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Abstract

We investigate the problem of finding the Origin-Destination trip matrix in a roundabout at
optimal cost. The goal is to choose the turning movements that will be measured in addition
to some independent total volumes at exits, entries and cross-sections inside the roundabout.
Three cost criteria are proposed, each one modelling the cost of data collection in a different
way. We discuss aspects of our study of this problem on computer and go through interesting
mathematical properties we have found the proposed model to have.

1 Introduction

Vehicle flow data is an important source of information while providing a better knowledge about the
traffic systems. Collecting traffic data is normally expensive and time consuming, so that the traffic
surveys must be carefully designed.

As regards urban intersections, it is important to know not only the total traffic flows but also
the turning movement flows, i.e., the Origin-Destination (OD) matrix for the junction. It is easy to
count the total entry and exit volumes on each arm and, moreover, the recent advance in technology
is rendering this task still easier. The problem arises with the turning movements, which have to be
collected by direct observation, because it is not practically possible the use of automatic counters.

To perform direct observations at urban roundabouts is more difficult since not only they occupy a
larger land area, but they also contain U-turning movements. So we must plan and design traffic data
collection at roundabouts carefully. In particular, we have to find out how many observers we need,
where they are to count the traffic volumes and which tasks are addressed to each one. Building on
the computational study we present in this paper, a methodology for tackling this problem is given
in [1], being considered three cost functions for doing a systematic analysis of roundabouts. The
optimisation of the number and location of traffic counting points for the more general case of traffic
networks is the subject of two recent publications [2, 8]. Traffic counts are there used in the estimation
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of the OD trip matrix for the traffic network, their focus being on the quality of that estimation.
By contrast to our work, in [2, 8] it is naturally assumed either some knowledge about the turning
probabilities at link junctions or path flow information, which makes our problem essentially distinct
from theirs.

The paper is organized as follows. In Section 2 we define the problem in mathematical terms.
Then, in Section 3 we go through some aspects of the programs we implemented to study the problem
on computer, to conclude in Section 4, by showing interesting mathematical properties we have found
this problem to have.

2 The Mathematical Formulation

For a given urban intersection, let O be the set of entries (origins), D the set of exits (destinations)
and g¢;; the traffic flow from the entry 7 to the exit j. Our goal is to accurately find the values of all
the g;;’s for a given period of time. We assume that all the vehicles entering the roundabout also exit
it, that is translated by (1), so that (2) and (3) hold,

S0 = Yon, (1)

i€eO JED

Y aij = 0 forie0 (2)
j€D

> a4 = Dj, forjeD (3)
i€eO

with O; and D; denoting the total traffic volumes entering from i and exiting at j, respectively.
By (1), at least one of the |O| + |D| equations (2)—(3) is redundant. In fact, any |O| + |D| — 1 of such
equations are non-redundant, which follows quite intuitively in view of the real meaning of each O;
and Dj, but it is also one of the well-known properties of the Transportation Problems studied in
Linear Programming (see e.g., [4]).

In this work, we consider that more expensive or sophisticated means may be required to get
origin-destination data (i.e., the g;;’s) than those needed to count vehicles at exits, entries and that
pass through cross-sections of the circulatory carriage-way. The system (2)—(3), in the variables g;;,
is under-specified in general. At first sight, traffic counts at cross-sections of the circulatory carriage-
way could be of some help in reducing this indeterminacy. Fig. 1 schematically represents two types of

k+1

Figure 1: Cross-sections of the circulatory carriage-way

such cross-sections — Fj, and I}, denote the traffic flow through the cross-section in frontal alignment



with road k& and through the cross-section between road k and k + 1, respectively. Assuming that
vehicles exit the roundabout when they reach their destination exit for the first time, we have (4)
and (5),

Z Z gij = Fp, for1<k<n (4)

i€O\{k} JED, k=<jxi
Z Qrj + Z Z 4ij
JED i€O\{k} JED, k=<j=xi
Fk‘, = Ik,7 fOI'kED\O

I, forke O (5)

where j € D, k < j < i stands for “the exits between road k and road i, being k excluded”. All of
these total traffic volumes are naturally related, being

Fry1 = Fp+ 0O — Dpga (6)
and thus (7) holds.
F, = F + Z 0; — Z D;, for all k (7)
1<i<k 1<i<k

Here, each O; (respectively, D;) should be read as 0, if i ¢ O (respectively, j ¢ D). To simplify
notation, by k£ + 1 we refer to the road that immediately follows road k, in the ordering naturally
induced by the way traffic circulates in the roundabout. We also have (8).

I, = Fi, + Oy, and Ik+1 =1 + Ok+1 — Dk+1 (8)

These relationships imply at that most |O]+|D| of the equations defined by (2) (5) are non-redundant.
An exact characterization of this number is given by Proposition 3, in Subsection 4.3.

2.1 The Problem

Let r denote the rank of the system matrix defined by (2) (5), that is, the number of non-redundant
equations. We have just seen that either r = |O| + |D| — 1 or r = |O| + |D]|.

Under the hypothesis that the required traffic counts can be obtained with accuracy during a
certain period of time, (2)—(5) is equivalent to each of its subsystems consisting of r non-redundant
equations. Moreover, it admits a unique solution if |O||D| — r of the ¢;;’s are known and the columns
of the system matrix associated to the r remaining ones are linearly independent. Hence, the main
question is the choice of the traffic flows g;; that will be locally measured, in addition to some r
independent O;’s, D;’s, Fi,’s and Ij’s.

In the following section we present the computational study we carried out, which led us to realize
and prove relevant mathematical properties of this problem.

3 A Computational Study

The need for an exhaustive case analysis that could quickly provide either support or counterexamples
to some preliminary conclusions, motivated the use of a computer to proceed the study. We wanted
a computer program to generate all the possible combinations for the traffic volumes to be measured
for each type of roundabout with n intersection roads. The efficiency of the algorithms was of
great concern since the program would involve an highly combinatorial search procedure. Aiming
at reducing the implementation effort, we briefly considered the use of a Constraint Programming
system for solving the problem. Difficulties in modeling the problem in an suitable way led us to write
the programs in C language, although implementing search strategies based on usual techniques in
Combinatorial Optimization and Constraint Programming (e.g. [6] for some bibliographic references).

Because interesting programming problems were tackled, we think it worthwhile presenting some
of the ideas of the designed algorithms. As we shall see, the analysis of the programs results gave us
a deep insight on the problem structure, that allows to greatly improve some aspects of the solving
procedure we now go on to describe.



3.1 Generating Distinct Roundabouts

A roundabout where n roads intersect is identified in the programs by a string R1 R» ... R, for a given
numeration of the intersecting roads. Each R; € {E,D,S} indicates whether road i is just an entry
(E), just an exit (S) or both an entry and exit (D) road. All the strings obtained from R1 Ry ... R,
by rotation denote exactly the same roundabout, but for different numerations of the roads, so that
only one of these strings is used to refer to a given roundabout.

In the implementation, the symbols E;D and S are mapped to the digits 0, 1 and 2, so that the
strings are viewed as representations of nonnegative integers in the basis 3. In particular, R1Rs ... Ry,
was mapped to Y i, 3:~'R;. Among the strings that represent the same roundabout, the string that
evaluates to the smallest integer is the one selected by the algorithm. To obtain the set of integers
representing distinct roundabouts, the implemented algorithm maintains a boolean array Id, where
Id[i] states whether or not i is in such set. Integers are considered from 1 to 3" — 1 and each time
an integer i is found in the set, all the integers whose representation in basis 3 is a rotation of that
of i are marked as non-eligible. In the end, the roundabouts correspond to the entries with a KEEP
mark. The algorithm is presented in Fig. 2, where base3(i,key,n) yields the n digits representation
of i in key, whereas left_rotate(key,n) rotates key to the left by one position and then returns
the integer that key represents. The visited counter is correct since it can be shown that when a

int roundabouts(int n)
{ int nmax=pow(3,n)-2, nroundbs=0, i, k, visited=0;
char key[NMAX];
for (i=1; i<mmax; i++) Id[i] = KEEP;
for (i=1; visited < nmax; i++)
if (Id[i] == KEEP) {
base3(i,key,n); k = left_rotate(key,n);
while(k '= i) {
Id[k] = DONT_KEEP; visited++;
k = left_rotate(key,n);

}
visited++; nroundbs++;
}
return nroundbs; // number of distinct roundabouts

}

Figure 2: Encoding and finding distinct roundabouts

string a = ajas ... ay, is successively rotated to the left, « is the first sequence found repeated. The
output strings R1Rs ... R,, denote distinct roundabouts and have the property that R; # E (road
1is an exit) and R,, # S (road n is an entry), being the intersection roads numerated in the way
traffic circulates. This casual feature was crucial during the analysis of the experimental results, as
we shall see in section 4. Namely, it allowed to recognize the pattern of the optimal solution for one

of the optimization criteria studied.

3.2 Finding the Directional Flows to Observe

For each type of roundabout with n intersection roads, the program obtains the constraints (2) (5),
computes the rank r of the corresponding system matrix and enumerates all the alternative solutions
for the set of traffic volumes that are to be counted.

As we mentioned before, during this work, we assumed that more expensive or sophisticated
means are required to get origin-destination data (i.e., the g;;’s) than those needed to count vehicles
at exits, entries and cross-sections (i.e., to get the total volumes O;’s, D;’s, Fy’s and I}’s). This
makes possible to separate the selection of the r independent volumes O;’s, D;’s, F},’s and I;,’s that
should be collected from that of the |O||D| — r directional volumes g;;’s. Solutions are then obtained



by putting together any such couple of total and directional counts.

Although our work mainly concerns the choice of the g;;’s, in the first implementation we also
tackled the other subproblem. For the sake of efficiency, the program checked whether each selected
combination of sections was equivalent by rotation to one previously found. Moreover, while deducing
the constraints, it determined the F}’s and I};’s that have the same definition as another flow. That
information was used in conjunction with a suitable tabulation of the combinations already studied
to avoid exploring twice combinations that were actually equal.

The algorithm we implemented for choosing the directional flows is based on a depth-first search
strategy with chronological backtracking, being the ¢;;’s taken in a certain order. Whenever a solution
is found or some failure is detected, backtracking occurs to the most recent alternative to find other
solutions. Because the columns corresponding to each set of r directional flows that are not measured
must be linearly independent, what the program actually enumerates are the alternatives for such
a set of flows. In other words, the program is searching for bases of the subspace spanned by the
columns of the system matrix.

To test the selected columns for linear independence, Gaussian elimination is applied to the
matrix formed by them, to see whether it has full column rank. This method is quite adequate to
handle the incremental change of the matrix in an efficient way. When a variable g;; is selected, the
program simply applies to its column the transformations done in the previous steps to the matrix
corresponding to the variables already in the set, in exactly the same order. This is dealt by a function
incgauss(int ncs, int newcol), whose C code is given in Fig. 3, being ncs the number of columns

int incgauss(int ncs, int newcol)
{ int i, j, ipv, rowpiv; double newp;
for (i=0; i < Rank; i++) {
AuxPvs[i] = i;
Mat [i] [ncs] = CoeffsRestr[i] [newcol]); // insert newcol
}
if (ncs)
for (j=0; j < ncs; j++) {
if (AuxPvs[j] != PrevPvs[j].row) AuxPvs[PrevPvs[j].found] = AuxPvs[j];
rowpiv = PrevPvs[j].row;
Mat [rowpiv] [ncs] /= Mat[rowpiv] [j];
for (newp=0, i=j+1; i < Rank; i++) {
Mat [AuxPvs[i]] [ncs] -= Mat[AuxPvs[i]] [j]*Mat [rowpiv] [ncs];
if (ABSVALUE (Mat[AuxPvs[i]][ncs]) > newp) {
newp = ABSVALUE(Mat[AuxPvs[i]][ncs]); ipv = i; }
}
if (newp <= EPSILON) return PrevPvs[j].var; // EPSILON means 0
}
else { // the given column must be non-null
for (newp=0, i=0; i < Rank; i++)
if (ABSVALUE(Mat[i] [ncs]) > newp) {newp = ABSVALUE(Mat[i] [ncs]); ipv = i;}
}
PrevPvs[ncs] .found = ipv; PrevPvs[ncs].row = AuxPvs[ipv];
PrevPvs[ncs] .var = newcol;
return newcol;

Figure 3: A Gaussian-elimination based test for linear independence.

already selected and newcol the index of the column of ¢;;. The array PrevPvs contains relevant
data about the pivots of the previous steps, which is needed to reduce the new column. Notice also
that the auxiliary matrix Mat is only changed by this function and that, as usually, an array AuxPvs
is used to keep track of row exchanges, rather than explicitly interchanging rows.



If the new column is found independent, the function returns newcol. Otherwise, it returns the
index of the first variable that renders g;; non-eligible. This allows the program to mark g;; so as
to prevent its selection until that incompatible variable is removed through backtracking. Hence, it
detects and remembers conflicts that may arise near the root of the search tree. In addition, the
program keeps the number of remaining variables, causing a failure when that number is less than
the one needed to complete a basis. In that way, the search space is quite effectively reduced.

While fixing a bug due to roundoff errors, we have finally developed a rather simple method to
test for independence, whose idea we present in Subsection 4.2.

3.2.1 Finding preferential solutions

Since the number of solutions is often quite large, three cost criteria were introduced to characterize
preferential solutions, as proposed in [1]. It is important to observe that the conclusions drawn from
the analysis of the output solutions are far more interesting than the straight application of these
cost criteria in real practice.

The first criterion ¢; defines the cost of measuring the flow g;; by the number of roads between :
and j, which is expressed by (9).

o j—i, ifi<y
c(q;) = {j_z'+n, otherwise ®)

For both the remaining criteria ¢, and c3, the costs are dynamically computed during the search
and are determined by the previous choices. In both cases, it is assumed that origin-destination data
must be collected at some of the entries and exits, such as by manually recording of plate numbers
or by video surveys, being the total cost defined by the number of locations where such OD surveys
are carried out. However, ¢ assigns a negligible cost to measuring ¢;;, when the road j immediately
follows 7, assuming that such traffic flow can be fully observed in site. For each flow ¢;; we now have

0, ifie Mp,j€ Mp 0, ifie Mp,j€e Mp,orj=i+1
co(qij) = 2, ifi¢ Mo, j¢ Mp c3(qij) = 2, fi¢Mo,j¢ Mp,j#i+1
1, otherwise 1, otherwise

being M» and Myp the set of entries and exits where that type of data has to be collected given the
selections already in the set. In case g;; is chosen to be measured and its cost value is not null, the
sets Mo and Mp are updated by the program so as to ensure that surveys are located also at entry
1 and exit j, respectively.

The search procedure was adapted to implement a branch-and-bound strategy, as shown in Fig. 4
for the case of ¢;. The main function explore(int nv, int cvars, int remain) is first called as
explore(0,0,NVars), where NVars is the number OD flows, whereas cvars and nv are the number of
columns already selected to the basis and the index of next candidate in the SortV array, respectively.
The variables are selected in a non-increasing order of cost, as given in SortV. The above mentioned
conflicts are dealt by MarkVars, whose entries have ELIGIBLE value at start. Initially, Vars[i] .count
has value MEASURED, for all i.

By calling deletemarks(nqij+1), the program restores as ELIGIBLE the variables that were
detected in conflict with nqij and returns the overall cost of measuring them. Two complementary
cost estimates are defined by COST(nqij) and LOSS(nqij), being CostParc and LossParc used to
prune the search space. C0ST(nqij) is c¢i(g;;) whereas LOSS(nqij) is the difference between the
maximum value of ¢; and ¢;(g;;), that is max;;(c1(qi;)) — c1(qij)-

When entering explore(), the global variable CostParc contains the sum of costs ¢1(g;;) for
those ¢;; that should be measured as settled by the previous selections, whereas LossParc contains
the overall LOSS for those that are already in the basis. MinCij is a constant, that is defined by
min;;(c1(gij)), being 1 if ¢1 is given by (9). Notice that, using SortV, the variables are selected to
the basis in non-decreasing order of loss value. Finally, Rank-cvars is the number of variables that
we need to complete the basis.



void explore(int nv, int cvars, int remain)
{ int i, j, costv=0, conflictvar, nqij;

while (cvars < Rank && remain+cvars >= Rank) {
if (CostParc + (remain-(Rank-cvars))#*MinCij > CostOpt) break;
ngij = SortV[nv]; // index of selected variable
if (LossParc + (Rank-cvars)*L0SS(nqij) > LossOpt) break;
if (MarkVars[nqij] == ELIGIBLE) {
if ((conflictvar = incgauss(cvars,nqij)) == nqij) {
Vars[nqij].count = NOT_MEASURED;
LossParc += L0SS(nqij);
explore(nv+1,cvars+1,remain-1);
CostParc -= deletemarks(nqij+1);
Vars[nqij].count = MEASURED; remain--;
costv += COST(nqij);
LossParc -= L0SS(nqij);
} else { MarkVars[nqij] = conflictvar+1l; remain--; }
CostParc += CO0ST(nqij);
}
nv++;
}
if (cvars == Rank) { // adding the costs of the remaining variables
for(j=nv,i=0; i<remain && CostParc < CostOpt; j++)
if (MarkVars[SortV[j]] == ELIGIBLE) {
CostParc += COST(SortV[jl); costv += COST(SortV[jl);
i++;
}
if (CostParc < CostOpt) { // found a better solution
save_new_sol(); CostOpt = CostParc; LossOpt = LossParc;
}
}
CostParc -= costv;

}

Figure 4: Searching for optimal solutions wrt ¢;.



By modelling the cost by c¢;, we wanted to abstract the idea that the longer movements get,
the more difficult their direct observation is. Since our major motivation was that of finding pos-
sible interesting patterns for particular solutions, we decided to drastically increase the penalty for
measuring longer movements by defining COST (nqij) and LOSS(nqij) as follows.

COST(ngij) e1(ais)—1
L0SS(nqij)

n

nn—c1(ais)

This results in a significant runtime speedup, and quite surprisingly we observed that the program
outputs exactly the same (unique) optimal solution as before, for each roundabout. The theoretical
explanation for that fact is given in Subsection 4.4.

4 From Program Outputs to Mathematical Properties

Before we move on to present some interesting properties of this model, we recall classical results of
Transportation Problems in Linear Programming (e.g., [4]), which were fundamental to find them.

4.1 On Transportation Problems in Linear Programming

The constraints of a well-balanced Transportation Problem in standard form, given by (10)—(11),

n
owiy o= a, a;>0, i=1,...,m (10)
j=1
m
»owy o= by, b;>0, j=1,....n (11)
i=1
can be written in matrix form as Px = b, where x = [z11,...,Z1n,-- -, Tm1,-- -, Tmn) and b =
[a1, ... @m,b1,...,by] are column vectors. When 31", a; = Y 7, bj, the problem is called well-

balanced, and in that case it has some non-negative solutions.

It is known that the rank of P is m 4+ n — 1, each m +n — 1 of its rows being linearly independent.
Thus, any m + n — 1 of the constraints (10)—(11) are independent.

Each column of P contains exactly two 1’s. The column p;j, that of the variable z;;, can be
written as p;; = €; + €,,4j, where the e are the unit vectors of R,

Given a subset B consisting of m + n — 1 linearly independent columns of P, so that B is a basis
of the subspace spanned by the columns of P, the linear combination of the basis vectors that gives
pi; is of the form (12)

B B B B B
Pij = Pij, ~Pij TPij, = T P TPy (12)

where each vector in the basis occurs at most once and the number of terms is odd.

An interesting fact is that, when the symbols p;; are written as in the following tables, each column
pi; not in the basis B, and the basis vectors that appear in (12) form a loop, which is necessarily
unique for each p;;. The loop, which is called a simple loop, consists of horizontal and vertical edges,
consecutive edges being orthogonal and no vector being repeated. It can be shown that the columns
in a given set are linearly independent if and only if no such a loop can be formed with some columns
in the set, as explained in more detail below.

The following example illustrates these concepts. It shows how pio and p3s are written as a linear



combination of the basis vectors, when B = {p11, p13, P22, P23, P31} and m = n = 3.

The conclusion is that p12 = p13 — P23 + P22 and P32 = P31 — P11 + P13 — P23 + P22. Notice that
e +e312 = P32 = (€3 +es3q1) — (€1 +e3p1) + (€1 +e3q3) — (e2 + e3i3) + (e2 + e340). Each unit
vector that is introduced in the combination, but e3 and ez, is explicitly removed.

Given a subset B of the columns of P, let us construct a graph G, whose vertices correspond to
the elements of B, and the edges are obtained by linking each vertex in a given row (respectively,
column) to the vertex in the same row (respectively, column) that is closer to that one in the table,
if there is some, as shown in the following examples.

It is known that the columns in B are linearly independent if and only if the graph G is acyclic.
If, in addition, the graph is connected and there is at least a vertex in each column and in each row
of the table, then B is a basis of the subspace spanned by the columns of P.

We shall now see how a simple test for linear independence is deduced by extending these results,
in a natural way. This test only involves additions and subtractions.

4.2 Our Simple Test for Linear Independence

In the sequel, we consider that the roads are numerated in the way traffic circulates with O =
{11,...,1.} and D = {5,..., s}, thus e = |O] and s = |D|. Notice that we shall use both the
notations #; (the kth entry) and iy, being intentionally distinct, and also j; (the kth exit) and ji.

Given a roundabout whose constraint system has rank |O] + |D|, let us consider the subsystem
consisting of the constraints (2)-(3) and the one defining Fy. As seen before, this subsystem is
equivalent to (2)-(5). Now, let P’ denote the matrix of this subsystem and let P be the sub-matrix
consisting of all the rows of P’ but the last one, which is that of Fy. It is not difficult to see that the
columns of P’ are given by (13), being p,,;; = e; + ec4 ;.

i — e; + €etj + €etst1 if 123 2 i 7£ 1 (13)
Puiy; e+ ectj ifi; <gjoryy;=1lory; =1

Let the last element of p;;, that is the coefficient of g;; in the equation defining Fi, be denoted by
gij. By (13), 055 = 1ifi > j # 1, and 0,; = 0 otherwise. The test for linear independence we propose
is based on Propositions 1 and 2, which follow almost directly from the results stated in section 4.1
and the definition of linear independence.

Proposition 1 Let B' be a subset of the columns of P’ and B the set of the corresponding columns
in P. If some column p;; is written in an unique way as a combination of the columns in B by

Pij = Piji = Piji + Pirja = = Pigjx + Pisj

then p;; is free relatively to B' if and only if 0ij # 04j, — 0iyj, + Oiyjy =+ = Oiyjy + Tiyj-
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By analogy to the Transportation problem, let us represent P’ in a tableau form. The technique
is illustrated by the following example, that is related to the roundabout identified by the sequence
DDDD, the columns in framed boxes being those in B’ = {p/3, Pl4; Ph1, Phas Phas Py, Phs }-

Pl P12 Pi3 H Pl4

P’21 P’22 Pp:

D3 Pp4

! ! ! !
P41 2 P43 P44

The loop shown in the tableau implies that pss = p21 — P41 + P43 — P13 + P14 — P34 + P32, there
existing no other way of writing pss as a combination of the columns in B. But

022:1#0—0+1—0+0—0+1:O’21—U41+0’43—U13+U14—0’34+032

so, we deduce that phy # Py — Py + Pis — Pis + P4 — Py + P, and thus B' U {p5,} is free.

Therefore, a free set is obtained if the vector p), is included in B’, although the resulting set B
is no longer free. For that reason, to conclude that, for instance pj,, is a linear combination of the
columns in the new B’, we have to adapt somehow the former procedure. As shown in the picture
below, p1 is given by different combinations of the columns in the new B.

] ' / ] ] ! !
P11 P12 P14 P11 Pi2 Pis P14

En P‘Iz3 P4 P‘IM p‘IZZ Pps P‘Iz4

! ! ! ! S !
P31 P32 EE] P34 Pp1 iP32:  Pgs3

! ! ! ! ! ! ! !
P42 P4 P41 2 P43 P4

And, although P12 = P14 — P34 + P32, wWe have Jg19 = 0 75 0-0+4+1= 014 — 034 + aJ32, SO that
P}y # Pis — Py + Dhy. However, if one of the columns p14, P34 and pss is removed, for instance
P32, there remains a unique combination giving p12, namely pi1s = p13 — P43 + P41 — P21 + P22- As
concerns Fy, we have 0 = 0—1+0—0+ 1, and thus p}, = p}3 — P)3 + P41 — Ph; + Py, which shows
the linear dependence of p}, relatively to the new B’. This is formalized by Proposition 2.

Proposition 2 Let B' and B be defined as in Proposition 1. If B is not free, then B' is free if and
only there exists some p;; such that B\ {ps;} is free and the equality of the form

Pij = Pijs — Piiji T Pirjo — = Pigji + Piyj

that expresses p;j as a combination of the columns in B\ {p;;}, does not hold for the corresponding
: !
columns in B', because 05 # 045, — Oiji + Oijs — " — Oigji + Tinj-

Proof. TLet B’ and B be the sub-matrices consisting of the columns in B’ and B, respectively.
Necessarily, rank(B') < rank(B) + 1 and B’ is free if and only if rank(B') = |B'|. Thus, B’ is
free if and only if rank(B) > |B| — 1, since |B'| = |B|. By hypothesis, B is not free, and thus
rank(B) = |B| — 1, which means that there exists some p;; such that B\ {pi;} is free. From the
results of section 4.1, we have that p;; is given by a linear combination of the columns in B\ {p;;}
of the form given above, which is unique. The conclusion now follows from Proposition 1. O
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4.3 The Rank of the System Matrix

The experimental results suggest the following characterization of the rank of the system matrix
defined by (2)—(5), which renders its computation almost straightforward.

Proposition 3 The rank r of the system matriz defined by equations (2)—(5) is |O| + |D| if and only
if, for all k, the equation defining F}, is not Fy, = 0, being |O| + |D| — 1 otherwise. Furthermore, if
|O| > 1 and |D| > 1 then r = |O| + |D| — 1 if and only if the string that identifies the roundabout is
described by the regqular expression S*(SE + D)E*.

Proof. The rank r is e + s (that is, |O] + |D|) if and only if the equation defining F; is non-
redundant wrt (2) (3). If some F} is defined by Fj, = 0, then from (7) we conclude that Fj is a
linear combination of the O;’s and D;’s, and therefore so are all the remaining Fj’s. For the proof
of the converse implication, we assume, with no loss of generality, that 2. = n and 33 = 1 (i.e.
road 1 is an exit and road n an entry). By case analysis, now we show that if e > 1, s > 1 and
Js > 11, the flow Fj, is free from the O;’s and Dj’s, for all k, which implies that r = e +s. Our
claim is that {p},, P}, - Pa s Pijs--sPy. ;s Py, t 18 a basis of P/, with P’ and P defined as
above. The four cases to study are: 51 = 11 < s = 2, 1 = 11 < Js < te, J1 < 11 < Js = 2, and
n <11 < js < 1.. Using the tableau, we see that p,,;, Piigss- - Puige: Progss - - - » Pa.y, Make a basis of
P, being p,_;;, = Pujn — Puyj. + Poy, - In the four cases, 0, ,, =0£0—-14+0=0,, —0,,, +0.,,-
Thus, F; is free from the O;’s and D;’s. It remains to prove that when either e = 1 or s = 1 or
Js <11, we have Fj, = 0 for some k, and therefore r = e + s — 1. In fact, when there is a single entry
or exit, the flow through the cross-section in frontal alignment with that road is null. When 3, < 11,
we have F,, = 0, because 11 is the first entry and all the exits are between 1 and ;. a

4.4 An Unique Optimal Solution for the First Cost Criterion

The experimental results show the existence of an unique optimal solution for the cost criterion ¢y,
which has a quite well-defined pattern, as illustrated by the examples in Fig. 5. As before, the

SDSDEE

Pl ‘Pim H Pi3 H Pl ‘

! ! ! !
P51 Pso P53 P54

! ! ! !
Pé1 Pgo Pg3 Pg4

Figure 5: The pattern of the optimal solution for ¢;.

columns in framed boxes are those in the basis. To obtain this pattern, R Ry ... R, must satisfy
Ry # F (road 1 is an exit) and R, # S (road n is an entry). When that is the case, the optimal
solution wrt ¢; may be found using the following algorithm.

The algorithm: Select for each entry ¢ the flow g;; to the exit that is the farthest from .
For each entry, select all the directional flows that precede the one already selected, but
without passing the rightmost selected element in the previous row. Finally, select the
rightmost element in the first row (northeast corner), if it has not been selected yet.

Fig. 6 exemplifies its application for the roundabout SDSDEE. The northeast corner is selected
in the first step if and only if the roundabout is described by S*(SE + D)E*. It can be seen that the
variables selected by the algorithm, in each row, are the ones that have the highest costs.
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Ps1 Ps2 Pe3 |Ps4 Ps1 Ps2 Pé3 |Pss

Figure 6: Applying the algorithm to the roundabout SDSDEE

A remarkable observation, to the proof of the correction of the algorithm, is that the rightmost
element in the first row makes just the continuation of the stairs formed by the other chosen variables,
as shown in Fig. 7. Based on this stairs shape of the output solution, it is possible to accurately define

Pl

Pzz ‘PMHPZ]HPH‘ Po3 §P24§

[Pl [ Pis H Pl | Pl

Psy  Ps3 |Pha| Psi Psy Py §P54§

Pt2 Pes |Pea| Ps1  Ph2  Pes §P645

Figure 7: Unfolding the optimal solution a stairs-like shape

the way of writing any given pl as a linear combination of the selected columns, as exemplified in
Figures 8 and 9, for the larger hypothetlcal roundabout SDEESDSSEEED. The follovvlng practical

o o o e—o o
o
o
o e-e [ J—=— )
;—e—o ;—e—o
+
!
* e o© o o

Figure 8: Writing pj; when i > j.

rule may be applied. First, we find pgj under the stairs, which requires their extension whenever
1 < 7, as in the example of Fig. 9. Then, starting at pgj, we move upwards until reaching a selected
position, where we start jumping down the stairs to come back to the row of p;j.

Given the variation of ¢;, which in broad terms increases along each of the tableau rows and
decreases along each column, it is possible to show that no improvement of the output solution can
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Figure 9: Writing p;; when i < j. On the right, the uniform view.

be achieved by changing one of the selected columns to a given p;j. The variables that g;; can replace
are the ones associated to the columns in the combination that defines p;j, whose costs exceed ¢1 (g;; ).
Actually, for each exit j, we have ci(qi,;) > c1(qgizj) if either i, < ig < j or j < iy < ig, being
c1(qi, ;) < c1(qizj) otherwise. Similarly, for each entry i, if either j, < jg < i ori < j, < jg, then
c1(qij. ) < c1(qij, ), being ¢1(qgij, ) > c1(qij, ), otherwise.

Notice that being each solution a basis of the subspace generated by the columns of P’ it is
sufficient to justify that no improvement of the output solution can be achieved by exchanging one
of the columns in B’ for any given p}; ¢ B'.

A formal proof of the correction of the algorithm is presented below. Although the proof is a bit
too long, it is simply the result of applying these ideas, while doing a formal case analysis.

Proposition 4 The algorithm determines the unique optimal solution wrt the function ci, provided

the roundabout is identified by a string R, ... R, such that Ry # E and R, # S.

Proof. We use the same notations as in the proof of Proposition 3, where e = |O|, s = |D|, the
numbers of the entry roads are 121,...,72, and 71,..., 75 are those of the exits, with 2, = n and j; = 1.

As we noted in Subsection 4.3, when e = s = 1, the system has a unique solution, which is
completely determined by the values of the O;’s and D;’s. It can easily be checked that in these
cases, the algorithm correctly selects all the variables g;;. The unique solution is necessarily optimal.

e=1r=s s=1,r=e
12 s 1

12

Le

In the rest of the proof, we analyse the remaining situations, where e > 1 and s > 1. We are
going to show that

1. the algorithm selects a basis B’ of the subspace generated by the columns of P’, which is actually
the mathematical interpretation of the solution;

2. the computed solution is the unique optimal solution;

The columns p;j that are selected in Steps 1 and 2, are linearly independent, since the corresponding
pi; make a basis of the subspace generated by the columns of P. This is clearly seen by constructing

14



the graph defined in Subsection 4.1, which has a stairs-like shape. In addition, we conclude that the
number of variables that are selected in these two steps is e+s—1. To see that B’ is a basis, it remains
to show that the northeast corner (i.e., the rightmost element in the first row) is selected in Step 3
if and only if r = e + s, being the corresponding column p,,,, free from the ones previously chosen.
Actually, from Proposition 3, we know that the rank r = e + s — 1 iff 55, <47, which is equivalent to
the last exit j5 being the farthest exit from the first entry ;. This means that, the northeast corner
is selected in Step 1 iff 55 < 47, and because it cannot be selected in Step 2, we deduce that it is
selected in Step 3 iff r = e + s. Now, we use the techniques of Section 4.2 to conclude that, in this
latter case, B’ is a basis. As in Section 4.2, let B be the set of columns of P corresponding to the
columns in B'. There exists an unique combination of the columns in B\ {p,,,,} that gives p,,,.,
which is of the form (14).

P2y, = Puji = Pivii T Pivja =+ Pigg, (14)

We are going to see that (14) does not hold for the corresponding p;;, and thus, B’ is free, by
Proposition 2. In fact, being 1; < j4, the traffic flow from #; to j; does not pass through the cross-
section in front of road 1. This means that the coefficient o,,,_, of g,,,, in the equation defining Fi, is
0. As concerns the variables g;;, that correspond to the columns p;; in the right-hand side of (14), all
such coefficients are 1, with the possible exception of those of ¢,,;, and g;, j,, which are 0 iff j; = 1.
That results from our hypothesis on the numeration of the roads and from the way in which the
variables are selected in Steps 1 and 2, which ensure that ¢ > j for such p;;. Clearly, when ¢ > j # 1,
the traffic flow from i to j passes frontally to the road 1. Having the right-hand side of (14) an odd

number of terms, which is at least 3, we have o,,,, # 0,5, — Gi,jy + 04y jo — -~ + Tiy,, since neither
0=1=1-141—---4+1nor0=1=0—-0+4+1—"---41, and consequently (14) does not hold for
the p;;’s.

In the rest of the proof we show that the output solution is the unique optimal solution. Being
each solution a basis of the subspace generated by the columns of P’, it is sufficient to justify that
no improvement of the output solution can be achieved by exchanging one of the columns in B’ for
any given p’, ¢ B'.

Our hypothesis on the numeration of the roads implies that either 11 = 531 = 1 or 23 # 1 = ;.
Therefore, when 1; = 1, the unique selections in the first row are pj; and p/, , whereas in the first
column we have p; and at least p) ;. The relevant aspects of the possible cases are presented in
Fig. 10, the circles denoting the selections.

=8 J2 > 2 B>1,5>2
12 S 1 72 Js 1 )2 Js 1 JB Js
71 |0 o cee o 1|0 o 210 o 7110 --- © o
12 o 120 7] 1lo ] 12 o = = 1]
|
|
le o le o le o Te | ]

(a) (b) () (d)

Figure 10: The cases when e,s > 1 (incomplete for the dashed part).

It can be shown that the unique combination of the columns in the basis B’ that gives p’, is, as
illustrated in Figures 8 and 9, of the form (15)

p:zb = p;ﬁb - pgl]’l + p;2]’1 -t p:ljk (15)
—~— ~—— —— ~—
last in last in last in (last?) in
col. b TOW i col. 71 col. j; and
TOwW @
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where the last, stands for the last one found when moving either downwards or to the right in the
possibly augmented (c.f. Figures 7 and 9) tableau, and py,;, is also the first element found in row a
to the right of p!,. The fact that the columns in the right-hand side of (15) do exist in B’, follows as
a consequence of the stairs-like shape of the output solution. From the results stated in Section 4.1,
we may conclude that (15) holds wrt the columns of P involved. To conclude that the combination
is correct, it remains to check (15) wrt the elements in the last row of P’. In other words, to check
that (16) holds.

Oab = Oiyb — Oiyjy t Oigjy — = ° + Oajy, (16)

By case analysis, we find that either o,, = 0 and there is a single sequence of (0’s in the right-
hand side of length one or three, or o,, = 1 and there is no 0 in the right-hand side. As a result,
the combination is as defined by (15), since the number of terms in the rhs is odd. In view of the
variation of the cost function cq, it follows from (15) that the columns in B’ that p}, can replace,
have a strictly larger cost than ¢;(gqp), which implies that the output solution is the unique optimal
solution.

We present now the above mentioned case analysis in detail, the possible cases being as sketched
in Fig. 10. An important remark is that o,,,, = 0 whereas, for all p; € B'\ {p.,,, }, such that i # 1
and j # 1, we have g;; = 1, since necessarily i > j.

When a > b, the two possible forms of (16) are 0 =0—-1+1—---+1land1=1—-141—---+1,
for b =1 and b # 1, respectively. In particular, in case (a), where r = e + s — 1, the combination is
Pab = Pub — Pus + Pas and, being a > 12 > 1, we have o4y = 04,5 — 04y 5 + 0gs, whichis0=0—-1+1
when b=1and 1 =1 -1+ 1, otherwise.

When a < b, the coefficient o4, = 0 and p;,, occurs in the right-hand side of (15), since that
element is the last selection in column j, (for the augmented tableau). Moreover, if a = 1, then p;_,_
is the last term in the rhs of (15), being (16) of the form 0 =1—-14--- — 1+ 0. When a > 1, the
rhs contains the sequence £(p;,, — p;”ﬁ + pgm), for some i > 15, where 33 is the farthest exit from
11. In cases (b) and (c), yg = 1, so that +(0,,,, — 04,5, +0j,,) = £(0 — 0+ 0), while in (d), it is

ijg
+(0 — 1+ 1), all the remaining coefficients in (16) are 1. O

4.4.1 The Greedy Character of the Optimal Solution

The unexpected existence of an exact characterization of the optimal solution, for which the selected
variables in each row have higher cost than the remaining ones, led us to wonder whether the solution
was a greedy one. We found that this problem is actually an instance of that of computing a maximum-
weight independent subset in a linear matroid, which may be solved by the following Greedy Algorithm
(see e.g. [3]).

The greedy algorithm. For any given cost function ¢, an optimal basis B’ is obtained
if the columns of P’ are selected in non-decreasing order of cost to form the basis. The
column that is considered at each step is included in B’, unless it is linearly dependent on
those selected before.

This explains the fact that the program output precisely the same optimal solution when we assigned
higher penalties for measuring longer movements (c.f. Subsection 3.2.1). This result is undoubtedly
more important than the characterization of the optimal solution wrt criterion c¢;. It describes a
polynomial algorithm that returns such a solution whenever the cost value ¢(g;;) is a constant known
at start. Note that both the criteria ¢y and ¢3 do not satisfy this condition on the cost function.

Nevertheless, the characterization of the optimal solution, not only has put into evidence its greedy
character, but led us to develop a simple method for checking linear independence. As we shall see,
this method allows a better understanding of the output solutions wrt ¢s and c3.

4.5 The Optimal Solutions wrt Criteria ¢, and c;3

As we mentioned above, both criteria ¢s and ¢3 aim at modelling the cost of conducting number plate
surveys at some of the entries and exits in order to obtain OD data.
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The total cost is given by the number of points where such data is collected. Thus, for a given
basis B’ to be optimal, the columns p;»j € B’ must fill a maximum number of rows and columns of the
tableau, so that no recording must be done at the corresponding entries and exits. By Proposition 2,
the graph associated to B, as defined in Subsection 4.1, can have at most a cycle when B’ is free,
implying that it cannot have cycles as those illustrated in Fig. 11, where each o denotes a p;; € B'.

©] o o

0] o o

Figure 11: Example of linear dependency.

Hence, a necessary condition for B’ to be a basis is that, when e > 3, the columns pgj € B' do
not fill two or more columns of the tableau, neither do fill two or more rows when s > 3, whichever
the basis B’ is. In other words, when there are at least three entries and three exits, the optimal cost
wrt ¢ is given by (e — 1) + (s — 1), which translates the fact that one must record data at all the
entries but one and at all the exits but one.

It can also be seen that when e = 2 and s > 3, that cost is (e — 1) + (s — 2) if r = e + s, which
means that we have to collect information in one exit less. Still, when r = e + s — 1 the cost is given
by (e —1) + (s —1). Similarly, when e > 3 and s = 2, the optimal cost is (e —2)+ (s —1)if r = e+ s,
being (e — 1) + (s — 1) otherwise. Optimal solutions are shown in Fig. 12. When eithere =1ors =1
or e = s = 2 and r = 4, the variables ¢;; are fully determined by the O;’s and D;’s.

12>0s=58 1 < Js 1 > 2 1 < Js
12 s 1J2 J3 J
3 : 1 1 Js
211/o0 o o --- o 211/loc o o --- o‘
71|10 o 71|00 o
) )
el® e|© © 72 |0 72 |0
73 |0 13 |0
12 1 Js . .
71|0 © 71|o0 o - -
e | O le |0 ©
le | O le|O O

Figure 12: Examples of optimal solutions wrt c,.

4.5.1 The Case of Criterion c3

To the cost criterion c3, we envisage a reduction in the number of locations where recording must be
done, since we now suppose that the volumes ¢; ;11 may be fully obtained by direct observation. By
contrast, to the previous criteria, it is almost impossible to abstract the form of the solutions from the
program results. Nevertheless, by reasoning about the possible locations of the p;j’s in the tableau to
get bases, it is still possible to exactly characterize the optimal cost wrt ¢3 for all the roundabouts, as
shown in [7]. Optimal costs are there tabulated and examples of optimal solutions given for classes of
roundabouts identified by regular ezpressions (see e.g. [5]). Distinguishing features are the numbers
of entries, exits and flows ¢;;41, as well as the relative places of the pj; ;’s in the tableau. For
example, (e — 1) + (s — 3) + 3* is shown to be the optimal cost for the roundabouts described by
Sk (D + SE)S* (D + SE)S*:(D + SE), with ki + ko + k3 > 2, where 3* means that its three traffic
flows q; ;41 should be directly observed in site.

An interesting remark is that if, for any given roundabout R1Rs ... R,, we interchange E’s with
S’s and read the resulting expression from right to left, we find a roundabout that is modelled by
exactly the same system of equations, up to renaming and reordering of variables and constraints.
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Hence, the optimal costs for both the cases e > 5 and s < e < 4 can be deduced from those obtained
for s > 5 and e < s < 4, respectively, and reciprocally.

5 Conclusions

Results are given from our research on the problem of finding the OD trip matrix for roundabouts
by performing a minimum number of traffic counts at minimum cost. The analysis has focused on
the situations when counting vehicles at entries, exits and cross-sections inside the roundabout is
seen as preferential. Of some practical interest is the conclusion that the number of non-redundant
constraints in the given mathematical model is typically |O|+ |D|, being |O]+ |D| —1 when the traffic
flow through one of such cross-sections is null. This means that there may exist a lot of possible
hypotheses for the selection of the OD flows that we need to count so as to completely solve the
problem. Nevertheless, this work led us to conclude that if a cost is given to measuring each OD flow
individually, the overall cost is minimized if the OD flows that should not be measured are selected
in non-decreasing order of cost to form an independent set. We gave a rather simple method for
checking such independence, which has also the advantage of not involving floating-point operations.
Three particular cost functions were proposed for a systematic study of hypothetical roundabouts on
computer, and we have concluded that their optimal solutions are well-characterized.

Nonetheless, as claimed in [1], for real-world applications, it would be important to consider more
flexible cost criteria in order to take into account specific features of the actual roundabout in study.
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