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Obtaining Origin-Destination Data at Optimal Cost at UrbanRoundabouts(Extended Version)Ana Paula Tom�as�DCC-FC & LIACC, Univ. do PortoR. do Campo Alegre, 8234150-180 Porto, Portugalapt�n.up.pt Marta AndradeAenor / Operanor { Auto-Estradas do Norte, S.A.mandrade�aenor.ptAm�erio Pires da CostaDepartamento de Engenharia CivilFa. Engenharia, Univ. do Portoamosta�fe.up.ptMarh 2001 { (rev. July 2001)AbstratWe investigate the problem of �nding the Origin-Destination trip matrix in a roundabout atoptimal ost. The goal is to hoose the turning movements that will be measured in additionto some independent total volumes at exits, entries and ross-setions inside the roundabout.Three ost riteria are proposed, eah one modelling the ost of data olletion in a di�erentway. We disuss aspets of our study of this problem on omputer and go through interestingmathematial properties we have found the proposed model to have.1 IntrodutionVehile ow data is an important soure of information while providing a better knowledge about thetraÆ systems. Colleting traÆ data is normally expensive and time onsuming, so that the traÆsurveys must be arefully designed.As regards urban intersetions, it is important to know not only the total traÆ ows but alsothe turning movement ows, i.e., the Origin-Destination (OD) matrix for the juntion. It is easy toount the total entry and exit volumes on eah arm and, moreover, the reent advane in tehnologyis rendering this task still easier. The problem arises with the turning movements, whih have to beolleted by diret observation, beause it is not pratially possible the use of automati ounters.To perform diret observations at urban roundabouts is more diÆult sine not only they oupy alarger land area, but they also ontain U-turning movements. So we must plan and design traÆ dataolletion at roundabouts arefully. In partiular, we have to �nd out how many observers we need,where they are to ount the traÆ volumes and whih tasks are addressed to eah one. Building onthe omputational study we present in this paper, a methodology for takling this problem is givenin [1℄, being onsidered three ost funtions for doing a systemati analysis of roundabouts. Theoptimisation of the number and loation of traÆ ounting points for the more general ase of traÆnetworks is the subjet of two reent publiations [2, 8℄. TraÆ ounts are there used in the estimation�The work presented here has been partially supported by funds granted to LIACC through the Programa deFinaniamento Plurianual, Funda�~ao para a Ciênia e Tenologia and Programa POSI.2



of the OD trip matrix for the traÆ network, their fous being on the quality of that estimation.By ontrast to our work, in [2, 8℄ it is naturally assumed either some knowledge about the turningprobabilities at link juntions or path ow information, whih makes our problem essentially distintfrom theirs.The paper is organized as follows. In Setion 2 we de�ne the problem in mathematial terms.Then, in Setion 3 we go through some aspets of the programs we implemented to study the problemon omputer, to onlude in Setion 4, by showing interesting mathematial properties we have foundthis problem to have.2 The Mathematial FormulationFor a given urban intersetion, let O be the set of entries (origins), D the set of exits (destinations)and qij the traÆ ow from the entry i to the exit j. Our goal is to aurately �nd the values of allthe qij 's for a given period of time. We assume that all the vehiles entering the roundabout also exitit, that is translated by (1), so that (2) and (3) hold,Xi2OOi = Xj2DDj (1)Xj2D qij = Oi; for i 2 O (2)Xi2O qij = Dj ; for j 2 D (3)with Oi and Dj denoting the total traÆ volumes entering from i and exiting at j, respetively.By (1), at least one of the jOj+ jDj equations (2){(3) is redundant. In fat, any jOj+ jDj � 1 of suhequations are non-redundant, whih follows quite intuitively in view of the real meaning of eah Oiand Dj , but it is also one of the well-known properties of the Transportation Problems studied inLinear Programming (see e.g., [4℄).In this work, we onsider that more expensive or sophistiated means may be required to getorigin-destination data (i.e., the qij 's) than those needed to ount vehiles at exits, entries and thatpass through ross-setions of the irulatory arriage-way. The system (2){(3), in the variables qij ,is under-spei�ed in general. At �rst sight, traÆ ounts at ross-setions of the irulatory arriage-way ould be of some help in reduing this indeterminay. Fig. 1 shematially represents two types of
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Figure 1: Cross-setions of the irulatory arriage-waysuh ross-setions | Fk and Ik denote the traÆ ow through the ross-setion in frontal alignment3



with road k and through the ross-setion between road k and k + 1, respetively. Assuming thatvehiles exit the roundabout when they reah their destination exit for the �rst time, we have (4)and (5), Xi2Onfkg Xj2D; k�j�i qij = Fk; for 1 � k � n (4)Xj2D qkj + Xi2Onfkg Xj2D; k�j�i qij = Ik; for k 2 O (5)Fk = Ik; for k 2 D n Owhere j 2 D; k � j � i stands for \the exits between road k and road i, being k exluded". All ofthese total traÆ volumes are naturally related, beingFk+1 = Fk +Ok �Dk+1 (6)and thus (7) holds. Fk = F1 + X1�i<kOi � X1<i�kDi; for all k (7)Here, eah Oi (respetively, Dj) should be read as 0, if i 62 O (respetively, j =2 D). To simplifynotation, by k + 1 we refer to the road that immediately follows road k, in the ordering naturallyindued by the way traÆ irulates in the roundabout. We also have (8).Ik = Fk +Ok and Ik+1 = Ik +Ok+1 �Dk+1 (8)These relationships imply at that most jOj+jDj of the equations de�ned by (2){(5) are non-redundant.An exat haraterization of this number is given by Proposition 3, in Subsetion 4.3.2.1 The ProblemLet r denote the rank of the system matrix de�ned by (2){(5), that is, the number of non-redundantequations. We have just seen that either r = jOj+ jDj � 1 or r = jOj+ jDj.Under the hypothesis that the required traÆ ounts an be obtained with auray during aertain period of time, (2){(5) is equivalent to eah of its subsystems onsisting of r non-redundantequations. Moreover, it admits a unique solution if jOjjDj� r of the qij 's are known and the olumnsof the system matrix assoiated to the r remaining ones are linearly independent. Hene, the mainquestion is the hoie of the traÆ ows qij that will be loally measured, in addition to some rindependent Oi's, Dj 's, Fk's and Ik 's.In the following setion we present the omputational study we arried out, whih led us to realizeand prove relevant mathematial properties of this problem.3 A Computational StudyThe need for an exhaustive ase analysis that ould quikly provide either support or ounterexamplesto some preliminary onlusions, motivated the use of a omputer to proeed the study. We wanteda omputer program to generate all the possible ombinations for the traÆ volumes to be measuredfor eah type of roundabout with n intersetion roads. The eÆieny of the algorithms was ofgreat onern sine the program would involve an highly ombinatorial searh proedure. Aimingat reduing the implementation e�ort, we briey onsidered the use of a Constraint Programmingsystem for solving the problem. DiÆulties in modeling the problem in an suitable way led us to writethe programs in C language, although implementing searh strategies based on usual tehniques inCombinatorial Optimization and Constraint Programming (e.g. [6℄ for some bibliographi referenes).Beause interesting programming problems were takled, we think it worthwhile presenting someof the ideas of the designed algorithms. As we shall see, the analysis of the programs results gave usa deep insight on the problem struture, that allows to greatly improve some aspets of the solvingproedure we now go on to desribe. 4



3.1 Generating Distint RoundaboutsA roundabout where n roads interset is identi�ed in the programs by a string R1R2 : : : Rn for a givennumeration of the interseting roads. Eah Ri 2 fE;D; Sg indiates whether road i is just an entry(E), just an exit (S) or both an entry and exit (D) road. All the strings obtained from R1R2 : : : Rnby rotation denote exatly the same roundabout, but for di�erent numerations of the roads, so thatonly one of these strings is used to refer to a given roundabout.In the implementation, the symbols E;D and S are mapped to the digits 0, 1 and 2, so that thestrings are viewed as representations of nonnegative integers in the basis 3. In partiular, R1R2 : : : Rnwas mapped toPni=1 3i�1Ri. Among the strings that represent the same roundabout, the string thatevaluates to the smallest integer is the one seleted by the algorithm. To obtain the set of integersrepresenting distint roundabouts, the implemented algorithm maintains a boolean array Id, whereId[i℄ states whether or not i is in suh set. Integers are onsidered from 1 to 3n � 1 and eah timean integer i is found in the set, all the integers whose representation in basis 3 is a rotation of thatof i are marked as non-eligible. In the end, the roundabouts orrespond to the entries with a KEEPmark. The algorithm is presented in Fig. 2, where base3(i,key,n) yields the n digits representationof i in key, whereas left_rotate(key,n) rotates key to the left by one position and then returnsthe integer that key represents. The visited ounter is orret sine it an be shown that when aint roundabouts(int n){ int nmax=pow(3,n)-2, nroundbs=0, i, k, visited=0;har key[NMAX℄;for (i=1; i<nmax; i++) Id[i℄ = KEEP;for (i=1; visited < nmax; i++)if (Id[i℄ == KEEP) {base3(i,key,n); k = left_rotate(key,n);while(k != i) {Id[k℄ = DONT_KEEP; visited++;k = left_rotate(key,n);}visited++; nroundbs++;}return nroundbs; // number of distint roundabouts} Figure 2: Enoding and �nding distint roundaboutsstring � � �1�2 : : : �n is suessively rotated to the left, � is the �rst sequene found repeated. Theoutput strings R1R2 : : : Rn denote distint roundabouts and have the property that R1 6= E (road1 is an exit) and Rn 6= S (road n is an entry), being the intersetion roads numerated in the waytraÆ irulates. This asual feature was ruial during the analysis of the experimental results, aswe shall see in setion 4. Namely, it allowed to reognize the pattern of the optimal solution for oneof the optimization riteria studied.3.2 Finding the Diretional Flows to ObserveFor eah type of roundabout with n intersetion roads, the program obtains the onstraints (2){(5),omputes the rank r of the orresponding system matrix and enumerates all the alternative solutionsfor the set of traÆ volumes that are to be ounted.As we mentioned before, during this work, we assumed that more expensive or sophistiatedmeans are required to get origin-destination data (i.e., the qij 's) than those needed to ount vehilesat exits, entries and ross-setions (i.e., to get the total volumes Oi's, Dj 's, Fk's and Ik's). Thismakes possible to separate the seletion of the r independent volumes Oi's, Dj 's, Fk's and Ik 's thatshould be olleted from that of the jOjjDj � r diretional volumes qij 's. Solutions are then obtained5



by putting together any suh ouple of total and diretional ounts.Although our work mainly onerns the hoie of the qij 's, in the �rst implementation we alsotakled the other subproblem. For the sake of eÆieny, the program heked whether eah seletedombination of setions was equivalent by rotation to one previously found. Moreover, while deduingthe onstraints, it determined the Fk's and Ik's that have the same de�nition as another ow. Thatinformation was used in onjuntion with a suitable tabulation of the ombinations already studiedto avoid exploring twie ombinations that were atually equal.The algorithm we implemented for hoosing the diretional ows is based on a depth-�rst searhstrategy with hronologial baktraking, being the qij 's taken in a ertain order. Whenever a solutionis found or some failure is deteted, baktraking ours to the most reent alternative to �nd othersolutions. Beause the olumns orresponding to eah set of r diretional ows that are not measuredmust be linearly independent, what the program atually enumerates are the alternatives for suha set of ows. In other words, the program is searhing for bases of the subspae spanned by theolumns of the system matrix.To test the seleted olumns for linear independene, Gaussian elimination is applied to thematrix formed by them, to see whether it has full olumn rank. This method is quite adequate tohandle the inremental hange of the matrix in an eÆient way. When a variable qij is seleted, theprogram simply applies to its olumn the transformations done in the previous steps to the matrixorresponding to the variables already in the set, in exatly the same order. This is dealt by a funtioningauss(int ns, int newol), whose C ode is given in Fig. 3, being ns the number of olumnsint ingauss(int ns, int newol){ int i, j, ipv, rowpiv; double newp;for (i=0; i < Rank; i++) {AuxPvs[i℄ = i;Mat[i℄[ns℄ = CoeffsRestr[i℄[newol℄); // insert newol}if (ns)for (j=0; j < ns; j++) {if (AuxPvs[j℄ != PrevPvs[j℄.row) AuxPvs[PrevPvs[j℄.found℄ = AuxPvs[j℄;rowpiv = PrevPvs[j℄.row;Mat[rowpiv℄[ns℄ /= Mat[rowpiv℄[j℄;for (newp=0, i=j+1; i < Rank; i++) {Mat[AuxPvs[i℄℄[ns℄ -= Mat[AuxPvs[i℄℄[j℄*Mat[rowpiv℄[ns℄;if (ABSVALUE(Mat[AuxPvs[i℄℄[ns℄) > newp) {newp = ABSVALUE(Mat[AuxPvs[i℄℄[ns℄); ipv = i; }}if (newp <= EPSILON) return PrevPvs[j℄.var; // EPSILON means 0}else { // the given olumn must be non-nullfor (newp=0, i=0; i < Rank; i++)if (ABSVALUE(Mat[i℄[ns℄) > newp) {newp = ABSVALUE(Mat[i℄[ns℄); ipv = i;}}PrevPvs[ns℄.found = ipv; PrevPvs[ns℄.row = AuxPvs[ipv℄;PrevPvs[ns℄.var = newol;return newol;} Figure 3: A Gaussian-elimination based test for linear independene.already seleted and newol the index of the olumn of qij . The array PrevPvs ontains relevantdata about the pivots of the previous steps, whih is needed to redue the new olumn. Notie alsothat the auxiliary matrix Mat is only hanged by this funtion and that, as usually, an array AuxPvsis used to keep trak of row exhanges, rather than expliitly interhanging rows.6



If the new olumn is found independent, the funtion returns newol. Otherwise, it returns theindex of the �rst variable that renders qij non-eligible. This allows the program to mark qij so asto prevent its seletion until that inompatible variable is removed through baktraking. Hene, itdetets and remembers onits that may arise near the root of the searh tree. In addition, theprogram keeps the number of remaining variables, ausing a failure when that number is less thanthe one needed to omplete a basis. In that way, the searh spae is quite e�etively redued.While �xing a bug due to roundo� errors, we have �nally developed a rather simple method totest for independene, whose idea we present in Subsetion 4.2.3.2.1 Finding preferential solutionsSine the number of solutions is often quite large, three ost riteria were introdued to haraterizepreferential solutions, as proposed in [1℄. It is important to observe that the onlusions drawn fromthe analysis of the output solutions are far more interesting than the straight appliation of theseost riteria in real pratie.The �rst riterion 1 de�nes the ost of measuring the ow qij by the number of roads between iand j, whih is expressed by (9).1(qij) = � j � i; if i < jj � i+ n; otherwise (9)For both the remaining riteria 2 and 3, the osts are dynamially omputed during the searhand are determined by the previous hoies. In both ases, it is assumed that origin-destination datamust be olleted at some of the entries and exits, suh as by manually reording of plate numbersor by video surveys, being the total ost de�ned by the number of loations where suh OD surveysare arried out. However, 3 assigns a negligible ost to measuring qij , when the road j immediatelyfollows i, assuming that suh traÆ ow an be fully observed in site. For eah ow qij we now have2(qij) = 8<: 0; if i 2MO, j 2MD2; if i =2MO, j =2MD1; otherwise 3(qij) = 8<: 0; if i 2MO, j 2MD, or j = i+ 12; if i =2MO, j =2MD, j 6= i+ 11; otherwisebeing MO and MD the set of entries and exits where that type of data has to be olleted given theseletions already in the set. In ase qij is hosen to be measured and its ost value is not null, thesets MO and MD are updated by the program so as to ensure that surveys are loated also at entryi and exit j, respetively.The searh proedure was adapted to implement a branh-and-bound strategy, as shown in Fig. 4for the ase of 1. The main funtion explore(int nv, int vars, int remain) is �rst alled asexplore(0,0,NVars), where NVars is the number OD ows, whereas vars and nv are the number ofolumns already seleted to the basis and the index of next andidate in the SortV array, respetively.The variables are seleted in a non-inreasing order of ost, as given in SortV. The above mentionedonits are dealt by MarkVars, whose entries have ELIGIBLE value at start. Initially, Vars[i℄.ounthas value MEASURED, for all i.By alling deletemarks(nqij+1), the program restores as ELIGIBLE the variables that weredeteted in onit with nqij and returns the overall ost of measuring them. Two omplementaryost estimates are de�ned by COST(nqij) and LOSS(nqij), being CostPar and LossPar used toprune the searh spae. COST(nqij) is 1(qij) whereas LOSS(nqij) is the di�erene between themaximum value of 1 and 1(qij), that is maxij(1(qij))� 1(qij).When entering explore(), the global variable CostPar ontains the sum of osts 1(qij) forthose qij that should be measured as settled by the previous seletions, whereas LossPar ontainsthe overall LOSS for those that are already in the basis. MinCij is a onstant, that is de�ned byminij(1(qij)), being 1 if 1 is given by (9). Notie that, using SortV, the variables are seleted tothe basis in non-dereasing order of loss value. Finally, Rank-vars is the number of variables thatwe need to omplete the basis. 7



void explore(int nv, int vars, int remain){ int i, j, ostv=0, onflitvar, nqij;while (vars < Rank && remain+vars >= Rank) {if (CostPar + (remain-(Rank-vars))*MinCij > CostOpt) break;nqij = SortV[nv℄; // index of seleted variableif (LossPar + (Rank-vars)*LOSS(nqij) > LossOpt) break;if (MarkVars[nqij℄ == ELIGIBLE) {if ((onflitvar = ingauss(vars,nqij)) == nqij) {Vars[nqij℄.ount = NOT_MEASURED;LossPar += LOSS(nqij);explore(nv+1,vars+1,remain-1);CostPar -= deletemarks(nqij+1);Vars[nqij℄.ount = MEASURED; remain--;ostv += COST(nqij);LossPar -= LOSS(nqij);} else { MarkVars[nqij℄ = onflitvar+1; remain--; }CostPar += COST(nqij);}nv++;}if (vars == Rank) { // adding the osts of the remaining variablesfor(j=nv,i=0; i<remain && CostPar < CostOpt; j++)if (MarkVars[SortV[j℄℄ == ELIGIBLE) {CostPar += COST(SortV[j℄); ostv += COST(SortV[j℄);i++;}if (CostPar < CostOpt) { // found a better solutionsave_new_sol(); CostOpt = CostPar; LossOpt = LossPar;}}CostPar -= ostv;} Figure 4: Searhing for optimal solutions wrt 1.
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By modelling the ost by 1, we wanted to abstrat the idea that the longer movements get,the more diÆult their diret observation is. Sine our major motivation was that of �nding pos-sible interesting patterns for partiular solutions, we deided to drastially inrease the penalty formeasuring longer movements by de�ning COST(nqij) and LOSS(nqij) as follows.COST(nqij) = n1(qij)�1LOSS(nqij) = nn�1(qij)This results in a signi�ant runtime speedup, and quite surprisingly we observed that the programoutputs exatly the same (unique) optimal solution as before, for eah roundabout. The theoretialexplanation for that fat is given in Subsetion 4.4.4 From Program Outputs to Mathematial PropertiesBefore we move on to present some interesting properties of this model, we reall lassial results ofTransportation Problems in Linear Programming (e.g., [4℄), whih were fundamental to �nd them.4.1 On Transportation Problems in Linear ProgrammingThe onstraints of a well-balaned Transportation Problem in standard form, given by (10){(11),nXj=1 xij = ai; ai > 0; i = 1; : : : ;m (10)mXi=1 xij = bj ; bj > 0; j = 1; : : : ; n (11)an be written in matrix form as Px = b, where x = [x11; : : : ; x1n; : : : ; xm1; : : : ; xmn℄ and b =[a1; : : : ; am; b1; : : : ; bn℄ are olumn vetors. When Pmi=1 ai = Pnj=1 bj , the problem is alled well-balaned, and in that ase it has some non-negative solutions.It is known that the rank of P is m+n�1, eah m+n�1 of its rows being linearly independent.Thus, any m+ n� 1 of the onstraints (10){(11) are independent.Eah olumn of P ontains exatly two 1's. The olumn pij , that of the variable xij , an bewritten as pij = ei + em+j , where the ek are the unit vetors of Rm+n.Given a subset B onsisting of m+ n� 1 linearly independent olumns of P, so that B is a basisof the subspae spanned by the olumns of P, the linear ombination of the basis vetors that givespij is of the form (12) pij = pBij1 � pBi1j1 + pBi1j2 � � � � � pBikjk + pBikj (12)where eah vetor in the basis ours at most one and the number of terms is odd.An interesting fat is that, when the symbols pij are written as in the following tables, eah olumnpij not in the basis B, and the basis vetors that appear in (12) form a loop, whih is neessarilyunique for eah pij . The loop, whih is alled a simple loop, onsists of horizontal and vertial edges,onseutive edges being orthogonal and no vetor being repeated. It an be shown that the olumnsin a given set are linearly independent if and only if no suh a loop an be formed with some olumnsin the set, as explained in more detail below.The following example illustrates these onepts. It shows how p12 and p32 are written as a linear9



ombination of the basis vetors, when B = fp11;p13;p22;p23;p31g and m = n = 3.p11 p12 p13 p11 p12 p13p21 p22 p23 p21 p22 p23p31 p32 p33 p31 p32 p33The onlusion is that p12 = p13 � p23 + p22 and p32 = p31 � p11 + p13 � p23 + p22. Notie thate3 + e3+2 = p32 = (e3 + e3+1) � (e1 + e3+1) + (e1 + e3+3) � (e2 + e3+3) + (e2 + e3+2). Eah unitvetor that is introdued in the ombination, but e3 and e3+2, is expliitly removed.Given a subset B of the olumns of P, let us onstrut a graph G, whose verties orrespond tothe elements of B, and the edges are obtained by linking eah vertex in a given row (respetively,olumn) to the vertex in the same row (respetively, olumn) that is loser to that one in the table,if there is some, as shown in the following examples.p11 p12 p13 p14 p11 p12 p13 p14p21 p22 p23 p24 p21 p22 p23 p24p31 p32 p33 p34 p31 p32 p33 p34It is known that the olumns in B are linearly independent if and only if the graph G is ayli.If, in addition, the graph is onneted and there is at least a vertex in eah olumn and in eah rowof the table, then B is a basis of the subspae spanned by the olumns of P.We shall now see how a simple test for linear independene is dedued by extending these results,in a natural way. This test only involves additions and subtrations.4.2 Our Simple Test for Linear IndependeneIn the sequel, we onsider that the roads are numerated in the way traÆ irulates with O =f{1; : : : ; {eg and D = f|1; : : : ; |sg, thus e = jOj and s = jDj. Notie that we shall use both thenotations {k (the kth entry) and ik, being intentionally distint, and also |k (the kth exit) and jk.Given a roundabout whose onstraint system has rank jOj + jDj, let us onsider the subsystemonsisting of the onstraints (2)-(3) and the one de�ning F1. As seen before, this subsystem isequivalent to (2)-(5). Now, let P0 denote the matrix of this subsystem and let P be the sub-matrixonsisting of all the rows of P0 but the last one, whih is that of F1. It is not diÆult to see that theolumns of P0 are given by (13), being p{i|j = ei + ee+j .p0{i|j = � ei + ee+j + ee+s+1 if {i � |j 6= 1ei + ee+j if {i < |j or {i = 1 or |j = 1 (13)Let the last element of p0ij , that is the oeÆient of qij in the equation de�ning F1, be denoted by�ij . By (13), �ij = 1 if i � j 6= 1, and �ij = 0 otherwise. The test for linear independene we proposeis based on Propositions 1 and 2, whih follow almost diretly from the results stated in setion 4.1and the de�nition of linear independene.Proposition 1 Let B0 be a subset of the olumns of P0 and B the set of the orresponding olumnsin P. If some olumn pij is written in an unique way as a ombination of the olumns in B bypij = pij1 � pi1j1 + pi1j2 � � � � � pikjk + pikjthen p0ij is free relatively to B0 if and only if �ij 6= �ij1 � �i1j1 + �i1j2 � � � � � �ikjk + �ikj .10



By analogy to the Transportation problem, let us represent P0 in a tableau form. The tehniqueis illustrated by the following example, that is related to the roundabout identi�ed by the sequeneDDDD, the olumns in framed boxes being those in B0 = fp013;p014;p021;p032;p034;p041;p043g.p011 p012 p013 p014p021 p022 p023 p024p031 p032 p033 p034p041 p042 p043 p044The loop shown in the tableau implies that p22 = p21 � p41 + p43 � p13 + p14 � p34 + p32, thereexisting no other way of writing p22 as a ombination of the olumns in B. But�22 = 1 6= 0� 0 + 1� 0 + 0� 0 + 1 = �21 � �41 + �43 � �13 + �14 � �34 + �32so, we dedue that p022 6= p021 � p041 + p043 � p013 + p014 � p034 + p032, and thus B0 [ fp022g is free.Therefore, a free set is obtained if the vetor p022 is inluded in B0, although the resulting set Bis no longer free. For that reason, to onlude that, for instane p012, is a linear ombination of theolumns in the new B0, we have to adapt somehow the former proedure. As shown in the piturebelow, p12 is given by di�erent ombinations of the olumns in the new B.p011 p012 p013 p014 p011 p012 p013 p014p021 p022 p023 p024 p021 p022 p023 p024p031 p032 p033 p034 p031 p032 p033 p034p041 p042 p043 p044 p041 p042 p043 p044And, although p12 = p14 � p34 + p32, we have �12 = 0 6= 0 � 0 + 1 = �14 � �34 + �32, so thatp012 6= p014 � p034 + p032. However, if one of the olumns p14, p34 and p32 is removed, for instanep32, there remains a unique ombination giving p12, namely p12 = p13 � p43 + p41 � p21 + p22. Asonerns F1, we have 0 = 0� 1+0� 0+ 1, and thus p012 = p013�p043+p041�p021+p022, whih showsthe linear dependene of p012 relatively to the new B0. This is formalized by Proposition 2.Proposition 2 Let B0 and B be de�ned as in Proposition 1. If B is not free, then B0 is free if andonly there exists some pij suh that B n fpijg is free and the equality of the formpij = pij1 � pi1j1 + pi1j2 � � � � � pikjk + pikjthat expresses pij as a ombination of the olumns in B n fpijg, does not hold for the orrespondingolumns in B0, beause �ij 6= �ij1 � �i1j1 + �i1j2 � � � � � �ikjk + �ikj .Proof. Let B0 and B be the sub-matries onsisting of the olumns in B0 and B, respetively.Neessarily, rank(B0) � rank(B) + 1 and B0 is free if and only if rank(B0) = jB0j. Thus, B0 isfree if and only if rank(B) � jBj � 1, sine jB0j = jBj. By hypothesis, B is not free, and thusrank(B) = jBj � 1, whih means that there exists some pij suh that B n fpijg is free. From theresults of setion 4.1, we have that pij is given by a linear ombination of the olumns in B n fpijgof the form given above, whih is unique. The onlusion now follows from Proposition 1. ut11



4.3 The Rank of the System MatrixThe experimental results suggest the following haraterization of the rank of the system matrixde�ned by (2){(5), whih renders its omputation almost straightforward.Proposition 3 The rank r of the system matrix de�ned by equations (2){(5) is jOj+ jDj if and onlyif, for all k, the equation de�ning Fk is not Fk = 0, being jOj + jDj � 1 otherwise. Furthermore, ifjOj > 1 and jDj > 1 then r = jOj + jDj � 1 if and only if the string that identi�es the roundabout isdesribed by the regular expression S?(SE +D)E?.Proof. The rank r is e + s (that is, jOj + jDj) if and only if the equation de�ning F1 is non-redundant wrt (2){(3). If some Fk is de�ned by Fk = 0, then from (7) we onlude that F1 is alinear ombination of the Oi's and Dj 's, and therefore so are all the remaining Fk's. For the proofof the onverse impliation, we assume, with no loss of generality, that {e = n and |1 = 1 (i.e.road 1 is an exit and road n an entry). By ase analysis, now we show that if e > 1, s > 1 and|s > {1, the ow Fk is free from the Oi's and Dj 's, for all k, whih implies that r = e + s. Ourlaim is that fp0{1|1 p0{1|2 ; : : :p0{1|s ;p0{2|s ; : : : ;p0{e|s ;p0{e|1g is a basis of P0, with P0 and P de�ned asabove. The four ases to study are: |1 = {1 < |s = {e, |1 = {1 < |s < {e, |1 < {1 < |s = {e and|1 < {1 < |s < {e. Using the tableau, we see that p{1|1 p{1|2 ; : : :p{1|s ;p{2|s ; : : : ;p{e|s make a basis ofP, being p{e|1 = p{1|1 � p{1|s + p{e|s . In the four ases, �{e|1 = 0 6= 0� 1 + 0 = �{1|1 � �{1|s + �{e|s .Thus, F1 is free from the Oi's and Dj 's. It remains to prove that when either e = 1 or s = 1 or|s � {1, we have Fk = 0 for some k, and therefore r = e+ s� 1. In fat, when there is a single entryor exit, the ow through the ross-setion in frontal alignment with that road is null. When |s � {1,we have F{1 = 0, beause {1 is the �rst entry and all the exits are between 1 and {1. ut4.4 An Unique Optimal Solution for the First Cost CriterionThe experimental results show the existene of an unique optimal solution for the ost riterion 1,whih has a quite well-de�ned pattern, as illustrated by the examples in Fig. 5. As before, theSDSDEE DDDDDp021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064
p011 p012 p013 p014p021 p022 p023 p024p031 p032 p033 p034p041 p042 p043 p044Figure 5: The pattern of the optimal solution for 1.olumns in framed boxes are those in the basis. To obtain this pattern, R1R2 : : : Rn must satisfyR1 6= E (road 1 is an exit) and Rn 6= S (road n is an entry). When that is the ase, the optimalsolution wrt 1 may be found using the following algorithm.The algorithm: Selet for eah entry i the ow qij to the exit that is the farthest from i.For eah entry, selet all the diretional ows that preede the one already seleted, butwithout passing the rightmost seleted element in the previous row. Finally, selet therightmost element in the �rst row (northeast orner), if it has not been seleted yet.Fig. 6 exempli�es its appliation for the roundabout SDSDEE. The northeast orner is seletedin the �rst step if and only if the roundabout is desribed by S?(SE+D)E?. It an be seen that thevariables seleted by the algorithm, in eah row, are the ones that have the highest osts.12



p021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064
p021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064

p021 p022 p023 p024p041 p042 p043 p044p051 p052 p053 p054p061 p062 p063 p064Figure 6: Applying the algorithm to the roundabout SDSDEEA remarkable observation, to the proof of the orretion of the algorithm, is that the rightmostelement in the �rst row makes just the ontinuation of the stairs formed by the other hosen variables,as shown in Fig. 7. Based on this stairs shape of the output solution, it is possible to aurately de�nep021 p022 p023 p024 p021 p022 p023 p024p041 p042 p043 p044 p041 p042 p043 p044p051 p052 p053 p054 p051 p052 p053 p054p061 p062 p063 p064 p061 p062 p063 p064p021 p022 p023 p024 p021 p022 p023 p024p041 p042 p043 p044 p041 p042 p043 p044Figure 7: Unfolding the optimal solution { a stairs-like shapethe way of writing any given p0ij as a linear ombination of the seleted olumns, as exempli�ed inFigures 8 and 9, for the larger hypothetial roundabout SDEESDSSEEED. The following pratialÆ Æ ÆÆÆÆ Æ ÆÆ Æ ÆÆÆÆ Æ
Æ Æ ÆÆÆÆ � �� Æ �ÆÆ? � Æ

� � ÆÆÆ� Æ �� Æ �Æ? �Æ ÆFigure 8: Writing p0ij when i > j.rule may be applied. First, we �nd p0ij under the stairs, whih requires their extension wheneveri < j, as in the example of Fig. 9. Then, starting at p0ij , we move upwards until reahing a seletedposition, where we start jumping down the stairs to ome bak to the row of p0ij .Given the variation of 1, whih in broad terms inreases along eah of the tableau rows anddereases along eah olumn, it is possible to show that no improvement of the output solution an13
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Figure 9: Writing p0ij when i < j. On the right, the uniform view.be ahieved by hanging one of the seleted olumns to a given p0ij . The variables that qij an replaeare the ones assoiated to the olumns in the ombination that de�nes p0ij , whose osts exeed 1(qij).Atually, for eah exit j, we have 1(qi�j) > 1(qi�j) if either i� < i� < j or j � i� < i� , being1(qi�j) < 1(qi�j) otherwise. Similarly, for eah entry i, if either j� < j� � i or i < j� < j� , then1(qij� ) < 1(qij� ), being 1(qij� ) > 1(qij� ), otherwise.Notie that being eah solution a basis of the subspae generated by the olumns of P0, it issuÆient to justify that no improvement of the output solution an be ahieved by exhanging oneof the olumns in B0 for any given p0ij 62 B0.A formal proof of the orretion of the algorithm is presented below. Although the proof is a bittoo long, it is simply the result of applying these ideas, while doing a formal ase analysis.Proposition 4 The algorithm determines the unique optimal solution wrt the funtion 1, providedthe roundabout is identi�ed by a string R1 : : : Rn suh that R1 6= E and Rn 6= S.Proof. We use the same notations as in the proof of Proposition 3, where e = jOj, s = jDj, thenumbers of the entry roads are {1; : : : ; {e and |1; : : : ; |s are those of the exits, with {e = n and |1 = 1.As we noted in Subsetion 4.3, when e = s = 1, the system has a unique solution, whih isompletely determined by the values of the Oi's and Dj 's. It an easily be heked that in theseases, the algorithm orretly selets all the variables qij . The unique solution is neessarily optimal.e = 1; r = s s = 1; r = e1 2 s{1 Æ Æ � � � Æ 1{1 Æ{2 Æ:::{e ÆIn the rest of the proof, we analyse the remaining situations, where e > 1 and s > 1. We aregoing to show that1. the algorithm selets a basis B0 of the subspae generated by the olumns of P0, whih is atuallythe mathematial interpretation of the solution;2. the omputed solution is the unique optimal solution;The olumns p0ij that are seleted in Steps 1 and 2, are linearly independent, sine the orrespondingpij make a basis of the subspae generated by the olumns of P. This is learly seen by onstruting14



the graph de�ned in Subsetion 4.1, whih has a stairs-like shape. In addition, we onlude that thenumber of variables that are seleted in these two steps is e+s�1. To see that B0 is a basis, it remainsto show that the northeast orner (i.e., the rightmost element in the �rst row) is seleted in Step 3if and only if r = e+ s, being the orresponding olumn p{1|s free from the ones previously hosen.Atually, from Proposition 3, we know that the rank r = e+ s� 1 i� |s � {1, whih is equivalent tothe last exit |s being the farthest exit from the �rst entry {1. This means that, the northeast orneris seleted in Step 1 i� |s � {1, and beause it annot be seleted in Step 2, we dedue that it isseleted in Step 3 i� r = e + s. Now, we use the tehniques of Setion 4.2 to onlude that, in thislatter ase, B0 is a basis. As in Setion 4.2, let B be the set of olumns of P orresponding to theolumns in B0. There exists an unique ombination of the olumns in B n fp{1|sg that gives p{1|s ,whih is of the form (14). p{1|s = p{1j1 � pi1j1 + pi1j2 � � � �+ pik|s (14)We are going to see that (14) does not hold for the orresponding p0ij , and thus, B0 is free, byProposition 2. In fat, being {1 < |s, the traÆ ow from {1 to |s does not pass through the ross-setion in front of road 1. This means that the oeÆient �{1|s , of q{1|s in the equation de�ning F1, is0. As onerns the variables qij , that orrespond to the olumns pij in the right-hand side of (14), allsuh oeÆients are 1, with the possible exeption of those of q{1j1 and qi1j1 , whih are 0 i� j1 = 1.That results from our hypothesis on the numeration of the roads and from the way in whih thevariables are seleted in Steps 1 and 2, whih ensure that i � j for suh pij . Clearly, when i � j 6= 1,the traÆ ow from i to j passes frontally to the road 1. Having the right-hand side of (14) an oddnumber of terms, whih is at least 3, we have �{1|s 6= �{1j1 � �i1j1 + �i1j2 � � � �+ �ik|s sine neither0 = 1 = 1� 1 + 1� � � �+ 1 nor 0 = 1 = 0� 0 + 1� � � �+ 1, and onsequently (14) does not hold forthe p0ij 's.In the rest of the proof we show that the output solution is the unique optimal solution. Beingeah solution a basis of the subspae generated by the olumns of P0, it is suÆient to justify thatno improvement of the output solution an be ahieved by exhanging one of the olumns in B0 forany given p0ab 62 B0.Our hypothesis on the numeration of the roads implies that either {1 = |1 = 1 or {1 6= 1 = |1.Therefore, when {1 = 1, the unique seletions in the �rst row are p011 and p01|s , whereas in the �rstolumn we have p011 and at least p0{21. The relevant aspets of the possible ases are presented inFig. 10, the irles denoting the seletions.{1 � s |2 > 2 � > 1; s > 21 2 s{1 Æ Æ � � � Æ{2 Æ:::{e Æ 1 |2 |s1 Æ Æ{2 Æ{e Æ_ _ _ _ _ _
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_ _ _ _(a) (b) () (d)Figure 10: The ases when e; s > 1 (inomplete for the dashed part).It an be shown that the unique ombination of the olumns in the basis B0 that gives p0ab is, asillustrated in Figures 8 and 9, of the form (15)p0ab = p0i1b|{z}last inol. b � p0i1j1| {z }last inrow i1 + p0i2j1| {z }last inol. j1 � � � �+ p0ajk|{z}(last?) inol. jk androw a (15)
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where the last, stands for the last one found when moving either downwards or to the right in thepossibly augmented (.f. Figures 7 and 9) tableau, and p0ajk is also the �rst element found in row ato the right of p0ab. The fat that the olumns in the right-hand side of (15) do exist in B0, follows asa onsequene of the stairs-like shape of the output solution. From the results stated in Setion 4.1,we may onlude that (15) holds wrt the olumns of P involved. To onlude that the ombinationis orret, it remains to hek (15) wrt the elements in the last row of P0. In other words, to hekthat (16) holds. �ab = �i1b � �i1j1 + �i2j1 � � � �+ �ajk (16)By ase analysis, we �nd that either �ab = 0 and there is a single sequene of 0's in the right-hand side of length one or three, or �ab = 1 and there is no 0 in the right-hand side. As a result,the ombination is as de�ned by (15), sine the number of terms in the rhs is odd. In view of thevariation of the ost funtion 1, it follows from (15) that the olumns in B0 that p0ab an replae,have a stritly larger ost than 1(qab), whih implies that the output solution is the unique optimalsolution.We present now the above mentioned ase analysis in detail, the possible ases being as skethedin Fig. 10. An important remark is that �{1|s = 0 whereas, for all p0ij 2 B0 n fp{1|sg, suh that i 6= 1and j 6= 1, we have �ij = 1, sine neessarily i � j.When a > b, the two possible forms of (16) are 0 = 0� 1+ 1� � � �+1 and 1 = 1� 1+1� � � �+1,for b = 1 and b 6= 1, respetively. In partiular, in ase (a), where r = e+ s � 1, the ombination ispab = p{1b�p{1s+pas and, being a � {2 > 1, we have �ab = �{1b� �{1s+ �as, whih is 0 = 0� 1+1when b = 1 and 1 = 1� 1 + 1, otherwise.When a < b, the oeÆient �ab = 0 and p0{1|s ours in the right-hand side of (15), sine thatelement is the last seletion in olumn |s (for the augmented tableau). Moreover, if a = {1 then p0{1|sis the last term in the rhs of (15), being (16) of the form 0 = 1� 1 + � � � � 1 + 0. When a > {1, therhs ontains the sequene �(p0{1|s � p0{1|� + p0i|� ), for some i � {2, where |� is the farthest exit from{1. In ases (b) and (), |� = 1, so that �(�{1|s � �{1|� + �0i|� ) = �(0 � 0 + 0), while in (d), it is�(0� 1 + 1), all the remaining oeÆients in (16) are 1. ut4.4.1 The Greedy Charater of the Optimal SolutionThe unexpeted existene of an exat haraterization of the optimal solution, for whih the seletedvariables in eah row have higher ost than the remaining ones, led us to wonder whether the solutionwas a greedy one. We found that this problem is atually an instane of that of omputing a maximum-weight independent subset in a linear matroid, whih may be solved by the following Greedy Algorithm(see e.g. [3℄).The greedy algorithm. For any given ost funtion , an optimal basis B0 is obtainedif the olumns of P0 are seleted in non-dereasing order of ost to form the basis. Theolumn that is onsidered at eah step is inluded in B0, unless it is linearly dependent onthose seleted before.This explains the fat that the program output preisely the same optimal solution when we assignedhigher penalties for measuring longer movements (.f. Subsetion 3.2.1). This result is undoubtedlymore important than the haraterization of the optimal solution wrt riterion 1. It desribes apolynomial algorithm that returns suh a solution whenever the ost value (qij) is a onstant knownat start. Note that both the riteria 2 and 3 do not satisfy this ondition on the ost funtion.Nevertheless, the haraterization of the optimal solution, not only has put into evidene its greedyharater, but led us to develop a simple method for heking linear independene. As we shall see,this method allows a better understanding of the output solutions wrt 2 and 3.4.5 The Optimal Solutions wrt Criteria 2 and 3As we mentioned above, both riteria 2 and 3 aim at modelling the ost of onduting number platesurveys at some of the entries and exits in order to obtain OD data.16



The total ost is given by the number of points where suh data is olleted. Thus, for a givenbasis B0 to be optimal, the olumns p0ij 2 B0 must �ll a maximum number of rows and olumns of thetableau, so that no reording must be done at the orresponding entries and exits. By Proposition 2,the graph assoiated to B, as de�ned in Subsetion 4.1, an have at most a yle when B0 is free,implying that it annot have yles as those illustrated in Fig. 11, where eah Æ denotes a p0ij 2 B0.Æ Æ ÆÆ Æ ÆFigure 11: Example of linear dependeny.Hene, a neessary ondition for B0 to be a basis is that, when e � 3, the olumns p0ij 2 B0 donot �ll two or more olumns of the tableau, neither do �ll two or more rows when s � 3, whiheverthe basis B0 is. In other words, when there are at least three entries and three exits, the optimal ostwrt 2 is given by (e � 1) + (s � 1), whih translates the fat that one must reord data at all theentries but one and at all the exits but one.It an also be seen that when e = 2 and s � 3, that ost is (e � 1) + (s � 2) if r = e+ s, whihmeans that we have to ollet information in one exit less. Still, when r = e+ s� 1 the ost is givenby (e� 1)+ (s� 1). Similarly, when e � 3 and s = 2, the optimal ost is (e� 2)+ (s� 1) if r = e+ s,being (e�1)+(s�1) otherwise. Optimal solutions are shown in Fig. 12. When either e = 1 or s = 1or e = s = 2 and r = 4, the variables qij are fully determined by the Oi's and Dj 's.{1 � |s = s {1 < |s {1 � 2 {1 < |s1 2 3 s{1 Æ Æ Æ � � � Æ{e Æ 1 2{1 Æ Æ{e Æ
1 |2 |3 |s{1 Æ Æ Æ � � � Æ{e Æ Æ1 |s{1 Æ Æ{e Æ Æ

1 2{1 Æ Æ{2 Æ{3 Æ...{e Æ
1 |s{1 Æ Æ{2 Æ{3 Æ...{e Æ ÆFigure 12: Examples of optimal solutions wrt 2.4.5.1 The Case of Criterion 3To the ost riterion 3, we envisage a redution in the number of loations where reording must bedone, sine we now suppose that the volumes qi i+1 may be fully obtained by diret observation. Byontrast to the previous riteria, it is almost impossible to abstrat the form of the solutions from theprogram results. Nevertheless, by reasoning about the possible loations of the p0ij 's in the tableau toget bases, it is still possible to exatly haraterize the optimal ost wrt 3 for all the roundabouts, asshown in [7℄. Optimal osts are there tabulated and examples of optimal solutions given for lasses ofroundabouts identi�ed by regular expressions (see e.g. [5℄). Distinguishing features are the numbersof entries, exits and ows qi i+1, as well as the relative plaes of the p0i i+1's in the tableau. Forexample, (e � 1) + (s � 3) + 3? is shown to be the optimal ost for the roundabouts desribed bySk1(D+ SE)Sk2(D+ SE)Sk3(D+ SE), with k1 + k2 + k3 � 2, where 3? means that its three traÆows qi i+1 should be diretly observed in site.An interesting remark is that if, for any given roundabout R1R2 : : : Rn, we interhange E's withS's and read the resulting expression from right to left, we �nd a roundabout that is modelled byexatly the same system of equations, up to renaming and reordering of variables and onstraints.17



Hene, the optimal osts for both the ases e � 5 and s � e � 4 an be dedued from those obtainedfor s � 5 and e � s � 4, respetively, and reiproally.5 ConlusionsResults are given from our researh on the problem of �nding the OD trip matrix for roundaboutsby performing a minimum number of traÆ ounts at minimum ost. The analysis has foused onthe situations when ounting vehiles at entries, exits and ross-setions inside the roundabout isseen as preferential. Of some pratial interest is the onlusion that the number of non-redundantonstraints in the given mathematial model is typially jOj+ jDj, being jOj+ jDj�1 when the traÆow through one of suh ross-setions is null. This means that there may exist a lot of possiblehypotheses for the seletion of the OD ows that we need to ount so as to ompletely solve theproblem. Nevertheless, this work led us to onlude that if a ost is given to measuring eah OD owindividually, the overall ost is minimized if the OD ows that should not be measured are seletedin non-dereasing order of ost to form an independent set. We gave a rather simple method forheking suh independene, whih has also the advantage of not involving oating-point operations.Three partiular ost funtions were proposed for a systemati study of hypothetial roundabouts onomputer, and we have onluded that their optimal solutions are well-haraterized.Nonetheless, as laimed in [1℄, for real-world appliations, it would be important to onsider moreexible ost riteria in order to take into aount spei� features of the atual roundabout in study.Referenes[1℄ Andrade M.: M�etodos e T�enias de Reolha de Dados de Tr�afego { Algoritmo para a De�ni�~aoda Matriz Origem-Destino. Ms. Thesis, Faulty of Engineering, University of Porto, 2000.[2℄ Biano L., Confessore G., and Reverberi P.: Optimal Loation of TraÆ Counting Pointsfor Transport Network Control. In Proeedings of IFAC'97. Extended version to appear inJ. Transportation Siene.[3℄ Cook W., Cunningham W., Pulleyblank W., and Shrijver A.: Combinatorial Optimization.John Wiley & Sons, 1998.[4℄ Hadley G.: Linear Programming. Addison-Wesley, 1969.[5℄ Hoproft J. E., Ullman J. D.: Introdution to Automata Theory, Languages, and Computation,Addison-Wesley, 1979.[6℄ Marriott K., and Stukey P.: Programming with Constraints { An Introdution, The MIT Press,1998.[7℄ Tom�as, A. P.: A Note on Sensor Loation for TraÆ Counting at Roundabouts | Solutionsfor a Partiular Cost Funtion. Internal Report DCC-2001-3, DCC-FC & LIACC, University ofPorto, 2001.[8℄ Yang H., and Zhou J.: Optimal TraÆ Counting Loations for Origin-Destination MatrixEstimation. J. Transportation Researh, 32B(2), 109{126, 1998.
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