
Hardness and Approximation Algorithms

Ana Paula Tomás

LEIC - Desenho de Algoritmos
Universidade do Porto

May 2022

A.P.Tomás (LEIC - UP) DA 2021/2022 1 / 40

Efficient Algorithms

From textbook “Algorithms”, by Jeff Erickson, chapter 12.
https://jeffe.cs.illinois.edu/teaching/algorithms/

A minimal requirement for an algorithm to be considered “efficient” is
that its running time is bounded by a polynomial function of the input
size: O(nc) for some constant c , where n is the size of the input.

Researchers recognized early on that not all problems can be solved
this quickly, but had a hard time figuring out exactly which ones could
and which ones couldn’t.

There are several so-called NP-hard problems , which most people
believe cannot be solved in polynomial time, even though nobody can
prove a super-polynomial lower bound.

A.P.Tomás (LEIC - UP) DA 2021/2022 2 / 40

https://jeffe.cs.illinois.edu/teaching/algorithms/

P versus NP
From textbook “Algorithms”, by Jeff Erickson, chapter 12.
https://jeffe.cs.illinois.edu/teaching/algorithms/

A decision problem is a problem whose output is a single boolean value:
YES or NO.

Three classes of decision problems:

P is the set of decision problems that can be solved in polynomial time.
Intuitively, P is the set of problems that can be solved quickly .

NP is the set of decision problems with the following property: If the
answer is YES, then there is a proof of this fact that can be checked in
polynomial time. Intuitively, NP is the set of decision problems where we
can verify a YES answer quickly if we have the solution in front of us.

co-NP is essentially the opposite of NP. If the answer to a problem in
co-NP is NO, then there is a proof of this fact that can be checked in
polynomial time.

A.P.Tomás (LEIC - UP) DA 2021/2022 3 / 40

https://jeffe.cs.illinois.edu/teaching/algorithms/

Examples of Decision Problems in NP
SAT: Given a CNF formula Φ(x1, . . . , xn) = C1 ∧ . . . ∧ Cm, is Φ
satisfiable, i.e., is there a truth assignment that satisfies all clauses?

CIRCUIT-SAT: Given a combinational circuit built from AND, OR, and
NOT gates, is there a way to set the circuit inputs so that the output is 1?

HAMILTONEAN CYCLE: Given an undirected graph G = (V ,E), does G
contain an Hamiltonean cycle (a cycle that visits all nodes exactly once)?

EULERIAN CYCLE: Given an undirected graph G = (V ,E), does G
contain an Eulerian cycle (a cycle that visits all edges exactly once)?

PARTITION: Given an set S = {a1,a2, . . . ,an} of n positive integers, is
there a set A ⊂ S such that

∑
x∈A x =

∑
y∈S\A x?

PLANAR 3-COLORING: Given a planar undirected graph G = (V ,E), is
there a way of coloring the vertices of G such that no two adjacent
vertices are of the same color and using at most three colors?

A.P.Tomás (LEIC - UP) DA 2021/2022 4 / 40

Open Problems: P = NP? NP = co-NP?
Polynomial reductions
A problem B can be polynomially reduced to A, or B ≤p A, if, given access to
a solution for A, we can solve B in polynomial time using polynomially many
calls to this solution for A.

NP-completeness
A problem L is NP-hard if, for all problems L′ in the class NP, we have
L′ ≤p L. If, in addition, L belongs to NP, then we say that L is NP-complete.

Cook-Levin Theorem
CIRCUIT-SAT is NP-complete. SAT is NP-complete.

If SAT could be solved in polynomial time by a deterministic Turing machine, then
all problems in NP could be solved in polynomial time, and P = NP.

A.P.Tomás (LEIC - UP) DA 2021/2022 5 / 40

Open Problems: P = NP? NP = co-NP?

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 6 / 40

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

Examples of Decision Problems in NP

Examples of optimization problems whose decision version is in NP

SHORTEST PATH: Given a weighted graph G = (V ,E ,d), with
d(e) ∈ Z+, for all e ∈ E , two nodes s, t ∈ V , and k ∈ Z+, is there a
path γ from s to t with d(γ) ≤ k? The optimization problem asks for shortest path.

LONGEST PATH: Given a weighted graph G = (V ,E ,d), with d(e) ∈ Z+,
for all e ∈ E , two nodes s, t ∈ V , and k ∈ Z+, is there a path γ from s to t
with d(γ) ≥ k? The optimization problem asks for longest path.

TSP (travelling salesperson problem): Given a complete weighted
graph G = (V ,E ,d), with d(e) ∈ Z+, for all e ∈ E , and k ∈ Z+, is there a
hamiltonean cycle γ with d(γ) ≤ k? Optimization version asks for shortest hamiltonean cycle.

MAXIMUM INDEPENDENT SET: Given an undirected graph G = (V ,E)
and k ∈ Z+, does G contain an independent set I with |I| ≥ k , i.e., a set
I ⊆ V such that no two nodes in I are linked by an edge in G?

A.P.Tomás (LEIC - UP) DA 2021/2022 7 / 40

Examples of Decision Problems in NP

Examples of optimization problems whose decision version is in NP

BIN PACKING: Given a set S = {a1, . . . ,an} of items, with 0 < ai < 1, for
all i , and k ∈ Z+, is it possible to pack the items in at most k bins with
capacity 1?

SET COVER: Given S = {a1, . . . ,an} and a family F of subsets of S, is
there C ⊆ F such that |C| ≤ k and S =

⋃
X∈C X?

VERTEX COVER: Given an undirected graph G = (V ,E) and k ∈ Z+, is
there a subset C of V such that |C| ≤ k and each edge in V is incident
to a vertex in C?

KNAPSACK: Given a set S of n items, each with a weight wi and a
value vi , the capacity W of the knapsack, and a value k , is there a
subset I of S such that

∑
i∈I wi ≤W and

∑
i∈I vi ≥ k?

A.P.Tomás (LEIC - UP) DA 2021/2022 8 / 40

P versus NP

If a given boolean circuit is satisfiable, then any set of n input values that
produces output TRUE is a proof that the circuit is satisfiable.

We can check the proof by evaluating the circuit in polynomial (actually,
linear) time using depth-first-search.

But nobody knows how to solve it than trying all 2n possible inputs to the
circuit by brute force, which requires exponential time.

It is widely believed that circuit satisfiability is not in P or in co-NP, but
nobody actually knows.

Every decision problem in P is also in NP . If a problem is in P, we can verify
YES answers in polynomial time recomputing the answer from scratch!
Similarly, every problem in P is also in co-NP.

A.P.Tomás (LEIC - UP) DA 2021/2022 9 / 40

Karp

Slide by K.Wayne,

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityII.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 10 / 40

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityII.pdf

Cook-Levin

Slide by K.Wayne,

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityII.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 11 / 40

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityII.pdf

Karp & Cook-Levin

Slide by K.Wayne,

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityII.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 12 / 40

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityII.pdf

Reduction from Vertex-Cover to Set-Cover

Slide by K.Wayne,

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityI.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 13 / 40

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/08IntractabilityI.pdf

Reduction from 3-SAT to MAX INDEPENDENT SET

Idea:

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 14 / 40

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

Reduction from 3-SAT to MAX INDEPENDENT SET

For each clause l1 ∨ l2 ∨ l3, the graph G has 3 new nodes, labeled l1, l2 and l3, linked
by edges. Any two nodes that contain a variable x and its negation ¬x will be linked by
an edge also. Check https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

The size of any independent set of G is at most k , being k the number of clauses of Φ.

G has a maximum independent set of size k iff Φ is satisfiable.

A.P.Tomás (LEIC - UP) DA 2021/2022 15 / 40

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

Reduction from HAMILTONEAN CYCLE to TSP

Given an undirected graph G = (V ,E), we construct a complete weighted
undirected graph G′ = (V ,E ′,d) with E ′ = E ∪ {〈u, v〉 | u 6= v , 〈u, v〉 /∈ E , and
d(e) = 1, for all e ∈ E and d(e) = |V |+ 1, for all e ∈ E ′ \ E .

G′ is a complete graph.

G′ can be obtained from G in polynomial time. In fact, in quadractic time
in the number of vertices O(|V |2.

By construction, G contains an Hamiltonean cycle if and only if G′

contains an Hamiltonean cycle γ such that d(γ) = |V |.

If we have a polynomial time algorithm for TSP, we can ask whether G′

contains an Hamiltonean cycle γ with d(γ) ≤ |V |. If the answer is YES,
G has an Hamiltonean cycle. Otherwise, it does not. So, we can use that
algorithm to decide HAMILTONEAN CYCLE.

Therefore, TSP is NP-hard since it is known that HAMILTONEAN CYCLE
is NP-complete.

A.P.Tomás (LEIC - UP) DA 2021/2022 16 / 40

Fast. Cheap. Reliable. Choose two.

An old engineering slogan says, “Fast. Cheap. Reliable. Choose two.”
Similarly, if P 6= NP, we can’t simultaneously have algorithms that

find optimal solutions
in polynomial time
for any instance

At least one of these requirements must be relaxed in any approach to
dealing with an NP-hard optimisation problem.

David P. Williamson & David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2010.

Vijay Vazirani. Approximation Algorithms. Springer, 2001.

A.P.Tomás (LEIC - UP) DA 2021/2022 17 / 40

Polynomial-time Approximation Algorithms

The goal. Finding near-optimal (or good enough) solutions efficiently
(in polynomial-time).

This is not about “heuristic algorithms” and empirical analysis of
their performance.

The theory of approximation algorithms:

I provable performance in the worst-case;

I inapproximability .

How close to optimum can we get in polynomial time? We will
see some inapproximability results.

A.P.Tomás (LEIC - UP) DA 2021/2022 18 / 40

Recall: Hard Variants of Stable Marriage

D. F. Manlove, R. Irving, K. Iwama, S. Miyazaki, Y. Morita, Hard variants of
stable marriage, Theoretical Computer Science, 276: 261-279, 2002.

. . . Here, we present the first comprehensive study of variants of the problem in which
the preference lists of the participants are not necessarily complete and

not necessarily totally ordered . We show that, under surprisingly restrictive

assumptions, a number of these variants are hard, and hard to approximate . The
key observation is that, in contrast to the case where preference lists are complete or
strictly ordered (or both), a given problem instance may admit

stable matchings of different sizes . (. . .) Examples of problems that are hard:

Finding a stable matching of maximum or minimum size; determining whether a
pair is stable, even if indifference takes the form of ties on one side only, the ties
are at the tails of the lists, there is at most one tie per list, and each tie has
length two, and

Finding or approximating, both “an egalitarian” and a “minimum regret” stable
matching.

A.P.Tomás (LEIC - UP) DA 2021/2022 19 / 40

Approximation Algorithms

NPO problem: an optimisation problem such that the associated
decision problem is in NP.

The approximation ratio of an algorithm A for a minimization problem

αA = max
I

A(I)
OPT (I)

So, A(I) ≤ αAOPT (I), where A(I) is the value of the solution A returns
for instance I.

For a maximization problem, αA = maxI
OPT (I)
A(I) , so A(I) ≥ 1

αA
OPT (I).

By this definition, αA ≥ 1 even for maximization problems.

On an input of size n, the ratio αA can be a function αA(n).

If the function is constant, i.e., does not depend on n, then A is a
constant factor approximation algorithm.

A.P.Tomás (LEIC - UP) DA 2021/2022 20 / 40

The class APX and APX-hard problems

APX is the class of NPO problems for which there are
constant factor polynomial time approximation algorithms.

I MINIMUM CARDINALITY VERTEX COVER is in APX (2-approximable)

I METRIC TSP is in APX. (2-approximable, 3/2-approximable)

I GENERIC TSP is not in APX (unless P=NP).

I BIN PACKING is in APX (2-approximable, 3/2-approximable)

An NPO problem is APX-hard if there is a constant ε > 0 such
that an approximation ratio of 1 + ε cannot be guaranteed by any
polynomial-time algorithm, unless P = NP.

I MINIMUM CARDINALITY VERTEX COVER is APX-hard.
I BIN PACKING is APX-hard.

A.P.Tomás (LEIC - UP) DA 2021/2022 21 / 40

Approximation Schemes

An approximation scheme for an optimization problem Π is a family of
(1 + ε)-approximation algorithms Aε for problem Π, over all 0 < ε < 1.

PTAS Polynomial Time Approximation Scheme
A polynomial time approximation scheme for Π is an
approximation scheme such that the time complexity of Aε is
polynomial in the input size, for all ε. (the time complexity can be exponential in 1/ε)

(e.g. EUCLIDEAN TSP)

FPTAS Fully Polynomial Time Approximation Scheme
A polynomial time approximation scheme for Π is an
approximation scheme such that the time complexity of Aε is
polynomial in the input size and also polynomial in 1/ε, for all ε.
(e.g. KNAPSACK PROBLEM)

[Arora et al., FOCS’92] If there is a PTAS for some APX-hard problem, P=NP.

A.P.Tomás (LEIC - UP) DA 2021/2022 22 / 40

MAX 3-SAT: Maximum Satisfiability Problem
MAX 3-SAT Given a 3-SAT formula Φ(x1, . . . , xn) = C1 ∧ . . . ∧ Cm, find a truth
assignment that satisfies as many clauses as possible.

MAX 3-SAT is NP-hard because 3-SAT is NP-complete.

Johnson’s Randomized Algorithm for MAX 3-SAT
A 7/8-approximation algorithm that runs in expected polynomial time:
Repeatedly generate random truth assignments until one of them
satisfies at least 7m/8 clauses.

Inapproximabilty of MAX E3SAT (Håstad, 1997)
MAX E3SAT, the version of MAX SAT in which each clause is of length
exactly three, cannot be approximated in polynomial time to within a ratio
greater than 7/8, unless P=NP.

J. Håstad. Some optimal inapproximability results. In Proc. 28th Annual ACM Symp. on Theory of Computing, pp 1–10, 1997.

A.P.Tomás (LEIC - UP) DA 2021/2022 23 / 40

2-approximation algorithm for VERTEX COVER
VERTEXCOVER asks for a minimum cardinality vertex-cover of a given
undirected graph G = (V ,E). A vertex-cover of G is a subset S ⊆ V such
that for each edge (u, v) ∈ E , either u ∈ S or v ∈ S, or both.

Given G and k ∈ N as input, deciding if G has a vertex-cover S of size
|S| ≤ k is a well-known NP-complete problem.

VERTEXCOVER is APX-complete (i.e., APX-hard and belongs to APX).

2-approximation for VERTEXCOVER

S := ∅
while (E 6= ∅) do

remove an edge e = (u, v) from E
remove all edges incident to u or v
S := S ∪ {u, v}

return S

Proof: The algorithm yields a vertex-cover S

in poly-time. The selected edges e do not

share endpoints (they form a matching M of

G). If S? is an optimal vertex-cover,

|S?| ≥ |M| = |S|/2, since each edge in M

is covered by a distinct vertex of S?. Thus,

|S| ≤ 2|S?|.

A.P.Tomás (LEIC - UP) DA 2021/2022 24 / 40

2-approximation for VERTEX COVER (by LP rounding)
Consider VERTEXCOVER as a boolean linear programming problem.

minimize
∑

v∈V xv{
xu + xv ≥ 1, for all (u, v) ∈ E
xv ∈ {0,1}, for all v ∈ V

It is known that its linear relaxation, i.e., the problem we obtain if we
replace the domain constraint xv ∈ {0,1} by xv ∈ [0,1], for all v , can be
solved in polynomial time. Let x? be its optimal solution.

The boolean solution given by xv = 1 if x?v ≥ 1/2 and xv = 0 if x?v < 1/2,
for all v ∈ V , is a feasible solution to VERTEXCOVER. In fact, for each
edge (u, v), either x?u ≥ 1/2 or x?v ≥ 1/2 (otherwise, x?u + x?v ≥ 1 would
be violated). So, S = {v ∈ V | xv = 1} is a vertex-cover.

If S? is a minimum vertex-cover, then |S| ≤ 2|S?|. In fact, by construction
|S| ≤ 2

∑
v∈V x?v , and

∑
v∈V x?v ≤ |S?| because the optimal solution of

the relaxation cannot be worse than the value of any other of its
solutions (and, therefore, of the boolean solution induced by S?).

A.P.Tomás (LEIC - UP) DA 2021/2022 25 / 40

Minimum vertex-cover is APX-hard

Some known inapproximability bounds for minimum vertex cover on
graphs:

It is hard to approximate to within 2− ε, for any constant ε > 0, if the
unique games conjecture is true (S.Khot & O.Regev, 2008).

Håstad (J.ACM, 2001) showed that it is NP-hard to approximate within
constant factors less than 7/6. This factor was improved by Dinur and
Safra (STOC’2002) to 10

√
5− 21 ≈ 1.36.

If the graph has degree bounded by 3, it cannot be approximated within
100/99− ε, for ε > 0, unless P=NP; 53/52− ε if the degree is bounded
by 4. [Chlebík & Chlebíková, FCT 2003]. Improved to 1.0101215− ε and
1.0194553− ε. (Chlebík & Chlebíková, TCS 354, 320–338, 2006);

Unique games conjecture: https://en.wikipedia.org/wiki/Unique_games_conjecture

A.P.Tomás (LEIC - UP) DA 2021/2022 26 / 40

https://en.wikipedia.org/wiki/Unique_games_conjecture

2-approximation for the METRIC TSP
Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

The Metric TSP is TSP with triangle inequality, i.e., the cost function d
satisfies d(x , y) ≤ d(x , z) + d(z, y), for all x , y , z ∈ V .

The approximation algorithms we will introduce for the metric TSP make use
of the following property.

Property
Given any walk γ = (x1, x2, x3, . . . , xp−1, xp), with p ≥ 3, we can replace
(xi−1, xi , xi+1) by (xi−1, xi+1), to obtain a walk γ′ from x1 to xp such that
d(γ) ≤ d(γ′), with 1 < i < p.

Proof: (xi−1, xi+1) is an edge of G, because G is a complete graph. Thus, γ′ is a walk in G. By the triangle inequality,

d(γ′) = d(γ) + d(xi−1, xi+1)− (d(xi−1, xi) + d(xi , xi+1)) ≤ d(γ).

A.P.Tomás (LEIC - UP) DA 2021/2022 27 / 40

2-approximation for the METRIC TSP (cont.)

A 2-approximation algorithm for Metric TSP
Construct a minimum spanning tree (MST) T ? of G; Double every edge of T
to get an eulerian graph; Find an Eulerian tour W on this graph (e.g.,
induced by a traversal of T in depth-first order); Let C be the list of vertices
obtained by deleting all duplicates in W (keep the last vertex); Return C.

Proof: C is an Hamiltonean cycle in G and, by the triangle inequality, d(C) ≤ 2d(T ?)

(to remove a duplicate, we replaced two edges in W by a single one in C). If C? is the
optimal cycle, d(C) ≤ 2d(C?) because if we delete an edge e from C? we get a
spanning tree T with d(T ?) ≤ d(T) = d(C?)− d(e) ≤ d(C?). Therefore,
d(C) ≤ 2d(T ?) ≤ 2d(C?).

A.P.Tomás (LEIC - UP) DA 2021/2022 28 / 40

1.5-approximation for the metric TSP

Christofides algorithm for the Metric TSP:

Find a minimum spanning tree T ? of G.

Instead of duplicating all edges of T ? (to form an Eulerian circuit), take the set of
nodes O that have odd degree. (Recall that a graph has an Eulerian circuit iff
every node has even degree). For the set O, find a matching M? of minimum
weight in G. (Note that M? exists because |O| is always even and G is complete).

Add M to T ? to obtain a subgraph G′ of G, with V as vertex set and that has an
Eulerian circuit. Find an Eulerian circuit Ce in G′.

Visit Ce, eliminating duplicates to produce an Hamiltonean cycle C.

Theorem: Every step can be carried out in a polynomial time and d(C) ≤ 1.5d(C?).
A sketch of the proof: Given an optimal solution C? to the TSP, we can start from a vertex inO and remove from C? all the

vertices in V \ O. This gives a cycle CO such that d(C?) ≥ d(CO), by the triangle inequality. CO consists of two disjoint

matchings, say M1 and M2, for the nodes in O. Since M? is minimum, d(CO) = d(M1) + d(M2) ≥ 2d(M?). Therefore,

d(M?) ≤ 0.5d(CO) ≤ 0.5d(C?). Moreover, d(T?) ≤ d(C?) (when we remove an edge from C?, we get a supporting tree).

Thus, d(C) ≤ d(T?) + d(M?) ≤ 1.5d(C?).

A.P.Tomás (LEIC - UP) DA 2021/2022 29 / 40

Inapproximability of the general TSP

Traveling Salesman Problem (TSP): given a complete undirected weighted
graph G = (V ,E ,d) such that d : E → R+

0 , find an Hamiltonian cycle C? in G
such that d(C?) =

∑
e∈C? d(e) is minimum.

Inapproximability of the general TSP
If P 6= NP, there is no polynomial time α(n)-approximation algorithm for TSP,
for any polynomial time computable function α(n), where n = |V |.

Proof: By reduction from the HAMILTONIAN CYCLE PROBLEM. Let G = (V , E) be an undirected graph. Construct a complete
graph G′ = (V , E′) from V , and define d(e) = 1 if e ∈ E and d(e) = α(n)n + 1 if e /∈ E , for each e ∈ E′.

SupposeA is a polynomial time α(n)-approximation algorithm for TSP. RunA on G′. If G has an Hamiltonean cycle C?, thenA

must return a cycle C in G′ such that d(C) ≤ α(n)d(C?) = α(n)n. If G has no Hamiltonean cycle, thenA must return a cycle

C in G′ such that d(C) ≥ (α(n)n + 1) + (n − 1) > α(n)n, because C must have at least one edge e /∈ E (i.e., with

d(e) = α(n)n + 1). Thus, we can useA to decide the existence of an hamiltonian cycle in G. Therefore,A cannot exist if

P 6= NP.

A.P.Tomás (LEIC - UP) DA 2021/2022 30 / 40

BIN PACKING: Approximation and Inapproximability

BIN PACKING: Given a set S = {a1, . . . ,an} of items, with 0 < ai < 1, for all i ,
and bins with capacity 1, pack the items using the minimum number of bins.

NP-hardness by reduction from PARTITION;

Inapproximabiity to 3/2− ε, for ε > 0, if P=NP, by reduction from
PARTITION;

Belongs to APX: 2-approximation algorithms, e.g. ”First Fit” strategy;
3/2-approximation for “First Fit Decreasing”

For the proofs and to know more, please refer to:

http://ac.informatik.uni-freiburg.de/lak_teaching/
ws11_12/combopt/notes/bin_packing.pdf

https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking

http://ac.informatik.uni-freiburg.de/lak_teaching/
ws07_08/algotheo/Slides/13_bin_packing.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 31 / 40

http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf
https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking
http://ac.informatik.uni-freiburg.de/lak_teaching/ws07_08/algotheo/Slides/13_bin_packing.pdf
http://ac.informatik.uni-freiburg.de/lak_teaching/ws07_08/algotheo/Slides/13_bin_packing.pdf

O(log n)-approximation for the SET COVER

MIN-SET-COVER Given a set A = {a1, . . . ,an} and a collection F of
nonempty subsets of A, find a covering C? ⊆ F of A such that |C?| is
minimum (if we consider all possible coverings C ⊆ F).

GREEDY APPROXIMATION ALGORITHM: while there are uncovered elements, selects
the set that covers the maximum number of uncovered elements.

A.P.Tomás (LEIC - UP) DA 2021/2022 32 / 40

O(log n)-approximation for the SET COVER (cont.)

Lemma
Suppose there are k sets covering everything. After t choices, the greedy algorithm
has at most (1− 1/k)t fraction uncovered.

Proof:
If C is a covering with |C| = k , there is at least a set Ci in C such that |Ci | ≥ n/k
(Pigeon’s hole principle).

Since the first set selected by the greedy algorithm, say F1, must have at least |Ci |
elements, there remain at most n − n/k elements uncovered after the first iteration,
i.e., (1− 1/k)n elements uncovered.

Let F ′ = {Fj \ F1 | Fj ∈ F ,Fj \ F1 6= ∅} and C′ = {Ci \ F1 | Ci ∈ C,Ci \ F1 6= ∅}.

Clearly, C′ ⊆ F ′ and |C′| ≤ k and we can use C′ to cover A \ F1. If we note that
(1− 1/|C′|) ≤ (1− 1/k), the result follows.

A.P.Tomás (LEIC - UP) DA 2021/2022 33 / 40

O(log n)-approximation for the SET COVER (cont.)

Lemma
Suppose there are k sets covering everything. After t choices, the greedy algorithm
has at most (1− 1/k)t fraction uncovered.

Proposition
The greedy algorithm is a (1 + ln n) approximation algorithm.

Proof: Let k? be the optimal value. Once we have < 1/n fraction uncovered, we are
done.

Since ex =
∑

n∈N xn/n!, we have 1− 1/k? < e−1/k?

and (1− 1/k?)t < (e−1/k?

)t .

Thus, e−t/k?

< 1/n if t > (ln n) k?.

So, the greedy algorithm performs at most b(ln n)k?c+ 1 iterations (and adds a set to
the covering per iteration). Hence, |Cgreedy | ≤ (1 + ln n)k?.

A.P.Tomás (LEIC - UP) DA 2021/2022 34 / 40

O(log n)-approximation for the SET COVER (cont.)

It can be proved in fact that:

Check CLRS or https://www.cs.dartmouth.edu/~ac/Teach/
CS105-Winter05/Notes/wan-ba-notes.pdf

A.P.Tomás (LEIC - UP) DA 2021/2022 35 / 40

https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/wan-ba-notes.pdf
https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Notes/wan-ba-notes.pdf

Art Gallery Problems (AGP) – Guarding an art gallery

The region visible to v
Shortest Path / Visibility graph

Visibility is central to many areas: sensor networks, wireless
networks, security and surveillance, and architectural design.
An art gallery can be viewed as a polygon with or without holes.

The classical Art Gallery Problem by Victor Klee (1973)
How many guards are always sufficient to guard any polygon with n
vertices (with a 360◦ view, unlimited range)?

A.P.Tomás (LEIC - UP) DA 2021/2022 36 / 40

AGP: Combinatorial bounds

Chvatal’s art gallery theorem (1975)
To cover a polygon of n vertices, bn

3c stationary guards are always
sufficient (and occasionally necessary).

“A proof from THE BOOK” by Fisk (1978):

The polygon may be partitioned into n − 2
triangles by adding n−3 internal diagonals.
The dual graph of a triangulated simple
polygon is a tree.

The triangulation graph can always be
3-coloured. (adjacent vertices must have distinct colour)

Vertices having the same colour form a
guard set.

One of the colours is used by at most bn/3c
vertices. Place guards at these vertices.

A.P.Tomás (LEIC - UP) DA 2021/2022 37 / 40

AGP: Combinatorial bounds

For orthogonal polygons (Kahn, Klawe and Kleitman, 1980, O’Rourke, 1983)

To cover a polygon of n vertices, bn
4c stationary guards are always

sufficient (and occasionally necessary).

Extensions

Polygons with or without holes;
Different types of guards: stationary guards (point guards, vertex
guards), mobile guards (edge guards), . . . ;
Distinct notions of visibility: (un)limited range, 2π or α-view
(π/2- or π-floodlights), . . .

References: books by O’Rourke, Ghosh. . . ; surveys by Shermer, Urrutia. . . ; two handbooks; several papers

A.P.Tomás (LEIC - UP) DA 2021/2022 38 / 40

AGP: Hardness
Stationary guards, unlimited
visibility range, magnitude 2π.
Two points p and q in P see each
other if pq ∩ Ext(P) = ∅.

How many guards are always sufficient?
Two classical AGP theorems for n-vertex simple polygons: bn/3c guards are
sufficient and occasionally necessary [Chvátal, 1975]; bn/4c for orthogonal
polygons [Kahn, Klawe & Kleitman, 1983].

What is the fewest number needed for an given polygon P?
NP-hard [Lee & Lin, 1986], even for ortho-polygons [Schuchardt & Hecker,
1995]. APX-hard [Eidenbenz et al., 2001].
Could it be solved exactly in poly-time for some subclasses?

A.P.Tomás (LEIC - UP) DA 2021/2022 39 / 40

O(log n)-approximation algorithm for MVG by Ghosh
MVG is NP-hard. Can we find approximate solutions with provable quality?

The problem is APX-hard [Eidenbenz et al., 2001].

Ghosh’s Algorithm (1987, 2010) yields a O(log n)-approximation:

1 Consider the decomposition Π induced
by the visibility regions to reduce
MINIMUM VERTEX GUARD to MINIMUM
SET COVER.

The set A will be the set of pieces to be covered (i.e., Π).

F = {Gv | v ∈ V}, where Gv is set of pieces that v sees.

2 Apply the greedy algorithm to solve
the MINIMUM SET COVER problem.
Approximation ratio O(log n). Place a guard in

the vertex that sees more pieces not covered yet. . .

Running time of Ghosh’s algorithm: O(n5 log n), improved to O(n4) for
simple polygons and O(n5) for polygons with holes.

A.P.Tomás (LEIC - UP) DA 2021/2022 40 / 40

	Motivation
	Some Background on Approximation Algorithms
	MAX SAT Maximum Satisfiability Problem
	Minimum Vertex Cover for Graphs
	Approximations Algorithm for Vertex Cover
	Inapproximability Bounds

	Traveling Salesman Problem (TSP)
	Metric TSP is in APX
	Inapproximability of the general TSP

	Approximation Algorithms for Bin Packing
	Approximation Algorithm for Set Cover
	Art Gallery Problems - optimal solutions
	Guarding and Visibility Problems

