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tWe investigate the problem of �nding the Origin-Destination trip matrix in a roundabout atoptimal 
ost. The goal is to 
hoose the turning movements that will be measured in additionto some independent total volumes at exits, entries and 
ross-se
tions inside the roundabout.Three 
ost 
riteria are proposed, ea
h one modelling the 
ost of data 
olle
tion in a di�erentway. We dis
uss aspe
ts of our study of this problem on 
omputer and go through interestingmathemati
al properties we have found the proposed model to have.1 Introdu
tionVehi
le 
ow data is an important sour
e of information while providing a better knowledge about thetraÆ
 systems. Colle
ting traÆ
 data is normally expensive and time 
onsuming, so that the traÆ
surveys must be 
arefully designed.As regards urban interse
tions, it is important to know not only the total traÆ
 
ows but alsothe turning movement 
ows, i.e., the Origin-Destination (OD) matrix for the jun
tion. It is easy to
ount the total entry and exit volumes on ea
h arm and, moreover, the re
ent advan
e in te
hnologyis rendering this task still easier. The problem arises with the turning movements, whi
h have to be
olle
ted by dire
t observation, be
ause it is not pra
ti
ally possible the use of automati
 
ounters.To perform dire
t observations at urban roundabouts is more diÆ
ult sin
e not only they o

upy alarger land area, but they also 
ontain U-turning movements. So we must plan and design traÆ
 data
olle
tion at roundabouts 
arefully. In parti
ular, we have to �nd out how many observers we need,where they are to 
ount the traÆ
 volumes and whi
h tasks are addressed to ea
h one. Building onthe 
omputational study we present in this paper, a methodology for ta
kling this problem is givenin [1℄, being 
onsidered three 
ost fun
tions for doing a systemati
 analysis of roundabouts. Theoptimisation of the number and lo
ation of traÆ
 
ounting points for the more general 
ase of traÆ
networks is the subje
t of two re
ent publi
ations [2, 8℄. TraÆ
 
ounts are there used in the estimation�The work presented here has been partially supported by funds granted to LIACC through the Programa deFinan
iamento Plurianual, Funda�
~ao para a Ciên
ia e Te
nologia and Programa POSI.2



of the OD trip matrix for the traÆ
 network, their fo
us being on the quality of that estimation.By 
ontrast to our work, in [2, 8℄ it is naturally assumed either some knowledge about the turningprobabilities at link jun
tions or path 
ow information, whi
h makes our problem essentially distin
tfrom theirs.The paper is organized as follows. In Se
tion 2 we de�ne the problem in mathemati
al terms.Then, in Se
tion 3 we go through some aspe
ts of the programs we implemented to study the problemon 
omputer, to 
on
lude in Se
tion 4, by showing interesting mathemati
al properties we have foundthis problem to have.2 The Mathemati
al FormulationFor a given urban interse
tion, let O be the set of entries (origins), D the set of exits (destinations)and qij the traÆ
 
ow from the entry i to the exit j. Our goal is to a

urately �nd the values of allthe qij 's for a given period of time. We assume that all the vehi
les entering the roundabout also exitit, that is translated by (1), so that (2) and (3) hold,Xi2OOi = Xj2DDj (1)Xj2D qij = Oi; for i 2 O (2)Xi2O qij = Dj ; for j 2 D (3)with Oi and Dj denoting the total traÆ
 volumes entering from i and exiting at j, respe
tively.By (1), at least one of the jOj+ jDj equations (2){(3) is redundant. In fa
t, any jOj+ jDj � 1 of su
hequations are non-redundant, whi
h follows quite intuitively in view of the real meaning of ea
h Oiand Dj , but it is also one of the well-known properties of the Transportation Problems studied inLinear Programming (see e.g., [4℄).In this work, we 
onsider that more expensive or sophisti
ated means may be required to getorigin-destination data (i.e., the qij 's) than those needed to 
ount vehi
les at exits, entries and thatpass through 
ross-se
tions of the 
ir
ulatory 
arriage-way. The system (2){(3), in the variables qij ,is under-spe
i�ed in general. At �rst sight, traÆ
 
ounts at 
ross-se
tions of the 
ir
ulatory 
arriage-way 
ould be of some help in redu
ing this indetermina
y. Fig. 1 s
hemati
ally represents two types of
k+1

k

Fk

Dk

OkIk

Figure 1: Cross-se
tions of the 
ir
ulatory 
arriage-waysu
h 
ross-se
tions | Fk and Ik denote the traÆ
 
ow through the 
ross-se
tion in frontal alignment3



with road k and through the 
ross-se
tion between road k and k + 1, respe
tively. Assuming thatvehi
les exit the roundabout when they rea
h their destination exit for the �rst time, we have (4)and (5), Xi2Onfkg Xj2D; k�j�i qij = Fk; for 1 � k � n (4)Xj2D qkj + Xi2Onfkg Xj2D; k�j�i qij = Ik; for k 2 O (5)Fk = Ik; for k 2 D n Owhere j 2 D; k � j � i stands for \the exits between road k and road i, being k ex
luded". All ofthese total traÆ
 volumes are naturally related, beingFk+1 = Fk +Ok �Dk+1 (6)and thus (7) holds. Fk = F1 + X1�i<kOi � X1<i�kDi; for all k (7)Here, ea
h Oi (respe
tively, Dj) should be read as 0, if i 62 O (respe
tively, j =2 D). To simplifynotation, by k + 1 we refer to the road that immediately follows road k, in the ordering naturallyindu
ed by the way traÆ
 
ir
ulates in the roundabout. We also have (8).Ik = Fk +Ok and Ik+1 = Ik +Ok+1 �Dk+1 (8)These relationships imply at that most jOj+jDj of the equations de�ned by (2){(5) are non-redundant.An exa
t 
hara
terization of this number is given by Proposition 3, in Subse
tion 4.3.2.1 The ProblemLet r denote the rank of the system matrix de�ned by (2){(5), that is, the number of non-redundantequations. We have just seen that either r = jOj+ jDj � 1 or r = jOj+ jDj.Under the hypothesis that the required traÆ
 
ounts 
an be obtained with a

ura
y during a
ertain period of time, (2){(5) is equivalent to ea
h of its subsystems 
onsisting of r non-redundantequations. Moreover, it admits a unique solution if jOjjDj� r of the qij 's are known and the 
olumnsof the system matrix asso
iated to the r remaining ones are linearly independent. Hen
e, the mainquestion is the 
hoi
e of the traÆ
 
ows qij that will be lo
ally measured, in addition to some rindependent Oi's, Dj 's, Fk's and Ik 's.In the following se
tion we present the 
omputational study we 
arried out, whi
h led us to realizeand prove relevant mathemati
al properties of this problem.3 A Computational StudyThe need for an exhaustive 
ase analysis that 
ould qui
kly provide either support or 
ounterexamplesto some preliminary 
on
lusions, motivated the use of a 
omputer to pro
eed the study. We wanteda 
omputer program to generate all the possible 
ombinations for the traÆ
 volumes to be measuredfor ea
h type of roundabout with n interse
tion roads. The eÆ
ien
y of the algorithms was ofgreat 
on
ern sin
e the program would involve an highly 
ombinatorial sear
h pro
edure. Aimingat redu
ing the implementation e�ort, we brie
y 
onsidered the use of a Constraint Programmingsystem for solving the problem. DiÆ
ulties in modeling the problem in an suitable way led us to writethe programs in C language, although implementing sear
h strategies based on usual te
hniques inCombinatorial Optimization and Constraint Programming (e.g. [6℄ for some bibliographi
 referen
es).Be
ause interesting programming problems were ta
kled, we think it worthwhile presenting someof the ideas of the designed algorithms. As we shall see, the analysis of the programs results gave usa deep insight on the problem stru
ture, that allows to greatly improve some aspe
ts of the solvingpro
edure we now go on to des
ribe. 4



3.1 Generating Distin
t RoundaboutsA roundabout where n roads interse
t is identi�ed in the programs by a string R1R2 : : : Rn for a givennumeration of the interse
ting roads. Ea
h Ri 2 fE;D; Sg indi
ates whether road i is just an entry(E), just an exit (S) or both an entry and exit (D) road. All the strings obtained from R1R2 : : : Rnby rotation denote exa
tly the same roundabout, but for di�erent numerations of the roads, so thatonly one of these strings is used to refer to a given roundabout.In the implementation, the symbols E;D and S are mapped to the digits 0, 1 and 2, so that thestrings are viewed as representations of nonnegative integers in the basis 3. In parti
ular, R1R2 : : : Rnwas mapped toPni=1 3i�1Ri. Among the strings that represent the same roundabout, the string thatevaluates to the smallest integer is the one sele
ted by the algorithm. To obtain the set of integersrepresenting distin
t roundabouts, the implemented algorithm maintains a boolean array Id, whereId[i℄ states whether or not i is in su
h set. Integers are 
onsidered from 1 to 3n � 1 and ea
h timean integer i is found in the set, all the integers whose representation in basis 3 is a rotation of thatof i are marked as non-eligible. In the end, the roundabouts 
orrespond to the entries with a KEEPmark. The algorithm is presented in Fig. 2, where base3(i,key,n) yields the n digits representationof i in key, whereas left_rotate(key,n) rotates key to the left by one position and then returnsthe integer that key represents. The visited 
ounter is 
orre
t sin
e it 
an be shown that when aint roundabouts(int n){ int nmax=pow(3,n)-2, nroundbs=0, i, k, visited=0;
har key[NMAX℄;for (i=1; i<nmax; i++) Id[i℄ = KEEP;for (i=1; visited < nmax; i++)if (Id[i℄ == KEEP) {base3(i,key,n); k = left_rotate(key,n);while(k != i) {Id[k℄ = DONT_KEEP; visited++;k = left_rotate(key,n);}visited++; nroundbs++;}return nroundbs; // number of distin
t roundabouts} Figure 2: En
oding and �nding distin
t roundaboutsstring � � �1�2 : : : �n is su

essively rotated to the left, � is the �rst sequen
e found repeated. Theoutput strings R1R2 : : : Rn denote distin
t roundabouts and have the property that R1 6= E (road1 is an exit) and Rn 6= S (road n is an entry), being the interse
tion roads numerated in the waytraÆ
 
ir
ulates. This 
asual feature was 
ru
ial during the analysis of the experimental results, aswe shall see in se
tion 4. Namely, it allowed to re
ognize the pattern of the optimal solution for oneof the optimization 
riteria studied.3.2 Finding the Dire
tional Flows to ObserveFor ea
h type of roundabout with n interse
tion roads, the program obtains the 
onstraints (2){(5),
omputes the rank r of the 
orresponding system matrix and enumerates all the alternative solutionsfor the set of traÆ
 volumes that are to be 
ounted.As we mentioned before, during this work, we assumed that more expensive or sophisti
atedmeans are required to get origin-destination data (i.e., the qij 's) than those needed to 
ount vehi
lesat exits, entries and 
ross-se
tions (i.e., to get the total volumes Oi's, Dj 's, Fk's and Ik's). Thismakes possible to separate the sele
tion of the r independent volumes Oi's, Dj 's, Fk's and Ik 's thatshould be 
olle
ted from that of the jOjjDj � r dire
tional volumes qij 's. Solutions are then obtained5



by putting together any su
h 
ouple of total and dire
tional 
ounts.Although our work mainly 
on
erns the 
hoi
e of the qij 's, in the �rst implementation we alsota
kled the other subproblem. For the sake of eÆ
ien
y, the program 
he
ked whether ea
h sele
ted
ombination of se
tions was equivalent by rotation to one previously found. Moreover, while dedu
ingthe 
onstraints, it determined the Fk's and Ik's that have the same de�nition as another 
ow. Thatinformation was used in 
onjun
tion with a suitable tabulation of the 
ombinations already studiedto avoid exploring twi
e 
ombinations that were a
tually equal.The algorithm we implemented for 
hoosing the dire
tional 
ows is based on a depth-�rst sear
hstrategy with 
hronologi
al ba
ktra
king, being the qij 's taken in a 
ertain order. Whenever a solutionis found or some failure is dete
ted, ba
ktra
king o

urs to the most re
ent alternative to �nd othersolutions. Be
ause the 
olumns 
orresponding to ea
h set of r dire
tional 
ows that are not measuredmust be linearly independent, what the program a
tually enumerates are the alternatives for su
ha set of 
ows. In other words, the program is sear
hing for bases of the subspa
e spanned by the
olumns of the system matrix.To test the sele
ted 
olumns for linear independen
e, Gaussian elimination is applied to thematrix formed by them, to see whether it has full 
olumn rank. This method is quite adequate tohandle the in
remental 
hange of the matrix in an eÆ
ient way. When a variable qij is sele
ted, theprogram simply applies to its 
olumn the transformations done in the previous steps to the matrix
orresponding to the variables already in the set, in exa
tly the same order. This is dealt by a fun
tionin
gauss(int n
s, int new
ol), whose C 
ode is given in Fig. 3, being n
s the number of 
olumnsint in
gauss(int n
s, int new
ol){ int i, j, ipv, rowpiv; double newp;for (i=0; i < Rank; i++) {AuxPvs[i℄ = i;Mat[i℄[n
s℄ = CoeffsRestr[i℄[new
ol℄); // insert new
ol}if (n
s)for (j=0; j < n
s; j++) {if (AuxPvs[j℄ != PrevPvs[j℄.row) AuxPvs[PrevPvs[j℄.found℄ = AuxPvs[j℄;rowpiv = PrevPvs[j℄.row;Mat[rowpiv℄[n
s℄ /= Mat[rowpiv℄[j℄;for (newp=0, i=j+1; i < Rank; i++) {Mat[AuxPvs[i℄℄[n
s℄ -= Mat[AuxPvs[i℄℄[j℄*Mat[rowpiv℄[n
s℄;if (ABSVALUE(Mat[AuxPvs[i℄℄[n
s℄) > newp) {newp = ABSVALUE(Mat[AuxPvs[i℄℄[n
s℄); ipv = i; }}if (newp <= EPSILON) return PrevPvs[j℄.var; // EPSILON means 0}else { // the given 
olumn must be non-nullfor (newp=0, i=0; i < Rank; i++)if (ABSVALUE(Mat[i℄[n
s℄) > newp) {newp = ABSVALUE(Mat[i℄[n
s℄); ipv = i;}}PrevPvs[n
s℄.found = ipv; PrevPvs[n
s℄.row = AuxPvs[ipv℄;PrevPvs[n
s℄.var = new
ol;return new
ol;} Figure 3: A Gaussian-elimination based test for linear independen
e.already sele
ted and new
ol the index of the 
olumn of qij . The array PrevPvs 
ontains relevantdata about the pivots of the previous steps, whi
h is needed to redu
e the new 
olumn. Noti
e alsothat the auxiliary matrix Mat is only 
hanged by this fun
tion and that, as usually, an array AuxPvsis used to keep tra
k of row ex
hanges, rather than expli
itly inter
hanging rows.6



If the new 
olumn is found independent, the fun
tion returns new
ol. Otherwise, it returns theindex of the �rst variable that renders qij non-eligible. This allows the program to mark qij so asto prevent its sele
tion until that in
ompatible variable is removed through ba
ktra
king. Hen
e, itdete
ts and remembers 
on
i
ts that may arise near the root of the sear
h tree. In addition, theprogram keeps the number of remaining variables, 
ausing a failure when that number is less thanthe one needed to 
omplete a basis. In that way, the sear
h spa
e is quite e�e
tively redu
ed.While �xing a bug due to roundo� errors, we have �nally developed a rather simple method totest for independen
e, whose idea we present in Subse
tion 4.2.3.2.1 Finding preferential solutionsSin
e the number of solutions is often quite large, three 
ost 
riteria were introdu
ed to 
hara
terizepreferential solutions, as proposed in [1℄. It is important to observe that the 
on
lusions drawn fromthe analysis of the output solutions are far more interesting than the straight appli
ation of these
ost 
riteria in real pra
ti
e.The �rst 
riterion 
1 de�nes the 
ost of measuring the 
ow qij by the number of roads between iand j, whi
h is expressed by (9).
1(qij) = � j � i; if i < jj � i+ n; otherwise (9)For both the remaining 
riteria 
2 and 
3, the 
osts are dynami
ally 
omputed during the sear
hand are determined by the previous 
hoi
es. In both 
ases, it is assumed that origin-destination datamust be 
olle
ted at some of the entries and exits, su
h as by manually re
ording of plate numbersor by video surveys, being the total 
ost de�ned by the number of lo
ations where su
h OD surveysare 
arried out. However, 
3 assigns a negligible 
ost to measuring qij , when the road j immediatelyfollows i, assuming that su
h traÆ
 
ow 
an be fully observed in site. For ea
h 
ow qij we now have
2(qij) = 8<: 0; if i 2MO, j 2MD2; if i =2MO, j =2MD1; otherwise 
3(qij) = 8<: 0; if i 2MO, j 2MD, or j = i+ 12; if i =2MO, j =2MD, j 6= i+ 11; otherwisebeing MO and MD the set of entries and exits where that type of data has to be 
olle
ted given thesele
tions already in the set. In 
ase qij is 
hosen to be measured and its 
ost value is not null, thesets MO and MD are updated by the program so as to ensure that surveys are lo
ated also at entryi and exit j, respe
tively.The sear
h pro
edure was adapted to implement a bran
h-and-bound strategy, as shown in Fig. 4for the 
ase of 
1. The main fun
tion explore(int nv, int 
vars, int remain) is �rst 
alled asexplore(0,0,NVars), where NVars is the number OD 
ows, whereas 
vars and nv are the number of
olumns already sele
ted to the basis and the index of next 
andidate in the SortV array, respe
tively.The variables are sele
ted in a non-in
reasing order of 
ost, as given in SortV. The above mentioned
on
i
ts are dealt by MarkVars, whose entries have ELIGIBLE value at start. Initially, Vars[i℄.
ounthas value MEASURED, for all i.By 
alling deletemarks(nqij+1), the program restores as ELIGIBLE the variables that weredete
ted in 
on
i
t with nqij and returns the overall 
ost of measuring them. Two 
omplementary
ost estimates are de�ned by COST(nqij) and LOSS(nqij), being CostPar
 and LossPar
 used toprune the sear
h spa
e. COST(nqij) is 
1(qij) whereas LOSS(nqij) is the di�eren
e between themaximum value of 
1 and 
1(qij), that is maxij(
1(qij))� 
1(qij).When entering explore(), the global variable CostPar
 
ontains the sum of 
osts 
1(qij) forthose qij that should be measured as settled by the previous sele
tions, whereas LossPar
 
ontainsthe overall LOSS for those that are already in the basis. MinCij is a 
onstant, that is de�ned byminij(
1(qij)), being 1 if 
1 is given by (9). Noti
e that, using SortV, the variables are sele
ted tothe basis in non-de
reasing order of loss value. Finally, Rank-
vars is the number of variables thatwe need to 
omplete the basis. 7



void explore(int nv, int 
vars, int remain){ int i, j, 
ostv=0, 
onfli
tvar, nqij;while (
vars < Rank && remain+
vars >= Rank) {if (CostPar
 + (remain-(Rank-
vars))*MinCij > CostOpt) break;nqij = SortV[nv℄; // index of sele
ted variableif (LossPar
 + (Rank-
vars)*LOSS(nqij) > LossOpt) break;if (MarkVars[nqij℄ == ELIGIBLE) {if ((
onfli
tvar = in
gauss(
vars,nqij)) == nqij) {Vars[nqij℄.
ount = NOT_MEASURED;LossPar
 += LOSS(nqij);explore(nv+1,
vars+1,remain-1);CostPar
 -= deletemarks(nqij+1);Vars[nqij℄.
ount = MEASURED; remain--;
ostv += COST(nqij);LossPar
 -= LOSS(nqij);} else { MarkVars[nqij℄ = 
onfli
tvar+1; remain--; }CostPar
 += COST(nqij);}nv++;}if (
vars == Rank) { // adding the 
osts of the remaining variablesfor(j=nv,i=0; i<remain && CostPar
 < CostOpt; j++)if (MarkVars[SortV[j℄℄ == ELIGIBLE) {CostPar
 += COST(SortV[j℄); 
ostv += COST(SortV[j℄);i++;}if (CostPar
 < CostOpt) { // found a better solutionsave_new_sol(); CostOpt = CostPar
; LossOpt = LossPar
;}}CostPar
 -= 
ostv;} Figure 4: Sear
hing for optimal solutions wrt 
1.
8



By modelling the 
ost by 
1, we wanted to abstra
t the idea that the longer movements get,the more diÆ
ult their dire
t observation is. Sin
e our major motivation was that of �nding pos-sible interesting patterns for parti
ular solutions, we de
ided to drasti
ally in
rease the penalty formeasuring longer movements by de�ning COST(nqij) and LOSS(nqij) as follows.COST(nqij) = n
1(qij)�1LOSS(nqij) = nn�
1(qij)This results in a signi�
ant runtime speedup, and quite surprisingly we observed that the programoutputs exa
tly the same (unique) optimal solution as before, for ea
h roundabout. The theoreti
alexplanation for that fa
t is given in Subse
tion 4.4.4 From Program Outputs to Mathemati
al PropertiesBefore we move on to present some interesting properties of this model, we re
all 
lassi
al results ofTransportation Problems in Linear Programming (e.g., [4℄), whi
h were fundamental to �nd them.4.1 On Transportation Problems in Linear ProgrammingThe 
onstraints of a well-balan
ed Transportation Problem in standard form, given by (10){(11),nXj=1 xij = ai; ai > 0; i = 1; : : : ;m (10)mXi=1 xij = bj ; bj > 0; j = 1; : : : ; n (11)
an be written in matrix form as Px = b, where x = [x11; : : : ; x1n; : : : ; xm1; : : : ; xmn℄ and b =[a1; : : : ; am; b1; : : : ; bn℄ are 
olumn ve
tors. When Pmi=1 ai = Pnj=1 bj , the problem is 
alled well-balan
ed, and in that 
ase it has some non-negative solutions.It is known that the rank of P is m+n�1, ea
h m+n�1 of its rows being linearly independent.Thus, any m+ n� 1 of the 
onstraints (10){(11) are independent.Ea
h 
olumn of P 
ontains exa
tly two 1's. The 
olumn pij , that of the variable xij , 
an bewritten as pij = ei + em+j , where the ek are the unit ve
tors of Rm+n.Given a subset B 
onsisting of m+ n� 1 linearly independent 
olumns of P, so that B is a basisof the subspa
e spanned by the 
olumns of P, the linear 
ombination of the basis ve
tors that givespij is of the form (12) pij = pBij1 � pBi1j1 + pBi1j2 � � � � � pBikjk + pBikj (12)where ea
h ve
tor in the basis o

urs at most on
e and the number of terms is odd.An interesting fa
t is that, when the symbols pij are written as in the following tables, ea
h 
olumnpij not in the basis B, and the basis ve
tors that appear in (12) form a loop, whi
h is ne
essarilyunique for ea
h pij . The loop, whi
h is 
alled a simple loop, 
onsists of horizontal and verti
al edges,
onse
utive edges being orthogonal and no ve
tor being repeated. It 
an be shown that the 
olumnsin a given set are linearly independent if and only if no su
h a loop 
an be formed with some 
olumnsin the set, as explained in more detail below.The following example illustrates these 
on
epts. It shows how p12 and p32 are written as a linear9




ombination of the basis ve
tors, when B = fp11;p13;p22;p23;p31g and m = n = 3.p11 p12 p13 p11 p12 p13p21 p22 p23 p21 p22 p23p31 p32 p33 p31 p32 p33The 
on
lusion is that p12 = p13 � p23 + p22 and p32 = p31 � p11 + p13 � p23 + p22. Noti
e thate3 + e3+2 = p32 = (e3 + e3+1) � (e1 + e3+1) + (e1 + e3+3) � (e2 + e3+3) + (e2 + e3+2). Ea
h unitve
tor that is introdu
ed in the 
ombination, but e3 and e3+2, is expli
itly removed.Given a subset B of the 
olumns of P, let us 
onstru
t a graph G, whose verti
es 
orrespond tothe elements of B, and the edges are obtained by linking ea
h vertex in a given row (respe
tively,
olumn) to the vertex in the same row (respe
tively, 
olumn) that is 
loser to that one in the table,if there is some, as shown in the following examples.p11 p12 p13 p14 p11 p12 p13 p14p21 p22 p23 p24 p21 p22 p23 p24p31 p32 p33 p34 p31 p32 p33 p34It is known that the 
olumns in B are linearly independent if and only if the graph G is a
y
li
.If, in addition, the graph is 
onne
ted and there is at least a vertex in ea
h 
olumn and in ea
h rowof the table, then B is a basis of the subspa
e spanned by the 
olumns of P.We shall now see how a simple test for linear independen
e is dedu
ed by extending these results,in a natural way. This test only involves additions and subtra
tions.4.2 Our Simple Test for Linear Independen
eIn the sequel, we 
onsider that the roads are numerated in the way traÆ
 
ir
ulates with O =f{1; : : : ; {eg and D = f|1; : : : ; |sg, thus e = jOj and s = jDj. Noti
e that we shall use both thenotations {k (the kth entry) and ik, being intentionally distin
t, and also |k (the kth exit) and jk.Given a roundabout whose 
onstraint system has rank jOj + jDj, let us 
onsider the subsystem
onsisting of the 
onstraints (2)-(3) and the one de�ning F1. As seen before, this subsystem isequivalent to (2)-(5). Now, let P0 denote the matrix of this subsystem and let P be the sub-matrix
onsisting of all the rows of P0 but the last one, whi
h is that of F1. It is not diÆ
ult to see that the
olumns of P0 are given by (13), being p{i|j = ei + ee+j .p0{i|j = � ei + ee+j + ee+s+1 if {i � |j 6= 1ei + ee+j if {i < |j or {i = 1 or |j = 1 (13)Let the last element of p0ij , that is the 
oeÆ
ient of qij in the equation de�ning F1, be denoted by�ij . By (13), �ij = 1 if i � j 6= 1, and �ij = 0 otherwise. The test for linear independen
e we proposeis based on Propositions 1 and 2, whi
h follow almost dire
tly from the results stated in se
tion 4.1and the de�nition of linear independen
e.Proposition 1 Let B0 be a subset of the 
olumns of P0 and B the set of the 
orresponding 
olumnsin P. If some 
olumn pij is written in an unique way as a 
ombination of the 
olumns in B bypij = pij1 � pi1j1 + pi1j2 � � � � � pikjk + pikjthen p0ij is free relatively to B0 if and only if �ij 6= �ij1 � �i1j1 + �i1j2 � � � � � �ikjk + �ikj .10



By analogy to the Transportation problem, let us represent P0 in a tableau form. The te
hniqueis illustrated by the following example, that is related to the roundabout identi�ed by the sequen
eDDDD, the 
olumns in framed boxes being those in B0 = fp013;p014;p021;p032;p034;p041;p043g.p011 p012 p013 p014p021 p022 p023 p024p031 p032 p033 p034p041 p042 p043 p044The loop shown in the tableau implies that p22 = p21 � p41 + p43 � p13 + p14 � p34 + p32, thereexisting no other way of writing p22 as a 
ombination of the 
olumns in B. But�22 = 1 6= 0� 0 + 1� 0 + 0� 0 + 1 = �21 � �41 + �43 � �13 + �14 � �34 + �32so, we dedu
e that p022 6= p021 � p041 + p043 � p013 + p014 � p034 + p032, and thus B0 [ fp022g is free.Therefore, a free set is obtained if the ve
tor p022 is in
luded in B0, although the resulting set Bis no longer free. For that reason, to 
on
lude that, for instan
e p012, is a linear 
ombination of the
olumns in the new B0, we have to adapt somehow the former pro
edure. As shown in the pi
turebelow, p12 is given by di�erent 
ombinations of the 
olumns in the new B.p011 p012 p013 p014 p011 p012 p013 p014p021 p022 p023 p024 p021 p022 p023 p024p031 p032 p033 p034 p031 p032 p033 p034p041 p042 p043 p044 p041 p042 p043 p044And, although p12 = p14 � p34 + p32, we have �12 = 0 6= 0 � 0 + 1 = �14 � �34 + �32, so thatp012 6= p014 � p034 + p032. However, if one of the 
olumns p14, p34 and p32 is removed, for instan
ep32, there remains a unique 
ombination giving p12, namely p12 = p13 � p43 + p41 � p21 + p22. As
on
erns F1, we have 0 = 0� 1+0� 0+ 1, and thus p012 = p013�p043+p041�p021+p022, whi
h showsthe linear dependen
e of p012 relatively to the new B0. This is formalized by Proposition 2.Proposition 2 Let B0 and B be de�ned as in Proposition 1. If B is not free, then B0 is free if andonly there exists some pij su
h that B n fpijg is free and the equality of the formpij = pij1 � pi1j1 + pi1j2 � � � � � pikjk + pikjthat expresses pij as a 
ombination of the 
olumns in B n fpijg, does not hold for the 
orresponding
olumns in B0, be
ause �ij 6= �ij1 � �i1j1 + �i1j2 � � � � � �ikjk + �ikj .Proof. Let B0 and B be the sub-matri
es 
onsisting of the 
olumns in B0 and B, respe
tively.Ne
essarily, rank(B0) � rank(B) + 1 and B0 is free if and only if rank(B0) = jB0j. Thus, B0 isfree if and only if rank(B) � jBj � 1, sin
e jB0j = jBj. By hypothesis, B is not free, and thusrank(B) = jBj � 1, whi
h means that there exists some pij su
h that B n fpijg is free. From theresults of se
tion 4.1, we have that pij is given by a linear 
ombination of the 
olumns in B n fpijgof the form given above, whi
h is unique. The 
on
lusion now follows from Proposition 1. ut11



4.3 The Rank of the System MatrixThe experimental results suggest the following 
hara
terization of the rank of the system matrixde�ned by (2){(5), whi
h renders its 
omputation almost straightforward.Proposition 3 The rank r of the system matrix de�ned by equations (2){(5) is jOj+ jDj if and onlyif, for all k, the equation de�ning Fk is not Fk = 0, being jOj + jDj � 1 otherwise. Furthermore, ifjOj > 1 and jDj > 1 then r = jOj + jDj � 1 if and only if the string that identi�es the roundabout isdes
ribed by the regular expression S?(SE +D)E?.Proof. The rank r is e + s (that is, jOj + jDj) if and only if the equation de�ning F1 is non-redundant wrt (2){(3). If some Fk is de�ned by Fk = 0, then from (7) we 
on
lude that F1 is alinear 
ombination of the Oi's and Dj 's, and therefore so are all the remaining Fk's. For the proofof the 
onverse impli
ation, we assume, with no loss of generality, that {e = n and |1 = 1 (i.e.road 1 is an exit and road n an entry). By 
ase analysis, now we show that if e > 1, s > 1 and|s > {1, the 
ow Fk is free from the Oi's and Dj 's, for all k, whi
h implies that r = e + s. Our
laim is that fp0{1|1 p0{1|2 ; : : :p0{1|s ;p0{2|s ; : : : ;p0{e|s ;p0{e|1g is a basis of P0, with P0 and P de�ned asabove. The four 
ases to study are: |1 = {1 < |s = {e, |1 = {1 < |s < {e, |1 < {1 < |s = {e and|1 < {1 < |s < {e. Using the tableau, we see that p{1|1 p{1|2 ; : : :p{1|s ;p{2|s ; : : : ;p{e|s make a basis ofP, being p{e|1 = p{1|1 � p{1|s + p{e|s . In the four 
ases, �{e|1 = 0 6= 0� 1 + 0 = �{1|1 � �{1|s + �{e|s .Thus, F1 is free from the Oi's and Dj 's. It remains to prove that when either e = 1 or s = 1 or|s � {1, we have Fk = 0 for some k, and therefore r = e+ s� 1. In fa
t, when there is a single entryor exit, the 
ow through the 
ross-se
tion in frontal alignment with that road is null. When |s � {1,we have F{1 = 0, be
ause {1 is the �rst entry and all the exits are between 1 and {1. ut4.4 An Unique Optimal Solution for the First Cost CriterionThe experimental results show the existen
e of an unique optimal solution for the 
ost 
riterion 
1,whi
h has a quite well-de�ned pattern, as illustrated by the examples in Fig. 5. As before, theSDSDEE DDDDDp021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064
p011 p012 p013 p014p021 p022 p023 p024p031 p032 p033 p034p041 p042 p043 p044Figure 5: The pattern of the optimal solution for 
1.
olumns in framed boxes are those in the basis. To obtain this pattern, R1R2 : : : Rn must satisfyR1 6= E (road 1 is an exit) and Rn 6= S (road n is an entry). When that is the 
ase, the optimalsolution wrt 
1 may be found using the following algorithm.The algorithm: Sele
t for ea
h entry i the 
ow qij to the exit that is the farthest from i.For ea
h entry, sele
t all the dire
tional 
ows that pre
ede the one already sele
ted, butwithout passing the rightmost sele
ted element in the previous row. Finally, sele
t therightmost element in the �rst row (northeast 
orner), if it has not been sele
ted yet.Fig. 6 exempli�es its appli
ation for the roundabout SDSDEE. The northeast 
orner is sele
tedin the �rst step if and only if the roundabout is des
ribed by S?(SE+D)E?. It 
an be seen that thevariables sele
ted by the algorithm, in ea
h row, are the ones that have the highest 
osts.12



p021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064
p021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064

p021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064Figure 6: Applying the algorithm to the roundabout SDSDEEA remarkable observation, to the proof of the 
orre
tion of the algorithm, is that the rightmostelement in the �rst row makes just the 
ontinuation of the stairs formed by the other 
hosen variables,as shown in Fig. 7. Based on this stairs shape of the output solution, it is possible to a

urately de�nep021 p022 p023 p024 p021 p022 p023 p024p041 p042 p043 p044 p041 p042 p043 p044p051 p052 p053 p054 p051 p052 p053 p054p061 p062 p063 p064 p061 p062 p063 p064p021 p022 p023 p024 p021 p022 p023 p024p041 p042 p043 p044 p041 p042 p043 p044Figure 7: Unfolding the optimal solution { a stairs-like shapethe way of writing any given p0ij as a linear 
ombination of the sele
ted 
olumns, as exempli�ed inFigures 8 and 9, for the larger hypotheti
al roundabout SDEESDSSEEED. The following pra
ti
alÆ Æ ÆÆÆÆ Æ ÆÆ Æ ÆÆÆÆ Æ
Æ Æ ÆÆÆÆ � �� Æ �ÆÆ? � Æ

� � ÆÆÆ� Æ �� Æ �Æ? �Æ ÆFigure 8: Writing p0ij when i > j.rule may be applied. First, we �nd p0ij under the stairs, whi
h requires their extension wheneveri < j, as in the example of Fig. 9. Then, starting at p0ij , we move upwards until rea
hing a sele
tedposition, where we start jumping down the stairs to 
ome ba
k to the row of p0ij .Given the variation of 
1, whi
h in broad terms in
reases along ea
h of the tableau rows andde
reases along ea
h 
olumn, it is possible to show that no improvement of the output solution 
an13
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Figure 9: Writing p0ij when i < j. On the right, the uniform view.be a
hieved by 
hanging one of the sele
ted 
olumns to a given p0ij . The variables that qij 
an repla
eare the ones asso
iated to the 
olumns in the 
ombination that de�nes p0ij , whose 
osts ex
eed 
1(qij).A
tually, for ea
h exit j, we have 
1(qi�j) > 
1(qi�j) if either i� < i� < j or j � i� < i� , being
1(qi�j) < 
1(qi�j) otherwise. Similarly, for ea
h entry i, if either j� < j� � i or i < j� < j� , then
1(qij� ) < 
1(qij� ), being 
1(qij� ) > 
1(qij� ), otherwise.Noti
e that being ea
h solution a basis of the subspa
e generated by the 
olumns of P0, it issuÆ
ient to justify that no improvement of the output solution 
an be a
hieved by ex
hanging oneof the 
olumns in B0 for any given p0ij 62 B0.A formal proof of the 
orre
tion of the algorithm is presented below. Although the proof is a bittoo long, it is simply the result of applying these ideas, while doing a formal 
ase analysis.Proposition 4 The algorithm determines the unique optimal solution wrt the fun
tion 
1, providedthe roundabout is identi�ed by a string R1 : : : Rn su
h that R1 6= E and Rn 6= S.Proof. We use the same notations as in the proof of Proposition 3, where e = jOj, s = jDj, thenumbers of the entry roads are {1; : : : ; {e and |1; : : : ; |s are those of the exits, with {e = n and |1 = 1.As we noted in Subse
tion 4.3, when e = s = 1, the system has a unique solution, whi
h is
ompletely determined by the values of the Oi's and Dj 's. It 
an easily be 
he
ked that in these
ases, the algorithm 
orre
tly sele
ts all the variables qij . The unique solution is ne
essarily optimal.e = 1; r = s s = 1; r = e1 2 s{1 Æ Æ � � � Æ 1{1 Æ{2 Æ:::{e ÆIn the rest of the proof, we analyse the remaining situations, where e > 1 and s > 1. We aregoing to show that1. the algorithm sele
ts a basis B0 of the subspa
e generated by the 
olumns of P0, whi
h is a
tuallythe mathemati
al interpretation of the solution;2. the 
omputed solution is the unique optimal solution;The 
olumns p0ij that are sele
ted in Steps 1 and 2, are linearly independent, sin
e the 
orrespondingpij make a basis of the subspa
e generated by the 
olumns of P. This is 
learly seen by 
onstru
ting14



the graph de�ned in Subse
tion 4.1, whi
h has a stairs-like shape. In addition, we 
on
lude that thenumber of variables that are sele
ted in these two steps is e+s�1. To see that B0 is a basis, it remainsto show that the northeast 
orner (i.e., the rightmost element in the �rst row) is sele
ted in Step 3if and only if r = e+ s, being the 
orresponding 
olumn p{1|s free from the ones previously 
hosen.A
tually, from Proposition 3, we know that the rank r = e+ s� 1 i� |s � {1, whi
h is equivalent tothe last exit |s being the farthest exit from the �rst entry {1. This means that, the northeast 
orneris sele
ted in Step 1 i� |s � {1, and be
ause it 
annot be sele
ted in Step 2, we dedu
e that it issele
ted in Step 3 i� r = e + s. Now, we use the te
hniques of Se
tion 4.2 to 
on
lude that, in thislatter 
ase, B0 is a basis. As in Se
tion 4.2, let B be the set of 
olumns of P 
orresponding to the
olumns in B0. There exists an unique 
ombination of the 
olumns in B n fp{1|sg that gives p{1|s ,whi
h is of the form (14). p{1|s = p{1j1 � pi1j1 + pi1j2 � � � �+ pik|s (14)We are going to see that (14) does not hold for the 
orresponding p0ij , and thus, B0 is free, byProposition 2. In fa
t, being {1 < |s, the traÆ
 
ow from {1 to |s does not pass through the 
ross-se
tion in front of road 1. This means that the 
oeÆ
ient �{1|s , of q{1|s in the equation de�ning F1, is0. As 
on
erns the variables qij , that 
orrespond to the 
olumns pij in the right-hand side of (14), allsu
h 
oeÆ
ients are 1, with the possible ex
eption of those of q{1j1 and qi1j1 , whi
h are 0 i� j1 = 1.That results from our hypothesis on the numeration of the roads and from the way in whi
h thevariables are sele
ted in Steps 1 and 2, whi
h ensure that i � j for su
h pij . Clearly, when i � j 6= 1,the traÆ
 
ow from i to j passes frontally to the road 1. Having the right-hand side of (14) an oddnumber of terms, whi
h is at least 3, we have �{1|s 6= �{1j1 � �i1j1 + �i1j2 � � � �+ �ik|s sin
e neither0 = 1 = 1� 1 + 1� � � �+ 1 nor 0 = 1 = 0� 0 + 1� � � �+ 1, and 
onsequently (14) does not hold forthe p0ij 's.In the rest of the proof we show that the output solution is the unique optimal solution. Beingea
h solution a basis of the subspa
e generated by the 
olumns of P0, it is suÆ
ient to justify thatno improvement of the output solution 
an be a
hieved by ex
hanging one of the 
olumns in B0 forany given p0ab 62 B0.Our hypothesis on the numeration of the roads implies that either {1 = |1 = 1 or {1 6= 1 = |1.Therefore, when {1 = 1, the unique sele
tions in the �rst row are p011 and p01|s , whereas in the �rst
olumn we have p011 and at least p0{21. The relevant aspe
ts of the possible 
ases are presented inFig. 10, the 
ir
les denoting the sele
tions.{1 � s |2 > 2 � > 1; s > 21 2 s{1 Æ Æ � � � Æ{2 Æ:::{e Æ 1 |2 |s1 Æ Æ{2 Æ{e Æ_ _ _ _ _ _
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_ _ _ _(a) (b) (
) (d)Figure 10: The 
ases when e; s > 1 (in
omplete for the dashed part).It 
an be shown that the unique 
ombination of the 
olumns in the basis B0 that gives p0ab is, asillustrated in Figures 8 and 9, of the form (15)p0ab = p0i1b|{z}last in
ol. b � p0i1j1| {z }last inrow i1 + p0i2j1| {z }last in
ol. j1 � � � �+ p0ajk|{z}(last?) in
ol. jk androw a (15)
15



where the last, stands for the last one found when moving either downwards or to the right in thepossibly augmented (
.f. Figures 7 and 9) tableau, and p0ajk is also the �rst element found in row ato the right of p0ab. The fa
t that the 
olumns in the right-hand side of (15) do exist in B0, follows asa 
onsequen
e of the stairs-like shape of the output solution. From the results stated in Se
tion 4.1,we may 
on
lude that (15) holds wrt the 
olumns of P involved. To 
on
lude that the 
ombinationis 
orre
t, it remains to 
he
k (15) wrt the elements in the last row of P0. In other words, to 
he
kthat (16) holds. �ab = �i1b � �i1j1 + �i2j1 � � � �+ �ajk (16)By 
ase analysis, we �nd that either �ab = 0 and there is a single sequen
e of 0's in the right-hand side of length one or three, or �ab = 1 and there is no 0 in the right-hand side. As a result,the 
ombination is as de�ned by (15), sin
e the number of terms in the rhs is odd. In view of thevariation of the 
ost fun
tion 
1, it follows from (15) that the 
olumns in B0 that p0ab 
an repla
e,have a stri
tly larger 
ost than 
1(qab), whi
h implies that the output solution is the unique optimalsolution.We present now the above mentioned 
ase analysis in detail, the possible 
ases being as sket
hedin Fig. 10. An important remark is that �{1|s = 0 whereas, for all p0ij 2 B0 n fp{1|sg, su
h that i 6= 1and j 6= 1, we have �ij = 1, sin
e ne
essarily i � j.When a > b, the two possible forms of (16) are 0 = 0� 1+ 1� � � �+1 and 1 = 1� 1+1� � � �+1,for b = 1 and b 6= 1, respe
tively. In parti
ular, in 
ase (a), where r = e+ s � 1, the 
ombination ispab = p{1b�p{1s+pas and, being a � {2 > 1, we have �ab = �{1b� �{1s+ �as, whi
h is 0 = 0� 1+1when b = 1 and 1 = 1� 1 + 1, otherwise.When a < b, the 
oeÆ
ient �ab = 0 and p0{1|s o

urs in the right-hand side of (15), sin
e thatelement is the last sele
tion in 
olumn |s (for the augmented tableau). Moreover, if a = {1 then p0{1|sis the last term in the rhs of (15), being (16) of the form 0 = 1� 1 + � � � � 1 + 0. When a > {1, therhs 
ontains the sequen
e �(p0{1|s � p0{1|� + p0i|� ), for some i � {2, where |� is the farthest exit from{1. In 
ases (b) and (
), |� = 1, so that �(�{1|s � �{1|� + �0i|� ) = �(0 � 0 + 0), while in (d), it is�(0� 1 + 1), all the remaining 
oeÆ
ients in (16) are 1. ut4.4.1 The Greedy Chara
ter of the Optimal SolutionThe unexpe
ted existen
e of an exa
t 
hara
terization of the optimal solution, for whi
h the sele
tedvariables in ea
h row have higher 
ost than the remaining ones, led us to wonder whether the solutionwas a greedy one. We found that this problem is a
tually an instan
e of that of 
omputing a maximum-weight independent subset in a linear matroid, whi
h may be solved by the following Greedy Algorithm(see e.g. [3℄).The greedy algorithm. For any given 
ost fun
tion 
, an optimal basis B0 is obtainedif the 
olumns of P0 are sele
ted in non-de
reasing order of 
ost to form the basis. The
olumn that is 
onsidered at ea
h step is in
luded in B0, unless it is linearly dependent onthose sele
ted before.This explains the fa
t that the program output pre
isely the same optimal solution when we assignedhigher penalties for measuring longer movements (
.f. Subse
tion 3.2.1). This result is undoubtedlymore important than the 
hara
terization of the optimal solution wrt 
riterion 
1. It des
ribes apolynomial algorithm that returns su
h a solution whenever the 
ost value 
(qij) is a 
onstant knownat start. Note that both the 
riteria 
2 and 
3 do not satisfy this 
ondition on the 
ost fun
tion.Nevertheless, the 
hara
terization of the optimal solution, not only has put into eviden
e its greedy
hara
ter, but led us to develop a simple method for 
he
king linear independen
e. As we shall see,this method allows a better understanding of the output solutions wrt 
2 and 
3.4.5 The Optimal Solutions wrt Criteria 
2 and 
3As we mentioned above, both 
riteria 
2 and 
3 aim at modelling the 
ost of 
ondu
ting number platesurveys at some of the entries and exits in order to obtain OD data.16



The total 
ost is given by the number of points where su
h data is 
olle
ted. Thus, for a givenbasis B0 to be optimal, the 
olumns p0ij 2 B0 must �ll a maximum number of rows and 
olumns of thetableau, so that no re
ording must be done at the 
orresponding entries and exits. By Proposition 2,the graph asso
iated to B, as de�ned in Subse
tion 4.1, 
an have at most a 
y
le when B0 is free,implying that it 
annot have 
y
les as those illustrated in Fig. 11, where ea
h Æ denotes a p0ij 2 B0.Æ Æ ÆÆ Æ ÆFigure 11: Example of linear dependen
y.Hen
e, a ne
essary 
ondition for B0 to be a basis is that, when e � 3, the 
olumns p0ij 2 B0 donot �ll two or more 
olumns of the tableau, neither do �ll two or more rows when s � 3, whi
heverthe basis B0 is. In other words, when there are at least three entries and three exits, the optimal 
ostwrt 
2 is given by (e � 1) + (s � 1), whi
h translates the fa
t that one must re
ord data at all theentries but one and at all the exits but one.It 
an also be seen that when e = 2 and s � 3, that 
ost is (e � 1) + (s � 2) if r = e+ s, whi
hmeans that we have to 
olle
t information in one exit less. Still, when r = e+ s� 1 the 
ost is givenby (e� 1)+ (s� 1). Similarly, when e � 3 and s = 2, the optimal 
ost is (e� 2)+ (s� 1) if r = e+ s,being (e�1)+(s�1) otherwise. Optimal solutions are shown in Fig. 12. When either e = 1 or s = 1or e = s = 2 and r = 4, the variables qij are fully determined by the Oi's and Dj 's.{1 � |s = s {1 < |s {1 � 2 {1 < |s1 2 3 s{1 Æ Æ Æ � � � Æ{e Æ 1 2{1 Æ Æ{e Æ
1 |2 |3 |s{1 Æ Æ Æ � � � Æ{e Æ Æ1 |s{1 Æ Æ{e Æ Æ

1 2{1 Æ Æ{2 Æ{3 Æ...{e Æ
1 |s{1 Æ Æ{2 Æ{3 Æ...{e Æ ÆFigure 12: Examples of optimal solutions wrt 
2.4.5.1 The Case of Criterion 
3To the 
ost 
riterion 
3, we envisage a redu
tion in the number of lo
ations where re
ording must bedone, sin
e we now suppose that the volumes qi i+1 may be fully obtained by dire
t observation. By
ontrast to the previous 
riteria, it is almost impossible to abstra
t the form of the solutions from theprogram results. Nevertheless, by reasoning about the possible lo
ations of the p0ij 's in the tableau toget bases, it is still possible to exa
tly 
hara
terize the optimal 
ost wrt 
3 for all the roundabouts, asshown in [7℄. Optimal 
osts are there tabulated and examples of optimal solutions given for 
lasses ofroundabouts identi�ed by regular expressions (see e.g. [5℄). Distinguishing features are the numbersof entries, exits and 
ows qi i+1, as well as the relative pla
es of the p0i i+1's in the tableau. Forexample, (e � 1) + (s � 3) + 3? is shown to be the optimal 
ost for the roundabouts des
ribed bySk1(D+ SE)Sk2(D+ SE)Sk3(D+ SE), with k1 + k2 + k3 � 2, where 3? means that its three traÆ

ows qi i+1 should be dire
tly observed in site.An interesting remark is that if, for any given roundabout R1R2 : : : Rn, we inter
hange E's withS's and read the resulting expression from right to left, we �nd a roundabout that is modelled byexa
tly the same system of equations, up to renaming and reordering of variables and 
onstraints.17



Hen
e, the optimal 
osts for both the 
ases e � 5 and s � e � 4 
an be dedu
ed from those obtainedfor s � 5 and e � s � 4, respe
tively, and re
ipro
ally.5 Con
lusionsResults are given from our resear
h on the problem of �nding the OD trip matrix for roundaboutsby performing a minimum number of traÆ
 
ounts at minimum 
ost. The analysis has fo
used onthe situations when 
ounting vehi
les at entries, exits and 
ross-se
tions inside the roundabout isseen as preferential. Of some pra
ti
al interest is the 
on
lusion that the number of non-redundant
onstraints in the given mathemati
al model is typi
ally jOj+ jDj, being jOj+ jDj�1 when the traÆ

ow through one of su
h 
ross-se
tions is null. This means that there may exist a lot of possiblehypotheses for the sele
tion of the OD 
ows that we need to 
ount so as to 
ompletely solve theproblem. Nevertheless, this work led us to 
on
lude that if a 
ost is given to measuring ea
h OD 
owindividually, the overall 
ost is minimized if the OD 
ows that should not be measured are sele
tedin non-de
reasing order of 
ost to form an independent set. We gave a rather simple method for
he
king su
h independen
e, whi
h has also the advantage of not involving 
oating-point operations.Three parti
ular 
ost fun
tions were proposed for a systemati
 study of hypotheti
al roundabouts on
omputer, and we have 
on
luded that their optimal solutions are well-
hara
terized.Nonetheless, as 
laimed in [1℄, for real-world appli
ations, it would be important to 
onsider more
exible 
ost 
riteria in order to take into a

ount spe
i�
 features of the a
tual roundabout in study.Referen
es[1℄ Andrade M.: M�etodos e T�e
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