERTEX COVER (by LP rounding)

Consider VERTEXCOVER as a boolean linear programming problem.

minimize
∑

v∈V xv{
xu + xv ≥ 1, for all (u, v) ∈ E
xv ∈ {0,1}, for all v ∈ V

It is known that its linear relaxation, i.e., the problem we obtain if we
replace the domain constraint xv ∈ {0,1} by xv ∈ [0,1], for all v , can be
solved in polynomial time. Let x? be its optimal solution.

The boolean solution given by xv = 1 if x?v ≥ 1/2 and xv = 0 if x?v < 1/2,
for all v ∈ V , is a feasible solution to VERTEXCOVER. In fact, for each
edge (u, v), either x?u ≥ 1/2 or x?v ≥ 1/2 (otherwise, x?u + x?v ≥ 1 would
be violated). So, S = {v ∈ V | xv = 1} is a vertex-cover.

If S? is a minimum vertex-cover, then |S| ≤ 2|S?|. In fact, by construction
|S| ≤ 2

∑
v∈V x?v , and

∑
v∈V x?v ≤ |S?| because the optimal solution of

the relaxation cannot be worse then the value of any other of its
solutions (therefore, of the boolean solution induced by S?).
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Minimum Vertex Cover for Graphs Inapproximability Bounds

Minimum vertex-cover is APX-hard

Some known inapproximability bounds for minimum vertex cover on
graphs:

It is hard to approximate to within 2− ε, for any constant ε > 0, if the
unique games conjecture is true (S.Khot & O.Regev, 2008).

Håstad (J.ACM, 2001) showed that it is NP-hard to approximate within
constant factors less than 7/6. This factor was improved by Dinur and
Safra (STOC’2002) to 10

√
5− 21 ≈ 1.36.

If the graph has degree bounded by 3, it cannot be approximated within
100/99− ε, for ε > 0, unless P=NP; 53/52− ε if the degree is bounded
by 4. [Chlebík & Chlebíková, FCT 2003]. Improved to 1.0101215− ε and
1.0194553− ε. (Chlebík & Chlebíková, TCS 354, 320–338, 2006);

Unique games conjecture: https://en.wikipedia.org/wiki/Unique_games_conjecture
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Traveling Salesman Problem (TSP) Metric TSP is in APX

2-approximation for the METRIC TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d
satisfies d(x , y) ≤ d(x , z) + d(z, y), for all x , y , z ∈ V .

The approximation algorithms we will introduce for the metric TSP make use
of the following property.

Property

Given any walk γ = (x1, x2, x3, . . . , xp−1, xp), with p ≥ 3, we can replace
(xi−1, xi , xi+1) by (xi−1, xi+1), to obtain a walk γ′ from x1 to xp such that
d(γ) ≤ d(γ′), with 1 < i < p.

Proof: (xi−1, xi+1) is an edge of G, because G is a complete graph. Thus, γ′ is a walk in G. By the triangle inequality,

d(γ′) = d(γ) + d(xi−1, xi+1)− (d(xi−1, xi ) + d(xi , xi+1)) ≤ d(γ).
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Traveling Salesman Problem (TSP) Metric TSP is in APX

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP

Construct a minimum spanning tree (MST) T ? of G; Double every edge of T
to get an eulerian graph; Find an Eulerian tour W on this graph (e.g.,
induced by a traversal of T in depth-first order); Let C be the list of vertices
obtained by deleting all duplicates in W (keep the last vertex); Return C.

Proof: C is an Hamiltonean cycle in G and, by the triangle inequality, d(C) ≤ 2d(T ?)

(to remove a duplicate, we replaced two edges in W by a single one in C). If C? is the
optimal cycle, d(C) ≤ 2d(C?) because if we delete an edge e from C? we get a
spanning tree T with d(T ?) ≤ d(T ) = d(C?)− d(e) ≤ d(C?). Therefore,
d(C) ≤ 2d(T ?) ≤ 2d(C?).
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Traveling Salesman Problem (TSP) Metric TSP is in APX

1.5-approximation for the metric TSP

Christofides algorithm for the Metric TSP:

Find a minimum spanning tree T ? of G.

Instead of duplicating all edges of T ? (to form an Eulerian circuit), take the set of
nodes O that have odd degree. (Recall that a graph has an Eulerian circuit iff
every node has even degree). For the set O, find a matching M? of minimum
weight in G. (Note that M? exists because |O| is always even and G is complete).

Add M to T ? to obtain a subgraph G′ of G, with V as vertex set and that has an
Eulerian circuit. Find an Eulerian circuit Ce in G′.

Visit Ce, eliminating duplicates to produce an Hamiltonean cycle C.

Theorem: Every step can be carried out in a polynomial time and d(C) ≤ 1.5d(C?).
A sketch of the proof: Given an optimal solution C? to the TSP, we can start from a vertex inO and remove from C? all the

vertices in V \ O. This gives a cycle CO such that d(C?) ≥ d(CO), by the triangle inequality. CO consists of two disjoint

matchings, say M1 and M2, for the nodes in O. Since M? is minimum, d(CO) = d(M1) + d(M2) ≥ 2d(M?). Therefore,

d(M?) ≤ 0.5d(CO) ≤ 0.5d(C?). Moreover, d(T?) ≤ d(C?) (when we remove an edge from C?, we get a supporting tree).

Thus, d(C) ≤ d(T?) + d(M?) ≤ 1.5d(C?).
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Traveling Salesman Problem (TSP) Inapproximability of the general TSP

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

Inapproximability of the general TSP

If P 6= NP, there is no polynomial time α(n)-approximation algorithm for TSP,
for any polynomial time computable function α(n), where n = |V |.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let G = (V , E) be an undirected graph. Construct a complete
graph G′ = (V , E′) from V , and define d(e) = 1 if e ∈ E and d(e) = α(n)n + 1 if e /∈ E , for each e ∈ E′.

SupposeA is a polynomial time α(n)-approximation algorithm for TSP. RunA on G′. If G has an Hamiltonean cycle C?, thenA

must return a cycle C in G′ such that d(C) ≤ α(n)d(C?) = α(n)n. If G has no Hamiltonean cycle, thenA must return a cycle

C in G′ such that d(C) ≥ (α(n)n + 1) + (n − 1) > α(n)n, because C must have at least one edge e /∈ E (i.e., with

d(e) = α(n)n + 1). Thus, we can useA to decide the existence of an hamiltonian cycle in G. Therefore,A cannot exist if

P 6= NP.
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Approximation Algorithms for Bin Packing

BIN PACKING: Approximation and Inapproximability

NP-hardness by reduction from PARTITION

Inapproximabiity to 3/2− ε, for ε > 0, if P=NP, by reduction from
PARTITION

Belongs to APX: 2-approximation algorithms (proof for First Fit Strategy);
mention 3/2-approximation for “first fit decreasing”

Please refer to:

http://ac.informatik.uni-freiburg.de/lak_teaching/
ws11_12/combopt/notes/bin_packing.pdf

https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking

http://ac.informatik.uni-freiburg.de/lak_teaching/
ws07_08/algotheo/Slides/13_bin_packing.pdf
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Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER

MIN-SET-COVER Given a collection F of nonempty subsets of
A = {a1, . . . ,an}, find a covering C? ⊆ F of A such that |C?| is minimum (if
we consider all possible coverings C ⊆ F).

GREEDY APPROXIMATION ALGORITHM: while there are uncovered elements, selects
the set that covers the maximum number of uncovered elements.
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Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER (cont.)

Lemma

Suppose there are k sets covering everything. After t choices, the greedy algorithm
has at most (1− 1/k)t fraction uncovered.

Proof:
If C is a covering with |C| = k , there is at least a set Ci in C such that |Ci | ≥ n/k
(Pigeon’s hole principle).

Since the first set selected by the greedy algorithm, say F1, must have at least |Ci |
elements, there remain at most n − n/k elements uncovered after the first iteration,
i.e., (1− 1/k)n elements uncovered.

Let F ′ = {Fj \ F1 | Fj ∈ F ,Fj \ F1 6= ∅} and C′ = {Ci \ F1 | Ci ∈ C,Ci \ F1 6= ∅}.

Clearly, C′ ⊆ F ′ and |C′| ≤ k and we can use C′ to cover A \ F1. If we note that
(1− 1/|C′|) ≤ (1− 1/k), the result follows.
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Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER (cont.)

Lemma

Suppose there are k sets covering everything. After t choices, the greedy algorithm
has at most (1− 1/k)t fraction uncovered.

Proposition

The greedy algorithm is a (1 + ln n) approximation algorithm.

Proof: Let k? be the optimal value. Once we have < 1/n fraction uncovered, we are
done.

Since ex =
∑

n∈N xn/n!, we have 1− 1/k? < e−1/k?

and (1− 1/k?)t < (e−1/k?

)t .

Thus, e−t/k?

< 1/n if t > (ln n) k?.

So, the greedy algorithm performs at most b(ln n)k?c+ 1 iterations (and adds a set to
the covering per iteration). Hence, |Cgreedy | ≤ (1 + ln n)k?.
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Approximation Algorithm for Set Cover

O(log n)-approximation for the SET COVER (cont.)

It can be proved in fact that:

Check CLRS or https://www.cs.dartmouth.edu/~ac/Teach/
CS105-Winter05/Notes/wan-ba-notes.pdf
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Guarding and Visibility Problems Art Gallery Problems (AGP)

Art Gallery Problems (AGP) – Guarding an art gallery

The region visible to v
Shortest Path / Visibility graph

Visibility is central to many areas: sensor networks, wireless
networks, security and surveillance, and architectural design.
An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)
How many guards are always sufficient to guard any polygon with n
vertices (with a 360◦ view, unlimited range)?
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Guarding and Visibility Problems Art Gallery Problems (AGP)

Chvatal’s art gallery theorem (1975)

To cover a polygon of n vertices, bn
3c stationary guards are always

sufficient (and occasionally necessary).

“A proof from THE BOOK” by Fisk (1978):

The polygon may be partitioned into n − 2
triangles by adding n−3 internal diagonals.
The dual graph of a triangulated simple
polygon is a tree.

The triangulation graph can always be
3-coloured. (adjacent vertices must have distinct colour)

Vertices having the same colour form a
guard set.

One of the colours is used by at most bn/3c
vertices. Place guards at these vertices.
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Guarding and Visibility Problems Art Gallery Problems (AGP)

For orthogonal polygons (Kahn, Klawe and Kleitman, 1980, O’Rourke, 1983)

To cover a polygon of n vertices, bn
4c stationary guards are always

sufficient (and occasionally necessary).

Extensions

Polygons with or without holes;
Different types of guards: stationary guards (point guards, vertex
guards), mobile guards (edge guards), . . . ;
Distinct notions of visibility: (un)limited range, 2π or α-view
(π/2- or π-floodlights), . . .

References: books by O’Rourke, Ghosh. . . ; surveys by Shermer, Urrutia. . . ; two handbooks; several papers
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Guarding and Visibility Problems Art Gallery Problems (AGP)

Some Art Gallery theorems:

Any polygon with n vertices and h holes can always be guarded with b n+2h
3 c

vertex guards. Conjecture (Shermer): b n+h
3 c (Still open for h > 1)

d n+h
3 e point guards are always sufficient and occasionally necessary.

To guard an orthogonal polygon with n vertices and h holes, b n
4 c point guards or

b n
3 c vertex guards are always sufficient.

Always sufficient and occasionally necessary

b n
4c mobile guards for a n-vertex simple polygon;
b 3n+4

16 c mobile or edge guards for a n-vertex orthogonal polygon;
b 3n+4h+4

16 c mobile guards for an orthogonal polygon with n vertices
and h holes.

. . .
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Guarding and Visibility Problems Art Gallery Problems (AGP)

Stationary guards, unlimited
visibility range, magnitude 2π.
Two points p and q in P see each
other if pq ∩ Ext(P) = ∅.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: bn/3c guards are
sufficient and occasionally necessary [Chvátal, 1975]; bn/4c for orthogonal
polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?
NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker,
1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?
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Guarding and Visibility Problems Approximation algorithms

O(log n)-approximation algorithm for MVG by Ghosh

MVG is NP-hard optimization problem [Lee & Lin, 1986], even for
ortho-polygons [Schuchardt & Hecker, 1995].
Can we find approximate solutions with provable quality?

The problem is APX-hard [Eidenbenz et al., 2001].

The algorithm by Ghost (1987, 2010):
– Consider the decomposition induced by the
visibility regions to reduce MINIMUM VERTEX
GUARD to MINIMUM SET COVER;
– The greedy algorithm for MINIMUM SET
COVER gives approximation ratio O(log n).
– Running time: O(n5 log n), improved to O(n4)
for simple polygons and O(n5) for polygons with
holes.
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Guarding and Visibility Problems Approximation algorithms

An anytime algorithm for MVG

MINIMUM VERTEX GUARD (MVG): What is the fewest number of vertex
guards needed for an given polygon P?

[Tomás, Bajuelos & Marques (2003, 2006)]: MVG by sucessive approximations.

Transform MVG instances into MINIMUM SET COVER using a partition of P.
Refine the initial partition to tight upper and lower bounds for OPT (P):

OPT�(Γi ) ≤ OPT�(Γi+1) ≤ OPT (P) ≤ OPT�(Πi+1) ≤ OPT�(Πi ),

where Γi is the set of pieces of the current partition Πi that are known to be
not visible by sections, up to iteration i .
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Guarding and Visibility Problems Approximation algorithms

An anytime algorithm for MVG (cont.)

MINVERTEXGUARD(P)
Π := DECOMPOSE(P)
(each piece must be �-visible to at least one vertex)
Compute Gt

v , Gs
v , for all vertices v

Compute Gt
R and Gs

R for all R ∈ Π
Γ := ΓΠ

0
while (OPT�(Γ) < OPT�(Π)) do

Γ,Π := REFINE(Π).

�-visibility disallows cooperation: a guard �-sees a piece only if it sees it
completely. OPT�(Π) optimal number for Π under �-visibility.

Gt
v , Gs

v the pieces that vertex v sees totally and partially;
Gt

R , Gs
R the vertices that see piece R totally and partially.

Γ0 ⊆ {R | R is not visible by sections} ⊆ Π

(Γ the pieces that we know already that cannot be guarded in cooperation)
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Guarding and Visibility Problems Approximation algorithms

MVG by Sucessive Approximations

For the sequence (Γi ,Πi )i≥0, it holds:

OPT�(Γi ) ≤ OPT�(Γi+1) ≤ OPT (P) ≤ OPT�(Πi+1) ≤ OPT�(Πi )

An “anytime algorithm”: at each iteration, can return a solution; if it is not optimal, it can find better solutions if we let the algorithm

continue to run. Not an approximation algorithm (see below).

Γ0 = {R1,R2,R5,R7,R8} and OPT�(Π0) = 3 > 2 = OPT�(Γ0).
By refining Piece 4 (i.e., R4), we get Γ1 = {R1,R2,R5,R7,R8,Rb,Rc ,Rd} and, when
we solve optimization problems (using a solver), we get OPT�(Π1) = OPT�(Γ1) = 2.
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